
Computer Science Review 53 (2024) 100656

A
1

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

A survey on computation offloading in edge systems: From the perspective of
deep reinforcement learning approaches
Peng Peng a,b, Weiwei Lin c,b, Wentai Wu d,∗, Haotong Zhang e, Shaoliang Peng f, Qingbo Wu b,
Keqin Li g

a School of Future Technology, South China University of Technology, Guangzhou, 510641, China
b Peng Cheng Laboratory, Shenzhen, 518000, China
c School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, China
d College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
e School of Software Engineering, South China University of Technology, Guangzhou, 510006, China
f College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
g Department of Computer Science, State University of New York, NY, 12561, USA

A R T I C L E I N F O

Keywords:
Edge computing
Deep reinforcement learning
Computation offloading

A B S T R A C T

Driven by the demand of time-sensitive and data-intensive applications, edge computing has attracted wide
attention as one of the cornerstones of modern service architectures. An edge-based system can facilitate a
flexible processing of tasks over heterogeneous resources. Hence, computation offloading is the key technique
for systematic service improvement. However, with the proliferation of devices, traditional approaches have
clear limits in handling dynamic and heterogeneous systems at scale. Deep Reinforcement Learning (DRL), as
a promising alternative, has shown great potential with powerful high-dimensional perception and decision-
making capability to enable intelligent offloading, but the great complexity in DRL-based algorithm design
turns out to be an obstacle. In light of this, this survey provides a comprehensive view of DRL-based approaches
to computation offloading in edge computing systems. We cover state-of-the-art advances by delving into the
fundamental elements of DRL algorithm design with focuses on the target environmental factors, Markov
Decision Process (MDP) model construction, and refined learning strategies. Based on our investigation,
several open challenges are further highlighted from both the perspective of algorithm design and realistic
requirements that deserve more attention in future research.

Contents

1. Introduction .. 2
1.1. Computation offloading in edge computing .. 2
1.2. DRL-based offloading strategies ... 3
1.3. Related surveys .. 3
1.4. Contribution and organization ... 4

2. Background ... 5
2.1. Computation offloading in edge computing .. 5
2.2. Deep reinforcement learning fundamentals ... 6

2.2.1. Markov decision process ... 6
2.2.2. Value-based DRL .. 6
2.2.3. Policy-based DRL ... 6
2.2.4. Actor-critic framework.. 6
2.2.5. Multi-agent DRL... 7

3. Environment factors ... 7
3.1. Energy management & harvesting.. 7

∗ Corresponding author.
E-mail addresses: pengp@pcl.ac.cn (P. Peng), linww@scut.edu.cn (W. Lin), wentaiwu@jnu.edu.cn (W. Wu), sezhanght@mail.scut.edu.cn (H. Zhang),

slpeng@hnu.edu.cn (S. Peng), wuqb@pcl.ac.cn (Q. Wu), lik@newpaltz.edu (K. Li).
vailable online 29 June 2024
574-0137/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.cosrev.2024.100656
Received 20 March 2024; Received in revised form 6 June 2024; Accepted 16 June 2024

https://www.elsevier.com/locate/cosrev
https://www.elsevier.com/locate/cosrev
mailto:pengp@pcl.ac.cn
mailto:linww@scut.edu.cn
mailto:wentaiwu@jnu.edu.cn
mailto:sezhanght@mail.scut.edu.cn
mailto:slpeng@hnu.edu.cn
mailto:wuqb@pcl.ac.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.cosrev.2024.100656
https://doi.org/10.1016/j.cosrev.2024.100656

Computer Science Review 53 (2024) 100656P. Peng et al.
3.2. Service provision & incentive .. 8
3.3. Mobility awareness & control .. 8
3.4. Joint caching management .. 8
3.5. Interdependent task offloading .. 9
3.6. System security & reliability.. 9

4. MDP model construction .. 9
4.1. State and observation ... 9
4.2. Action space .. 10
4.3. Reward function design .. 11

5. Learning strategy improvements.. 11
5.1. Basic DRL algorithm ... 12
5.2. Better information usage ... 13
5.3. Improved exploration and exploitation ... 14
5.4. Reduction of action space ... 17
5.5. Multi-agent cooperation and competition ... 19

6. Open challenges .. 21
6.1. Task partitioning and dependency ... 21
6.2. Event driven offloading... 21
6.3. Heterogeneous computing architecture ... 21
6.4. High reliability guarantee ... 21
6.5. Data integrity and privacy .. 22
6.6. Environment dynamics and adaptability ... 22
6.7. Interpretability of DRL.. 22

7. Conclusion .. 22
Declaration of competing interest .. 22
Data availability .. 22
Acknowledgments .. 22
References... 22
1. Introduction

Over the past decade, the paradigm of service delivery has been
reshaped and is still evolving. The development of edge computing
stems from the popularity of cloud computing, where resources are
centralized in data centers to fulfill the demands of end users. However,
the limitation of cloud-centric service architecture stands out when
it comes to service delivery at the network edge, such as Internet of
Things (IoT) scenarios where a myriad of devices with latency-sensitive
applications are involved. According to Statista, the number of edge-
enabled IoT devices is forecast to reach 6.5 billion by 2030 [1], which
further increases data transmission and task processing requirements,
leading to network congestion and high response latency.

Driven by this trend, edge computing has emerged and developed
into a widely-used service paradigm. The overall architecture of an
edge computing system, depicted in Fig. 1, comprises a multi-layered
distributed framework, where smaller entities like routers and antenna
towers function as edge nodes (EN) to either independently or collab-
oratively provide services. Thus, computational tasks, which are not
feasible to be processed efficiently and promptly by end devices, could
be offloaded to ENs in the vicinity for fast responses [2]. This offers
great advantages in transmission delays caused by physical distance
and relieves network congestion, typically resulting in a stronger guar-
antee in service latency. Because of these features, edge computing has
been widely adopted in the industry especially when enabled by the
next-generation communication technology in new scenarios such as
high-density, large-scale IoT networks [3].

However, the dynamic, distributed, and inherently complex nature
of edge computing systems poses significant challenges in terms of how
to better utilize the computing power at the edge, where the strategy
of task offloading is one of the most critical aspects for enhancing
the efficiency and throughput of edge systems. While traditional op-
timization methods have demonstrated the ability to achieve adequate
performance, they often struggle when facing the current large-scale
and highly dynamic systems. To this end, recent research explores the
2

potential of DRL to tackle the intricacies of edge computing systems.
Supported by the powerful feature-extracting capabilities of deep neu-
ral networks (DNNs), DRL-based approaches have shown remarkable
proficiency within complex and uncertain environments. Nonetheless,
the heterogeneous nature of realistic edge environments inevitably
results in the diversity of system models and the corresponding DRL
algorithm design.

Therefore, this survey endeavors to provide an in-depth exposition
of algorithm design principles as well as the recent advances in DRL-
based computation offloading strategies within the context of edge
computing.

1.1. Computation offloading in edge computing

In the realm of edge computing, computation offloading delin-
eates the migration of computation tasks from local devices to edge
servers. It allows compute-intensive applications to leverage the better
processing capabilities of edge servers, thus augmenting the system’s
ability to deliver sophisticated services. Distinct from the conven-
tional cloud computing paradigm, offloading tasks to proximal edge
servers circumvents long data transmission delays, which is critical for
latency-sensitive applications.

A computation offloading strategy decides whether tasks should be
executed locally or offloaded to a selected EN. Offloading can improve
computing latency but introduces additional transmission delay and
energy costs. Meanwhile, communication and computation resources,
such as bandwidth, transmit power and CPU frequency, should be
adjusted simultaneously to ensure service quality and system efficiency.
These considerations combined make the design of offloading strategies
challenging and thus attracted broad interest in recent years [4].

The inherent diversity in the specifications of ENs and local devices
and the varying requirements of services introduce complexity to the
decision-making problem. Firstly, the geographical distribution and the
strong heterogeneity of ENs and devices can lead to large differences
in benefit between decisions. Secondly, the prevalent usage of wireless
communication could be adversely affected by numerous factors such
as unstable connection and channel interference. Thirdly, an edge
computing system is highly scalable and thus requires adaptive man-

agement and coordination. In addition, specific considerations, such

Computer Science Review 53 (2024) 100656P. Peng et al.
Fig. 1. Edge computing network.

as the mobility of devices, the dependence between subtasks and the
limited energy budgets, must be meticulously accounted for in realistic
scenarios. These factors collectively underscore the intricate nature of
computation offloading, highlighting the need for advanced, adaptable
solutions.

Much effort has been invested to address the computation offload-
ing optimization challenges. Approaches such as convex optimization,
heuristic algorithms, and approximation algorithms have been exten-
sively proposed and adopted, demonstrating efficacy in achieving ade-
quate performance [5]. Despite their widespread application, these tra-
ditional optimization techniques often falter when confronted with the
distributed, dynamic, and scalable nature of edge computing systems.
Consequently, conventional strategies often experience performance
degradation or long decision-making delays, which underscores the im-
portance of finding stronger approaches to the problem of computation
offloading.

1.2. DRL-based offloading strategies

Reinforcement Learning (RL) is an experience-driven machine learn-
ing paradigm that excels in complex dynamic decision-making scenar-
ios. The core of RL involves the observation and utilization of the
system state, interaction with the environment, and the incentivization
of reward feedback. By adapting to the environment based on inter-
action experiences, RL agents are capable of continually learning to
improve policies in response to the evolving environment and making
decisions that maximize long-term returns. Recently, the integration of
DNN with RL, known as DRL, has attracted widespread attention.

The fast development of DRL, coupled with the attributes of edge
systems, has given rise to DRL-based computation offloading methods.
It not only extends the applicability of RL to a wider range of chal-
lenging scenarios, but also improves the precision, adaptability, and
quality of the policy. Its benefits can be attributed to the following
points. Firstly, DRL inherits the continual learning capability of RL to
adapt to the changing dynamics of edge computing systems. Secondly,
the integration of DNN enables DRL to more accurately perceive and
interpret the complex state of large-scale edge systems. Thirdly, unlike
traditional methods that prioritize immediate rewards, DRL focuses on
maximizing long-term returns thereby preventing the pitfalls of short-
term benefits. In addition, the advent of multi-agent DRL introduces
decentralized decision-making. It reduces the need for extensive com-
munication of states and provides benefits for autonomous edge system
participants.

Recent studies have highlighted the effectiveness of DRL-based
approaches in managing computation offloading to achieve notable
performance [6]. Despite their diversity, the effectiveness of DRL-
based approaches largely depends on three aspects of DRL, namely,
the target environment, the MDP model construction, and the learning
strategy of agents. As shown in Fig. 2, the target environment refers
to the realistic system the agent interacts with. Its characteristics are
critical for MDP model construction, agent design, and policy training.
The MDP model outlines the states observed, the actions to be taken,
and the reward function that drives learning. The learning strategy
of agents is the core of DRL algorithms and is related to how agents
utilize the acquired information for decision making and learning from
3

experience. Better learning strategies would result in faster convergence
and better performance.

Therefore, this review summarizes recent works from the perspec-
tive of these key elements of DRL. In other words, for task offloading
in edge systems, we aim to provide three DRL-specific angles for the
readers to understand how different solutions work and how they differ
from each other. More specifically, instead of discussing real-world
application scenarios, we first outline the environment factors that
need to be considered in research. Then, we describe the MDP model
construction in related work so that the readers can better understand
how the agents make offloading decisions. Finally, from the perspective
of the learning strategy, we summarize novel techniques for learning
strategy improvement that concern how to ‘‘help’’ a DRL agent learn
better.

1.3. Related surveys

In recent years, computation offloading management has garnered
significant interest and led to the publication of numerous compre-
hensive surveys. We analyzed relevant reviews published since 2021
and recognized the need for an updated perspective that reflects the
fundamentals and challenges of applying DRL as the recipe. Table 1
summarizes and compares existing surveys in this domain 1.

Due to the diverse application domains of edge computing such
as the Internet of Vehicles (IoV) and Aerial Mobile Edge Computing,
some surveys provide specialized analysis to address domain-specific
challenges and developments. For instance, Liu et al. [7] focus on
vehicular edge systems. It is structured by the diverse service providers
and discusses the usage of RL/DRL algorithms within this area. Hamdi
et al. [8] outline some requirements that should be considered in com-
putation offloading for vehicular edge computing systems. Song et al.
[9] address the management of UAV-assisted edge systems. Instead
of specializing in offloading, they include control plane aspects such
as UAV deployment and trajectory optimization. While these reviews
offer valuable insights into specific application areas, it is hard for the
readers to understand why these DRL algorithms work and how to make
them work in other scenarios.

DRL can also be utilized for techniques beyond task offloading. For
example, Chen et al. [10] discuss the applications of DRL in communi-
cation, computation, caching, and control within five key IoT scenarios
including smart grids, intelligent transportation systems, and industrial
IoT environments. Frikha et al. [11] explore the application of RL/DRL
in communication and networking, including routing, spectrum access,
mobility management, and caching strategies. Li et al. [12] specialize
in the usage of multi-agent RL for optimization in IoT, addressing
areas such as transmission scheduling, computation offloading, trajec-
tory planning, and security measures. Although these studies provide
insight into the use of RL/DRL in edge systems, there is still a gap
in the literature where a more focused and detailed examination of
recent developments in computation offloading from the perspective
of RL/DRL.

Under the topic of computation offloading, some existing works
offer in-depth analyses and categorizations of the diverse strategies
employed within edge systems. For example, Feng et al. [13] and Ku-
mari et al. [14] investigate recent research efforts based on objec-
tives. It is also very common to group related works into algorithmic
categories such as traditional optimizations, heuristic methods, and
machine learning-based approaches [15–17]. Kar et al. [18] categorizes
these works based on network architecture and compares traditional
with DRL-based strategies. Akhlaqi and Mohd Hanapi [19] discuss re-
lated works in terms of problem definition, algorithm comparison, and
performance evaluation. However, we believe these efforts are insuffi-
cient to expose the subtleties and challenges of DRL-based offloading
strategies.

Our scope partially overlaps with [20] which summarizes DRL-
based offloading solutions from 2020 to 2021 and groups them by

Computer Science Review 53 (2024) 100656P. Peng et al.
Fig. 2. The left side shows the core elements of DRL, including the environment, the MDP model design, and the agents’ learning strategy. The right side shows the structure of
this survey, with the main sections matching the core elements of DRL.
Table 1
Comparison of related surveys.

Coverage
(up-to)

Covered scenarios Focus on
offloading

Focus on
RL/DRL

Main perspective

Internet
of Things

Vehicular
edge network

Aerial
Edge Network

[7] 2021 ✓ ✓ ✓ Network architecture
[8] 2021 ✓ ✓ Scenario-specific problems
[9] 2021 ✓ Scenario-specific problems

[10] 2020 ✓ ✓ Applications
[11] 2020 ✓ ✓ ✓ Scenario-specific problems
[12] 2021 ✓ ✓ ✓ ✓ Scenario-specific problems

[13] 2021 ✓ ✓ ✓ Optimization objectives
[14] 2021 ✓ ✓ ✓ Optimization objectives
[15] 2021 ✓ ✓ ✓ ✓ Algorithmic categorization
[16] 2022 ✓ ✓ ✓ ✓ Algorithmic categorization
[17] 2021 ✓ ✓ ✓ Algorithmic categorization
[18] 2022 ✓ ✓ ✓ Network architecture
[22] 2022 ✓ ✓ ✓ ✓ Network architecture
[19] 2022 ✓ ✓ ✓ ✓ Algorithmic categorization

[20] 2021 ✓ ✓ ✓ ✓ ✓ applications
[6] 2021 ✓ ✓ ✓ ✓ Scenario-specific problems
[21] 2022 ✓ ✓ ✓ ✓ ✓ Algorithmic categorization
[4] 2021 ✓ ✓ ✓ ✓ ✓ Algorithmic categorization

Ours 2023 ✓ ✓ ✓ ✓ ✓ Principles of algorithm design
real-world scenarios. While this survey is comprehensive in its explo-
ration of the target environment, it falls short in adequately discussing
the detailed agent design. A similar shortcoming is noted in [6], which
also misses in-depth details about the algorithms. Abdulazeez and Askar
[21] and Zabihi et al. [4] provide helpful references for understanding
the application of various RL/DRL algorithms in common scenarios
including IoT, vehicular edge networks and aerial edge networks. How-
ever, they do not cover the latest advances since late 2022 and fail
to provide valuable future directions. Hence, a more up-to-date review
that provides both fundamentals and insights into this active field is
still desired.
4

1.4. Contribution and organization

In contrast to the existing literature, our survey casts light on DRL-
based approaches with the primary focus on the core elements of DRL,
namely, the target environment factors, the MDP model construction,
and the learning strategies. We cover related studies from 2020 to
2023 in which period DRL became increasingly popular in the domain.
We summarize and discuss several well-established and popular target
environment factors in real-world systems and related research to high-
light the issues and challenges involved. We then introduce the details
of MDP model construction, discussing the state space, the action space,

Computer Science Review 53 (2024) 100656P. Peng et al.
and the reward design as the fundamental role of applying DRL. An in-
depth review and synthesis of recent studies is provided, categorized by
angle of improvements in learning strategies. We conclude our review
by outlining future research directions that deserve exploration. The
contributions of this review are as follows.

1. Our survey revisits state-of-the-art DRL-based methods for of-
floading computation in edge computing from the perspective
of algorithm design principles. We aim to offer a technical
exposition and guide the future application and enhancement of
DRL in this field.

2. We organize the review based on three key DRL elements,
namely, the target environment factors, the MDP model con-
struction, and the learning strategy improvements. Unlike exist-
ing surveys, this structure can offer a unique angle from which
one can better understand the rationale behind algorithm design
by looking into the technical differences between DRL-based
offloading strategies.

3. Based on our review of the current literature, we identify and
discuss several open challenges and suggest future research di-
rections under this topic. Despite existing efforts in modeling
edge environments and improving DRL performance, the dy-
namic and heterogeneous nature of edge systems with security
and reliability requirements still deserves future exploration.

The remainder of this survey is organized as follows. Section 2
introduces the basic formulation of task offloading and the background
of DRL. Section 3 summarizes several common environment factors
that are common in realistic scenarios and have been widely analyzed.
Section 4 presents a statistical analysis of the elements frequently used
in MDP model construction. Section 5 provides an in-depth review of
learning strategy improvements in recent research. Section 6 discusses
open challenges for further research. The paper concludes in Section 7.
An overview of the scope and content of the survey is presented in
Fig. 2.

2. Background

2.1. Computation offloading in edge computing

In general, as shown in Fig. 3, tasks are generated by end devices.
The task offloading procedure includes three steps. First, task data
should be uploaded to the selected edge server. It is then processed
by edge servers, and then results should be transmitted back to the end
devices. The optimization objective of task offloading often relates to
the transmission cost and computing latency, both of which depend on
environment factors as well as the decisions. In this regard, principled
models are commonly used in the literature.

The transmission model reveals the relationship between network
resources, such as transmit power and bandwidth, and several perfor-
mance measures such as transmission rate, latency, and energy costs.
Despite the wide range of transmission schemes available in modern
communication networks, the Shannon Theorem provides the funda-
mental equation for estimating transmission rates, expressed as 𝑣 =
𝐵 log2(1 + SINR), where 𝐵 signifies the allocated bandwidth, and SINR
is the signal-to-interference-plus-noise ratio. Based on the transmission
rate, given the task data size, the associated latency and energy costs
could be estimated intuitively.

The model of communication has a fundamental influence on the
effectiveness of computation offloading. Predominantly, Time Division
Multiple Access (TDMA) and Orthogonal Frequency Division Multiple
Access (OFDMA) are adopted in the majority of the related stud-
ies [23,24]. These techniques allocate exclusive time slots or frequency
bands to different transmission schemes. Besides. Non-orthogonal Fre-
quency Division Multiple Access (NOMA) has gained increasing adop-
tion as a key enabling technique for 5G/6G featuring high bandwidth
5

Fig. 3. Task offloading procedures. The task data is uploaded to the selected edge
server, processed there, and the result is downloaded back to the end device.

efficiency [25]. NOMA facilitates concurrent data transmission over
a shared channel and employs Successive Interference Cancellation
(SIC) to sequentially decode the overlaid signals. In this model, sig-
nals designated for subsequent decoding are considered as co-channel
interference.

Furthermore, additional factors in wireless transmission, such as
line-of-sight (LoS) and non-line-of-sight (nLoS) transmissions, air-gro-
und communication, and Intelligent Reflecting Surface (IRS) technol-
ogy, need to be taken into account [26–28]. These factors increase
the complexity of theoretical communication models and should be
analyzed in the context of real-world environments.

The computation model evaluates the latency and energy costs asso-
ciated with task processing. Typically, new tasks are queued at the edge
servers or end devices upon their arrival and must wait while previous
tasks are still being processed. Only after the completion of preceding
tasks can the computation phase for the new tasks begin [18,29]. In the
majority of studies, the focus is primarily on CPU-intensive tasks, with
the CPU frequency serving as the metric for assessing the processing
rate. By given the number of CPU cycles required to complete a
task, it is possible to accurately calculate the corresponding latency
and energy consumption associated with its processing. A few works
explored offloading over heterogeneous computing architectures such
as Field Programmable Gate Arrays (FPGA) or Graph Processing Units
(GPU) [30,31], but they simply use a predefined suitability coefficient
to represent the performance difference among the CPU processors.

The decision variables in computation offloading are mainly about
whether to offload, where to offload, and the percentage of compu-
tation to offload [32]. These decisions are pivotal in optimizing the
performance and efficiency of distributed edge systems. Whether to
offload represents a binary choice in computation offloading. Choosing
to perform local processing avoids data transmission, which reduces
transmission energy consumption but often results in higher latency
due to the limited computing resources. Conversely, offloading tasks
to the edge can significantly reduce latency but introduce transmission
overheads. In scenarios involving a large number of end devices, it is
essential to strategically select the offload target to facilitate efficient
load balancing among ENs, thereby optimizing network efficiency and
maintaining service quality. Several studies follow partial task offload-
ing, where tasks can be fractionally divided. They focus on how many
ratios of tasks are selected to offload, which transforms the binary
decision into a continuous space decision problem.

