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Multiobjective Optimization for Joint Task
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Abstract—Mobile edge computing (MEC) is an emerging
computational paradigm for providing storage and computing
capabilities in network edge, to improve the experience of users,
to shorten the delay, and to reduce the energy consumption of
mobile devices. In this article, we consider a multiuser and mul-
tiserver scenario, where each user has an application composed
of multiple independent tasks that need to be executed, and each
MEC server is equipped on a base station (BS) for assisting
mobile users to execute computation-intensive and time-sensitive
tasks. Multiobjective optimization for joint task offloading, power
assignment, and resource allocation is studied to maximize the
offloading gains of users. A multivariable and multiobjective
optimization problem with three objectives is constructed. An effi-
cient multiobjective evolutionary algorithm is developed to solve
the problems of minimizing the response time, minimizing the
energy consumption, and minimizing the cost. Simulation results
verify the effectiveness of our algorithm, and show the method
significantly improves the user’s offloading benefits. According to
the author’s knowledge, this is the first paper on the exploration
of multiobjective optimization of multiuser with multiple tasks
and multiserver MEC system, in which the worst user offloading
revenue is regarded as the optimization objectives.

Index Terms—Delay, mobile edge computing (MEC),
multiobjective optimization, power assignment, resource
allocation, task offloading.

I. INTRODUCTION

W ITH the advancement of society and the rapid
development of the communication technology, smart
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mobile devices (MDs), such as smartphones, wearable devices,
and tablets computers are becoming more and more popular
and indispensable in our work and life. Due to the conve-
nience and ever-increasing performance of MD, mobile users’
demand for various mobile applications (such as image/video
processing, voice recognition, interactive games, etc.) is
increasing explosively [1], [2]. However, with the size of
MD and limited battery life, storage capacity, and computing
power, it is very difficult or even impossible to complete these
computing-sensitive mobile applications individually. Mobile
cloud computing (MCC) is regarded as a possible way to solve
such problems. It reduces the burden of computing by offload-
ing tasks to remote public clouds through wireless access to
resource-rich cloud centers. However, because the cloud center
is deployed in a remote place, offloading requires a long trans-
mission delay. It is difficult to meet the requirements of mobile
applications, such as user experience continuity, high reliabil-
ity, and ultralow latency [3]. These challenges have driven the
deployment of services at the edge of mobile networks close
to users.

In order to meet these challenges, the concept of mobile
edge computing (MEC) has emerged, which can provide stor-
age, computing, and other services at the network edge, that is,
very close to the mobile user geometrically. Different from the
remote public cloud computing system, the MEC server uses a
general computing platform to be directly implemented on the
local cellular base station (BS) or wireless access point (AP).
MEC allows nearby mobile users to execute applications on it
through computational offloading, which greatly reduces the
round-trip transmission delay and reduces the burden on the
back-haul network [4], [5]. The idea of the MEC computing
paradigm is to bring computing resources, storage resources,
and radio resources closer to MD, which can enhance the
server’s scalability in computing, storage, and radio [6], [7].
By empowering ubiquitous wireless access networks (such
as 5G BSs) with powerful communication, computing, and
storage capabilities, MEC can provide MD users with univer-
sal and agile computing enhancement services anytime and
anywhere [8], [9]. Because the MEC platform is close to
mobile users, it has the advantages of high bandwidth, location
awareness, and ultralow latency [10], [11].

Computing offloading from MD to MEC server is an effec-
tive method to solve the contradiction between MD resource
constraints and users’ ultralow latency requirements for mobile
applications. By using MEC storage and computing resources,
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MD can reduce the time delay of its applications, save
the energy consumption, and increase their standby time.
However, it needs to occupy the up-link wireless device for
communication because the task of MD is to be offloaded
to the neighboring MEC server, which requires extra energy
and time consumption for communication transmission. In
addition, with many mobile users who need to execute com-
putational offloading, the limited storage, and computing
resources on the MEC server significantly affect the time delay
of offloading tasks for the MEC system [12], [13]. Therefore,
offloading decision making, power assignment, and MEC com-
puting resource allocation have become key issues to achieve
efficient tasks offloading.

Different from previous research, this article studies the
computing offloading strategy of the MEC system with mul-
tiusers and multiservers with limited resources, and designs an
overall strategy plan for joint task offloading, power assign-
ment, and resource allocation to maximize the overall user
task offloading benefit. Specifically, this article considers an
MEC system with multiusers and multiservers, where the user
MD has an application that can be decomposed into multiple
independent computing tasks to be executed. And we have the
following work. First, we consider the heterogeneity of MD
and MEC servers. Each MD and MEC server have different
calculation frequencies. Second, we consider the differences
in tasks, they all have different computing workloads and
input data sizes. Third, a performance indicators based on
time delay, energy consumption, and the cost is proposed to
comprehensively measure the performance of the algorithm
strategy. Compared with most studies, the studied in this arti-
cle are more close to the real situation, but also face greater
challenges. First, the multiuser and multiserver scenario is
more complex; second, heterogeneous servers and tasks make
it more difficult to search for offloading strategies; and third,
considering multiple indicators, its objectives are more difficult
to optimize.

