
Information Sciences 607 (2022) 961–1000
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins
Personalized query techniques in graphs: A survey
https://doi.org/10.1016/j.ins.2022.06.023
0020-0255/� 2022 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: peiying_lin@hnu.edu.cn (P. Lin), yangfanli@hnu.edu.cn (Y. Li), luowensheng@hnu.edu.cn (W. Luo), zhxu@hnu.edu.cn (X

zyy95@hnu.edu.cn (Y. Zeng), lkl@hnu.edu.cn (K. Li), lik@newpaltz.edu (K. Li).
Peiying Lin a, Yangfan Li a,⇑, Wensheng Luo a, Xu Zhou a, Yuanyuan Zeng a,
Kenli Li a, Keqin Li b

aCollege of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
bDepartment of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 July 2021
Received in revised form 17 May 2022
Accepted 5 June 2022
Available online 8 June 2022

Keywords:
Community search
Graph search
Keyword query
Reachability query
Similarity query
Shortest path query
Graph is a famous data structure that has prevalent applications in the real world, includ-
ing social networks, biological networks, and computer networks. In these applications,
graph management operators are powerful tools for mining important information hidden
in large-scale graphs. As important graph data management operators, personalized graph
queries are playing an increasingly significant role in providing users with effective deci-
sion support. In particular, the purpose of personalized graph queries is to compute person-
alized results which can meet the preferences of different users from the three aspects of
specified query vertices, structures, and attributes. In this paper, we conduct a survey to
offer a comprehensive view of the current personalized graph queries which need users
to specify query vertices over simple and attributed graphs, respectively. These queries fall
into three categories, including point-related, path-related, and subgraph-related graph
queries, whose query results have distinct structures. We analyze existing approaches to
personalized graph queries and highlight current challenges. In addition, we also offer
guidelines for future graph queries.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

The graph is a prevalent data structure used to model complex networks in many practical applications, including com-
puter networks, social networks, and biological networks. In a graph, vertices and edges are utilized to represent entities and
relationships between entities, respectively. For example, vertices in a social network represent different people. If two peo-
ple have a social relationship, they are connected by an edge. In a biological network of protein–protein-interaction, a vertex
represents a protein and an edge represents a biochemical interaction between two proteins.

Graph queries are important graph management operators, which are powerful tools for managing and analyzing graph
data. These queries have become core techniques in many recommendation systems for the sake of providing decision sup-
port and information services. As introduced in [1], recommendation results without personalization may fail to meet the
various needs of users because of ignoring their preferences and diversity. In practice, users usually are interested in recom-
mendations related to themselves. Now, numerous personalized recommendations have come into our lives to help users
explore the most-watched movies (e.g., Netflix), favorite products (e.g., Amazon), potential friends (e.g., Facebook), headline
. Zhou),

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2022.06.023&domain=pdf
https://doi.org/10.1016/j.ins.2022.06.023
mailto:peiying_lin@hnu.edu.cn
mailto:yangfanli@hnu.edu.cn
mailto:luowensheng@hnu.edu.cn
mailto:zhxu@hnu.edu.cn
mailto:zyy95@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.ins.2022.06.023
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
news (e.g., Google News), to name just a few [2]. The recommendations are all gained by taking into account the different
preferences of users.

For a given graph G, the goal of these personalized graph queries is to compute personalized results, including point, path,
and subgraphs, which can satisfy the various preferences of users. At present, abundant personalized graph queries have
been proposed and received growing attention for their significant roles in personalized recommendations. As shown in
Fig. 1, personalized graph queries are widely used in path planning, biomedical research, social activity organization, and
other real-world applications. They can efficiently manage and analyze large-scale graphs in social networks, spatial net-
works, and biological networks.