In addition, computation offloading is usually coupled with the
allocation of resources. For example, setting a lower transmit power
can decrease the energy cost per unit time, but may lead to longer
transmission times; increasing the CPU frequency would reduce the

Computer Science Review 53 (2024) 100656P. Peng et al.
computing latency but at the expense of a higher energy cost. Besides,
some specific scenarios require other decision variables such as caching
location and EN movement control [33,34].

The primary objective of computation offloading management is to
enhance system performance which is typically measured by latency
and energy cost. Latency impacts Quality of Service (QoS) while energy
cost reflects the running costs and efficiency of systems. To find an
optimal balance, numerous studies suggest optimizing a weighted sum
of latency and energy costs, which creates a trade-off between mini-
mizing latency and reducing energy usage. Some research incorporates
additional factors such as task completion gain, task priority, energy
pricing, and service provisioning costs. These contribute to composite
metrics such as system utility, energy efficiency, and service profit. Yet,
the basic ones, e.g., processing latency, energy consumption and system
performance, still draw the most attention [13,14].

2.2. Deep reinforcement learning fundamentals

2.2.1. Markov decision process
In general, the very foundation of DRL is to model the system as

a Markov Decision Process (MDP). For a given environment or opti-
mization problem, the first step for DRL-based methods is to establish
an MDP model that describes the input states, the action space, and the
reward. It also defines the transition between states and the cumulative
discount factor for future rewards. It is commonly represented by a
tuple (𝑆,𝐴, 𝑝, 𝑟, 𝛾), where

• 𝑆 represents the set of states that describes the environment.
The Markov property constrains that the next state 𝑠𝑡+1 only
depends on the current state 𝑠𝑡 and independent to the past states
{𝑠0, 𝑠1,… , 𝑠𝑡−1}.

• 𝐴 is the set of actions. In classic settings, it is assumed that 𝐴 is
a finite, discrete space.

• 𝑝 is the transition probability function. It maps a state–action pair
to the probability distribution of the next state.

• 𝑟 is the immediate reward obtained based on the action taken.
• 𝛾 is the discount factor applied to the reward from future actions.

When the MDP is infinitive, a proper 𝛾 is required to ensure the
cumulative reward (i.e., expected return) converges.

For the state 𝑠, if taking action 𝑎, an immediate reward 𝑟(𝑠, 𝑎)
is obtained, and the state transition to 𝑠′ is triggered depending on
the transition probability 𝑝(𝑠′|𝑠, 𝑎). After interacting 𝑡 times with the
environment, the agent has in memory the following trajectory of MDP:
𝜏 = (𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2,… , 𝑠𝑡, 𝑎𝑡, 𝑟𝑡). The discounted cumulative reward
starting from 𝑡 is represented as 𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ =
∑∞

𝑘=0 𝛾
𝑘𝑟𝑡+𝑘+1.

2.2.2. Value-based DRL
The state–action value function Q is the key element in value-based

DRL methods. It represents the expected cumulative reward after taking
action 𝑎 at state 𝑠, defined as 𝑄𝜋 (𝑠, 𝑎) = E𝜋 [𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. Value-
based DRL is required to estimate the Q value for each state–action
pair, and the optimal policy is to select the action with the maximum Q
value for each state. By minimizing the temporal difference (TD) error
𝐿𝑇𝐷 = 𝑟𝑡+1 + 𝛾 max𝑎 𝑄𝜋 (𝑠𝑡+1, 𝑎) −𝑄(𝑠𝑡, 𝑎𝑡), the Q value can be iteratively
estimated.

A straightforward value-based algorithm is Deep Q-Learning [35].
DQN utilizes deep learning models to approximate the value function
of states and actions. For better convergence and stability, the target
network is introduced as a smooth copy of the online network with
a lower update frequency. In addition, to encourage exploration and
avoid local optima, DQN utilizes the 𝜖-greedy method, which adds
randomness to the selection of actions. It also maintains a storage
buffer called experience replay to store interacting transitions. At each
learning step, a batch of records is sampled to eliminate the correlation
of data from the same trajectory.
6

To facilitate a smoother learning process, Double Deep Q-Learning
[36] is proposed where action selection is based on the online network
and the Q value is estimated by the target network. Both networks
similarly learn to minimize the TD error and update the parameters
as DQN. In addition, from the perspective of the architecture, Dueling
DQN [37] is proposed based on the logic that sometimes actions have
less impact on the environment but that state is valuable. In this
algorithm, after extracting features from the state, two streams are
designed to estimate state-value V and advantage-value A separately.

2.2.3. Policy-based DRL
Different from value-based approaches that estimate Q values,

policy-based DRL approaches directly optimize the policy network,
which generates the probability distribution of actions. Following the
goal of RL to maximize the expectation of discount cumulative reward,
the policy-based target is argmax𝜃

∑

𝜏 𝑝𝜃(𝜏)𝐺(𝜏), where 𝐺(𝜏) is the dis-
counted cumulative reward, and 𝑝𝜃(𝜏) is the probability of generating
a trajectory 𝜏 under policy 𝜋𝜃 .

Parameter update in policy-based DRL aims at maximizing the dis-
counted cumulative reward. Using policy gradient, the general update
rule can be formulated as 𝜃 ← 𝜃 + 𝜂E𝜏 [𝐺(𝜏)∇ log 𝑝𝜃(𝜏)], where 𝜂 is the
learning rate. The method avoids calculating and updating the Q value
but directly optimizes the policy. Proximal Policy Optimization (PPO) is
the most famous policy-based DRL, in which the importance sampling
is introduced to leverage previous data to update current policy.

2.2.4. Actor-critic framework
Value-based approaches are simple and interpretable, but cannot

properly handle continuous or high-dimensional action space. Policy-
based approaches can generate a stochastic distribution of actions and
learn the policy but often struggle to converge efficiently. Therefore,
a straightforward idea is to design hybrid methods that integrate both
types of approaches. The actor-critic framework is proposed with this
rationale and has developed into several variants. At the core of the
framework is an actor that follows the policy gradient to generate the
action and a critic that estimates the V or Q value with value-based
approaches to judge the action taken.

Following the gradient ascend method, the actor is firstly optimized
based on the predicted Q value provided by the critic. The critic is then
trained by minimizing the TD error. To reduce variance and increase
stability, a refined framework called Advantage Actor-Critic (A2C) uses
the advantage value to calibrate the benefit of actions in a given
state. Further, since interacting with the environment to get sufficient
data for DRL training is time-consuming, the Asynchronous Advantage
Actor Critic (A3C) [38] is proposed, which creates multiple threads for
parallel interaction. For each period, the threads are synchronized for
network parameters, and trajectories are asynchronously generated by
the threads to compute the gradient. After the threads finish interacting
and computing the gradient, the parameter server collects the gradients
to update the network parameters.

The Actor-Critic framework is also adopted to enhance the training
of DQNs. Deep Deterministic Policy Gradient (DDPG) [39] combines
the DQN with the Deterministic Policy Gradient (DPG). Unlike stochas-
tic policy networks that generate a distribution of actions for a given
state, a deterministic policy outputs a deterministic action, thus the gra-
dient of cumulative discounted reward could be expressed as ∇𝜃𝑅𝜃 =
E
[

∇𝜃𝑝𝜃(𝑠)∇𝑎𝑄(𝑠, 𝑎)||
|𝑎=𝜋𝜃 (𝑠)

]

. DDPG is designed with the actor-critic ar-
chitecture, where the actor deterministically outputs an action and the
critic can estimate the Q value with minimum TD error. Further, based
on the DDPG, TD3 [40] is proposed for continuous action space, which
alleviates overestimation and improves convergence.

Computer Science Review 53 (2024) 100656P. Peng et al.
Fig. 4. Common energy in-flows and out-flows in edge computing systems.
2.2.5. Multi-agent DRL
Scenarios with the demand for multiplayer competition and coop-

eration have led to the development of Multi-Agent RL (MARL). This is
also the case for edge computing where each device or EN can act as
an agent to make decisions that optimize network performance.

Various multi-agent RL algorithms have been proposed. As an in-
tuitive approach, Independent Q-Learning (IQL) assumes that other
agents are part of the environment and maintains a DQN for each
agent independently. However, they ignore the influence of actions
from other actions, which makes the environment unstable for learning
a stable policy. Some approaches decompose the global Q value to local
Q value, such as VDN and Q-Mix, to evaluate the contribution of each
agent and thus avoid lazy agents caused by independent training. The
most widely used paradigm is the actor-critic structure with central-
ized training and decentralized execution (CTDE), in which the critic
network is designed to train agents for cooperatively maximizing long-
term system rewards globally. Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) [41] is the most widely used algorithm following
the CTDE paradigm, where the critic network can fully observe the
global state and the joint actions to estimate action values while the
actor only obtains limited information to generate actions.

3. Environment factors

The target environment characterizes the scenario of interest and is
crucial for the design of DRL-based algorithms. Considering the great
diversity in application scenarios such as industrial IoT, IoV, UAV-
assisted edge systems, smart grids, and smart homes, it is very necessary
to abstract and generalize the specific factors involved. Hence, based
on our analysis, we summarize important environment factors that can
have major impacts on algorithm design and are frequently discussed
in related works.

3.1. Energy management & harvesting

In edge computing systems, end devices and edge services are
typically energy-sensitive. In previous works, it is commonly assumed
that they can access a stable energy supply and thus energy conserva-
tion directly means cost reduction [42,43]. However, in reality, many
IoT devices and small ENs are battery-powered via energy harvesting
from renewable power sources or wireless power transmission (WPT)
(Fig. 4). In this case, energy management and harvesting become a
key consideration in the computation offloading scheduling process to
ensure the balance of energy income and expense.
7

In many situations, IoT devices can be fully or partially powered
by wind and solar power. Since the renewable energy supply is un-
stable, a general approach is to treat energy arrivals as a random
process. In this context, considering the maximum capacity of the
battery 𝑏𝑚𝑎𝑥 and the energy costs of the current timeslot 𝐸𝑐𝑜𝑠𝑡, the
remaining power at the end of the current timeslot can be expressed as
𝑏𝑡+1 = min{max{𝑏𝑡−𝐸𝑐𝑜𝑠𝑡+𝑒𝑡, 0}, 𝑏𝑚𝑎𝑥}, where 𝑒𝑡 is the harvested energy
of the current timeslot. For example, Wang and Zhang [44] consider
that the energy harvested evolves according to the i.i.d. random process
with a maximum value. They set battery power constraints and energy
consumption constraints to ensure the actions meet the energy manage-
ment requirements. Shen et al. [45] discretize the energy into multiple
energy packets. The number of energy packets obtained is modeled as
a Poisson distribution. A certain amount of packets are selected for
processing. Wei et al. [46] allows grid energy to cover energy deficits.
The goal is to reduce the fraction of grid energy consumption thus
minimizing carbon emissions.

However, it is difficult to ensure the availability of the system by re-
lying solely on an unstable renewable energy supply. In response, some
works propose to transmit energy from ENs to IoT devices via WPT as
energy sources. Niu et al. [47] assume the WPT and data transmission
are mutually exclusive. They analyze how to divide a timeslot for these
two operations respectively. The energy obtained is assumed to be
fully consumed during task processing. To simultaneously process tasks
and harvest energy, Hu et al. [48] deploy specialized radio-frequency
(RF) transmitters to provide a continuous but distance-sensitive energy
supply. In [49], ENs are suggested to collect renewable energy and
support IoT devices through WPT. Grid power supply can also be the
backup option when renewable energy supply is insufficient. In [50],
due to the marginal utility of WPT, a nonlinear energy harvesting
circuit model is applied.

In some aerial-assisted edge computing systems, battery-based UAVs
can act as both energy consumers and power suppliers. In this case, it
is important while challenging to plan the activities based on battery
level. For example, in [51], the battery of UAVs should support its
own flight and charge end devices. Penalties are imposed when energy
constraints are violated for end devices and UAVs. Zhou et al. [52] as-
sume that the UAV is sufficiently powerful to continuously broadcast RF
signals to charge ground devices. They focus on managing the energy
costs of end devices. UAVs are used as energy middlewares in [53] to
collect energy from the high altitude platform and provide energy to
ground devices. It constrains the current energy supply to be greater
than the energy overhead. Ke et al. [54] use UAVs and Macro Base
Stations (MBS) to provide services. When sustainable energy supply is
insufficient, UAVs stop servicing and MBSs switch to the grid energy
supply.

Computer Science Review 53 (2024) 100656P. Peng et al.
3.2. Service provision & incentive

How to incentivize idle devices to participate in service provisioning
is an important issue. Resource owners need to decide whether to
provide services and join the edge computing system based on the
potential benefit. The potential conflict of interest between service costs
and gains is often the deciding factor.

It is important to estimate the willingness of idle resource holders
to take an extra workload. In [55], the servers adjust the probability
of task acceptance according to the remaining power of the vehicles,
computing power, and wireless transmission rate. Shi et al. [56] model
service availability as associated with service probability and V2V link
duration. The former is determined based on vehicle state information
to represent the probability of accepting offloaded tasks. The latter is
the sustaining duration of the communication link, where vehicles that
stay within the communication range for longer periods are more likely
to be selected as service vehicles.

To compensate for the energy overheads of service providers, re-
sources can be priced for renting. Pricing is non-trivial in dynamic
environments. For determined resource prices, some works try to adjust
the offloading policy to ensure the profits of ENs. Xue et al. [57]
define the profit as the difference between resource renting gains and
energy costs, thereby aiming to maximize the revenue while satisfying
delay constraints. Zhou et al. [58] build an End-Edge-Cloud system in
which the cloud service center assists in task processing by renting
resources from ENs. The goal is to minimize resource renting costs
while guaranteeing task completion. Shi et al. [59] let users pay for
resources based on task loads. To avoid passive resource allocation
of ENs, they design the service reliability metric of ENs as offloading
guidance.

The game between ENs and end devices is widely studied, in which
ENs adjust the prices to maximize profits whilst the end devices make
offloading decisions to reduce costs. For example, Du et al. [60] try
to maximize the profits of blockchain miners. Since more resources
can increase the probability of getting mining rewards, miners need
to adjust the rent amount and price of resources. The balance between
the renting cost and the expected reward needs to be optimized. Seid
et al. [61] formulate the game as a Stackelberg game in which ENs
propose resource prices based on user demands, and then users make
decisions to reduce the overhead. Zhang et al. [62] concern the trade-
off between delay and energy costs from the user’s perspective, and
balance the service benefits and energy costs of the assisted vehicles.
The Stackelberg equilibrium is achieved by dynamically pricing the
resources with an iterative algorithm.

3.3. Mobility awareness & control

The mobility of end devices and ENs poses a great challenge to the
design of computation offloading methods. End devices may move out
of the coverage of the original edge server. It would cause commu-
nication link interruption, task processing failure, or additional data
transmission overhead. Changes in the relative distance also affect the
wireless communication state which induces transmission rates and
costs.

The out-of-coverage problem has been most extensively studied in
the field of vehicular edge networks, where vehicles can quickly move
through the service area of ENs. To tackle it, Kazmi et al. [63] directly
mask out the ENs currently outside the service range. Considering
the movement of devices, Zhao et al. [64] further restrict tasks to
be offloaded to ENs that are capable of finishing the task before the
end device leaves their coverage. Geng et al. [65] construct service
availability metrics of ENs and bound users to select ENs that have high
service availability.

However, accurately estimating the vehicle speed and trajectory
is difficult and computation-intensive. Therefore, some works attempt
8

Fig. 5. An example of task data migration. When the vehicle moves out of the
communication range of EN 1, the required data or services need to be migrated to
EN 2 for a takeover. Additional data migration costs should be considered.

to explore services or data migration between ENs. When the com-
munication link is interrupted, the service or data is allowed to be
migrated to a second EN, as shown in Fig. 5. Such an operation helps
ensure task completion at the expense of additional transmission costs.
For example, Wu et al. [66] migrate the services when the offloading
targets change. The service migration latency is simply modeled as the
service data size divided by the bandwidth. Maleki et al. [67] adopt
the handover approach where partial results are returned when vehicles
leave the coverage area of the previously assigned EN. The result data is
then uploaded to a newly selected EN for continuous processing. Tang
et al. [68] discuss the offloading of sequential tasks in moving vehicles.
If the posterior tasks are not processed at the same EN as the prior tasks,
it is necessary to deliver the prior results via edge-edge communication,
which introduces additional communication delay.

Besides, the movement of devices would change the distance to
ENs, which consequentially impacts the path loss and the transmission
rate [59,63]. Thus, it is important to incorporate geographic infor-
mation of devices and ENs, including but not limited to location and
relative distances [69], to optimize the selection of offloading targets.

In addition, to further reduce the overhead associated with transmis-
sion distances, mobility control has been extensively analyzed in recent
works. Although it is impractical to directly control the movement
of end devices, adjusting the flight trajectory of UAVs is feasible in
aerial-assisted edge computing systems. The dynamic mobility control
of UAVs could optimize the locations to match the random move-
ment of ground devices. Dai et al. [70] attempt to adjust the UAV
trajectory to approximate ground device clustering centroids to reduce
the average communication distance. They also provide a propulsion-
related energy consumption model for UAVs. Different from directly
managing the target position, Zhao et al. [71] controls the direction
and flight distance in each timeslot. In addition, Zhang et al. [72]
combine the problem of UAV trajectory control with the problem of
task offloading, i.e. determining which IoT device the UAV moves to
for service provision.

3.4. Joint caching management

The caching mechanism for ENs plays a key role in reducing
task processing costs. Remote data retrieval during offloading can be
avoided by pre-storing relevant data on ENs. Much research effort has
been devoted to jointly optimizing task offloading and caching place-
ment. These caching modules typically perform the following types
of functionality: essential data caching, result caching, and service
caching.

Essential data refers to commonly accessed content such as video
files and the original data of the tasks. In this context, Wang et al.
[73] suggest ENs to cache requested content with limited storage
capabilities. Cache hits can reduce the transmission delay of acquiring
content from the cloud. To utilize the cooperation of multiple edge
nodes, cooperative content retrieving is also applied [74]. They enable

Computer Science Review 53 (2024) 100656P. Peng et al.
content acquisition from nearby ENs instead of cloud servers to reduce
transmission costs and increase efficiency.

Several works proposed to directly cache computation results for
the tasks. When similar tasks are offloaded, results could be directly re-
turned to avoid redundant data uploading and task processing. In [75],
the local cache and nearby EN caches are queried sequentially when
tasks are offloaded. Duplicate computations are avoided if the cache
hits, otherwise the task processing is executed. However, since cache
query overhead is non-negligible, improving the cache hit rate is re-
quired. Peng et al. [76] studied a shared offloading system. Tasks are
split into multiple blocks and result sharing is available between similar
blocks. It leads to lower latency and energy costs but results in extra
costs for content searching. Whether to use shared offloading should be
decided.

Service caching is also relevant to computation offloading since task
processing requires the deployment of the corresponding service. Yu
et al. [77] directly constrains that the valid offloading target should
have proactively cached corresponding services. Xue et al. [78] di-
vides the Cloud-Edge-End system into four layers. After selecting the
offloading target, it needs to check the caching status from the target
layer upward and actually offload to the nearest location for service
caching. Li et al. [79] decide whether to replace the service caching,
which follows the first-in-first-out policy. The tradeoff between the
price of adjusting service caching and the reduced task processing
costs is optimized. Zhang et al. [80] formulate the service migration
overhead. When a task is offloaded to an EN without the corresponding
service caching, additional software preparation costs are incurred,
i.e., the service transmission latency via the backhaul link.

3.5. Interdependent task offloading

A complete task, e.g., a workflow, can be modeled as several sub-
tasks with dependencies, which implies that succeeding subtasks need
to rely on the results of the prior subtasks. Such a feature has been
extensively considered in recent years. Depending on the context, a task
can be formulated as a sequence or a directed acyclic graph (DAG) of
subtasks.

Subtasks are assumed to be processed sequentially in [45,81]. If two
succeeding tasks are offloaded to different ENs, it incurs a handover
delay. Chen et al. [82] consider that the output of the preceding
subtasks are necessary to be transmitted via the Edge-Edge channel
when the handover occurs. The duration of delay is related to the
data size and the transmit rate. Similarly, in [83] it is presumed that
no transmission delay is incurred when offloading to the same target.
Otherwise, the delay is estimated by using the allocated bandwidth to
represent the transmit rate.

Describing a task as a directed acyclic graph (DAG) of subtasks is
widely adopted since it can represent more complex dependencies. To
simplify the problem, some works like [65] sort the tasks by some kind
of priority and optimize the accumulated delays of all tasks. However,
it ignores the efficiency of parallel processing, leading to a higher
total delay. Instead, [84] directly optimizes the total time costs of
the critical path, i.e. the path with maximum delay. Yuan et al. [85]
focus on optimizing the earliest start time, which is reformulated as
the maximum value between the previous subtask completion time and
the node available time. Besides dependencies of subtasks, Zhou et al.
[86] even includes the external dependencies between tasks, where
subtasks in different DAGs can share data for cooperation and obtain
better utility.

3.6. System security & reliability

The application of edge computing in industrial IoT and vehicular
edge networks usually demands high reliability and security, which
9

are threatened by unstable, insecure wireless communication channels
and the unpredictable failure of devices. These have raised increasing
concerns when it comes to service offloading.

Affected by the complex wireless channel state, transmission failures
may occur during data uploading and downloading. Earlier methods
such as [87,88] simply use a fixed value to represent the transmission
failure probability. This model ignores the connection between system
state and transmission failures. Lu et al. [89] point that the transmission
failure rate is correlated with the probability of coding errors, which
can be further expressed as a function of SINR, packet size and coding
block size. Fang et al. [90] and Nguyen et al. [91] construct the
transmission model under imperfect channel state information (CSI)
where the transmission fails if the actual SINR is below the threshold.
Based on these models, the DRL agent can learn to make reliable
decisions based on its observations of the system.