In the multiuser and multiserver MEC system, there are four
key issues to be solved. First, how to choose which computing
tasks to offload when face to the multiple tasks that mobile
users need to be executed? Second, how to decide how much
power to provide for offloading tasks when face to limited
transmission power? Third, how to choose a suitable server
for offloading so that users can offload as high as possible
when there are multiple servers. Fourth, due to the complex-
ity of these problems, this makes the optimization problem
not a convex problem. In response to these issues, the main
contributions of this article are summarized as follows.

1) We considered the difference among computing tasks
and the heterogeneity among MEC servers. At the same
time, we limit the resources of MD users and MEC
servers, and consider paid offloading tasks. In this way,
the scenario considered is closer to the real scenario in
this article.

2) We combine task offloading, power allocation, and
resource allocation to establish the delay, energy con-
sumption, and cost indicators for user’s offloading util-
ity and compare them by analyzing the delay, energy
consumption, and cost indicators. It is formulated as

a constrained multiobjective optimization problem to
maximize the system offloading utility.

3) We design a suitable code for the multiobjective
optimization problem proposed in this article, and
improve the coding form of the multiobjective evolu-
tionary algorithm to apply to specific problem problems.
And, we also improve the selection strategy of the
multiobjective evolutionary algorithm based on decom-
position (MOEA/D) to adapt to multiple constraints.
We use SAW (simple additive weighting) and MCDM
(multiple criteria decision-making) methods to calculate
the offloading utility of each strategy in the population,
and select the best offloading strategy.

4) We conduct comprehensive experiments and evalua-
tions to verify the performance and effectiveness of
the proposed the MOEAD_MEC algorithm. The influ-
ence of various parameters on offloading efficiency
is discussed. In addition, we also put forward cost-
performance indicators for a comprehensive evaluation
of unloading benefits.

The remaining articles are organized as follows. We review
the relevant references in Section II. In Section III, we intro-
duce the system model and explain the joint offloading, power
assignment, and resource allocation issues. On this basis, the
mathematical model is established and formulated as a con-
strained multiobjective optimization problem. A multiobjective
evolutionary algorithm for solving the proposed optimization
problem is designed in Section IV. Section V introduces the
simulation experiment and evaluates the performance of the
MOEAD_MEC algorithm. The conclusions and future work
is given in Section VI.

II. RELATED WORK

In recent years, the MEC paradigm has attracted great
attention from related researchers and has become a research
hotspot in academia and industry, especially for research on
computational offloading. Since Nokia launched the first real-
world MEC platform in 2013 [14], a lot of work has been
proposed to explore the potential benefits of MEC systems,
especially for the current 5G hotspot environment [15].
Recently, more and more researches have been devoted to
exploring the benefits of computational offloading on MEC
systems [11].

Computing offloading research is a very challenging and
attractive topic that involves making decisions about how to
offload, where to run computing tasks, and how much com-
puting resources to allocate [16]. Wang et al. [17] jointly
optimized the calculation speed, transmission power, and
offload rate of MDs by designing two objectives of delay
and energy consumption minimization. Aiming at the situ-
ation of multiple tasks for a single user, with the purpose
of reducing user delay and equipment energy consumption,
Mao et al. [18] jointly optimized the power allocation and
task offloading of the MEC system under the assumption that
the tasks are independent of each other. For the multiuser
single-task situation, the optimal resource allocation strategy
for a computing offloading in the MEC system is explored by
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minimizing the energy consumption weighted sum under delay
constraints [19]. Ren et al. [20] investigated the computation
offloading strategy in a hierarchical network architecture. On
the basis of establishing a queuing model for MD and multiple
heterogeneous MECs, Li [21] rigorously analyzed all offload-
able and nonoffloadable tasks, as well as the average task
response time in MD and each MEC server. A distributed
algorithm consisting of computing offload selection, transmis-
sion power distribution, and clock frequency control strategy
was proposed to reduce energy consumption and shorten time
delay [22]. Yousefpour et al. [23] proposed a collaboration
offloading strategy to minimize delay based on the character-
istics of fog-capable devices. Based on the consideration of
resource competition among mobile users, Ning et al. [24]
formulated multiuser computing offloading as a mixed-integer
linear programming problem, and designed an iterative heuris-
tic algorithm to optimize the problem. Zhang et al. [25]
investigated sustainable computation offloading in an edge-
computing system that consists of energy harvesting-enabled
MDs and a dispatcher. Aiming at the multiuser and mul-
titasking situation, the tradeoff between the two conflicting
goals (MD power consumption and the execution delay of
computing tasks) in the MEC system is studied [26]. The
offloading strategy is studied by formulating two offloading
games to maximize individuals interest and maximize the
overall systems interest [27].