Personalized graph queries can help users search for important knowledge hidden in large-scale graphs and provide strong
support for them to make ideal decisions. As an example, article recommendations are a powerful tool for users to find the
most related articles to the current article in Google Scholar, Baidu Scholar, and other academic search sites. These personal-
ized article recommendations can be gained by similarity queries [1]. Additionally, in road networks, the shortest path query
is effective in finding an optimal path with the minimum time overhead for travelers [3]. Shortest path queries play vital roles
in online mapping and navigation services and bring great convenience to our daily travel [4,5]. Furthermore, in social net-
works, community searches are useful for organizers to identify a group of users, each of whom is well-acquainted [6].

There have been many studies of personalized graph queries that achieve different goals and are related to different pref-
erences of users. However, to the best of our knowledge, it lacks a comprehensive survey of these personalized graph queries.
Therefore, it is significant to organize and analyze these studies.

In this paper, we focus on personalized graph queries, including similarity queries, reachability queries, shortest path
queries, and community searches, over different types of graphs. These personalized graph queries aforementioned can cover
three aspects of user preferences, which are query vertices, structures, and attributes. First, they all need to specify query
vertices as important inputs. Second, they output different structures, including points, paths, and subgraphs, respectively.
Finally, for the user preferences of attributes, personalized graph queries over different types of graphs are considered.

As shown in Table 1, with respect to the user preferences of different structures, in this paper, we first divide personalized
graph queries into the following three categories.

– Point-related graph queries. Graph queries compute one or more individual points. Similarity queries are famous
point-related graph queries which retrieve vertices similar to given query vertices. They are widely utilized in article rec-
ommendations [1].
– Path-related graph queries. Graph queries are closely related to paths between vertices. In this paper, shortest path
queries and reachability queries whose goals are to compute the shortest path and check the reachability between
two given query vertices are classified as path-related graph queries. These queries play an important role in online map-
ping and navigation services.
– Subgraph-related graph queries. Graph queries return subgraphs meeting specified user preferences. For instance,
community searches, which aim to search for special dense subgraphs, belong to subgraph-related graph queries. These
queries are significant in advertising and viral marketing, content recommendation, team building, and other real-life
applications.

Besides, personalized graph queries in the same category are further divided into different subcategories in terms of dif-
ferent types of graphs. As well as simple graphs without special attributes, other graphs have different types of attributes,
including time, location, keywords, weights, probabilities, etc. As introduced in [6], simple graphs only consider links
between vertices, while attributed graphs consider both links and attributes. It is worth noticing that these different types
of graphs are closely related to diverse user preferences. For instance, in temporal graphs, users can query the similarity of
certain vertices in users’ caring for time intervals [44]. Users can find related communities by specifying the common like-
lihood in keyword graphs [109–112]. Based on location graphs, users can find friends within a certain distance [38,113–115].
Fig. 1. Applications of Personalized Graph Queries.

962

Table 1
Classification of personalized graph queries.

Categroies Problems Simple Graphs Attributed Graphs

Keyword Location Temporal HINs Weighted Probability

Point-related SimRank Similarity Query [7–47] [44] [48,49] [50,23] [51,52]
Path-related Reachability Query [53–58,57,59–

65]
[66–68] [69–

72]
[73–77]

Shortest Path Query [78–86] [87,4,88–93,3,94–
96]

[97–100] [101] [102,103]

Subgraph-
related

k-core-based Community
Search

[104–108] [109–
112]

[113,114,38,115] [116] [117–
121]

k-truss-based Community
Search

[122–124] [125] [126]

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Moreover, for personalized graph queries belonging to the same category, we further divided these queries due to the com-
position of query vertices. Finally, we classify algorithms for the same personalized graph query into two categories, online
algorithms, and index-based algorithms, according to whether indexes are utilized to organize the given graphs for boosting
query performance.