Interference and eavesdropping by malicious attackers are serious
threats to the system’s security and reliability and have been discussed
in many works. On the one hand, attackers could broadcast noise
within the channel to interfere the normal data transmission. This
interference is mostly considered as a strong noise signal that mathe-
matically results in lower SINR, which in turn reduces the transmission
rate [92]. Xu et al. [93] consider a harsh condition where the attacker
could completely block all transmissions within the affected channel.
On the other hand, some studies pay attention to the eavesdroppers
who attempt to intercept data sent by end devices. Supported by
the physical layer-based wiretap coding scheme, eavesdroppers cannot
access confidential information at a secure rate, i.e., the difference
between the transmission rate and the eavesdropping rate [94]. To
address the eavesdropping problem, some studies have suggested that
one can compress the eavesdroppers through auxiliary devices or the
BS [95,96]. In addition, blockchain is also widely adopted to improve
data integrity and security [61,97]. However, it could introduce extra
computation requirements. Thus, many studies integrate task offload-
ing with blockchain parameter optimization such as the block size
and the block interval to balance computation cost and benefits of
security [98,99].

During the computation phase, device failures may occur due to
hardware or software malfunctioning. This breaks the task processing
and affects system reliability. Such failures are usually unpredictable.
For this reason, an effective approach is to treat device failures as
random events following the Poisson distribution described by a failure
rate parameter [100,101], which is calibrated on the fly according to
the number of failure events in the past period [102]. In addition,
some studies intuitively focus on reducing task failures [103] caused by
response latency and energy shortage. In this paper, we discuss energy
management issues in Section 3.1 and view latency as a constraint
or a contributing factor in the design of rewards of the MDP model
(Section 4).

4. MDP model construction

A fundamental step of developing DRL-based algorithms is the
abstraction of the Markov Decision Process (MDP), in which the agent
takes an action after observing the system state and receives the corre-
sponding reward. Given the various scenarios and optimization goals,
the construction of MDP models diverges significantly across studies.
This section aims to shed light on the fundamental elements included
in MDP models, particularly for task offloading. A simple summary of
these elements is shown in Fig. 6.

4.1. State and observation

State or observations typically contain factors that are dependent
on scenarios and objectives. Agents take them as input to sense the
environment. For task offloading, existing studies typically consider

network state, task state, and device state. Additional information

Computer Science Review 53 (2024) 100656P. Peng et al.
Fig. 6. A summary of elements considered in the literature regarding the MDP model
for offloading.

can be exploited to expand the dimensionality of states to facilitate
decision-making.

The network state is closely related to the transmission rate and
costs. For example, it is very common to include channel gain in
the state vector as it affects the transmission rate [104,105]. Some
studies also include SINR to cover more comprehensive channel quality
information related to background noise and interference [73,92]. In
some contexts, it is feasible for the agent to obtain the actual trans-
mission rate for any given channel [76,106]. In the case of variable
spectrum frequency, the bandwidth is provided to the agents as part
of the state information [43]. With orthogonal frequency division, the
channel resource block (RB) availability needs to be integrated into
the state information [69,77]. Otherwise, the historical channel load
or interference intensity should be included to reflect spectral resource
contention (e.g., in NOMA) [62,107].

Task states include data size and the level of computation load. In
general, tasks are often assumed to be generated on user devices with
uniformly distributed data size. The compute resource requirements
could be linearly related to the data size or sampled independently.
When the tasks are time-sensitive, the maximum tolerable delay will be
included to guide policies safeguarding the deadline. Beyond these, de-
pending on the scenario factors considered, some other information is
also included, such as the popularity [92], and the finish reward [108].

Device states represent the attributes of user devices and ENs. For
communication, position or distance is usually included as they relate
to the path fading strength and the movement of devices. For comput-
ing, the available computing resources of devices are the most relevant.
When tasks are difficult to complete in a single timeslot, the current
10
waiting backlog queue length should be included. For devices that
rely on batteries with limited power supply, the remaining available
energy makes an important dimension of the state. In addition, the
caching status and the remaining storage space should also be taken
into account when jointly optimizing caching management [76,109].

Additional information could be useful for action selection. For
instance, historical information is a good choice to explicitly perceive
changes in the environment. For example, Tang and Wong [110] con-
tain historical load levels, thereby facilitating agents to sense load
patterns. Cui et al. [111] include all historical states to provide more
comprehensive information but might lead to large state space di-
mensions. Chen et al. [112] include historical actions to perceive the
decision patterns. Some approaches [82,113] also include historical
responses such as time costs and energy costs to make corrections and
improvements. In addition, environment-related information should
also be considered. For example, Geng et al. [65] contain task infor-
mation for the predecessor and successor subtasks when offloading
dependent subtasks. Sun et al. [114] include the communication cov-
erage graph as an adjacent matrix. Yu et al. [77] contain the large
timescale actions as part of states for small timescale decision-making.

4.2. Action space

DRL agents determine actions to interact with the environment
based on the acquired state. The actions mainly consist of offloading-
related decisions and are usually jointly determined with resource
allocation. In addition, many studies further combine it with special
factors such as caching placement and movement control for joint
decision-making.

For specific types of tasks, the offloading actions can be categorized
into binary offloading and partial offloading. Binary offloading refers
to having the task either completely offloaded or processed locally.
It is typically adopted when the task is atomic and not divisible. For
divisible tasks such as streaming data processing, partially offloaded
can be taken for processing in parallel.

Based on the number of available target ENs, offloading actions
can be categorized into two types: single-target and multi-target. In
earlier work, it was common to divide the edge system into multiple
small single-cell sub-systems that contain only one EN to be selected for
binary offloading. It effectively reduces the action space and facilitates
fast convergence. Recent researches pay attention to large-scale edge
systems with multiple ENs, even together with the cloud center to
provide services. In this case, one of the service providers needs to be
selected, i.e., multi-target offloading. Each end device needs to select
a one-hot vector as the offloading action. Such offloading mode is also
called the user association from the perspective of ENs.

Using a special encoding scheme, Yin and Yu [115] provide decimal
IDs for end devices and directly select devices by IDs to represent
offloading actions. Sharma et al. [84] slice tasks into multiple atomic
subtasks with separate binary offloading. Wei et al. [116] construct the
offloading decision as a triplet decision including offloading, waiting, or
dropping. In Yang et al. [117], UAV deployments have multiple mod-
els with different computing costs and data compression capabilities.
Decisions need to be made on which model to use.

The decision on computation offloading is often made together
with resource allocation, but their action space requires a different
design. For network resources, the allocation of RB, bandwidth, and
transmit power are the main factors. An RB is a unit of radio resources
consisting of a certain number of subcarriers and/or a certain amount
of time frame. Each offloading process should exclusively occupy one
of the RBs in orthogonal transmission, hence a binary decision should
be made. Some works allocate bandwidth directly to transmission
processes. The action space is a continuous space that represents the
allocation ratio and constrains the total ratio to be less than 1. Trans-
mit power allocation forms a trade-off, where higher power increases

Computer Science Review 53 (2024) 100656P. Peng et al.
the data rate and brings higher energy costs. In addition, for non-
orthogonal transmission, it is more necessary to adjust the transmit
power to minimize co-channel interference. It has a continuous action
space and is constrained lower than the maximum transmit power.
Computing resources are normally measured by only CPU cycles. For
arriving tasks, a certain percentage of CPU frequency can be allocated
to each task or arranged as a queue to adjust the CPU frequency
sequentially for computation based on Dynamic Voltage and Frequency
Scaling (DVFS).

Environment-specific actions are designed to fit particular scenarios.
For example, in the energy harvesting scenario, each timeslot needs
to be properly split for WPT and task processing respectively to avoid
energy shortage [103]. To encourage service providing, Shi et al. [56]
jointly decide on the unit price paid per rent CPU cycles for processing,
and Zhu et al. [118] make service pricing and offloading decisions
by competitive agents. The end device or EN movement is commonly
controlled by adjusting the direction and speed [68]. Some works
also try to replace the speed with the moving distance or the target
location [105], but the maximum flying length constraints during one
timeslot should be considered. Caching decisions are typically taken
with a binary action space, where each content should decide whether
or not to be cached in each edge server [77,109].

4.3. Reward function design

The reward function, which is related to the objectives, specifies
the immediate payoff that an agent can receive for taking an action.
In computation offloading, the processing latency and energy costs are
commonly used as the optimization objectives. Several derived metrics
have been further proposed to guide the learning and decision-making
process towards better system performance.

The weighted sum of time and energy costs is commonly adopted as
the basic form of reward function. For example, the reserved time given
the tolerable delay can be a viable replacement of time costs [119,
120]. Jiao et al. [121] believe that optimizing energy costs is more
important when the remaining energy is lower. Hence they leverage
the sigmoid function to implement an adaptive weight function. Many
studies also focus on optimizing one of them [122,123], while ignoring
or only applying a maximum usage constraint on another one. This
approach can more effectively focus on reducing system latency or
energy costs but ignores the trade-off and tends to overspend and
diminish returns.

Utility is a derived metric commonly defined as the difference
between the benefits and costs of computation offloading. Zhan et al.
[124] assume that the EN proportionally allocates resources according
to the uploaded data size from multiple end devices, and more re-
sources allocated leverage better performance. The utility is defined as
the resources obtained minus the costs. For tasks with different priority
levels, Shi et al. [56] represent the utility of high-priority tasks as a
saved-time dependent function and gives a fixed penalty for timeouts.
For low-priority tasks, the finish reward is constant but decays with the
degree of timeout. From the perspective of the whole system, Zhao et al.
[64] define utility as the saved rate of average delay and energy cost of
current tasks compared to the previous timeslot. Wang et al. [73] divide
the total utility into communication, computation, and caching utilities.
Given the unit price of each resource, each utility is the difference
between the processed data rate and the resource renting price.

Load balancing or service fairness is a critical aspect of task of-
floading. Imbalanced workloads can result in unnecessary resource
contention, high processing latency, and low resource efficiency. The
intensity of workload can be defined in various ways, e.g. the task
resource demand [125], the estimated task completion time [126], or
the amount of resource available [127]. Based on the distribution of
workloads, it is common to add a particular term to the reward function
to encourage service fairness. For instance, the Jain fairness index is
11

widely employed in the literature [52,128]. Besides, Zhang et al. [129]
use the mean square error to encourage workload levels around the
average. Hao et al. [130] use the 𝛼-fair utility of the average time
reduction as the optimization goal. Based on each user’s downlink data
rate, Yin and Yu [115] design a fairness metric based on entropy with
the aim of balancing the throughput of each user.

When tasks are assumed to arrive in a stream and are processed
continuously, the processing rate can be adapted to measure the system
performance [131]. Energy efficiency, which is the ratio of processing
rate to energy costs, is adopted in some studies to encourage higher
processing rates per unit energy cost [132,133]. It is more compatible
with the reality of energy-limited edge devices and can effectively
avoid the diminishing returns situation. To avoid tasks expiring and
failure, many works incorporate task completion rewards or task failure
penalties [103,116]. [76,134,135] consider both benefits and costs and
incorporate the price paid in their reward function.

The timing of reward is critical for guiding the DRL agent dur-
ing training. For example, Kumar et al. [136] transform a long-term
constraint into an instant penalty term in the reward function based
on Lyapunov Optimization. In UAV movement control scenarios, a
large constant penalty term is applied when UAVs collide or go out
of bounds [137]. Tan et al. [24] argue that reducing the allocation of
resources primarily contributes to energy savings. Therefore, they use
the minimum amount of required resources to satisfy delay constraints
as the reward function. For better energy management, Zhu et al. [138]
design auxiliary rewards about energy reserved, policy fairness as well
as the remaining battery with adaptive weights. Moreover, scenario-
specific metrics including data security [94,139] and accuracy [140,
141] can also be taken into account.

Reward shaping is a useful technique in DRL that introduces addi-
tional incentives to agents to guide the learning process. It has been
applied by many methods to rationally organize the reward function.
For example, Geng et al. [65] simultaneously consider the reward of
a selected action as well as that of fully local processing. The ratio
of these two is taken as the actual reward to prevent fluctuations
caused by random task generation and to make the reward more
informative. Xu et al. [142] employ a weighted sum of time costs and
time-to-deadline as a reward function. This implies a soft constraint by
the tolerable delay. Guo et al. [143] and Chen et al. [144] set a pos-
itive constant reward for performance improvement over the previous
timeslot and penalize vice versa to encourage better decisions. Zhao
et al. [145] design a multi-layer hierarchical reward function for dif-
ferent constraint violations and optimization objectives. It gradually
provides information to motivate agents to satisfy each constraint. To
motivate better resource utilization while avoiding excessive resource
allocation, Peng et al. [146] introduce a bootstrap function related to
the remaining resources. Zhan et al. [147] add penalties to discourage
task queue overflow and illegal decisions. This helps the agent avoid
unnecessary exploration and improves training efficiency.

To summarize, we found that most of the existing studies define the
reward based on task processing gains, response latency, and energy
cost. Some additional factors are included to meet specific requirements
or to carry certain prior knowledge regarding the environment. Differ-
ent metrics result in different optimizing tendencies and characteristics,
which need to be properly selected and adjusted according to the actual
scenarios.

5. Learning strategy improvements

Recent studies have implemented various DRL algorithms and at-
tempted to achieve better performance by improving the learning
strategy. Based on the difference in methodologies, we classify exist-
ing researches into the following categories: better information usage,
improved exploration and exploitation, reduction of action space, and

multi-agent cooperation and competition.

Computer Science Review 53 (2024) 100656P. Peng et al.
Table 2
Related works of basic DRL algorithms. CR is the abbreviation for Computing Resources.

Offloading type DRL Approach State Action Reward

Network state Task state Device state Additional

[148] Partial
Multi-Target

DQN Task Size
Required CR

Available CR Offloading
Matrix

Offloading
Target
Offloading Ratio

Time Cost
Energy Cost

[149] Binary
Multi-Target

DQN Transmit Rate Required CR
Number of Tasks

Available CR Offloading
Target
Node Selection
Block Interval
Block Size

Task Finish
Score
Throughput

[76] Binary
Multi-Target

DDQN Transmit Rate Task ID Available CR
Waiting Queue
Cached Task ID

Offloading Mode Time cost
Energy Cost
Price Paid

[43] Binary
Single-Target

DDQN Bandwidth Available CR Offloading
Decision
Spectrum
Allocation
CR Allocation

Energy Cost

[107] Binary
Multi-Target

DDQN Bandwidth
Network Load

Required CR
Tolerable Delay

Current Load Offloading
Target

Task Finish

[150] Partial
Single-Target

DDPG Task Size Energy Remain
Location or
Distance

Agent Selection
Flight Angle
Flight Speed
Offloading Ratio

Time Cost

[132] Binary
Multi-Target

Async AC Transmit Rate
Bandwidth

Available CR
Waiting Queue
Max Transmit
Power

Offloading
Target
Bandwidth
Transmit Power
CR Allocation

Energy
Efficiency

[92] Partial
Multi-Target

AC Bandwidth
SINR

Popularity
Required Time

Energy
consumption

Offloading
Target
Offloading Ratio
Transmit Power

Time Cost
Energy Cost
SINR

[151] Binary
Single-Target

DDPG Channel Gain
SINR

Task Size Waiting Queue Offloading
Decision
Computing
Power
Transmit Power
Bandwidth

Time Cost
Energy Cost
Bandwidth
Usage

[81] Binary
Multi-Target

A3C Task Size
Required CR

Location or
Distance
Available MEC

Historical
Decision
Historical Delay
Handover Delay
Historical Energy
Cost

Offloading
Target

Utility

[69] Binary
Single-Target

TD3 RB Availability Task Size Available CR
Location or
Distance

Offloading
Decision
CR Allocation
RB Allocation

Time Cost
Energy Cost

[134] Partial
Multi-Target

TD3 Bandwidth
Channel Gain

Task Size Available CR Historical Delay Offloading
Decision
Offloading Ratio
Bandwidth

Price Paid

[152] Binary
Multi-Target

SAC SNR
Link Duration

Task Size
Required CR
Tolerable Delay

Available CR
Reliability

Offloading
Target
Unit Service
Price

Utility

[56] Binary
Multi-Target

SAC SNR Task Size
Required CR
Tolerable Delay

Available CR
Service
Availability

Offloading
Target
Price Paid

Utility
5.1. Basic DRL algorithm

Most of the DRL methods are model-free, i.e. they do not require
an explicit environment model. Following this rationale, basic DRL
algorithms are widely adopted in the literature (see Table 2).

Value-based DRL algorithms are suitable for discrete action space
because they perfectly match the binary offloading decision. For ex-
12

ample, Li et al. [148] maintain a device-to-EN offloading ratio matrix.
DQN is applied to select an action between −1, 0, 1, respectively indi-
cating decreasing, maintaining, or increasing the offloading ratio for
each element in each timeslot. In [149], the system’s trustworthiness is
ensured by introducing blockchain for data management. In addition
to traditional task offloading decisions, DQN is used to optimize the
parameters of the blockchain to reduce the additional overhead. To
improve the over-estimation problem of DQN, DDQN has been pro-

posed and has been widely used in the computation offloading of edge

Computer Science Review 53 (2024) 100656P. Peng et al.
systems. For example, DDQN is applied in [76] to potentially sense
caching placement strategies. By intelligently deciding the offloading
target and offloading mode selection, it can effectively promote collab-
oration with the cache. To support continuous action selection, Zhou
et al. [43] discretize continuous resource allocation actions and adopt
DDQN for decision-making. Since the reward is only received after the
task is completed in reality, Yamansavascilar et al. [107] propose the
delayed transitions-based DDQN, where the transition is recorded only
after the reward for the action is returned).

The Actor-Critic (AC) framework is suitable for handling both con-
tinuous action space and discrete action space. Xiao et al. [92] consider
a partial offloading scenario with non-orthogonal transmission interfer-
ence. By adopting AC, the transmit power is fine-tuned to improve sys-
tem utility. To facilitate data acquisition and narrow the gap between
simulation and reality, a digital twin model is constructed in [132]. The
Asynchronous Actor-Critic algorithm is applied, where multiple agents
collect transitions into a global replay buffer for training. Gu et al.
[81] focus on edge-edge collaboration where dependent subtasks can
be switched between ENs for processing. They propose an A3C-based
scheduling algorithm for offloading target selection.

DDPG was designed to learn precise and efficient deterministic
policies under the AC framework. In Ke et al. [151], DDPG is applied
and the Ornstein–Uhlenbeck noise parameter is fine-tuned for differ-
ent actions to obtain better results. Wang et al. [150] analyzed the
UAV-assisted partial offloading edge computing network and adopted
DDPG to make decisions on UAV flight direction, speed, and offloading
ratio. As an improved method of DDPG, TD3 is applied in [69]. In
comparison to DQN and DDPG, TD3 achieves significantly higher per-
formance in the constructed binary offloading and resource allocation
environments. Huang et al. [134] conducted a similar study on partial
offloading and bandwidth allocation with TD3. Their results show that
both DDPG and TD3 outperformed DQN.

In recent years, Soft Actor-Critic (SAC) has achieved strong perfor-
mance in many fields and has been applied to computation offloading.
By incorporating entropy regularization, SAC achieves a better balance
between exploration and exploitation, which results in a robust and
efficient policy in multiple scenarios. Shi et al. [152] propose a SAC-
based task allocation algorithm to decide the offloading target and the
unit service price paid in blockchain-based vehicular networks. In [56],
SAC is also applied to determine the offloading target and the price
paid to the server, which is related to the computing resources the
server is willing to allocate. Experiments show that SAC achieves better
performance in comparison with other DRL algorithms.

5.2. Better information usage

To further strengthen the effectiveness of DRL-based scheduling
algorithms, numerous studies have focused on optimizing information
utilization. The goal is to enable agents to perceive the environment
more comprehensively and thus make better decisions. Considering the
heterogeneous nature of data structures, related approaches focus on
the extraction and utilization of state information using special network
structures (Fig. 7). In Table 3 we provide a summary of the related
studies.

Historical information includes historical states, actions, and re-
wards. With this information, the agent can better understand the
environment dynamics and long-term effects of actions. Xu et al. [133]
include the historical QoS as part of the state to characterize the
dynamic and periodically changing QoS. Cui et al. [111] focus on DNN
inference tasks and adopt long-short Term Memory (LSTM)-assisted
TD3 to extract historical state features. Instead of assembling historical
data into states, Lu et al. [125] adopt DRQN, where a temporal feature
is maintained. With LSTM, the current state and the temporal feature
will be fused to provide historical information and to update the tem-
13

poral feature. A similar idea can be found in [110], where the historical
load level is processed by an LSTM model to produce temporal hidden
features.

To deal with the incompleteness of information, some studies use
historical data to predict unknown information about current or future
states. For example, Chai et al. [153] use GRU to learn workload
patterns and predict the current workload levels. They apply Dueling
Double DQN (D3QN), which combines the dual network structure
and target network to accurately evaluate the state and action value
with lower overestimation. In [119], GRUs are utilized to predict the
available CPU resources of ENs. Therefore, tasks that might exceed the
future resource constraints are migrated to idle ENs. In [104], vehicle
trajectories are predicted by LSTM. A task vehicle is clustered with mul-
tiple service vehicles by trajectory distances, and highly overlapping
clusters can be further joined together. DQN is used for independent
decision-making within each cluster. Xu et al. [154] employ a graph
weighted convolution network (GWCN) for traffic flow prediction,
which is related to the computation loads. Therefore, potential high
loads can be sensed and rationally scheduled in advance to avoid
overloading. Li et al. [105] assume that the states of ground devices are
large and cannot be obtained immediately. They propose to predict the
future state of ground devices using LSTM. Instead of relying on real-
time acquisition of all states, UAVs make decisions based on the future
states and fetch them with higher latency. Tian et al. [155] focus on the
impact of content popularity on the joint optimization of task offloading
and caching scheduling. They propose the OSTP algorithm to learn
temporal features from three different granularities (closeness, period,
trend) and use the DeepSTN+ network to predict content popularity.