The task offloading is more and more considered as a
multiobjective problem in MEC, and it is becoming popular to
solve it through evolutionary algorithms. Gedawy et al. [28]
designed a set of heuristic algorithms to solve a multiobjective,
resource-aware task allocation and scheduling problem in
the edge system. In order to study the tradeoff between
energy consumption and latency, this is a very important
requirement for users. Kabir and Masouros [29] proposed
a weighted multiobjective optimization problem, which is
solved by using the Lagrangian method to design an iterative
algorithm. By finding the optimal offloading probability and
transmit power of each MD, a joint objective is used to for-
mulate a multiobjective optimization problem to minimize
energy consumption, execution delay, and payment costs [30].
An improved multiobjective evolutionary algorithm based on
a specific problem is proposed to solve the problem of
modeling the tradeoff between delay and energy consump-
tion as a multiobjective computing offloading problem [31].
Bozorgchenani et al. [32] modeled the task offloading as a
constrained multiobjective optimization problem in MEC, and
designs an evolutionary algorithm that can effectively find
a representative sample of the best tradeoff between energy
consumption and task processing delay.

In this article, the research is a scenario of each MD
with multiple tasks in multiple users and MECs envi-
ronments, which is quite different from all existing stud-
ies. Most of the existing literature considers the delay,
energy consumption, or resource usage cost independently
when designing the offloading scheme. The problem of
jointly optimizing these three objectives has not been
well resolved in the multiple users and MECs system so
far. Moreover, most of the existing studies believe that

Fig. 1. Example of the MEC system with multiusers and multiservers
deployed at the BSs.

transmit power is constant, which do not match the actual
situation.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a cell composed of multiple
MD users (such as smartphones, wearable devices, and tablets)
and multiple MEC servers (which can be physical servers or
virtual machines with medium computing capabilities provided
by operators), where each MEC server is equipped with a dif-
ferent BS. The MEC server communicates with mobile users
through the wireless transmission provided by the correspond-
ing BS and provides them with computing offloading services.
Each MD user can execute single or multiple tasks locally, or
offload tasks to different MEC servers through wireless trans-
mission, then the MEC server processes tasks and transmits the
calculation results back to the MD user. In this article, we use
J = {1, 2, . . . , J}, S = {1, 2, . . . , S}, and M = {1, 2, . . . , M}
to denote the task set on the MD user, the MEC server set, and
the MD user set. At the same time, we make the following
assumptions about the model based on the consideration of
reality and comprehensibility. First, each MD has one mobile
application needs to be executed, and the application can be
decomposed into multiple independent tasks. Second, mobile
users only know own the computational workload, input data
size, and channel side information of their tasks. Third, mobile
users can select different transmission power which trans-
mit tasks to the server under the condition of meeting the
transmission energy constraint. Fourth, the wireless links are
assumed to be orthogonal channels in the MEC communica-
tion environment, so there are no interference among links.
Fifth, the tasks offload to the MEC server are executed in
parallel by allocating computing resources, and the MD exe-
cutes tasks serially. Sixth, the MD user sends the necessary
information for offloading to the MEC server simultaneously.
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TABLE I
SUMMARY OF KEY SYMBOLS

The following is a detailed introduction and modeling of the
system model through the local user computing model, task
uploading model, and MEC server computation model. For
ease of reading, Table I summarizes the main symbols.

1) Local User Computation Model: Each MD m has only
one mobile application, and it can be broken down into
multiple independent computing tasks in this article. And the
CPU (cycles/s) of each MD is represented by fm > 0, which
shows the computing capability of the local MD. Each com-
puting task denoted as j can be offloaded to one MEC server
or executed locally, which can be represented by a tuple of
two parameters <cj

m, dj
m>. The cj

m (cycles) specifies the work-
load of the computing task, that is, how much calculation is
needed to complete it. And the dj

m (bits) is the information
data that must be known to complete the calculation task, such
as system settings, input parameters, and program codes. The
tasks offloading reduce the energy consumption and time delay
for completing tasks owing to the MEC server has greater com-
puting capability, but it also increases communication energy
consumption and time. In this article, xj

m is used to denote
the computing offloading strategy, and its possible value is
xj

m ∈ {0, 1, 2, . . . , S}. When xj
m = 0, it means that the com-

puting task is executed on the local MD, and other values
mean that it is offloaded to one MEC server corresponding to
the value.

If the computing task j is executed locally, its execution time
is t = (cj

m/fm). Since the user of the MD m may have need to
execute multiple computing tasks locally, the local execution
time for completing the mobile application is

T loc
m =

∑

j∈L

cj
m

fm
, L = {

j|xj
m = 0

}
. (1)

In order to calculate the MD’ energy consumption when
the tasks are executed locally, we use the energy consumption
model of per computing cycle [33], which is widely used in
other literature. The energy consumption of computing task
j executed locally is e = ηmcj

mf 2
m, where ηm is the energy

coefficient related to the CPU architecture. The locally energy
consumption of mobile user m is

Eloc
m =

∑

j∈L

ηmcj
mf 2

m, L = {
j|xj

m = 0
}
. (2)

2) Task Uploading Model: MD users offload tasks to
the MEC server, which increase additional communication
overhead, including transmission time and energy consump-
tion. The transmission time is divided into transmitting the
information data necessary to complete the task on the up-
link, and transmitting the result completed back to MD on
the downlink. Since the result returned to the user is usually
very small compared with the input information data, we omit
the overhead of returning the result in the downlink in the
model. The transmission energy consumption mainly refers to
the transmission energy of MD, that is, required to transmit
input data necessary to complete the task to the MEC server.
From the Rayleigh fading channel model [34], [35], it can be
seen that the rate of sending information data dj

m from the MD
user m to MEC server s is

Rj
m,s = Wm,s log2

(
1+ pj

m,sh

Dω
m,sN

)
(3)

where Wm,s is the transmission channel bandwidth. pj
m,s is the

transmission power assigned to task j by the MD m, which
satisfies 0 < pj

m,s < pmax. N and h are the channel white
Gaussian noise and the channel fading coefficient, respectively.
Dw

m,s is the distance between MD m and MEC server s, and ω

is the channel path loss exponent. Therefore, the transmission
time of the information data of task j sent from the MD user
m to s can be calculated as follows:

T_upj
m,s =

dj
m

Rj
m,s

. (4)

The energy consumption for the transmission of input data
of task j sent from the MD user m to s can be calculated as
follows [36]:

E_upj
m,s = pj

m,sT_upj
m,s. (5)

3) MEC Server Computation Model: Each MEC server can
receive task offloads from different MD users, and allocate
computing resources for each task. The resources allocated
f j
m,s to task j must meet the constraints 0 < f j

m,s < f max
s which

f max
s is computing power of MEC s, and for each MEC server

must meet
∑M

m=1
∑J

j=1 f j
m,s < f max

s . For the offloading task j
from the mobile user m, it is the execution time on the MEC
server s is

T_exej
m,s =

cj
m

f j
m,s

. (6)

In addition, MD users must pay for the resources on the
MEC server. In this article, we assume the unit cost of MEC
s is βs, and the cost paid is related to how many resources are
used. Therefore, the cost of offloading task j from m to s can
be calculated as follows:

MCj
m,s = βsf

j
m,s. (7)

B. Problem Formulation

In this article, our intention is to reduce the delay of appli-
cation response, lower the energy consumption of MD, and
control as much as possible to complete tasks at a low cost.
These three objectives are in conflict with each other.
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It can be known from the hypothesis in this article, each
MD user has a mobile application composed of several mutu-
ally independent tasks to be executed. Since the tasks are
no relationship of each other and the MEC servers complete
the offloading tasks in parallel, the delay of task offloading
depends on the task with the longest delay. For MD users,
the latency of executing the entire mobile application includes
the latency of task offloading and the latency of locally exe-
cuted tasks, and the latency of mobile applications depends on
the longer one between them. So for the MD user m, we can
calculate the delay of its mobile application as follows:

Tm = max

{
T loc

m , max
j∈Km

{
T_upj

m,s + T_exej
m,s

}}
(8)

where Km is a collection of tasks that the MD user m offloading
to the MEC server.

The energy consumption of MD users comes from the cal-
culation when tasks are executed locally and the transmission
when tasks are offloaded. Therefore, for the MD user m, the
total energy consumption as follows:

Em =
∑

j∈Km

E_upj
m,s + Eloc

m . (9)

MD users want to reduce the time delay and energy con-
sumption of executing mobile applications by offloading tasks.
Accordingly, they should pay the MEC server provider. The
fees payable should be the sum of the fees payable for offload-
ing tasks on each MEC server. Therefore, for the MD user m,
the cost is

MCm =
∑

j∈Km

MCj
m,s. (10)

For a given offloading strategy x, up-link power assignment
value p, and MEC server computing resource allocation value
f for offloading tasks, the average offloading utility of all MD
users can reflect the benefits of the entire MEC system. The
formula is as follows:

T =
∑

m∈M{Tm}
|M| (11)

E =
∑

m∈M{Em}
|M| (12)

MC =
∑

m∈M{MCm}
|M| . (13)

Based on the above analysis of execution delay, energy con-
sumption, and cost, we can formulate a joint minimization
problem. Considering the conflict among optimization objec-
tives, one objective value decreases, other target values tend
to become larger. Therefore, consider them as a multiobjective
optimization problem and search for a solution for the trade-
off among objective, which includes minimizing execution
delay, minimizing energy consumption, and minimizing cost,
as follows:

min
xj

m,pj
m,f j

m,s

{T, E, MC} (14)

subject to: xj
m ∈ {0, 1, 2, . . . , S} (15)

0 ≤ pj
m ≤ pmax

m (16)

Fig. 2. Encoding instance for the computing tasks.

0 ≤ f j
m,s ≤ f max

s (17)
∑

j∈J

{pj
m} ≤ pmax

m (18)

M∑

m=1

J∑

j=1

f j
m,s < f max

s . (19)

IV. ALGORITHM DESIGN

Compared with traditional methods, evolutionary algorithms
require very little domain-specific knowledge and assump-
tions, and evolutionary algorithms can obtain an approximate
solution of the Pareto front only by running it once. In
addition, because the optimization problem is NP-hard, the
optimization effect of traditional methods is not ideal, and
evolutionary algorithm is a possible exploration. Therefore,
in this section, the evolutionary algorithm is selected to solve
the above-mentioned multiobjective optimization problem. We
first encode decision space of the multiobjective optimization
problem proposed in the previous section. Then, taking into
account the constraints, we modify the MOEA/D algorithm to
search for the optimal solution set. Finally, the best solution
is selected from the set of solutions based on evaluation of
SAW and MCDM methods.