Graph neural networks (GNNs) can serve as a powerful feature
extraction model to assist DRL-based decision-making. Li et al. [156]
encode the dependency between subtasks in the DAG task with GNN.
The Seq2Seq paradigm with LSTM is adapted to encode the contextual
representations of subtasks and decode the global features into offload-
ing decisions according to the processing order. Meta-PPO is applied
for better performance and adaptability. Sun et al. [114] utilize GNN
to embed the device positions and communication coverage of ENs. The
graph features held by each node will be used for offloading decision-
making through MLP. Action quantization is applied for exploration.
The policy network is trained to minimize cross-entropy loss between
the output and the optimal action with maximum reward, which can
be seen as a special policy-based DRL. Since instantly getting the
network state is difficult, Li et al. [29] propose a GNN-A2C algorithm,
in which GNN is adopted to predict network states and A2C makes
decisions based on it. Zhou et al. [157] propose a caching placement
and computation offloading scheduling algorithm. They utilize the
Spatial–Temporal Graph Neural Network (STGNN) to predict future
content requirements for content caching. TD3 is applied for offloading
decision-making.

In addition, Hou et al. [158] follow the idea of ensemble learning
and propose two strategies. The first strategy adopts LSTM-based PPO
to aggregate historical states. The second one is a past average strat-
egy based on supervised training with stored transitions. One of the
generated actions of these strategies is selected based on a predefined
probability. Liu et al. [159] design a double-net DDQN approach, where
two DNNs separately evaluate the time cost and energy cost of state–
action pairs. To combine these values for action selection, they propose
to use the attention mechanism to adaptively compute the weighted
sum of them. Supervised training of the attention module can be
performed by collecting the most appropriate weights when interacting
with the environment. Similarly, Li et al. [108] design two independent
agents that focus on optimizing a single objective. Under the AC frame-
work, one agent focuses on reducing system overhead while the other
focuses on increasing service profit. This allows network managing

operators to choose policies that meet different requirements.

Computer Science Review 53 (2024) 100656P. Peng et al.

v
y
o
v
o
o

Table 3
Related works of better information usage. CR is the abbreviation for Computing Resources.

Category Offloading type DRL Approach State Action Reward

Network state Task state Device state Additional

[133] Integrate
Historical Info

Binary
Multi-Target

DDPG Waiting Queue
Energy Remain

Historical QoS Offloading Target
Channel Allocation
Transmit Power
Allocation

Energy
Efficiency

[111] Integrate
Historical Info

Binary
Multi-Target

TD3 Task Size
Required CR

Waiting Queue Historical State Offloading Target Time Cost
Inference
Accuracy

[125] Integrate
Historical Info

Binary
Multi-Target

DRQN Bandwidth Task Size
Required CR

Available CR Hidden Feature Offloading Target Energy Cost
Load
Balancing

[110] Integrate
Historical Info

Binary
Multi-Target

AC Task Size Waiting Queue Historical Load
Level

Offloading Target Time Cost

[153] Predict
Unknown States

Binary
Multi-Target

D3QN Task Size Waiting Queue Processed Data
Volume
Historical
Workload

Offloading Target Time Cost
Energy Cost

[119] Predict
Unknown States

Binary
Single-Target

DDPG States of ES and
Cloud
Available CR

Offloading Decision Time Cost

[70] Predict
Unknown States

Partial
Multi-Target

DDPG Task Size
Required CR
Tolerable Delay

Location or Distance Previous Action Task Partition Energy Cost

[104] Predict
Unknown States

Binary
Multi-Target

DQN Channel Gain Waiting Queue Offloading Target Throughput
Queue
Stability

[154] Predict
Unknown States

Partial
Multi-Target

AC Offloadable Data
Amount
Acceptable Data
Amount

Task Partition Time Cost
Energy Cost

[105] Predict
Unknown States

Binary
Multi-Target

DDPG Channel Gain Waiting Queue
Energy Remain
Location or Distance

Device Selection
UAV Target Location
UAV Speed

Dropped
Tasks

[155] Predict
Unknown States

Binary
Multi-Target

DDPG Bandwidth Task Size
Content
Popularity

Available CR
Location or Distance
Caching Status

Offloading Target
Caching Placement

Time Cost

[156] Graph
Information
Utilization

Binary
Multi-Target

PPO Task Size
Time Required
Dependencies

Offloading Target Time Cost

[114] Graph
Information
Utilization

Binary
Single-Target

Policy-based Transmit Rate Available CR
Waiting Queue

Communication
Graph

Device for Offloading Time Cost

[29] Graph
Information
Utilization

Binary
Single-Target

A2C SNR Waiting Queue
Energy Remain
Location or Distance

Number of
Offloading Tasks

Offloading Decision
UAV Target Location
UAV Speed

[157] Graph
Information
Utilization

Partial
Multi-Target

TD3 Task Size
Popularity

Location or Distance
Available CR
Storage Capability

Offloading Target
Offloading Ratio

Time Cost

[158] Better
Policy Structure

Binary
Multi-Target

PPO Task Size
Required CR
Tolerable Delay

Waiting Queue
Available CR

Historical States Offloading Target Utility

[159] Better
Policy Structure

Binary
Multi-Target

DDQN Channel Gain Task Size
Required CR

Energy Remain Last Target EN Offloading Target
Transmit Power
CPU Frequency

Time Cost
Energy Cost

[108] Better
Policy Structure

Binary
Multi-Target

Actor-Critic Bandwidth Task Size
Required CR
Finish Reward

Available CR Offloading Target Time Cost
Energy Cost
Task Failure
Rate
5.3. Improved exploration and exploitation

The trade-off between exploration and exploitation is a major chal-
lenge for DRL-based approaches. Making decisions by exploiting exist-
ing experience often results in relatively high rewards in the short term.
By contrast, exploring new states and actions can lead to the discovery
of potentially better decision trajectories. Therefore, how to balance the
two during training has attracted much attention (see Table 4).

The 𝜖-greedy method is a traditional solution to the exploration–
exploitation dilemma. With a probability 𝜖, the agent chooses a random
action for exploration or otherwise takes a policy-guided action. The 𝜖
alue is the key parameter for balancing exploration and exploitation,
et it is difficult to accurately and conveniently obtain an appropriate
ne. Responding to this issue, Xu et al. [142] suggest decreasing the 𝜖
alue as training goes to encourage more exploration in the early stage
f training and prefer to exploit existing experience in the later stage
f training. However, this is not enough to encourage agents to explore
14
a larger state–action space, and the exploitation of overestimated data
collected in earlier iterations at a later stage can lead to sub-optimal
policies. Hence, in [160], 𝜖 can adaptively take a large value to force
the agents to explore unknown regions and avoid the exploitation of
incorrect actions.

Many researchers figured out that randomly generating actions for
exploration is inefficient since the exploration could be invalid or value-
less. An intuitive way to solve this problem is to restrict random action
selection within the feasible space. For example, in Chen et al. [112],
based on the constraints, the valid action space is determined under the
given previous actions. The greedy or random action selection can only
be performed within that space. To ensure that tasks are fully allocated
for processing in partial offloading scenarios, Ale et al. [161] propose
Dirichlet DDPG which characterizes the offloading action with Dirichlet
distribution. It ensures that the constraints are met and also maintains
exploration ability.

Computer Science Review 53 (2024) 100656P. Peng et al.
Fig. 7. A brief overview of better information usage. With a feature extractor, hidden features are extracted from various heterogeneous data to provide additional information
for decision-making.
Fig. 8. The framework for action extension-based agent design. The generated action would be expanded into multiple candidate actions based on the designed algorithm. The
optimal one would be selected to guide the agent training.
Furthermore, randomly generated actions may deviate far from the
current policy. As a result, the information obtained does not provide
appropriate guidance for policy updating. To address this problem,
action expansion has been studied extensively, which expands the
current actions to multiple candidate actions in the nearby action space,
to find better-performing actions that can more effectively guide policy
iterations, as shown in Fig. 8.

For continuous action space, some studies propose to sample a
set of candidate actions that are distributed on both sides of the
original actions. To find the optimal transmission duration, based on
the selected action 𝑎, Qian et al. [162] generate a candidate action set
𝐴 = {𝑎 − 𝑘𝛥,… , 𝑎 − 𝛥, 𝑎, 𝑎 + 𝛥,… , 𝑎 + 𝐾𝛥}, where 𝛥 is the exploration
interval. The task partition decision and computing resources allocation
are formulated as a strictly convex optimization problem and solved
by conventional solvers like CVX. Hence, the current reward can be
obtained, and the optimal action �̂� in 𝐴 is stored as an experience
to guide the policy network update by gradient decent the mean
square error  = (𝜋(𝑠) − �̂�)2. Similarly, in [163], other actions can be
optimally decided via the proposed Lagrangian duality-based convex
optimization method. In [47], the first-order derivative of the function
between the transmit energy proportion and the optimization objective
is monotonically increasing and the optimal value can be obtained by
bisection.

For discrete action space, the order-preserving quantization method
(OPQ) for action generation is proposed by Huang et al. [164]. In this
way, the policy network generates a continuous action and expands it
15
into a candidate set of binary offloading actions by OPQ. The optimal
offloading action is selected as the training label to induce the gener-
ated continuous actions approximating the optimal offloading action.
They claim that the OPQ for action generation creates higher diversity
to find the optimal action and has better convergence than the KNN
method. Such a paradigm has been rapidly adopted by recent studies.
For example, in [165] a DRL agent with OPQ makes the offloading
decision, and the optimal value of the WPT duration and allocated
computing time are obtained via the designed worst WD-adjusting
approach. Jiao et al. [121] introduce crossover and mutation to further
improve the diversity of the generated candidate offloading sets in the
OPQ. They propose a feasibility analysis algorithm that selects only
feasible actions for interaction and training. However, OPQ can only
generate binary discrete actions. To address this issue, Chen et al. [166]
assume that tasks are discretizable for offloading. They propose a new
action generation method that is suitable for any discrete decisions,
which helps with offloading ratio selection. Chen et al. [167] also
provide an order-preserving quantization approach for any discrete
actions. The action with the highest joint action value is stored to train
the Q-Mix algorithm for higher training efficiency.

Jiang et al. [28] propose a Light Wolf Search algorithm for ac-
tion refinement. They utilize the Gray Wolf Optimizer (GWO) and
update the offloading part of the light wolf based on the channel
gain information. Proportionally reduction is applied to the allocated
resources to meet constraints. Liu et al. [122] discretize the continuous
outputs to feasible BS selection and offloading decisions. They propose

Computer Science Review 53 (2024) 100656P. Peng et al.
Table 4
Related works with improved exploration and exploitation. CR is the abbreviation for Computing Resources.

Category Offloading
type

DRL Approach State Action Reward

Network state Task state Device state Additional
[142] Adjusting 𝜖 Partial

Multi-Target
Independent
AC

Bandwidth
Channel Gain

Task Size
Required CR
Tolerable
Delay

Available CR Offloading Ratio
Resources Type
Matching
Transmit Power
CR Allocation

Time Cost

[160] Adjusting 𝜖 Binary
Multi-Target

DRQN Number of
Arrived Tasks
Number of
Waiting Tasks
Number of
Processing
Tasks

Available CR Offloading Target
Number of Tasks
Started

Task Finish
Reward
Task Drop
Penalty

[112] Restrict
Exploration
Space

Binary
Multi-Target

DQN Transmission
Rate

Available CR Previous
Decisions

Scheduling
Decision

Time Cost

[161] Restrict
Exploration
Space

Partial
Multi-Target

DDPG Transmission
Rate

Task Size
Required CR
Tolerable
Delay

Available CR Offloading Target
Offloading Ratio
Computing
Resources

Task Finish
Reward
Time Cost
Energy Cost

[162] Action
Generation

Partial
Single-Target

Policy-based Channel Gain Transmit Duration Energy Cost

[163] Action
Generation

Partial
Single-Target

Policy-based Channel Gain WPT Duration Process Rate

[47] Action
Generation

Partial
Single-Target

Policy-based Channel Gain WPT Duration Process Rate

[164] Action
Generation

Binary
Single-Target

Policy-based Channel Gain Process Rate

[165] Action
Generation

Binary
Single-Target

Policy-based Channel Gain Task Size Offloading
Decision

Time Cost

[121] Action
Generation

Binary
Single-Target

Policy-based Channel Gain Task Size Energy
Remain

Offloading
Decision

Time Cost
Energy Cost

[166] Action
Generation

Partial
Single-Target

DQN Channel Gain Task Size Energy
Remain

Offloading Ratio
Channel Selection

Energy Cost

[167] Action
Generation

Binary
Multi-Target

Q-Mix Historical
Time Cost
Service
Reputation

Offloading Target Transmission
Rate

[28] Action
Generation

Binary
Multi-Target

AC Channel Gain Task Size
Required CR

Offloading Target
CR Allocation

Energy Cost

[122] Action
Generation

Binary
Multi-Target

Policy-based Channel
Condition

Task Size
Required CR

Offloading Target
BS Selection

Time Cost

[168] Action
Generation

Binary
Multi-Target

Policy-based Channel Gain Offloading Target Time Cost
Energy Cost

[138] Improved
Experience
Replay

Binary
Single-Target

DDPG Energy
Remain

Historical
Decision

Offloading
Decision
CR Allocation
Bandwidth
Allocation

Number of
Finish Task

[169] Improved
Experience
Replay

Partial
Multi-Target

DQN Channel Gain Task Size
Required CR
Transmission
Delay
QoS Type

CR Allocation
Bandwidth
Allocation
Workload Control
Factor

Spectral
Efficiency
Task Success
Rate

[170] Improved
Experience
Replay

Partial
Multi-Target

SAC Load
Available CR

Offloading Target
Offloading Ratio

Load
Balancing
Time Cost

[171] Improved
Experience
Replay

Partial
Single-Target

DDPG Maximum
Power
Channel Gain

Task Arrival
Time Slot
Task Size
Required CR
Tolerable
Delay

Available CR Offloading Ratio
CR Allocation
Transmission
Power

Time Cost
Energy Cost

[65] Training
Optimization

Binary
Multi-Target

AC Task Size
Required CR

Available CR
Geography
Info

Historical
Actions
Predecessor
Task Info
Successor
Task Info

Offloading Target Time Cost
Energy Cost

[172] Training
Optimization

Binary
Single-Target

AC Channel Gain
Noise Power

Task Size
Required CR
Tolerable
Delay

Available CR
Waiting
Queue
Geography
Info

Offloading
Decision
Channel Selection

Energy Cost

[82] Training
Optimization

Binary
Multi-Target

AC Historical
Time Cost
Historical
Energy Cost

Offloading Target
Bandwidth
Allocation
CR Allocation

Reward for
Better
Performance
16

Computer Science Review 53 (2024) 100656P. Peng et al.
a Weighted Congestion Game-based Algorithm (WCGA) solver, which
sacrifices precision for faster convergence and decision making. Jiang
et al. [168] propose a Lévy Flight Search-based action generation
method. To generate discrete offloading actions and utilize channel
state information, the offloading action is randomly generated or kept
unchanged by comparing the normalized channel gain with the Lévy
flight step on each iteration. Thus, tasks are likely to be assigned to
MEC with higher channel gain.

How to effectively utilize the collected high-quality data for up-
dating also attracts much attention. Some works attempt to improve
the experience replay pool to make it easier to sample high-quality
data. Zhu et al. [138] design a reward-aware replay pool to store experi-
ences that have higher rewards and meet constraints. The training data
is sampled proportionally from the normal replay pool and the design
one. Yun et al. [169] construct a distributed DQN for computation of-
floading where multiple agents interact in parallel to gather experience.
They propose the Best Experience Push method that copies and saves
high-reward transitions multiple times. Cui et al. [170] adopt SAC with
priority experience replay (PER). They point out that the TD-error-
based priority in PER might provide high-complexity samples in the
early stage that cannot be understood by the model. Thus, they combine
the past sampling frequency, reward, and TD error to formulate the
priority. Chen et al. [171] argue that using only TD-error as a priority
ignores the importance of the sample to the actor network. In response,
they combine the TD-error and the gradient of the actor network as the
score and divide samples into 𝑁 ranks with predetermined intervals as
the priority.

Efforts have been made to improve the training process. Geng et al.
[65] design CNN, MLP, and LSTM branches respectively to encode task
state matrix, vehicle state, and historical information. Meanwhile, they
propose an adaptive n-step update method to effectively reduce the
bias while avoiding the large variance caused by inconsistent strate-
gies. Similarly, distributed Actor-Critic with n-step update is adopted
in [172]. They also propose to combine the Deep Neuroevolution with
policy gradient. First, multiple agents with different policy network
parameters are initialized. Following the idea of genetic algorithms,
a disturbance noise is added to the policy network parameters as a
mutation process. After that, each agent updates the parameters based
on the policy gradient. Based on the long-term reward, the master agent
selects the best k solutions for updating, and the weaker agents will be
discarded. Instead of learning to estimate the reward value, Chen et al.
[82] follows distributed RL, where the distributed means to learn the
probability of an approximate reward distribution. The reward space
is discretized into multiple levels, and the critic network estimates
the probability that the reward belongs to each level. The TD error is
formulated as the KL divergence between the approximate distribution
and the target distribution.

5.4. Reduction of action space

An enormous action space causes difficulties for efficient explo-
ration by the DRL agent, which leads to slow convergence and sub-
optimal performance. In computation offloading, not only the offload-
ing decisions should be made, but other actions should be jointly
selected for higher system efficiency. Thus, a common solution is to
decompose the complex optimization problems for action space reduc-
tion. Actions need to be made at different frequencies. For example,
computation offloading should be decided in milliseconds while move-
ment planning or cache placement might be decided in seconds. This
is essentially the difference between unified-timescale and multiple-
timescale methods. For unified-timescale approaches, related actions
are taken sequentially and are selected at the same timeslot. For
multiple-timescale approaches, actions are selected independently at
different frequencies and will have impacts on the environment over
multiple timeslots.
17
Fig. 9. The framework of unified-timescale methods. The original problem is decom-
posed and tackled with DRL and traditional optimization methods, respectively. The
order is interchangeable according to the problem setting. The two components work
in sequence and their results are combined to form the final decision.

The Unified-timescale methods typically employ a DRL agent to
handle part of the action selection while using traditional optimization
methods to solve the rest (see Fig. 9). For example, Van Dat Tuong et al.
[173] adopt IQL for channel allocation and user association, with the
computing resource allocation solved by the Lagrangian Dual Decom-
position with Karush–Kuhn–Tucker (KKT) conditions. Chen et al. [144]
use DQN for offloading ratio adjustment and construct the Lagrangian
of the resource allocation problem. The closed-form optimal value is
achieved by expanding it to the Taylor Series and setting the partial
derivative equal to 0. Similarly, in [174], DQN is utilized for offloading.
The CPU frequency allocation is proven to be convex, and solved
by the gradient descent approach. Hu et al. [103] adopt TD3 with
two branches to generate discrete-continuous hybrid actions. Besides,
they propose an Alternating Direction Method of Multipliers (ADMM)-
based method to solve the large-scale distributed convex problem of
computing energy and resource allocation.

However, in most cases, it is too ideal to assume that the sub-
problem is convex. To handle such situations, Luong et al. [175]
utilize DQN for UAV movement control. A Difference of Convex Algo-
rithm (DCA) is then proposed to solve user association and transmit
beamforming. To find the best number of subchannels, Yang et al.
[117] relax the integrality of binary offloading decision and select the
optimal one with the Lagrangian Duality. DQN is then used to select
an offloading target. After deciding the offloading ratio by the Actor-
Critic algorithm, Zhang et al. [176] handle the remaining geometric
programming problem by the interior point algorithm. In [109], after
making offloading decisions by DQN, they transform the non-convex
problem into a convex one by variable conversion and solve it with the
sequential quadratic programming method. In [177], the UAV trajec-
tory is controlled by a DDPG agent. They propose a greedy-heuristic
iterative method to allocate proper resources.

These methods are tightly coupled with the underlying theoretical
models. Hence, it is difficult to adapt these methods to a different
environment. In addition, the significant time delay of iterative solu-
tions is unacceptable when the constructed problem is complex. By
contrast, heuristic and meta-heuristic algorithms are more efficient
solvers. Huang et al. [178] adopt a heuristic CPU resource management
approach. The Worst-Case Execution Time (WCET) for each scheduled
task is calculated upon their completion. When the WCET is within
the tolerable delay, the CPU frequency is actively reduced to reserve
energy. On this basis, they employ a partially-observable TD3-based

Computer Science Review 53 (2024) 100656P. Peng et al.
Table 5
Related works of action space reduction. CR is the abbreviation for Computing Resources. UT refers to Unified-Timescale, MT refers to the Multi-Timescale.