A. Encoding

As mentioned in Section III, each computing task cor-
responds to a computing offloading strategy, an up-link
power assignment strategy, and an MEC server computing
resource allocation strategy. In the differential evolution (DE)
algorithm, genes represent computational offloading strate-
gies, power assignment strategies, and computing resource
allocation strategies of computing tasks. The genes form
chromosomes, which represent a solution in the algorithm.
Fig. 2 shows an example of the coding of the computing
offloading strategy, power assignment strategy, and comput-
ing resource allocation strategy for computing task. In this
example, one-third of the length of the chromosome is coded
with integers {0, 1, 2, . . . , S)} to represent the computational
offloading strategy, and the others are coded with real numbers
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Fig. 3. Operation example of DE.

between 0 and 1 to represent the power assignment strategy
and computational resource allocation strategy.

B. Computation Offloading Method MOEAD_MEC

1) Initialization: The initialization of the MOEAD_MEC
algorithm includes the initialization of the relevant parameters
of the multiobjective evolutionary algorithm. The parame-
ters of DE include population size POP, crossing proba-
bility Pc, and mutation probability Pm. The parameters in
MOEAD_MEC include the maximum value iter of iteration
and the choice of the decomposition method (the Chebyshev
decomposition method). Each chromosome represents the
task offloading strategy of the computing task, the up-link
power assignment strategy, and the server computing resource
allocation strategy.

2) Reproduction Operating: In the evolutionary algorithm,
the reproduction operation is a very critical step, which is to
produce offspring populations. The reproduction operation can
be divided into two steps, one is the crossover operation, and
the other is the mutation operation. In this article, the reproduc-
tion operation is the same as the operation in [37], specifically
using the DE operating and polynomial mutation to generate
new solutions. Fig. 3 shows example of operation of the DE
operator. Due to actual needs, the decoding is different from
general real number coding or discrete coding in this article,
which is a combination of them. Therefore, we made corre-
sponding modifications during the operation. Specifically, we
divide a solution into two parts (discrete and real numbers),
reproduce them separately and then assemble them.

3) Evolution Operating: Selection operating is a key step
that can be converged in evolutionary algorithms. With refer-
ence to the environment’s choice of individuals, the selection
operating is a choice of the fitness value of the objective
function. During this operation, we aim to select better chro-
mosomes as the next-generation solution of the population.
After the reproduction operation, a new solution is produced.
The fitness values of the three objective functions are evaluated
separately. On this basis, a multiobjective evolution strategy
is used to select a new solution to replace the solution in the
original population and keep the population size unchanged
at POP.

In this article, we need to optimize a multiobjective
optimization problem with constraints, while the classic
MOEA/D algorithm does not consider constraints. For the
multiobjective optimization problem with constraints, it is
obviously not feasible to use the unconstrained multiobjective
evolutionary algorithm. Therefore, in order to solve this kind
of constrained multiobjective optimization problem, we have
made appropriate modifications [38]. For a solution CSn, if
it satisfies the constraint conditions, it is called a feasible
solution, otherwise an infeasible solution.

For infeasible solutions, the degree of constraint violation
can reveal it is the fitness value of an infeasible solution. In
this article, constraint violation value is used, which is used to
quantitatively describe the degree to which a solution violates
constraints. For a solution CSn, its value can be calculated as
follows:

CV(CSn) =
∑

ci∈CI

〈gci(CSn)〉 (20)

where CI represents the set of constraints and 〈α〉 means that
if α ≤ 0, then 〈α〉 = 0, otherwise 〈α〉 = |α|. Obviously, for
a solution CSn, the smaller the CV(CSn) value, the better the
solution. At the same time, for a feasible solution, its CV value
is 0, and for an infeasible solution, its CV value is greater
than 0.

The following introduces the modified replacement strategy
to deal with constrained multiobjective optimization prob-
lems. Assuming that Cy is a newly generated new solution,
MOEAD_MEC randomly select one solution CSn in the neigh-
borhood set to determine whether to replace solution CSn with
solution Cy. This process until traversing the entire neighbor-
hood set or replacing two existing solutions. It is replaced if
any of the following conditions is met: 1) CSn is an infeasible
solution and Cy is a feasible solution; 2) CSn and Cy are infea-
sible solution, but there are CV(CSn) > CV(Cy); and 3) CSn

and Cy are all feasible solutions, but the aggregate function
value of the solution Cy is smaller.

4) Selection Solution Using SAW and MCDM: In this arti-
cle, the method proposed aims to optimize the delay, energy
consumption, and cost of MD users, and to provide MD users
with a compromise among delay, energy consumption, and
cost. There are |POP| chromosomes as the solution to the
multiobjective optimization problem in each population, which
Each chromosome represents a task offloading strategy, the
power assignment strategy, and the MEC server computing
resource allocation strategy. In this article, we use SAW and
MCDM methods to choose a compromise solution for the
MEC system [39].