Category Approach Actions taken by
Non-DRL
Algorithm

Offloading type State Action Reward

Network state Task state Device state Additional

[173] UT IQL Lagrangian
Duality

CR Allocation Binary
Multi-Target

Channel Gain Task Size
Required CR

Historical
Channel
Assignment

User Association Time Cost

[144] UT DQN Lagrangian
Duality

Transmit Power
CR Allocation

Partial
Multi-Target

Task Size Maximum
Transmit Power
Available CR

Offloading Ratio Offloading Ratio Time Cost

[174] UT DQN Gradient
Descent

CR Allocation Binary
Single-Target

Waiting Queue
Location or Distance

Offloading Decision
Task Scheduled Set

Time Cost
Energy Cost

[103] UT AC ADMM-based

Optimization

Energy for
Offloading
CR Allocation

Binary
Single-Target

Channel Gain Task Size Energy Remain
Location or Distance

Offloading Decision
Energy Transmit
Duration

Time Cost
Energy Cost

[175] UT DQN DCA User Association
Power Allocation
Transmit
Beamformers

Binary
Multi-Target

Channel Gain Location or Distance UAV Direction
UAV Moving Distance

Achievable Rate

[117] UT DQN Lagrangian
Duality

Number of
Subchannel

Binary
Multi-Target

Channel Gain Task Size
Tolerable Delay

Location or Distance Offloading Target Time Cost
Price Cost
Task Finish
Reward

[176] UT AC Lagrangian
Duality
Interior Point

Algorithm

CR Allocation
Uplink Duration
Downlink
Duration

Partial
Single-Target

Channel Gain Offloading Ratio Energy Cost

[109] UT DQN SQP
Optimization

Transmit Power
CR Allocation

Binary
Multi-Target

Available CR
Cache Capacity

System Cost Offloading Target
Caching Decision

Time Cost
Energy Cost

[177] UT DDPG Greedy-
Heuristic

User Association
CR Allocation
Bandwidth
Allocation

Binary
Multi-Target

Location or Distance
Required Data Rate
User Association

UAV
Target Location

QoE

[178] UT TD3 Heuristic CR Allocation Binary
Multi-Target

Transmit Rate Workload
Waiting Queue

Offloading Target Time Cost
Energy Cost
Deadline-miss
Penalty

[24] UT DQN Ant
Colony

Offloading Target Binary
Multi-Target

User ID
Target ID

Channel Selection
Transmit Power

Minimum
Required CR

[179] UT DQN Ant
Colony &
PSO

CDS Selection
Offloading Ratio
Resource
Allocation

Partial
Single-Target

Network Location Network Routing Time Cost
Energy Cost

[73] UT Twin-Actor DDPG Partial
Multi-Target

SINR Waiting Queue
Caching Status

Resource Slicing
RB Allocation

Utility

[113] UT Two-Actor SAC Partial
Single-Target

Channel Gain Task Size
Required CR
Tolerable Delay

Energy Remain Historical
Success Rate

Offloading Ratio
Channel Allocation
Transmit Power
Local CR Allocation
Importance of Fairness
Edge CR Allocation

Success Rate
Balancing
Time Cost

[180] UT IQL Hungarian
Algorithm

Offloading Target Binary
Multi-Target

Transmit Rate Required CR Available CR Historical
Decisions

Offloading Target Type Utility

[181] MT DDPG DQN Binary
Multi-Target

Task Size
Required CR

Energy Remain
Location or Distance

UAV Direction
Offloading Target

Time Cost

[62] MT IQL Stackelberg
Equilibrium

Resource Pricing
Resource Rent
Amount

Binary
Multi-Target

Channel Gain
Sojourn Time
Interference

Available CR Offloading Mode
CR Allocation
RB Allocation

Time Cost
Satisfaction Ratio

[77] MT DQN DQN Binary
Multi-Target

Available
Subcarriers
Transmit Rate

Required Service Available CR
Waiting Queue

Large
Timescale
Action

Cache Placement
Offloading Target
Subcarriers

Time Cost
Storage Space
Usage

[182] MT DQN Greedy-
Heuristic

User Association Binary
Multi-Target

Channel Gain Available CR
Waiting Queue

Sub-band Allocation
Transmit Power
IRS phase shift
Offloading Decision

Energy Cost

[183] MT AC AC Admission
Control
CR Allocation

Binary
Multi-Target

Waiting Queue
Data Arrival Rate
Coverage Availability

Large
Timescale
Action

Offloading Target
Transmit Power

Queue Delay
Queue Stability

[184] MT Hierarchical PPO Binary
Multi-Target

Contact Time
Channel Gain

Location or Distance
Waiting Queue

Large
Timescale
Action

Offloading Target
Bandwidth Allocation

Time Cost

[87] MT DQN K-Means User Clustering Binary
Multi-Target

Channel Gain Available CR
Waiting Queue

Transmit Power Level Time Cost
Energy Cost

[185] MT SAC Greedy
Clustering

User Clustering
Master Node
Selection

Binary
Multi-Target

Transmit Rate
Interference
Channel Gain

Task Size
Required CR

Available CR Offloading Target
CR Allocation

Time Cost
Energy Cost

[186] MT DQN+DDPG Fuzzy
C-Means

User Clustering Binary
Multi-Target

Path Loss Task Size Energy Remain Offloading Target
Transmit Power
Bandwidth Allocation

Process Rate

[70] MT DDPG Clustering User Clustering Partial
Multi-Target

Task Size
Required CR
Tolerable Delay

Location or Distance Historical
Action

Offloading Ratio Energy Cost
18

Computer Science Review 53 (2024) 100656P. Peng et al.
Fig. 10. Two-Timescale Paradigm. Stable actions are generated following the large
timescale, while dynamic actions are generated following the small timescale.

algorithm for task offloading. Tan et al. [24] design a two-level al-
ternation method, where the ant colony algorithm is adopted for task
offloading decisions at the upper level, and a DQN agent is deployed
for resource allocation at the lower level. Yi et al. [179] construct a
multi-hop MEC system and a Connected Dominating Set (CDS) selection
algorithm to select part of nodes to assist data transfer. Afterward, they
introduce a two-layer algorithm, combined with ant colony and particle
swarm optimization (PSO) for task offloading and resource allocation,
and construct the network routing by DQN. Wang et al. [73] propose
the twin-actor DDPG, to separately determine actions by two actor
networks. Genetic Algorithm (GA) is used in [113] to search for feasible
resource allocation. The remaining actions are decided by a two-actor
SAC algorithm. In [180], multi-agent DQN is introduced to decide the
type of offloading targets, and the Hungarian algorithm is then applied
to match the exact target.

The multi-timescale paradigm has been adopted in several studies to
deal with multi-level decision frequencies. They select different actions
on different timescales and thus are more compatible with the system
adjustment frequency in reality, as shown in Fig. 10. In [181], the
moving of UAVs is controlled by DDPG at each large timeslot, and
offloading decisions are made by DQN at each small timeslot. Zhang
et al. [62] construct the service pricing into a Stackelberg Game. On
large timescale, users rent computing resources and the controller
adjusts the price. The Stackelberg Equilibrium can be found. On a
small timescale, Multi-Agent DDQN is adopted for task offloading and
resource allocation. To tackle the damage from outdated and low-
reward state–action pairs, the lenient mechanism is introduced to omit
policy updates with a given probability. Yu et al. [77] decompose
service caching management and task scheduling. Two DQN agents
following the federated learning paradigm are introduced for privacy
protection. Wang et al. [182] decompose the user association and
offloading decision. They greedily exchange the associated BS of two
users for better performance on large time scales, and DQN is then
adopted on small time scales.

Certain operations must be performed at a lower frequency due to
environmental conditions, which necessitates multi-timescale decision-
making. Since the UAV position and channel states are changed at
different frequencies, Liao et al. [183] construct a multi-timescale
scheduling algorithm. Task offloading targets are decided at each large
timeslot, and the power control is optimized at each small timeslot.
They design two federated Actor-Critic agents for action selection.
Satellite-aided systems are considered in [184]. With hierarchical-PPO,
adjustments of satellite link are made on a large time scale, whilst that
of the terrestrial link are made on a small time scale.

Clustering users to reduce the dimensionality is of great necessity
for large-scale ultra-dense systems. These methods can be regarded as
multi-timescale approaches because clustering is commonly performed
in advance or at a lower frequency. Liu et al. [87] propose to cluster
end devices by k-means algorithm based on the relative distance and
the probability of offloading. Devices in the same cluster follow the
same offloading policy. Greedy clustering is used in [185]. Some ve-
hicles are selected to be the cluster heads based on the link lifetimes,
relative distances, and speeds. Decisions are made by cluster heads and
19
executed by all vehicles in the cluster. Dai et al. [70] propose to group
end devices into sub-systems by the fuzzy c-means algorithm. Each sub-
system is served by a UAV, which keeps moving towards the geographic
center to shorten the communication distance. In [186], sensors are
aggregated into multiple groups where the group leader collects the
generated data from the members and participates in offloading. Both
DQN and DDPG are used for decision-making.

We summarize the abovementioned studies in Table 5.

5.5. Multi-agent cooperation and competition

Multi-agent DRL incorporates multiple agents that make indepen-
dent decisions by their own. Decentralized action selection fits well
with the autonomic nature of edge computing systems. It also reduces
the dimensionality of the state and action space for large-scale envi-
ronments. Depending on the optimization objectives, the relationship
between agents can be classified into cooperative and competitive
frameworks. In a cooperative framework, agents take actions to maxi-
mize global rewards. For a competitive framework, agents are selfish to
achieve higher individual rewards, in which case the system eventually
converges to a Nash equilibrium (NE).

Independent Learning represents an intuitive and simple way of
multi-agent collaboration. For example, IQL is a common independent
learning method that simply deploys an individual Q-network on each
agent. Due to the disturbance of other agents’ decisions, it is difficult to
learn a stable individual Q-network for each agent. Providing additional
information to facilitate perception and collaboration between agents
could help. Ren et al. [42] follow IQL and additionally provide the
previous action selection of other agents to facilitate cooperation. Ke
et al. [54] utilize the GRU-assisted IQL, where GRU is used to extract
features from the Historical global state over a short period to avoid
environmental inconsistencies. Instead of IQL, Yu et al. [25] propose
the heterogeneous distributed multi-agent DDPG algorithm. The end
devices and edge nodes have heterogeneous actor networks respectively
to select the corresponding actions. An Independent critic network for
each agent is deployed for action evaluation based on local information.

However, with independent learning, an agent cannot perceive the
intentions of other agents. It is also difficult to determine each agent’s
contribution to the global objective. To address this problem, value
decomposition methods, such as Q-Mix, break down the global reward
into individual components. Tan et al. [187] propose an RNN-assisted
Q-Mix algorithm. Two RNN branches separately extract the communi-
cation information and the local features from historical observations.
The neighboring agents would share the communication information to
promote agent sensing and collaboration. [33] also adopts the Q-Mix
algorithm with RNN for temporal feature extraction and applies GNN
to aggregate network graph information for more accurate value de-
composition weights. Yin and Yu [115] combines P-DQN and Q-Mix for
discrete-continuous action selection. In each agent, the actor generates
continuous action, while the critic combines it with all possible discrete
actions for evaluation. The best combination is selected as the decision.

The utilization of global observations is vital to the learning process.
Based on this idea, CTDE emerges as a promising paradigm. In cen-
tralized training, the critic network acquires global states for accurate
value estimation, which can more efficiently encourage cooperation
and guide actor network updates. Only decentralized actor networks
are required for action selection with local observations at both the
training and execution stages. Cai et al. [137] follows this paradigm,
but critic networks with different parameters are deployed for multiple
agents. They also design the attention module-based critic network to
aggregate nearby agent states. Wei et al. [135] focus on service pricing
scenarios, where the vehicles form a cooperative coalition for more fa-
vorable prices than RSUs. Multi-agent SAC is adopted, where the critic
uses the attention module to aggregate the observations, and actors
employ GRU to extract the temporal information. As one of the most
well-known methods, MADDPG has been adopted in various works as

Computer Science Review 53 (2024) 100656P. Peng et al.
Table 6
Related works of multi-agent cooperation and competition. CR is the abbreviation for Computing Resources.

Category DRL
Approach

Offloading type State Action Reward

Network state Task state Device state Additional

[42] Independent
RL

IQL Binary
Multi-Target

Channel Gain Task Size
Required CR

Last Offloading
Target

Offloading Target Energy Cost

[54] Independent
RL

IQL Binary
Multi-Target

SINR Task Size
Required CR
Task Arrival
Rate

Waiting Queue
Energy Remain
Energy Arrival
Rate

Historical Global
State

Offloading Target Time Cost
Energy Cost

[25] Independent
RL

Independent
DDPG

Binary
Single-Target

Transmit Rate Waiting Queue
Location or
Distance

Offloading Decision
Transmit Power
CR Allocation
IRS Reflection
Coefficients

Energy Efficiency
Queue Stability

[187] Value
Decomposition

Q-Mix Binary
Multi-Target

Number of Tasks Location or
Distance
Number of Loads

UAV Direction
UAV Speed

Service Fairness
Load Fairness

[33] Value
Decomposition

Q-Mix Binary
Multi-Target

Channel Gain Task Size
Required CR
Required Service
Delay Thresholds

Caching Status Offloading Target
Caching Decisions
Channel Allocation

Utility

[115] Value
Decomposition

Q-Mix Binary
Multi-Target

Received
Signal Strength

Offloading Target
Transmit Power

Throughput
Service Fairness

[137] CTDE Multi-Agent
AC

Partial
Multi-Target

Bandwidth Task Size
Required CR

Available CR
Location or
Position

Offloading Ratio
Offloading Target
UAV Direction
Moving Distance

Time Cost
Energy Cost

[135] CTDE Multi-Agent
SAC

Binary
Multi-Target

Required CR
Delay Sensitive
Factor
Utility Factor

Available CR
Location or
Position

Historical Service
Price
Historical CR
Requirements

Offloading Target
CR Purchase

QoS
Service Provision
Profit
Service Usage
Cost

[120] CTDE MADDPG Partial
Multi-Target

Number of Tasks
Required CR
Time to Live

Offloading Ratio
CR Allocation

Time Cost

[188] CTDE MADDPG Binary
Multi-Target

Channel Gain
Interference

Task Size
Required CR
Tolerable Delay

Waiting Queue
Location or
Distance

Offloading Target Time Cost
Energy Cost
Task Finish
Reward

[189] Independent
RL

IQL Binary
Multi-Target

Task Size
Required CR

Available CR
Waiting Queue
Location or
Distance

Coordinate
Message

Offloading Target Load Balancing
Time Cost

[190] Independent
RL

IQL Binary
Single-Target

Data Size Historical
Actions

Bandwidth Allocation
Transmit Power
Allocation

Time Cost
Energy Cost

[106] CTDE MADDPG Binary
Multi-Target

Transmit Rate Task Size
Required CR
Tolerable Delay

Available CR
Waiting Queue

States of
Collaborators

Offloading Target Time Cost

[191] CTDE MADDPG Partial
Multi-Target

Channel Gain Workload Remain Energy Timeslot Length Beamforming
Strategy
Offloading Time
Offloading Target

Energy Efficiency
Reliability

[124] Competitive Independent
AC

Partial
Single-Target

Bandwidth Historical
Bandwidth
Historical Action

Offloading Ratio Utility

[192] Competitive MADDPG Binary
Single-Target

Subchannel
Availability

Task Size
Required CR

Maximum
Transmit Power
Available CR

Transaction State Offloading Decision
Subchannel Selection
Transmit Power
Allocation
CR Allocation

Utility

[118] Competitive DDPG
MADDPG

Binary
Single-Target

Task Size Available CR
Location or
Position

Historical
Offloading
Decisions
Historical Pricing
Decisions
Current Price

Number of
Offloading Tasks

Profit
Satisfaction
Degree

[193] Competitive MADDPG Binary
Multi-Target

SINR Location or
Distance
Cache State

Satisfaction
Matrix

User Association
Power Allocation
Proactive Caching
index
UAV Position

Time Cost
the backbone. In [120], real-time status is assumed to be difficult to
obtain instantly. Thus, they propose to adopt LSTM for state estimation.
However, the sharing of local state sharing results in excessive amount
of data exchange. To this end, they use the variational RNN to compress
state information for communication. To avoid excessive global state
dimensions, Gao et al. [188] employs the multi-head attention module
to aggregate observations. They follow the idea of D3QN to construct
the critic network.
20
However, agents in the above methods take actions based solely
on their own observations. This potentially leads to sub-optimal of-
floading decisions. Therefore, several studies proposed to incorporate
coded message communication. Such methods facilitate cooperation
and offer improved performance with acceptable communication costs.
For example, Zhang et al. [189] propose to deploy a coordinator at
the edge to send coordination messages to agents to facilitate cooper-
ation. The coordinator uses Q-Learning to observe the global state and

Computer Science Review 53 (2024) 100656P. Peng et al.
sends messages to the agents. The agent adopts GRU-based IQL and
adds a variational regularization term to ensure the guidance of the
coordination messages. In [190], a global information center collects
observations and shares the encoded feature between agents. Each
agent adopts a judger module to make a binary decision on whether
to incorporate the shared feature. Li et al. [106] use DNNs to decide
whether devices participate in offloading, including becoming initia-
tors to seek help or providing services as collaborators. Each initiator
with nearby collaborators forms a subsystem. When a collaborator is
in multiple subsystems, it can aggregate and share features between
subsystems. Instead of feature sharing, Zhou et al. [191] propose to
additionally add a centralized model to estimate the offloading actions
of device agents. All devices collaborate to generate actions with MAD-
DPG based on observations and estimation of other agents’ actions. The
actual decisions will be sent back to the center to guide the center
model updates.

When the participants of edge networks are selfish, the relationship
between agents is competitive rather than cooperative. It means that
end devices aim to maximize the local rewards without concerning the
negative impact on the global rewards. In this case, the optimization
algorithms are expected to converge to a Nash Equilibrium. In [124],
the resource allocation among devices forms a competitive game. To
ensure private protection, they adopt the independent actor-critic al-
gorithm and take the differential neural computer (DNC) to construct
the critic network for better state–action evaluation. In Nguyen et al.
[192], each device makes decisions to maximize its own utility. They
give the potential function to formulate the system into an exact po-
tential game. MADDPG is then applied. Instead of a game between end
devices, Zhu et al. [118] constructed the vehicle-against-server system
in which vehicles make offloading decisions while the servers adjust the
service pricing accordingly. MADDPG is utilized by multiple vehicles
and DDPG is used by service providers. Zhang et al. [193] model the
problem as a Stackelberg game, where the leader adopts DDPG to
minimize the global delay, and users as followers adopt MADDPG to
optimize their own latency. They propose a correction mechanism to
compensate for the bias of the leader’s reward estimation due to the
follower’s unstable decision, and the gradients from other agents are
aggregated for model updates.

We summarize this line of works in Table 6.

6. Open challenges

Computation offloading is a key technique for today’s edge com-
puting systems, attracting extensive research effort in the field. DRL-
based approaches have proven effective in improving system through-
put, QoS, energy efficiency, and task execution latency. However,
through investigation, we believe that there are still open problems and
challenging issues that deserve further exploration.

6.1. Task partitioning and dependency

In recent years, the strategy of decomposing tasks into subtasks
for offloading has garnered significant interest because it works on
finer decision granularity. In this setting, tasks are usually assumed
to be arbitrarily divisible and simultaneously executable when partial
offloading, but the methodology for task division and the dependency
between subtasks has not been thoroughly analyzed. Although re-
cent studies have started to analyze dependent subtasks, they still
ignore the task partitioning step. They also lack effective utilization
of the dependency information that is typically only used for sub-task
ordering.

We believe that the analysis of task partitioning and dependency
information is critical. Firstly, while some studies have explored the
combined optimization of model partitioning and offloading specifi-
cally for DNN inference tasks [194], a broader analysis for general tasks
remains absent. Secondly, It is possible that integrating dependency
features into decision-making, such as employing GNN for feature
21

extraction, could substantially enhance system efficiency.
6.2. Event driven offloading

Existing work typically performs computation offloading across dis-
crete timeslots, wherein actions are generated at the beginning of
each timeslot. It leads to additional waiting time for tasks arriving
midway through any timeslot. Although some existing works [68] have
attempted the event-driven paradigm, which could instantly schedule
tasks, neither of them effectively addresses the impact of subsequent
rewards. Unlike the timeslot-based paradigm, random interval lengths
exist between task arrival events and reward obtaining. The traditional
reward decays are not adapted to the event-driven approach. How
to properly design the reward decays and construct an event-driven
offloading algorithm is a problem worthy of future research.

6.3. Heterogeneous computing architecture

With the development of AI accelerators, more applications now
rely on heterogeneous computing power to attain desired performance.
For instance, DNN-based applications achieve better performance on
the Graph Processing Units (GPUs) or Tensor Processing Units (TPUs),
and some applications require scalable memory space and IO resources.
However, most current works simply use the frequency of the CPU
to represent their processing speed, which is too coarse-grained in re-
source representation. While some studies like [30,31] begin to include
heterogeneous resources, they still significantly differ from reality.

Therefore, a major problem in this direction is the absence of a
computing model for heterogeneous resources. Heterogeneous devices
and resources lack acknowledged mathematical models for quantifying
the latency and energy overhead of task processing, which makes
scheduling optimization difficult. We suggest that existing model-free
DRL techniques could be easily migrated to heterogeneous resource
scenarios, while a more critical demand is for a generic model to
quantify available computing resources and relative computing costs
on heterogeneous edge devices with different computing architectures.

6.4. High reliability guarantee

Edge computing is increasingly deployed in critical scenarios such
as industrial IoT and vehicular edge networks, wherein high system
reliability is crucial. Any task failures or system malfunctions could
lead to catastrophic outcomes, causing significant property damage
or posing serious threats to personal safety. The robust and reliable
performance of edge computing systems under these scenarios is not
just a matter of efficiency but of safety and security. Although several
studies have paid attention to the problem (as discussed in Section 3.6),
scenario-specific high reliability guarantee remains an open challenge
deserving further research.

System reliability is typically guaranteed as constraints. However,
we notice that almost all DRL-based works simply convert them into
objectives by assigning penalties for violations to potentially incen-
tivize agents. This, however, cannot theoretically guarantee to meet
constraints and ensure high reliability. In addition, the trial-and-error
nature of DRL inevitably leads to accessing invalid states or actions that
violate constraints.

Safe RL emerges as a new concept where we need to prevent access
to unsafe states or actions and to operate reliably within predefined
constraints. It helps avoid harmful actions during both the training and
deployment phases. It could be an essential direction to ensure decision
feasibility and enhance system reliability [195]. Offline RL is also a
great option on this point. It allows learning from pre-collected data
without the necessity of fully exploring the critical environment [196].
Moreover, it is also necessary to explore effective fault-tolerant algo-
rithms, such as task reassignment or redundant offloading, to ensure

system reliability [197].

Computer Science Review 53 (2024) 100656P. Peng et al.
6.5. Data integrity and privacy

Data integrity and privacy are critical in real-world edge computing
systems where large amounts of sensitive data are processed. For
example, in the industrial IoT, data leakage could expose critical manu-
facturing details or corporate information. In vehicular edge networks,
malicious eavesdropping and manipulation of vehicle behavior pose
safety risks.