In the MEC system, the longer the delay for MD users,
the worse the offloading strategy. Similarly, the energy con-
sumption and cost of MD users are also negative standards.
We standardize the delay, energy consumption, and cost as
follows:

V
(
Tn) =

{
Tn,max−T(CSn)

Tn,max−Tn,min , Tn,max �= Tn,min

1, Tn,max = Tn,min (21)

V
(
En) =

{
En,max−E(CSn)

En,max−En,min , En,max �= En,min

1, En,max = En,min (22)

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on July 09,2022 at 00:49:14 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: MULTIOBJECTIVE OPTIMIZATION 11743

Algorithm 1 MOEAD_MEC
Input:

MOP: multi-objective optimization problem ; NN: the population size; TN: The
neighborhood size; λ1, λ2, . . . , λNN : A set of NN uniformly distributed weight
vectors; Max evaluations: total generation or function evaluations.

Output:
solution: CSn
Initialization:

1: Generate a set of NN weight vectors, {λ1, λ2, . . . , λNN };
2: find the TN the closest weight vector to each vector λi.

For each sub-problem i = 1, . . . , NN, B(i) = {i1, . . . , iTN } is the neighborhood set.
3: Randomly generate the initial population {CS1, CS2, . . . , CSNN };
4: Compute the F-function values F(xi), ∀i = 1, . . . , NN;
5: Initialize the reference point z = (z1, . . . , zmm).

Update:
6: for i← 1 to solution size NN do
7: Reproduction: generate offloading strategy, capacity allocation strategy and

computing resource allocation strategy section of a child solution y.
8: Repair: Apply problem-specific repair/improvement heuristic on the y to get the

new solution CSnew;
9: Evaluation: Compute the F-function values of CSnew, F(CSnew);

10: Update of z: Set zj = fj(CSnew), for each j = 1, . . . , mm, if fj(CSnew) < zj;
11: Replacement: Set CSj = CSnew and F(CSj) = F(CSnew).
12: end for

Stopping Criteria:
13: If the number of iterations is greater than max evaluations, then obtain approximation

solutions: {x1, . . . , CSNN } and PF: {F(CS1), . . . , F(CSNN )} else continue to update.

14: Use the SAW and MCDM method to select the most suitable solution CSn in the
population {CS1, . . . , CSN }

V
(
MCn) =

{
MCn,max−MC(CSn)

MCn,max−MCn,min , MCn,max �= MCn,min

1, MCn,max = MCn,min
(23)

where Tn,max, Tn,min, En,max, En,min, MCn,max, and MCn,min

represent the two extreme values of delay, energy consump-
tion, and cost in all solutions of the population. T(CSn),
E(CSn), and MC(CSn) represent the delay, energy consump-
tion, and cost of the nth solution, respectively. The weights of
the three objective functions are represented by γ, δ, and ζ ,
respectively. The utility value of the nth solution is

V(CS) = max
POP

{
γ V

(
Tn)+ δV

(
En)+ ζV

(
MCn)}. (24)

We choose the solution with the greatest benefit in the
population as the final solution.

C. MOEAD_MEC Method Overview

This work aims to minimize the delay, energy consump-
tion, and cost of MD users. The problem of optimizing task
offloading strategy is defined as a constrained multiobjective
optimization problem, and using MOEAD_MEC to search for
the optimal offloading strategy, power assignment strategy,
and MEC server computing resource allocation strategy. The
overall process of algorithm design is as follows. First, the
unloading strategy, power allocation strategy, and computing
resource allocation strategy are encoded as the input of the
algorithm, and the decomposition vector and its neighborhood
are calculated. Then, a new chromosome is generated as a new
solution through the duplication operation. Aiming at the fit-
ness function and constraint conditions of the multiobjective
optimization problem, the selection operation of the MOEA/D
algorithm is modified, and the most suitable solution is
selected as the next-generation population. Finally, the best
strategy is selected through SAW and MCDM methods. For the
MOEAD_MEC algorithm details, see Algorithm 1 as follows.

The MOEAD_MEC is summarized in Algorithm 1. We
enter the maximum number of iterations, population size,
neighborhood size, and multiobjective optimization problem.
In lines 1–5 of Algorithm 1, λ1, λ2, . . . , λNN , neighborhood
sets, populations, and reference points are initialized. The clos-
est weight vector is obtained by computing the Euclidean
distances between any two weight vectors, and the reference
point is calculated by zj = min1<i<NN fj(xi)} ∀j = 1, . . . , mm.
Lines 6–12 perform loop iteration. Line 7 is the reproduction
operation by using DE operators over parents solution CSu,
CSl, and CSr, where they are selected from B(i) randomly.
Line 8 is to modify the new solution, line 9 is for the objec-
tive function fitness evaluation of the population, and line 11
is for updating the reference point. Line 11 is for the selec-
tion operation, for each index j ∈ B(i) = {i1, . . . , iTN}, if
CV(CSnew) < CV(xj) or if CV(CSnew) = CV(xj) = 0 and
g(CSnew|λj, z) ≤ g(CSj|λj, z).