Defense strategies against intentional jamming and eavesdropping
have received broad attention. While some works have proposed proac-
tive anti-attack strategies, such as using idle devices to disturb eaves-
droppers [95], most of them assume the invader follows a simple
pattern. Omitting analysis of adversarial attacks would likely result in
overfitting to the specified attack strategy and failing to address the
real attack. For this reason, it is necessary to analyze the adversarial
scenario where the competitive capabilities of DRL can be exploited to
further improve data privacy.

Besides, operational data from end devices involves user privacy
and the security of device operation. This concerns both DRL training
and decision-making. It is important to ensure data consistency and
avoid privacy leakage in the learning and decision-making process.
Federated Learning (FL) is a promising direction that avoids raw data
sharing by distributed local training and parameter or gradient aggre-
gation. The training of multiple DRL agents can be performed within
the FL framework, but the complexity of data sampling and the cost of
trial-and-error steps are still a concern in real-world scenarios [198].
Meanwhile, Aono et al. [199] reported that sharing gradients can still
risk the privacy of the original data. To address it, various FL-based
methods are proposed [200], but whether a DRL process can converge
smoothly in the FL setting is still an open question.

6.6. Environment dynamics and adaptability

How to adaptively transfer the algorithms to unknown environ-
ments while maintaining good performance is an open challenge. Be-
sides, any edge systems can also evolve dynamically. The switch or
change of environment causes distributional shift that may turn a good
policy learned by the DNN-based actor network to a bad one. Therefore,
deploying pre-trained DRL algorithms in actual systems requires a long
period of re-training, which sometimes also brings about performance
degradation. To fill this gap, techniques such as curriculum learning,
meta-RL, and transfer reinforcement learning [84,201,202] have been
used. Nonetheless, these methods commonly require additional training
across different scenarios or domains. The required data acquisition
process is complex and expensive. In addition, it also requires more
effort for model fine-tuning.

Furthermore, it should be noted that environment dynamics in
terms of dimensionality is not friendly to the underlying MDP model.
When the numbers of end devices and ENs are not constant, the state
and action dimensions may change, making traditional MLP-based
DRL unsuitable. Existing approaches attempt to adopt the Seq2Seq
paradigm [203] or group devices into a fixed number of clusters [186],
but they introduce significant execution overhead while the system
performance is greatly affected by the quality of clustering. To this end,
it is worth investigating in future research on how to adapt DRL-based
strategies to dynamic environments.

6.7. Interpretability of DRL

Unlike traditional offloading algorithms that have clear formulation
and rules, the black-box nature of DRL makes the connection between
input observations and output decisions fairly intangible. The lack of
interpretability greatly affects the trustworthiness of DRL-based strate-
gies and thus creates a gap between research and applying them to
real-world scenarios. Although it is believed to be very challenging,
recent developments of DRL explanation has shed some light in this
22
direction [204]. By any means, providing the reasons behind the de-
cisions would help understand and improve the policies for higher
system efficiency. It also enhances the trustworthiness and security of
the algorithms, which is always imperative for actual deployment in
security-sensitive edge computing systems.

7. Conclusion

Computation offloading is a key technique for edge computing
systems. How to reasonably determine the location of task processing
and manage the transmission and computation resources related to
it have received much attention in recent years. DRL demonstrates
powerful perception and decision-making capabilities compared with
traditional optimization algorithms. This has catalyzed a large number
of DRL-based offloading algorithms in the domain. However, the com-
plexity and diversity of application scenarios and system models make
it difficult to understand the design principles behind these approaches
and also hinder a wider practical deployment.

To this end, we present a novel view of DRL-based offloading
strategies via the lens of key design elements. We first introduce en-
vironmental factors that are commonly considered and closely related
to computation offloading. Then we discuss the technical design of
state spaces, action spaces, and reward functions for MDP models.
We also categorize and compare the existing studies based on their
improvement of learning strategies to inspire subsequent applications
and enhancements of DRL in computation offloading. Finally, we high-
light possible research directions based on the open issues to provide
insights for future studies. Although existing work has explored diverse
edge scenarios and improved DRL’s performance, the dynamic and
heterogeneous nature of edge systems is still the major challenge. On
this point, the insufficient adaptability, reliability, and interpretability
of DRL-based methods somewhat hinder practical applications. We
believe that DRL has great potential to enable intelligent computation
offloading whilst these open issues require more attention in future
research.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work is supported by Guangdong Major Project of Basic and
Applied Basic Research (2019B030302002); National Natural Science
Foundation of China (62072187); the Major Key Project of PCL, China
under Grant PCL2023A09; NSFC-FDCT Grants 62361166662; National
Key R&D Program of China 2023YFC3503400, 2022YFC3400400; The
Innovative Research Group Project of Hunan Province 2024JJ1002;
Key R&D Program of Hunan Province 2023GK2004, 2023SK2059,
2023SK2060; Top 10 Technical Key Project in Hunan Province 2023
GK1010, and Key Technologies R&D Program of Guangdong Province
(2023B1111030004 to FFH).

References

[1] T. Alsop, Number of Edge Enabled Internet of Things (IoT) Devices Worldwide
from 2020 to 2030, by Market, Technical Report, Statista, 2022.

[2] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, E. Riviere, Edge-centric computing: Vision and
challenges, SIGCOMM Comput. Commun. Rev. 45 (5) (2015) 37–42.

http://refhub.elsevier.com/S1574-0137(24)00040-6/sb1
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb1
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb1
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb2
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb2
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb2
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb2
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb2

Computer Science Review 53 (2024) 100656P. Peng et al.
[3] L. Kong, J. Tan, J. Huang, G. Chen, S. Wang, X. Jin, P. Zeng, M. Khan, S.K.
Das, Edge-computing-driven Internet of Things: A survey, ACM Comput. Surv.
55 (8) (2022) 1–41.

[4] Z. Zabihi, A.M. Eftekhari Moghadam, M.H. Rezvani, Reinforcement learning
methods for computation offloading: A systematic review, ACM Comput. Surv.
56 (1) (2024) 1–41.

[5] Q. Luo, S. Hu, C. Li, G. Li, W. Shi, Resource scheduling in edge computing: A
survey, IEEE Commun. Surv. Tutor. 23 (4) (2021) 2131–2165.

[6] H. Tran-Dang, S. Bhardwaj, T. Rahim, A. Musaddiq, D.-S. Kim, Reinforcement
learning based resource management for fog computing environment: Literature
review, challenges, and open issues, J. Commun. Netw. 24 (1) (2022) 83–98.

[7] J. Liu, M. Ahmed, M.A. Mirza, W.U. Khan, D. Xu, J. Li, A. Aziz, Z. Han, RL/DRL
meets vehicular task offloading using edge and vehicular cloudlet: A survey,
IEEE Internet Things J. 9 (11) (2022) 8315–8338.

[8] A.M.A. Hamdi, F.K. Hussain, O.K. Hussain, Task offloading in vehicular fog
computing: state-of-the-art and open issues, Future Gener. Comput. Syst. 133
(2022) 201–212.

[9] Z. Song, X. Qin, Y. Hao, T. Hou, J. Wang, X. Sun, A comprehensive survey on
aerial mobile edge computing: challenges, state-of-the-art, and future directions,
Comput. Commun. 191 (2022) 233–256.

[10] W. Chen, X. Qiu, T. Cai, H.-N. Dai, Z. Zheng, Y. Zhang, Deep reinforcement
learning for Internet of Things: A comprehensive survey, IEEE Commun. Surv.
Tutor. 23 (3) (2021) 1659–1692.

[11] M.S. Frikha, S.M. Gammar, A. Lahmadi, L. Andrey, Reinforcement and deep
reinforcement learning for wireless Internet of Things: A survey, Comput.
Commun. 178 (2021) 98–113.

[12] T. Li, K. Zhu, N.C. Luong, D. Niyato, Q. Wu, Y. Zhang, B. Chen, Applications of
multi-agent reinforcement learning in future internet: A comprehensive survey,
IEEE Commun. Surv. Tutor. 24 (2) (2022) 1240–1279.

[13] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, L. Guo, Computation offloading in
mobile edge computing networks: A survey, J. Netw. Comput. Appl. 202 (2022)
103366.

[14] N. Kumari, A. Yadav, P.K. Jana, Task offloading in fog computing: A survey of
algorithms and optimization techniques, Comput. Netw. 214 (2022) 109137.

[15] A. Acheampong, Y. Zhang, X. Xu, D. Kumah, A review of the current task
offloading algorithms, strategies and approach in edge computing systems,
CMES Comput. Model. Eng. Sci. 134 (1) (2022) 35–88.

[16] S. Taheri-abed, A.M. Eftekhari Moghadam, M.H. Rezvani, Machine learning-
based computation offloading in edge and fog: A systematic review, Cluster
Comput. 26 (5) (2023) 3113–3144.

[17] K. Sadatdiynov, L. Cui, L. Zhang, J.Z. Huang, S. Salloum, M.S. Mahmud, A
review of optimization methods for computation offloading in edge computing
networks, Digit. Commun. Netw. 9 (2) (2023) 450–461.

[18] B. Kar, W. Yahya, Y.-D. Lin, A. Ali, Offloading using traditional optimization and
machine learning in federated cloud-edge-fog systems: A survey, IEEE Commun.
Surv. Tutor. 25 (2) (2023) 1199–1226.

[19] M.Y. Akhlaqi, Z.B. Mohd Hanapi, Task offloading paradigm in mobile edge
computing-current issues, adopted approaches, and future directions, J. Netw.
Comput. Appl. 212 (2023) 103568.

[20] D. Hortelano, I. de Miguel, R.J.D. Barroso, J.C. Aguado, N. Merayo, L.
Ruiz, A. Asensio, X. Masip-Bruin, P. Fernández, R.M. Lorenzo, E.J. Abril, A
comprehensive survey on reinforcement-learning-based computation offloading
techniques in edge computing systems, J. Netw. Comput. Appl. 216 (2023)
103669.

[21] D.H. Abdulazeez, S.K. Askar, Offloading mechanisms based on reinforcement
learning and deep learning algorithms in the fog computing environment, IEEE
Access 11 (2023) 12555–12586.

[22] S. Zhou, W. Jadoon, I.A. Khan, Computing offloading strategy in mobile
edge computing environment: A comparison between adopted frameworks,
challenges, and future directions, Electronics 12 (11) (2023) 2452.

[23] G. Chen, Q. Wu, W. Chen, D.W.K. Ng, L. Hanzo, IRS-aided wireless powered
MEC systems: TDMA or NOMA for computation offloading? IEEE Trans. Wireless
Commun. 22 (2) (2023) 1201–1218.

[24] L. Tan, Z. Kuang, L. Zhao, A. Liu, Energy-efficient joint task offloading and
resource allocation in OFDMA-based collaborative edge computing, IEEE Trans.
Wireless Commun. 21 (3) (2022) 1960–1972.

[25] J. Yu, Y. Li, X. Liu, B. Sun, Y. Wu, D. Hin-Kwok Tsang, IRS assisted NOMA
aided mobile edge computing with queue stability: Heterogeneous multi-
agent reinforcement learning, IEEE Trans. Wireless Commun. 22 (7) (2023)
4296–4312.

[26] W. Liu, B. Li, W. Xie, Y. Dai, Z. Fei, Energy efficient computation offloading
in aerial edge networks with multi-agent cooperation, IEEE Trans. Wireless
Commun. 22 (9) (2023) 5725–5739.

[27] X. Yuan, J. Chen, N. Zhang, J. Ni, F.R. Yu, V.C.M. Leung, Digital twin-driven
vehicular task offloading and IRS configuration in the internet of vehicles, IEEE
Trans. Intell. Transp. Syst. 23 (12) (2022) 24290–24304.

[28] F. Jiang, Y. Peng, K. Wang, L. Dong, K. Yang, MARS: A DRL-based multi-
task resource scheduling framework for UAV with IRS-assisted mobile edge
computing system, IEEE Trans. Cloud Comput. 11 (4) (2023) 3700–3712.
23
[29] K. Li, W. Ni, X. Yuan, A. Noor, A. Jamalipour, Deep-graph-based reinforcement
learning for joint cruise control and task offloading for aerial edge Internet of
Things (EdgeIoT), IEEE Internet Things J. 9 (21) (2022) 21676–21686.

[30] Y. Liu, Y. Mao, Z. Liu, F. Ye, Y. Yang, Joint task offloading and resource
allocation in heterogeneous edge environments, IEEE Trans. Mob. Comput.
(2024) 1–16.

[31] Z. Tong, J. Wang, J. Mei, K. Li, W. Li, K. Li, Multi-type task offloading for
wireless Internet of Things by federated deep reinforcement learning, Future
Gener. Comput. Syst. 145 (2023) 536–549.

[32] Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge
computing: The communication perspective, IEEE Commun. Surv. Tutor. 19
(4) (2017) 2322–2358.

[33] Z. Yao, S. Xia, Y. Li, G. Wu, Cooperative task offloading and service caching
for digital twin edge networks: A graph attention multi-agent reinforcement
learning approach, IEEE J. Sel. Areas Commun. 41 (11) (2023) 3401–3413.

[34] C. Sun, W. Ni, X. Wang, Joint computation offloading and trajectory planning
for UAV-assisted edge computing, IEEE Trans. Wireless Commun. 20 (8) (2021)
5343–5358.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
M. Riedmiller, Playing Atari with deep reinforcement learning, 2013, arXiv
e-prints, arXiv:1312.5602.

[36] H. van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double
Q-learning, in: Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 30, No. 1, 2016.

[37] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, N. Freitas, Dueling net-
work architectures for deep reinforcement learning, in: International Conference
on Machine Learning, PMLR, 2016, pp. 1995–2003.

[38] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in:
International Conference on Machine Learning, PMLR, 2016, pp. 1928–1937.

[39] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, 2015, arXiv
e-prints, arXiv:1509.02971.

[40] S. Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in
actor-critic methods, in: International Conference on Machine Learning, PMLR,
2018, pp. 1587–1596.

[41] R. Lowe, Y.I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, I. Mordatch, Multi-agent
actor-critic for mixed cooperative-competitive environments, Adv. Neural Inf.
Process. Syst. 30 (2017).

[42] Y. Ren, Y. Sun, M. Peng, Deep reinforcement learning based computation
offloading in fog enabled industrial Internet of Things, IEEE Trans. Ind. Inform.
17 (7) (2021) 4978–4987.

[43] H. Zhou, K. Jiang, X. Liu, X. Li, V.C. Leung, Deep reinforcement learning
for energy-efficient computation offloading in mobile-edge computing, IEEE
Internet Things J. 9 (2) (2022) 1517–1530.

[44] L. Wang, G. Zhang, Deep reinforcement learning based joint partial computa-
tion offloading and resource allocation in mobility-aware MEC system, China
Commun. 19 (8) (2022) 85–99.

[45] S. Shen, Y. Han, X. Wang, Y. Wang, Computation offloading with multiple
agents in edge-computing-supported IoT, ACM Trans. Sensor Netw. 16 (1)
(2020) 1–27.

[46] Z. Wei, R. He, Y. Li, Deep reinforcement learning based task offloading
and resource allocation for MEC-enabled IoT networks, in: 2023 IEEE/CIC
International Conference on Communications in China, ICCC Workshops, 2023,
pp. 1–6.

[47] J. Niu, S. Zhang, K. Chi, G. Shen, W. Gao, Deep learning for online computation
offloading and resource allocation in NOMA, Comput. Netw. 216 (2022)
109238.

[48] H. Hu, D. Wu, F. Zhou, X. Zhu, R.Q. Hu, H. Zhu, Intelligent resource allocation
for edge-cloud collaborative networks: A hybrid DDPG-D3QN approach, IEEE
Trans. Veh. Technol. 72 (8) (2023) 10696–10709.

[49] J.A. Ansere, E. Gyamfi, Y. Li, H. Shin, O.A. Dobre, T. Hoang, T.Q. Duong,
Optimal computation resource allocation in energy-efficient edge IoT systems
with deep reinforcement learning, IEEE Trans. Green Commun. Netw. 7 (4)
(2023) 2130–2142.

[50] C. Wan, S. Guo, J. He, G. Liu, P. Zhou, iCOS: A deep reinforcement learning
scheme for wireless-charged MEC networks, IEEE Trans. Veh. Technol. 71 (7)
(2022) 7739–7750.

[51] B. Li, W. Liu, W. Xie, X. Li, Energy-efficient task offloading and trajectory
planning in UAV-enabled mobile edge computing networks, Comput. Netw. 234
(2023) 109940.

[52] X. Zhou, L. Huang, T. Ye, W. Sun, Computation bits maximization in UAV-
assisted MEC networks with fairness constraint, IEEE Internet Things J. 9 (21)
(2022) 20997–21009.

[53] Z. Cheng, M. Liwang, N. Chen, L. Huang, X. Du, M. Guizani, Deep reinforcement
learning-based joint task and energy offloading in UAV-aided 6G intelligent
edge networks, Comput. Commun. 192 (2022) 234–244.

[54] H. Ke, H. Wang, W. Sun, H. Sun, Adaptive computation offloading policy for
multi-access edge computing in heterogeneous wireless networks, IEEE Trans.
Netw. Serv. Manag. 19 (1) (2022) 289–305.

http://refhub.elsevier.com/S1574-0137(24)00040-6/sb3
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb3
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb3
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb3
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb3
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb4
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb4
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb4
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb4
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb4
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb5
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb5
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb5
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb6
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb6
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb6
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb6
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb6
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb7
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb7
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb7
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb7
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb7
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb8
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb8
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb8
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb8
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb8
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb9
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb9
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb9
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb9
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb9
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb10
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb10
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb10
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb10
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb10
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb11
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb11
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb11
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb11
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb11
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb12
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb12
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb12
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb12
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb12
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb13
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb13
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb13
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb13
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb13
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb14
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb14
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb14
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb15
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb15
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb15
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb15
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb15
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb16
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb16
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb16
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb16
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb16
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb17
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb17
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb17
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb17
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb17
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb18
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb18
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb18
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb18
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb18
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb19
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb19
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb19
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb19
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb19
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb20
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb20
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb20
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb20
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb20
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb20
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb20
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb20
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb20
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb21
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb21
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb21
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb21
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb21
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb22
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb22
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb22
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb22
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb22
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb23
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb23
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb23
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb23
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb23
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb24
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb24
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb24
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb24
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb24
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb25
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb25
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb25
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb25
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb25
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb25
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb25
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb26
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb26
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb26
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb26
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb26
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb27
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb27
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb27
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb27
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb27
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb28
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb28
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb28
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb28
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb28
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb29
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb29
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb29
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb29
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb29
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb30
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb30
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb30
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb30
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb30
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb31
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb31
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb31
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb31
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb31
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb32
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb32
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb32
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb32
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb32
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb33
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb33
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb33
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb33
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb33
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb34
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb34
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb34
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb34
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb34
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb36
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb36
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb36
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb36
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb36
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb37
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb37
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb37
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb37
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb37
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb38
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb38
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb38
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb38
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb38
http://arxiv.org/abs/1509.02971
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb40
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb40
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb40
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb40
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb40
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb41
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb41
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb41
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb41
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb41
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb42
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb42
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb42
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb42
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb42
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb43
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb43
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb43
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb43
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb43
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb44
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb44
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb44
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb44
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb44
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb45
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb45
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb45
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb45
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb45
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb46
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb46
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb46
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb46
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb46
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb46
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb46
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb47
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb47
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb47
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb47
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb47
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb48
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb48
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb48
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb48
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb48
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb49
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb49
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb49
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb49
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb49
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb49
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb49
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb50
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb50
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb50
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb50
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb50
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb51
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb51
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb51
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb51
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb51
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb52
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb52
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb52
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb52
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb52
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb53
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb53
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb53
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb53
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb53
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb54
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb54
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb54
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb54
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb54

Computer Science Review 53 (2024) 100656P. Peng et al.
[55] Y. Wang, K. Wang, H. Huang, T. Miyazaki, S. Guo, Traffic and computation
co-offloading with reinforcement learning in fog computing for industrial
applications, IEEE Trans. Ind. Inform. 15 (2) (2019) 976–986.

[56] J. Shi, J. Du, J. Wang, J. Wang, J. Yuan, Priority-aware task offloading in
vehicular fog computing based on deep reinforcement learning, IEEE Trans.
Veh. Technol. 69 (12) (2020) 16067–16081.

[57] J. Xue, Q. Wu, H. Zhang, Cost optimization of UAV-MEC network calculation
offloading: A multi-agent reinforcement learning method, Ad Hoc Netw. 136
(2022) 102981.

[58] H. Zhou, Z. Wang, H. Zheng, S. He, M. Dong, Cost minimization-oriented
computation offloading and service caching in mobile cloud-edge computing:
An A3C-based approach, IEEE Trans. Netw. Sci. Eng. 10 (3) (2023) 1326–1338.

[59] J. Shi, J. Du, Y. Shen, J. Wang, J. Yuan, Z. Han, DRL-based V2V computa-
tion offloading for blockchain-enabled vehicular networks, IEEE Trans. Mob.
Comput. 22 (7) (2023) 3882–3897.

[60] J. Du, W. Cheng, G. Lu, H. Cao, X. Chu, Z. Zhang, J. Wang, Resource pricing
and allocation in MEC enabled blockchain systems: An A3C deep reinforcement
learning approach, IEEE Trans. Netw. Sci. Eng. 9 (1) (2022) 33–44.

[61] A.M. Seid, J. Lu, H.N. Abishu, T.A. Ayall, Blockchain-enabled task offloading
with energy harvesting in multi-UAV-assisted IoT networks: A multi-agent DRL
approach, IEEE J. Sel. Areas Commun. 40 (12) (2022) 3517–3532.

[62] X. Zhang, M. Peng, S. Yan, Y. Sun, Joint communication and computation
resource allocation in fog-based vehicular networks, IEEE Internet Things J.
9 (15) (2022) 13195–13208.

[63] S.M.A. Kazmi, T.M. Ho, T.T. Nguyen, M. Fahim, A. Khan, M.J. Piran, G. Baye,
Computing on wheels: A deep reinforcement learning-based approach, IEEE
Trans. Intell. Transp. Syst. 23 (11) (2022) 22535–22548.

[64] L. Zhao, E. Zhang, S. Wan, A. Hawbani, A.Y. Al-Dubai, G. Min, A.Y.
Zomaya, MESON: A mobility-aware dependent task offloading scheme for urban
vehicular edge computing, IEEE Trans. Mob. Comput. (2023) 1–15.

[65] L. Geng, H. Zhao, J. Wang, A. Kaushik, S. Yuan, W. Feng, Deep-reinforcement-
learning-based distributed computation offloading in vehicular edge computing
networks, IEEE Internet Things J. 10 (14) (2023) 12416–12433.

[66] C.-L. Wu, T.-C. Chiu, C.-Y. Wang, A.-C. Pang, Mobility-aware deep reinforce-
ment learning with seq2seq mobility prediction for offloading and allocation in
edge computing, IEEE Trans. Mob. Comput. (2023) 1–17.

[67] H. Maleki, M. Başaran, L. Durak-Ata, Handover-enabled dynamic computation
offloading for vehicular edge computing networks, IEEE Trans. Veh. Technol.
72 (7) (2023) 9394–9405.

[68] H. Tang, H. Wu, G. Qu, R. Li, Double deep Q-Network based dynamic framing
offloading in vehicular edge computing, IEEE Trans. Netw. Sci. Eng. 10 (3)
(2023) 1297–1310.

[69] L. Yao, X. Xu, M. Bilal, H. Wang, Dynamic edge computation offloading for
internet of vehicles with deep reinforcement learning, IEEE Trans. Intell. Transp.
Syst. 24 (11) (2023) 12991–12999.

[70] B. Dai, J. Niu, T. Ren, Z. Hu, M. Atiquzzaman, Towards energy-efficient
scheduling of UAV and base station hybrid enabled mobile edge computing,
IEEE Trans. Veh. Technol. 71 (1) (2022) 915–930.

[71] N. Zhao, Z. Ye, Y. Pei, Y.-C. Liang, D. Niyato, Multi-agent deep reinforcement
learning for task offloading in UAV-assisted mobile edge computing, IEEE Trans.
Wireless Commun. 21 (9) (2022) 6949–6960.

[72] L. Zhang, A. Celik, S. Dang, B. Shihada, Energy-efficient trajectory optimization
for UAV-assisted IoT networks, IEEE Trans. Mob. Comput. 21 (12) (2022)
4323–4337.

[73] Z. Wang, Y. Wei, F.R. Yu, Z. Han, Utility optimization for resource allocation
in multi-access edge network slicing: A twin-actor deep deterministic policy
gradient approach, IEEE Trans. Wireless Commun. 21 (8) (2022) 5842–5856.

[74] X. Kong, G. Duan, M. Hou, G. Shen, H. Wang, X. Yan, M. Collotta, Deep
reinforcement learning-based energy-efficient edge computing for internet of
vehicles, IEEE Trans. Ind. Inform. 18 (9) (2022) 6308–6316.

[75] S. Yang, J. Liu, F. Zhang, F. Li, X. Chen, X. Fu, Caching-enabled computation
offloading in multi-region MEC network via deep reinforcement learning, IEEE
Internet Things J. 9 (21) (2022) 21086–21098.

[76] X. Peng, Z. Han, W. Xie, C. Yu, P. Zhu, J. Xiao, J. Yang, Deep reinforcement
learning for shared offloading strategy in vehicle edge computing, IEEE Syst.
J. (2022) 1–12.

[77] S. Yu, X. Chen, Z. Zhou, X. Gong, D. Wu, When deep reinforcement learning
meets federated learning: Intelligent multitimescale resource management for
multiaccess edge computing in 5G ultradense network, IEEE Internet Things J.
8 (4) (2021) 2238–2251.

[78] Z. Xue, C. Liu, C. Liao, G. Han, Z. Sheng, Joint service caching and computation
offloading scheme based on deep reinforcement learning in vehicular edge
computing systems, IEEE Trans. Veh. Technol. 72 (5) (2023) 6709–6722.

[79] Z. Li, C. Yang, X. Huang, W. Zeng, S. Xie, CoOR: Collaborative task offloading
and service caching replacement for vehicular edge computing networks, IEEE
Trans. Veh. Technol. 72 (7) (2023) 9676–9681.

[80] J. Zhang, Y. Shen, Y. Wang, X. Zhang, J. Wang, Dual-timescale resource
allocation for collaborative service caching and computation offloading in IoT
systems, IEEE Trans. Ind. Inform. 19 (2) (2023) 1735–1746.
24
[81] B. Gu, M. Alazab, Z. Lin, X. Zhang, J. Huang, AI-enabled task offloading for
improving quality of computational experience in ultra dense networks, ACM
Trans. Internet Technol. (TOIT) 22 (3) (2022) 1–17.

[82] S. Chen, J. Chen, Y. Miao, Q. Wang, C. Zhao, Deep reinforcement learning-based
cloud-edge collaborative mobile computation offloading in industrial networks,
IEEE Trans. Signal Inf. Process. Netw. 8 (2022) 364–375.

[83] G. Qu, H. Wu, R. Li, P. Jiao, DMRO: A deep meta reinforcement learning-based
task offloading framework for edge-cloud computing, IEEE Trans. Netw. Serv.
Manag. 18 (3) (2021) 3448–3459.

[84] N. Sharma, A. Ghosh, R. Misra, S.K. Das, Deep meta Q-learning based multi-task
offloading in edge-cloud systems, IEEE Trans. Mob. Comput. (2023) 1–17.

[85] J. Yuan, H. Xiao, Z. Shen, T. Zhang, J. Jin, ELECT: Energy-efficient intelligent
edge-cloud collaboration for remote IoT services, Future Gener. Comput. Syst.
147 (2023) 179–194.

[86] X. Zhou, S. Ge, P. Liu, T. Qiu, DAG-based dependent tasks offloading in
MEC-enabled IoT with soft cooperation, IEEE Trans. Mob. Comput. (2023) 1–12.

[87] X. Liu, J. Yu, J. Wang, Y. Gao, Resource allocation with edge computing in IoT
networks via machine learning, IEEE Internet Things J. 7 (4) (2020) 3415–3426.

[88] C. Xu, Y. Xie, X. Wang, H.H. Yang, D. Niyato, T.Q.S. Quek, Optimal status
update for caching enabled IoT networks: A dueling deep R-network approach,
IEEE Trans. Wireless Commun. 20 (12) (2021) 8438–8454.

[89] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, K. Wang, Edge QoE: Computation
offloading with deep reinforcement learning for Internet of Things, IEEE
Internet Things J. 7 (10) (2020) 9255–9265.

[90] F. Fang, K. Wang, Z. Ding, V.C.M. Leung, Energy-efficient resource allocation
for NOMA-MEC networks with imperfect CSI, IEEE Trans. Commun. 69 (5)
(2021) 3436–3449.

[91] T.T. Nguyen, L.B. Le, Q. Le-Trung, Computation offloading in MIMO based
mobile edge computing systems under perfect and imperfect CSI estimation,
IEEE Trans. Serv. Comput. 14 (6) (2021) 2011–2025.

[92] L. Xiao, X. Lu, T. Xu, X. Wan, W. Ji, Y. Zhang, Reinforcement learning-based
mobile offloading for edge computing against jamming and interference, IEEE
Trans. Commun. 68 (10) (2020) 6114–6126.

[93] Y. Xu, J. Chen, Y. Xu, F. Gu, K. Yao, L. Jia, D. Liu, X. Wang, Energy-efficient
channel access and data offloading against dynamic jamming attacks, IEEE
Trans. Green Commun. Netw. 5 (4) (2021) 1734–1746.

[94] Y. Ju, Y. Chen, Z. Cao, L. Liu, Q. Pei, M. Xiao, K. Ota, M. Dong, V.C.M. Leung,
Joint secure offloading and resource allocation for vehicular edge computing
network: A multi-agent deep reinforcement learning approach, IEEE Trans.
Intell. Transp. Syst. 24 (5) (2023) 5555–5569.

[95] S. Yoo, S. Jeong, J. Kang, Hybrid UAV-enabled secure offloading via deep
reinforcement learning, IEEE Wirel. Commun. Lett. 12 (6) (2023) 972–976.

[96] M. Sun, X. Xu, S. Han, H. Zheng, X. Tao, P. Zhang, Secure computation
offloading for device-collaborative MEC networks: A DRL-based approach, IEEE
Trans. Veh. Technol. 72 (4) (2023) 4887–4903.

[97] Q. He, Z. Feng, H. Fang, X. Wang, L. Zhao, Y. Yao, K. Yu, A blockchain-
based scheme for secure data offloading in healthcare with deep reinforcement
learning, IEEE/ACM Trans. Netw. 32 (1) (2024) 65–80.

[98] L. Yang, M. Li, P. Si, R. Yang, E. Sun, Y. Zhang, Energy-efficient resource
allocation for blockchain-enabled industrial Internet of Things with deep
reinforcement learning, IEEE Internet Things J. 8 (4) (2021) 2318–2329.

[99] M. Li, P. Pei, F.R. Yu, P. Si, Y. Li, E. Sun, Y. Zhang, Cloud-edge collaborative
resource allocation for blockchain-enabled Internet of Things: A collective
reinforcement learning approach, IEEE Internet Things J. 9 (22) (2022)
23115–23129.

[100] X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K.-C. Chen, H. Zhang, Reliable
computation offloading for edge-computing-enabled software-defined IoV, IEEE
Internet Things J. 7 (8) (2020) 7097–7111.

[101] T. Jing, X. Ma, X. Wang, X. Li, Enhancing soft AC based reliable offloading
for IoV with edge computing, in: 2023 IEEE Wireless Communications and
Networking Conference, WCNC, IEEE, Glasgow, United Kingdom, 2023, pp. 1–6.

[102] T. Long, Y. Ma, Y. Xia, X. Xiao, Q. Peng, J. Zhao, A mobility-aware and fault-
tolerant service offloading method in mobile edge computing, in: 2022 IEEE
International Conference on Web Services, ICWS, IEEE, Barcelona, Spain, 2022,
pp. 67–72.

[103] Z. Hu, J. Niu, T. Ren, B. Dai, Q. Li, M. Xu, S.K. Das, An efficient online
computation offloading approach for large-scale mobile edge computing via
deep reinforcement learning, IEEE Trans. Serv. Comput. 15 (2) (2022) 669–683.

[104] G. Ma, X. Wang, M. Hu, W. Ouyang, X. Chen, Y. Li, DRL-based computa-
tion offloading with queue stability for vehicular-cloud-assisted mobile edge
computing systems, IEEE Trans. Intell. Veh. 8 (4) (2023) 2797–2809.

[105] K. Li, W. Ni, F. Dressler, LSTM-characterized deep reinforcement learning
for continuous flight control and resource allocation in UAV-assisted sensor
network, IEEE Internet Things J. 9 (6) (2022) 4179–4189.

[106] K. Li, X. Wang, Q. He, M. Yang, M. Huang, S. Dustdar, Task computation
offloading for multi-access edge computing via attention communication deep
reinforcement learning, IEEE Trans. Serv. Comput. 16 (4) (2023) 2985–2999.

[107] B. Yamansavascilar, A.C. Baktir, C. Sonmez, A. Ozgovde, C. Ersoy, DeepEdge: A
deep reinforcement learning based task orchestrator for edge computing, IEEE
Trans. Netw. Sci. Eng. 10 (1) (2023) 538–552.

http://refhub.elsevier.com/S1574-0137(24)00040-6/sb55
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb55
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb55
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb55
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb55
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb56
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb56
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb56
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb56
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb56
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb57
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb57
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb57
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb57
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb57
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb58
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb58
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb58
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb58
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb58
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb59
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb59
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb59
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb59
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb59
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb60
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb60
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb60
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb60
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb60
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb61
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb61
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb61
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb61
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb61
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb62
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb62
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb62
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb62
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb62
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb63
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb63
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb63
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb63
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb63
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb64
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb64
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb64
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb64
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb64
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb65
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb65
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb65
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb65
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb65
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb66
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb66
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb66
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb66
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb66
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb67
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb67
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb67
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb67
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb67
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb68
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb68
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb68
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb68
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb68
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb69
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb69
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb69
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb69
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb69
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb70
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb70
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb70
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb70
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb70
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb71
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb71
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb71
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb71
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb71
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb72
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb72
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb72
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb72
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb72
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb73
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb73
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb73
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb73
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb73
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb74
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb74
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb74
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb74
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb74
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb75
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb75
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb75
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb75
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb75
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb76
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb76
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb76
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb76
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb76
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb77
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb77
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb77
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb77
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb77
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb77
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb77
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb78
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb78
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb78
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb78
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb78
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb79
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb79
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb79
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb79
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb79
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb80
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb80
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb80
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb80
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb80
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb81
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb81
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb81
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb81
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb81
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb82
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb82
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb82
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb82
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb82
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb83
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb83
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb83
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb83
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb83
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb84
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb84
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb84
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb85
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb85
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb85
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb85
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb85
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb86
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb86
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb86
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb87
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb87
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb87
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb88
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb88
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb88
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb88
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb88
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb89
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb89
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb89
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb89
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb89
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb90
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb90
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb90
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb90
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb90
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb91
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb91
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb91
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb91
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb91
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb92
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb92
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb92
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb92
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb92
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb93
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb93
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb93
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb93
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb93
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb94
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb94
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb94
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb94
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb94
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb94
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb94
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb95
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb95
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb95
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb96
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb96
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb96
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb96
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb96
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb97
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb97
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb97
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb97
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb97
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb98
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb98
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb98
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb98
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb98
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb99
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb99
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb99
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb99
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb99
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb99
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb99
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb100
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb100
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb100
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb100
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb100
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb101
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb101
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb101
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb101
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb101
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb102
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb102
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb102
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb102
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb102
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb102
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb102
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb103
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb103
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb103
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb103
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb103
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb104
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb104
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb104
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb104
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb104
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb105
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb105
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb105
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb105
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb105
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb106
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb106
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb106
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb106
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb106
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb107
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb107
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb107
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb107
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb107

Computer Science Review 53 (2024) 100656P. Peng et al.
[108] K. Li, X. Wang, Q. He, B. Yi, A. Morichetta, M. Huang, Cooperative multiagent
deep reinforcement learning for computation offloading: A mobile network
operator perspective, IEEE Internet Things J. 9 (23) (2022) 24161–24173.

[109] Q. Chen, Z. Kuang, L. Zhao, Multiuser computation offloading and resource
allocation for cloud-edge heterogeneous network, IEEE Internet Things J. 9 (5)
(2022) 3799–3811.

[110] M. Tang, V.W. Wong, Deep reinforcement learning for task offloading in mobile
edge computing systems, IEEE Trans. Mob. Comput. 21 (6) (2022) 1985–1997.

[111] E. Cui, D. Yang, H. Wang, W. Zhang, Learning-based deep neural network
inference task offloading in multi-device and multi-server collaborative edge
computing, Trans. Emerg. Telecommun. Technol. 33 (7) (2022) e4485.

[112] X. Chen, S. Hu, C. Yu, Z. Chen, G. Min, Real-time offloading for dependent and
parallel tasks in cloud-edge environments using deep reinforcement learning,
IEEE Trans. Parallel Distrib. Syst. (2024) 1–14.

[113] X. Li, Y. Qin, J. Huo, W. Huangfu, Heuristically assisted multiagent RL-based
framework for computation offloading and resource allocation of mobile-edge
computing, IEEE Internet Things J. 10 (17) (2023) 15477–15487.

[114] Z. Sun, Y. Mo, C. Yu, Graph-reinforcement-learning-based task offloading for
multiaccess edge computing, IEEE Internet Things J. 10 (4) (2023) 3138–3150.

[115] S. Yin, F.R. Yu, Resource allocation and trajectory design in UAV-aided cellular
networks based on multiagent reinforcement learning, IEEE Internet Things J.
9 (4) (2022) 2933–2943.

[116] Z. Wei, B. Zhao, J. Su, Event-driven computation offloading in IoT with edge
computing, IEEE Trans. Wireless Commun. 21 (9) (2022) 6847–6860.

[117] C. Yang, B. Liu, H. Li, B. Li, K. Xie, S. Xie, Learning based channel allocation and
task offloading in temporary UAV-assisted vehicular edge computing networks,
IEEE Trans. Veh. Technol. 71 (9) (2022) 9884–9895.

[118] X. Zhu, Y. Luo, A. Liu, N.N. Xiong, M. Dong, S. Zhang, A deep reinforcement
learning-based resource management game in vehicular edge computing, IEEE
Trans. Intell. Transp. Syst. 23 (3) (2022) 2422–2433.

[119] Z. Sun, H. Yang, C. Li, Q. Yao, D. Wang, J. Zhang, A.V. Vasilakos, Cloud-edge
collaboration in industrial Internet of Things: A joint offloading scheme based
on resource prediction, IEEE Internet Things J. 9 (18) (2022) 17014–17025.

[120] J. Yang, Q. Yuan, S. Chen, H. He, X. Jiang, X. Tan, Cooperative task offloading
for mobile edge computing based on multi-agent deep reinforcement learning,
IEEE Trans. Netw. Serv. Manag. 20 (3) (2023) 3205–3219.

[121] X. Jiao, H. Ou, S. Chen, S. Guo, Y. Qu, C. Xiang, J. Shang, Deep reinforcement
learning for time-energy tradeoff online offloading in MEC-enabled industrial
Internet of Things, IEEE Trans. Netw. Sci. Eng. (2023) 1–14.

[122] Y. Liu, Y. Mao, Z. Liu, Y. Yang, Deep learning-assisted online task offloading for
latency minimization in heterogeneous mobile edge, IEEE Trans. Mob. Comput.
(2023) 1–14.

[123] J. Cai, H. Fu, Y. Liu, Multitask multiobjective deep reinforcement learning-based
computation offloading method for industrial Internet of Things, IEEE Internet
Things J. 10 (2) (2023) 1848–1859.

[124] Y. Zhan, S. Guo, P. Li, J. Zhang, A deep reinforcement learning based offloading
game in edge computing, IEEE Trans. Comput. 69 (6) (2020) 883–893.

[125] H. Lu, C. Gu, F. Luo, W. Ding, X. Liu, Optimization of lightweight task
offloading strategy for mobile edge computing based on deep reinforcement
learning, Future Gener. Comput. Syst. 102 (2020) 847–861.

[126] P. Li, W. Xie, Y. Yuan, C. Chen, S. Wan, Deep reinforcement learning for load
balancing of edge servers in IoV, Mob. Netw. Appl. 27 (4) (2022) 1461–1474.

[127] Y. Dong, G. Xu, M. Zhang, X. Meng, A high-efficient joint ‘Cloud-Edge’
aware strategy for task deployment and load balancing, IEEE Access 9 (2021)
12791–12802.

[128] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, A. Nallanathan, Deep reinforce-
ment learning based dynamic trajectory control for UAV-assisted mobile edge
computing, IEEE Trans. Mob. Comput. 21 (10) (2022) 3536–3550.

[129] Z. Zhang, C. Li, S. Peng, X. Pei, A new task offloading algorithm in edge
computing, EURASIP J. Wireless Commun. Networking 2021 (1) (2021) 17.

[130] H. Hao, C. Xu, W. Zhang, S. Yang, G.-M. Muntean, Computing offloading with
fairness guarantee: A deep reinforcement learning method, IEEE Trans. Circuits
Syst. Video Technol. 33 (10) (2023) 6117–6130.

[131] J. Feng, J. Gong, Joint detection and computation offloading with age of
information in mobile edge networks, IEEE Trans. Netw. Sci. Eng. 10 (3) (2023)
1417–1430.

[132] Y. Dai, K. Zhang, S. Maharjan, Y. Zhang, Deep reinforcement learning for
stochastic computation offloading in digital twin networks, IEEE Trans. Ind.
Inform. 17 (7) (2021) 4968–4977.

[133] Y. Xu, Q. Sun, W. Zhou, G. Yu, Resource allocation for UAV-aided en-
ergy harvesting-powered D2D communications: A reinforcement learning-based
scheme, Ad Hoc Netw. 136 (2022) 102973.

[134] J. Huang, J. Wan, B. Lv, Q. Ye, Y. Chen, Joint computation offloading and
resource allocation for edge-cloud collaboration in internet of vehicles via deep
reinforcement learning, IEEE Syst. J. 17 (2) (2023) 2500–2511.

[135] Z. Wei, B. Li, R. Zhang, X. Cheng, L. Yang, Many-to-many task offloading in
vehicular fog computing: A multi-agent deep reinforcement learning approach,
IEEE Trans. Mob. Comput. (2023) 1–16.

[136] A.S. Kumar, L. Zhao, X. Fernando, Task offloading and resource allocation in
vehicular networks: A Lyapunov-based deep reinforcement learning approach,
IEEE Trans. Veh. Technol. 72 (10) (2023) 13360–13373.
25
[137] T. Cai, Z. Yang, Y. Chen, W. Chen, Z. Zheng, Y. Yu, H.-N. Dai, Cooperative data
sensing and computation offloading in UAV-assisted crowdsensing with multi-
agent deep reinforcement learning, IEEE Trans. Netw. Sci. Eng. 9 (5) (2022)
3197–3211.

[138] K. Zhu, Z. Zhang, M. Zhao, Auxiliary-task-based energy-efficient resource
orchestration in mobile edge computing, IEEE Trans. Green Commun. Netw.
7 (1) (2023) 313–327.

[139] M. Wu, Q. Song, L. Guo, I. Lee, Energy-efficient secure computation offloading
in wireless powered mobile edge computing systems, IEEE Trans. Veh. Technol.
72 (5) (2023) 6907–6912.

[140] W. Wu, P. Yang, W. Zhang, C. Zhou, X. Shen, Accuracy-guaranteed collaborative
DNN inference in industrial IoT via deep reinforcement learning, IEEE Trans.
Ind. Inform. 17 (7) (2021) 4988–4998.

[141] A. Fresa, J.P. Champati, Offloading algorithms for maximizing inference accu-
racy on edge device in an edge intelligence system, IEEE Trans. Parallel Distrib.
Syst. 34 (7) (2023) 2025–2039.