V. PERFORMANCE EVALUATION AND RESULTS ANALYSIS

In the section, for the multiobjective optimization problem
of joint task offloading, energy alloction, and resource assign-
ment strategies, extensive simulation experiments are designed
to evaluate the effectiveness of MOEAD_MEC. Specifically,
we not only analyze the effect of the system, but also study the
impact of related parameters, such as the number of users, the
number of tasks, the number of servers, the size of data, and
the size of the workload. In order to show that our proposed
algorithm MOEAD_MEC can reduce time delay, energy con-
sumption and cost, the following three schemes are used
as benchmarks to evaluate the effect of the MOEAD_MEC
algorithm.

1) All Tasks Are Executed Locally (LE): That is, all tasks
are not offloaded. Each MD user runs its own mobile
application task.

2) All Tasks Are Executed on MEC(MEC_E): All comput-
ing tasks are offloaded for execution, that is, all MD are
not executed task. Each MD uses equal power to send
offload tasks. And the offloading tasks are sent to differ-
ent MEC servers in turn, and the server equally allocates
computing resources to the received offloading tasks.

3) Each Task Is Randomly Executed Locally or on MEC
Server(R_E): Each task is randomly executed locally or
on server. Under the premise of ensuring the constraint
conditions, all MD users randomly allocate power to
different tasks, and the MEC servers randomly allocate
resources to the offloading task.

The simulation experiment is simulating a multiuser and
multiserver MEC platform. We refer to [21] and [35] for
setting the values of the following parameters, see Table II
for details. The weights of the three objective functions are
γ = 0.7, δ = 0.2, and ζ = 0.1. In order to reflect the differ-
ence of tasks, the workload of the second task and the input
data of the second task of each mobile user are multiplied by
100 on this basis. In order for the system to be as close to the
real as possible, there are randomly placing MEC servers and
MD users within 500 (m).
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Fig. 4. Analysis of the latency, energy consumption, cost, and cost performance indicators of each MD device.

TABLE II
SUMMARY OF THE SIMULATION PARAMETERS

A. Effect Analysis

In the section, there is an experimental analysis on the
revenue obtained by each MD user through task offloading,
as shown in Fig. 4.

In Fig. 4, the four subgraphs represent the analysis of the
task offloading benefits of each MD user for delay, energy
consumption, cost, and cost performance, respectively. The
performance of the strategy obtained by the MOEAD_MEC
algorithm is better than other strategy in all performance com-
parisons. It is worth noting that among these performance
indicators. For the delay, energy consumption, and cost, the
value is the smaller the better. On the contrary, the value
of the cost performance indicator is the higher the better.
It can be seen from the figure that the strategy obtained by
the MOEAD_MEC algorithm can achieve better performance
among the four indicators, and the performance obtained
by each MD user is relatively little difference. This veri-
fies the effectiveness of the optimization model and algorithm
proposed in this article.

B. Effect of Number of Users

In Fig. 5, the performance of the MEC system with different
numbers of user is shown. The four subgraphs show the

performance of the MEC platform with different numbers of
MD users for performance indicator delay, energy consump-
tion, cost, and cost performance, respectively. In Fig. 5, the
performance of the strategy obtained by the MOEAD_MEC
algorithm is better than other strategy in all performance
comparisons.

As shown in Fig. 5(a), the delay obtained by the strat-
egy of MOEAD_MEC is increasing as MD users increases.
Since when users increase, the number of tasks also increase.
And, the average delay increase due to the total computing
resources remain unchanged in the MEC system. In Fig. 5(b),
the MOEAD_MEC algorithm maintains energy consumption
at a low level when there are fewer users. This is because there
are fewer tasks that need to be completed. Most of the tasks
are offloaded, which consumes less energy. When the number
of users is large and most tasks are offloaded, it seriously
affects the time delay due to limited computing resources.
Therefore, energy consumption is increased in exchange for
the acceptable time by leaving some tasks are executed local.
As users increases, the average cost gradually decreases in
Fig. 5(c). This is because the MEC computing resources that
can be purchased are certain. With the increase of users, the
MEC computing resources used by each user are decreasing,
so the average cost decrease. As shown in Fig. 5(d), the cost
performance fluctuates less and has maintained a high value.
It shows that the MOEAD_MEC algorithm is relatively stable
and can maintain a good balance among the three goals.

C. Effect of Number of Tasks

In the section, we explored the impact of different numbers
of MD tasks on the performance of the MEC platform, as
shown in Fig. 6. The four subgraphs display the MEC system
performance of different numbers of user’ tasks for indica-
tor delay, energy consumption, cost, and cost performance,
respectively. The number of users’ tasks is increasing linearly.
It can be seen that the performance of the strategy obtained
by the MOEAD_MEC algorithm is better than other strategies
in all performance comparisons.
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Fig. 5. Performance analysis of the MEC system with different numbers of users.

Fig. 6. Performance analysis of the MEC system with different numbers of tasks.

The average user delay of the strategy obtained by
MOEAD_MEC increases as tasks for MD users increases
in Fig. 6(a). With the fixed computing resources in the
MEC system need to handle more tasks when computing
tasks increase, so the average delay per user increase. The
MOEAD_MEC algorithm maintains its energy consumption
at a low level when there are fewer tasks in Fig. 6(b). This is
because most tasks can be offloaded to utilize stronger com-
puting resources when there are fewer tasks. When the tasks
owned by users increases, excessive offloading of tasks to the
limited resources MEC server inevitably increase the appli-
cation delay. To control the excessive increase in delay, some
tasks are executed locally. As shown in Fig. 6(c) and (d), there
is no obvious trend in the cost and cost performance as the
number of user tasks changes.

D. Effect of Number of Servers

The impact of having different numbers of MEC servers
on the performance of the MEC system is evaluated in this

section. The four subgraphs represent the performance of task
offloading for different numbers of MEC servers in the indica-
tor delay, energy consumption, cost, and cost performance in
Fig. 7, respectively. The performance of the strategy obtained
by the MOEAD_MEC algorithm is better than other strategies
in the four subgraphs.

The average delay of the strategy obtained by
MOEAD_MEC decrease as MEC servers increases in
Fig. 7(a). It means that the MEC system has more computing
resources to computing these tasks when MEC servers
increases. MD users can use more computing resources of
the MEC server, thereby more tasks are offloaded and the
average delay of MD users are reduced accordingly. The
energy consumption of MD users under the MOEAD_MEC
algorithm decreases with the increase of MEC servers in
Fig. 7(b). This is because MD users are more inclined that
the computing tasks are offloaded for execution with servers
increase. The tasks executed locally are reduced and the
energy consumption tends to decrease. As MEC servers
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Fig. 7. Performance analysis of the MEC system with different numbers of servers.

Fig. 8. Performance analysis of MEC system with different size of workload.

increases, the average cost of users gradually increases in
Fig. 7(c). This is because the same user and computing
tasks choose more MEC server resources to reduce the
delay and energy consumption of MD. The MEC computing
resources that are purchased increase, and users have to
pay more. As shown in Fig. 7(d), the cost performance has
been relatively stable with MEC servers increases. It shows
from the side that the MOEAD_MEC algorithm is relatively
stable and can maintain a good balance among the three
objectives.

E. Effect of Size of Workload

In the section, we evaluate the performance impact of
offloading strategy for different workloads for the tasks,
as shown in Fig. 8. The four subgraphs represent the
performance of MD users with different workload tasks
for indicator delay, energy consumption, cost, and cost

performance, respectively. In Fig. 8, the workload of the
offloading task changes exponentially. It can be seen that the
performance of the strategy obtained by the MOEAD_MEC
algorithm is better than other strategy in all performance
comparisons.

In Fig. 8(a), the mean delay of the strategy obtained
by MOEAD_MEC keep increasing as the task workloads
increases. Its execution time increase accordingly when the
task workloads increases. And the total computing resources
in the MEC system remain unchanged, so the average delay
increase. In Fig. 8(b), similar to the experimental results
of delay, energy consumption increases with the workload
increase of this task in the MOEAD_MEC algorithm. This
is because it seriously affects the delay when the workload
increases and most tasks are offloaded. Due to limited com-
puting resources, it tends to increase local execution energy
consumption in exchange for the acceptable delay. The aver-
age cost of users tends to increase as the workload of tasks
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increases in Fig. 8(c). This is because excellent strategies
tend to that the tasks are offloaded for shortening delay, as
the MEC server has stronger computing and shorter execu-
tion time. For Fig. 8(d), the cost performance is relatively
stable as the workload changes and has maintained a high
value. It shows that the MOEAD_MEC algorithm is rela-
tively stable and can maintain a good balance among the three
objectives.

VI. CONCLUSION

In this article, we consider issue of the offloading pol-
icy on multiuser and multiserver MEC platform. Through
joint task offloading, power assignment, and resource allo-
cation strategies, we are to optimize the delay, energy con-
sumption, and cost of MD users. In order to make all
users have a better offloading benefit, we have designed
the objective to focus on optimizing offloading benefit of
MD users with the worst performance. The optimization
problem involves three conflicting optimization objectives,
so it is expressed as multiobjective constrained optimization
problem in this article. For this problem, we design a
suitable population code, modify the replacement strategy
in MOEA/D, and propose the MOEAD_MEC method to
solve it. We design a comprehensive simulation experi-
ment to verify the performance of MOEAD_MEC and the
feasibility of the multiobjective model. The experimental
results indicate the proposed strategy obviously outperforms
the baseline method for time delay, energy consumption,
cost, and cost performance, respectively. And these show
the effectiveness of the MOEAD_MEC algorithm and the
model.

In future work, we will continue to follow the work of this
article and focus on some issues worthy of research.

1) It assumes that each user’s mobile application is com-
posed of mutually independent tasks in this article. In
the follow-up research, the dependencies between tasks
will be considered.

2) In this article, we are considering channel transmission
without mutual interference. In the follow-up research,
we will discuss the efficiency of our model under
interference channels.

3) We will extend the models and methods in this article
to the cloud-side collaboration system in the follow-up
work, which is very interesting and valuable.
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