[142] C. Xu, Z. Tang, H. Yu, P. Zeng, L. Kong, Digital twin-driven collaborative
scheduling for heterogeneous task and edge-end resource via multi-agent deep
reinforcement learning, IEEE J. Sel. Areas Commun. 41 (10) (2023) 3056–3069.

[143] Y. Guo, Z. Zhao, K. He, S. Lai, J. Xia, L. Fan, Efficient and flexible management
for industrial Internet of Things: A federated learning approach, Comput. Netw.
192 (2021) 108122.

[144] L. Chen, S. Tang, V. Balasubramanian, J. Xia, F. Zhou, L. Fan, Physical-layer
security based mobile edge computing for emerging cyber physical systems,
Comput. Commun. 194 (2022) 180–188.

[145] T. Zhao, F. Li, L. He, Secure video offloading in MEC-enabled IIoT networks:
A multicell federated deep reinforcement learning approach, IEEE Trans. Ind.
Inform. 20 (2) (2024) 1618–1629.

[146] Z. Peng, G. Wang, W. Nong, Y. Qiu, S. Huang, Task offloading in multiple-
services mobile edge computing: A deep reinforcement learning algorithm,
Comput. Commun. 202 (2023) 1–12.

[147] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, Q. Zhu,
Deep-reinforcement-learning-based offloading scheduling for vehicular edge
computing, IEEE Internet Things J. 7 (6) (2020) 5449–5465.

[148] C. Li, J. Xia, F. Liu, D. Li, L. Fan, G.K. Karagiannidis, A. Nallanathan, Dy-
namic offloading for multiuser muti-CAP MEC networks: A deep reinforcement
learning approach, IEEE Trans. Veh. Technol. 70 (3) (2021) 2922–2927.

[149] X. Wang, Z. Lu, S. Sun, J. Wang, L. Song, M. Nicolas, Optimization scheme of
trusted task offloading in IIoT scenario based on DQN, Comput. Mater. Continua
74 (1) (2023) 2055–2071.

[150] Y. Wang, W. Fang, Y. Ding, N. Xiong, Computation offloading optimization
for UAV-assisted mobile edge computing: A deep deterministic policy gradient
approach, Wirel. Netw. 27 (4) (2021) 2991–3006.

[151] H. Ke, J. Wang, L. Deng, Y. Ge, H. Wang, Deep reinforcement learning-based
adaptive computation offloading for MEC in heterogeneous vehicular networks,
IEEE Trans. Veh. Technol. 69 (7) (2020) 7916–7929.

[152] J. Shi, J. Du, Y. Shen, J. Wang, J. Yuan, Z. Han, DRL-based V2V computa-
tion offloading for blockchain-enabled vehicular networks, IEEE Trans. Mob.
Comput. 22 (7) (2023) 3882–3897.

[153] Z. Chai, H. Hou, Y. Li, A dynamic queuing model based distributed task offload-
ing algorithm using deep reinforcement learning in mobile edge computing,
Appl. Intell. 53 (23) (2023) 28832–28847.

[154] X. Xu, C. Yang, M. Bilal, W. Li, H. Wang, Computation offloading for energy
and delay trade-offs with traffic flow prediction in edge computing-enabled IoV,
IEEE Trans. Intell. Transp. Syst. (2022) 1–11.

[155] H. Tian, X. Xu, L. Qi, X. Zhang, W. Dou, S. Yu, Q. Ni, CoPace: Edge computation
offloading and caching for self-driving with deep reinforcement learning, IEEE
Trans. Veh. Technol. 70 (12) (2021) 13281–13293.

[156] Y. Li, J. Li, Z. Lv, H. Li, Y. Wang, Z. Xu, GASTO: A fast adaptive graph learning
framework for edge computing empowered task offloading, IEEE Trans. Netw.
Serv. Manag. 20 (2) (2023) 932–944.

[157] X. Zhou, M. Bilal, R. Dou, J.J.P.C. Rodrigues, Q. Zhao, J. Dai, X. Xu, Edge
computation offloading with content caching in 6G-enabled IoV, IEEE Trans.
Intell. Transp. Syst. (2023) 1–15.

[158] J. Hou, M. Chen, H. Geng, R. Li, J. Lu, GP-NFSP: Decentralized task offloading
for mobile edge computing with independent reinforcement learning, Future
Gener. Comput. Syst. 141 (2023) 205–217.

[159] T. Liu, Y. Zhang, Y. Zhu, W. Tong, Y. Yang, Online computation offloading and
resource scheduling in mobile-edge computing, IEEE Internet Things J. 8 (8)
(2021) 6649–6664.

[160] J. Baek, G. Kaddoum, Heterogeneous task offloading and resource alloca-
tions via deep recurrent reinforcement learning in partial observable multifog
networks, IEEE Internet Things J. 8 (2) (2021) 1041–1056.

[161] L. Ale, S.A. King, N. Zhang, A.R. Sattar, J. Skandaraniyam, D3PG: Dirichlet
DDPG for task partitioning and offloading with constrained hybrid action space
in mobile-edge computing, IEEE Internet Things J. 9 (19) (2022) 19260–19272.

[162] L. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, B. Lin, NOMA assisted multi-task multi-
access mobile edge computing via deep reinforcement learning for industrial
Internet of Things, IEEE Trans. Ind. Inform. 17 (8) (2021) 5688–5698.

http://refhub.elsevier.com/S1574-0137(24)00040-6/sb108
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb108
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb108
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb108
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb108
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb109
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb109
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb109
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb109
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb109
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb110
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb110
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb110
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb111
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb111
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb111
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb111
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb111
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb112
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb112
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb112
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb112
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb112
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb113
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb113
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb113
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb113
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb113
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb114
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb114
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb114
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb115
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb115
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb115
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb115
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb115
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb116
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb116
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb116
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb117
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb117
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb117
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb117
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb117
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb118
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb118
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb118
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb118
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb118
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb119
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb119
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb119
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb119
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb119
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb120
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb120
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb120
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb120
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb120
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb121
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb121
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb121
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb121
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb121
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb122
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb122
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb122
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb122
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb122
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb123
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb123
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb123
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb123
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb123
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb124
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb124
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb124
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb125
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb125
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb125
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb125
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb125
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb126
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb126
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb126
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb127
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb127
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb127
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb127
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb127
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb128
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb128
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb128
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb128
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb128
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb129
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb129
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb129
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb130
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb130
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb130
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb130
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb130
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb131
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb131
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb131
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb131
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb131
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb132
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb132
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb132
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb132
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb132
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb133
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb133
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb133
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb133
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb133
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb134
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb134
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb134
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb134
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb134
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb135
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb135
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb135
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb135
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb135
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb136
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb136
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb136
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb136
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb136
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb137
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb137
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb137
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb137
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb137
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb137
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb137
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb138
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb138
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb138
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb138
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb138
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb139
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb139
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb139
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb139
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb139
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb140
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb140
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb140
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb140
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb140
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb141
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb141
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb141
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb141
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb141
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb142
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb142
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb142
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb142
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb142
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb143
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb143
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb143
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb143
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb143
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb144
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb144
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb144
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb144
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb144
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb145
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb145
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb145
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb145
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb145
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb146
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb146
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb146
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb146
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb146
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb147
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb147
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb147
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb147
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb147
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb148
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb148
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb148
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb148
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb148
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb149
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb149
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb149
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb149
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb149
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb150
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb150
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb150
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb150
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb150
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb151
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb151
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb151
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb151
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb151
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb152
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb152
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb152
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb152
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb152
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb153
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb153
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb153
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb153
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb153
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb154
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb154
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb154
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb154
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb154
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb155
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb155
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb155
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb155
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb155
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb156
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb156
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb156
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb156
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb156
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb157
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb157
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb157
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb157
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb157
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb158
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb158
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb158
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb158
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb158
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb159
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb159
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb159
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb159
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb159
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb160
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb160
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb160
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb160
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb160
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb161
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb161
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb161
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb161
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb161
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb162
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb162
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb162
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb162
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb162

Computer Science Review 53 (2024) 100656P. Peng et al.
[163] S. Zhang, H. Gu, K. Chi, L. Huang, K. Yu, S. Mumtaz, DRL-based partial
offloading for maximizing sum computation rate of wireless powered mobile
edge computing network, IEEE Trans. Wireless Commun. 21 (12) (2022)
10934–10948.

[164] L. Huang, S. Bi, Y.-J.A. Zhang, Deep reinforcement learning for online compu-
tation offloading in wireless powered mobile-edge computing networks, IEEE
Trans. Mob. Comput. 19 (11) (2020) 2581–2593.

[165] K. Zheng, G. Jiang, X. Liu, K. Chi, X. Yao, J. Liu, DRL-based offloading
for computation delay minimization in wireless-powered multi-access edge
computing, IEEE Trans. Commun. 71 (3) (2023) 1755–1770.

[166] X. Chen, W. Dai, W. Ni, X. Wang, S. Zhang, S. Xu, Y. Sun, Augmented deep
reinforcement learning for online energy minimization of wireless powered
mobile edge computing, IEEE Trans. Commun. 71 (5) (2023) 2698–2710.

[167] M. Chen, M. Yi, M. Huang, G. Huang, Y. Ren, A. Liu, A novel deep policy
gradient action quantization for trusted collaborative computation in intelligent
vehicle networks, Expert Syst. Appl. 221 (2023) 119743.

[168] F. Jiang, L. Dong, K. Wang, K. Yang, C. Pan, Distributed resource scheduling for
large-scale MEC systems: A multiagent ensemble deep reinforcement learning
with imitation acceleration, IEEE Internet Things J. 9 (9) (2022) 6597–6610.

[169] J. Yun, Y. Goh, W. Yoo, J.-M. Chung, 5G Multi-RAT URLLC and eMBB
dynamic task offloading with MEC resource allocation using distributed deep
reinforcement learning, IEEE Internet Things J. 9 (20) (2022) 20733–20749.

[170] Y. Cui, H. Li, D. Zhang, A. Zhu, Y. Li, H. Qiang, Multi-agent reinforce-
ment learning-based cooperative multitype task offloading strategy for Internet
of Vehicles in B5G/6G network, IEEE Internet Things J. 10 (14) (2023)
12248–12260.

[171] J. Chen, H. Xing, Z. Xiao, L. Xu, T. Tao, A DRL agent for jointly optimizing
computation offloading and resource allocation in MEC, IEEE Internet Things
J. 8 (24) (2021) 17508–17524.

[172] X. Qiu, W. Zhang, W. Chen, Z. Zheng, Distributed and collective deep reinforce-
ment learning for computation offloading: A practical perspective, IEEE Trans.
Parallel Distrib. Syst. 32 (5) (2021) 1085–1101.

[173] Van Dat Tuong, W. Noh, S. Cho, Delay minimization for NOMA-enabled mobile
edge computing in industrial Internet of Things, IEEE Trans. Ind. Inform. 18
(10) (2022) 7321–7331.

[174] J. Gao, Z. Kuang, J. Gao, L. Zhao, Joint offloading scheduling and resource
allocation in vehicular edge computing: A two layer solution, IEEE Trans. Veh.
Technol. 72 (3) (2023) 3999–4009.

[175] P. Luong, F. Gagnon, L.-N. Tran, F. Labeau, Deep reinforcement learning-based
resource allocation in cooperative UAV-assisted wireless networks, IEEE Trans.
Wireless Commun. 20 (11) (2021) 7610–7625.

[176] X. Zhang, X. Zhang, W. Yang, Joint offloading and resource allocation using
deep reinforcement learning in mobile edge computing, IEEE Trans. Netw. Sci.
Eng. 9 (5) (2022) 3454–3466.

[177] L. Zhang, B. Jabbari, N. Ansari, Deep reinforcement learning driven
UAV-assisted edge computing, IEEE Internet Things J. 9 (24) (2022)
25449–25459.

[178] H. Huang, Q. Ye, Y. Zhou, Deadline-aware task offloading with partially-
observable deep reinforcement learning for multi-access edge computing, IEEE
Trans. Netw. Sci. Eng. 9 (6) (2022) 3870–3885.

[179] M. Yi, P. Yang, M. Chen, N.T. Loc, A DRL-driven intelligent joint optimization
strategy for computation offloading and resource allocation in ubiquitous edge
IoT systems, IEEE Trans. Emerg. Top. Comput. Intell. 7 (1) (2023) 39–54.

[180] M.Z. Alam, A. Jamalipour, Multi-agent DRL-based hungarian algorithm
(MADRLHA) for task offloading in multi-access edge computing Internet of
Vehicles (IoVs), IEEE Trans. Wireless Commun. 21 (9) (2022) 7641–7652.

[181] T. Ren, J. Niu, B. Dai, X. Liu, Z. Hu, M. Xu, M. Guizani, Enabling efficient
scheduling in large-scale UAV-assisted mobile-edge computing via hierarchical
reinforcement learning, IEEE Internet Things J. 9 (10) (2022) 7095–7109.

[182] Z. Wang, Y. Wei, Z. Feng, F.R. Yu, Z. Han, Resource management and reflection
optimization for intelligent reflecting surface assisted multi-access edge comput-
ing using deep reinforcement learning, IEEE Trans. Wireless Commun. 22 (2)
(2023) 1175–1186.

[183] H. Liao, Z. Jia, Z. Zhou, Y. Wang, H. Zhang, S. Mumtaz, Cloud-edge-end
collaboration in air-ground integrated power IoT: A semidistributed learning
approach, IEEE Trans. Ind. Inform. 18 (11) (2022) 8047–8057.
26
[184] D. Han, Q. Ye, H. Peng, W. Wu, H. Wu, W. Liao, X. Shen, Two-timescale
learning-based task offloading for remote IoT in integrated satellite-terrestrial
networks, IEEE Internet Things J. 10 (12) (2023) 10131–10145.

[185] I. Budhiraja, N. Kumar, H. Sharma, M. Elhoseny, Y. Lakys, J.J.P.C. Ro-
drigues, Latency-energy tradeoff in connected autonomous vehicles: A deep
reinforcement learning scheme, IEEE Trans. Intell. Transp. Syst. 24 (11) (2023)
13296–13308.

[186] Y. Liu, J. Yan, X. Zhao, Deep-reinforcement-learning-based optimal transmission
policies for opportunistic UAV-aided wireless sensor network, IEEE Internet
Things J. 9 (15) (2022) 13823–13836.

[187] S. Tan, B. Chen, D. Liu, J. Zhang, L. Hanzo, Communication-assisted multi-agent
reinforcement learning improves task-offloading in UAV-aided edge-computing
networks, IEEE Wirel. Commun. Lett. 12 (12) (2023) 2233–2237.

[188] Z. Gao, L. Yang, Y. Dai, Large-scale computation offloading using a multi-
agent reinforcement learning in heterogeneous multi-access edge computing,
IEEE Trans. Mob. Comput. 22 (6) (2023) 3425–3443.

[189] B. Zhang, B. Tang, F. Xiao, Learning to coordinate in mobile-edge computing for
decentralized task offloading, IEEE Internet Things J. 10 (1) (2023) 893–903.

[190] Y. Lyu, Z. Liu, R. Fan, C. Zhan, H. Hu, J. An, Optimal computation offloading in
collaborative LEO-IoT enabled MEC: A multi-agent deep reinforcement learning
approach, IEEE Trans. Green Commun. Netw. 7 (2) (2023) 996–1011.

[191] H. Zhou, Y. Long, S. Gong, K. Zhu, D.T. Hoang, D. Niyato, Hierarchical
multi-agent deep reinforcement learning for energy-efficient hybrid computation
offloading, IEEE Trans. Veh. Technol. 72 (1) (2023) 986–1001.

[192] D.C. Nguyen, M. Ding, P.N. Pathirana, A. Seneviratne, J. Li, H.V. Poor, Coop-
erative task offloading and block mining in blockchain-based edge computing
with multi-agent deep reinforcement learning, IEEE Trans. Mob. Comput. 22
(4) (2023) 2021–2037.

[193] T. Zhang, Z. Wang, Y. Liu, W. Xu, A. Nallanathan, Joint resource, deployment,
and caching optimization for AR applications in dynamic UAV NOMA networks,
IEEE Trans. Wireless Commun. 21 (5) (2022) 3409–3422.

[194] C. Li, L. Chai, K. Jiang, Y. Zhang, J. Liu, S. Wan, DNN partition and offloading
strategy with improved particle swarm genetic algorithm in VEC, IEEE Trans.
Intell. Veh. (2024) 1–11.

[195] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, A. Knoll, A
review of safe reinforcement learning: Methods, theory and applications, 2023,
arXiv:2205.10330.

[196] R. Figueiredo Prudencio, M.R.O.A. Maximo, E. Luna Colombini, A Survey on
Offline Reinforcement Learning: Taxonomy, Review, and Open Problems, 2022,
arXiv e-prints, arXiv:2203.01387.

[197] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, Y. Zhang, Deep learning
empowered task offloading for mobile edge computing in urban informatics,
IEEE Internet Things J. 6 (5) (2019) 7635–7647.

[198] J. Wang, J. Hu, J. Mills, G. Min, M. Xia, N. Georgalas, Federated ensemble
model-based reinforcement learning in edge computing, IEEE Trans. Parallel
Distrib. Syst. 34 (6) (2023) 1848–1859.

[199] Y. Aono, T. Hayashi, L. Wang, S. Moriai, et al., Privacy-preserving deep learning
via additively homomorphic encryption, IEEE Trans. Inf. Forensics Secur. 13 (5)
(2017) 1333–1345.

[200] X. Yin, Y. Zhu, J. Hu, A comprehensive survey of privacy-preserving federated
learning: A taxonomy, review, and future directions, ACM Comput. Surv. 54
(6) (2021) 1–36.

[201] Z. Gao, L. Yang, Y. Dai, Fast adaptive task offloading and resource allocation
in large-scale MEC systems via multi-agent graph reinforcement learning, IEEE
Internet Things J. 11 (1) (2024) 758–776.

[202] K. Shuai, Y. Miao, K. Hwang, Z. Li, Transfer reinforcement learning for adaptive
task offloading over distributed edge clouds, IEEE Trans. Cloud Comput. 11 (2)
(2023) 2175–2187.

[203] Y. Chen, Y. Sun, B. Yang, T. Taleb, Joint caching and computing service
placement for edge-enabled IoT based on deep reinforcement learning, IEEE
Internet Things J. 9 (19) (2022) 19501–19514.

[204] T. Hickling, A. Zenati, N. Aouf, P. Spencer, Explainability in deep reinforcement
learning: A review into current methods and applications, ACM Comput. Surv.
56 (5) (2023) 125:1–125:35.

http://refhub.elsevier.com/S1574-0137(24)00040-6/sb163
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb163
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb163
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb163
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb163
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb163
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb163
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb164
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb164
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb164
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb164
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb164
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb165
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb165
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb165
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb165
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb165
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb166
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb166
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb166
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb166
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb166
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb167
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb167
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb167
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb167
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb167
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb168
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb168
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb168
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb168
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb168
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb169
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb169
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb169
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb169
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb169
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb170
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb170
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb170
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb170
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb170
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb170
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb170
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb171
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb171
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb171
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb171
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb171
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb172
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb172
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb172
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb172
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb172
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb173
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb173
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb173
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb173
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb173
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb174
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb174
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb174
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb174
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb174
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb175
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb175
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb175
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb175
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb175
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb176
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb176
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb176
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb176
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb176
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb177
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb177
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb177
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb177
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb177
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb178
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb178
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb178
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb178
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb178
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb179
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb179
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb179
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb179
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb179
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb180
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb180
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb180
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb180
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb180
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb181
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb181
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb181
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb181
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb181
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb182
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb182
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb182
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb182
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb182
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb182
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb182
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb183
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb183
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb183
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb183
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb183
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb184
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb184
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb184
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb184
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb184
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb185
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb185
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb185
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb185
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb185
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb185
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb185
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb186
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb186
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb186
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb186
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb186
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb187
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb187
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb187
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb187
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb187
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb188
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb188
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb188
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb188
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb188
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb189
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb189
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb189
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb190
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb190
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb190
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb190
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb190
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb191
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb191
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb191
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb191
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb191
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb192
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb192
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb192
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb192
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb192
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb192
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb192
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb193
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb193
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb193
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb193
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb193
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb194
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb194
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb194
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb194
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb194
http://arxiv.org/abs/2205.10330
http://arxiv.org/abs/2203.01387
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb197
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb197
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb197
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb197
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb197
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb198
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb198
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb198
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb198
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb198
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb199
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb199
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb199
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb199
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb199
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb200
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb200
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb200
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb200
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb200
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb201
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb201
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb201
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb201
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb201
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb202
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb202
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb202
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb202
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb202
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb203
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb203
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb203
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb203
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb203
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb204
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb204
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb204
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb204
http://refhub.elsevier.com/S1574-0137(24)00040-6/sb204

	A survey on computation offloading in edge systems: From the perspective of deep reinforcement learning approaches
	Introduction
	Computation Offloading in Edge Computing
	DRL-based Offloading Strategies
	Related Surveys
	Contribution and Organization

	Background
	Computation Offloading in Edge Computing
	Deep Reinforcement Learning Fundamentals
	Markov Decision Process
	Value-based DRL
	Policy-based DRL
	Actor-Critic Framework
	Multi-Agent DRL

	Environment Factors
	Energy Management & Harvesting
	Service Provision & Incentive
	Mobility Awareness & Control
	Joint Caching Management
	Interdependent Task Offloading
	System Security & Reliability

	MDP Model Construction
	State and Observation
	Action Space
	Reward Function Design

	Learning Strategy Improvements
	Basic DRL Algorithm
	Better Information Usage
	Improved Exploration and Exploitation
	Reduction of Action Space
	Multi-Agent Cooperation and Competition

	Open Challenges
	Task Partitioning and Dependency
	Event Driven Offloading
	Heterogeneous Computing Architecture
	High Reliability Guarantee
	Data Integrity and Privacy
	Environment Dynamics and Adaptability
	Interpretability of DRL

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