There are several overviews for special graph queries. In pointed-related queries, Zhang et al. [127] summarized the rela-
tionship between different computation methods of SimRank before 2015. In path-related queries, Sommer et al. [128] sur-
veyed the shortest-path queries just in static graphs before 2014. In subgraph-related queries, Malliaros et al. [129] reviewed
the core decomposition problems from three aspects: basic concepts, algorithms, and applications. In [6], Fang et al. sum-
marized the existing work on community search problems. Moreover, they also analyzed the advantages and disadvantages
of different community models and compared the effectiveness and efficiency of the corresponding approaches. Apart from
the surveys on community searches, [130] focused on the distinctive features and challenges of dynamic community discov-
ery. Bian et al. [131] reviewed the existing works on top k nodes identification in social networks, top k influential nodes and
top k significant nodes, from theory and application. In [132], they briefly introduced the existing community query-related
research topics and future directions.

Unlike the surveys above, this paper provides a comprehensive review of the research on graph queries based on person-
alized graph queries in the pointed, path, and subgraph-related categories, while Wang et al. [133] introduced attributed
graph queries which are based on whether the query is structured. We also give the definition of different attribute graphs,
where the attribute is related to the personalized query needing. And we introduce state-of-the-art approaches to handle the
corresponding queries. It is beneficial for readers to review the current research thoroughly and gain directions for future
research. All in all, the contributions of this paper are mainly as follows.

� We carry out a comprehensive literature review of personalized graph queries and classify these queries into different
categories based on different structures returned.
� We analyze the representative and state-of-the-art approaches to personalized graph queries by considering the types of
graphs.
� We exploit the challenges faced by personalized graph queries and offer directions for further study.

The rest of this paper is organized as follows. In Section 2, we review graphs closely related to personalized graph queries.
In Section 3, we focus on similarity queries that are point-related. In Section 4, we discuss shortest path queries and reach-
ability queries, both of which are path-related. In Section 5, we pay attention to community searches with the goal of com-
puting dense subgraphs. In Section 6, we exploit the challenges faced by personalized graph queries and offer research
directions. Finally, in Section 7 we conclude this paper.
2. Types of graphs

In this paper, the three aspects of user preferences, including specified query vertices, structures, and attributes, are taken
into account. We mainly focus on the personalized graph queries which need users to specify query vertices. Based on the
structure returned, all these queries are divided into three categories: point-related, path-related, and subgraph-related
graph queries. Moreover, personalized graph queries of the same category are further divided into different subcategories
in terms of attributes.

In a graph, a vertex denotes an entity and an edge denotes a connection relationship between two entities. User prefer-
ences for attributes correspond to different types of graphs, including simple and attributed graphs. A simple graph is a graph
that only considers the topology between the vertices [133]. Attributed graphs consider both the topology between vertices
and the feature of vertices and edges. Attributed graphs considered in this paper mainly include temporal graphs, location-
based graphs, keyword-based graphs, weight-based graphs, heterogeneous graphs, and probability graphs. These graphs are
closely related to different real-world scenarios, and play a crucial role in personalized graph queries.
963

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
In the following, we introduce various types of attributed graphs that are prevalent in personalized graph queries.

2.1. Temporal graphs

A temporal graph is a graph with a time attribute [130], and it can be formally defined as follows.

Definition 1 (Temporal Graph). A temporal graph G ¼ V ; Eð Þ consists of a vertex set V and an edge set E. Each vertex v 2 V is a
triplet v ; ts; teð Þ, where ts; te½ � is the time interval of v, i.e., ts and te denote the start and end times of the vertex v. Each edge
e 2 E is a quadruplet u;v ; ts; teð Þwhere u;v 2 V ; ts; te½ � is the time interval of the edge u;vð Þ, i.e., ts and te are the start and end
times of the edge u;vð Þ.

Fig. 2(a) shows a temporal graph where edges exist at different time instances. For instance, the edge v1;v3ð Þ exists at
time 3, and the edge v2;v3ð Þ is active at time 5. In the time interval 1;6½ �, we can get a projected graph shown in Fig. 2
(b) by combining all the edges existing in this interval.

Temporal graphs can be naturally adapted to many practical applications where relationships between entries only per-
sist for a time interval. Take a social network as an example. For a person, his/her comments on the message of his/her
friends have a time attribute because these comments are submitted at different times.

In this paper, we summarize personalized queries, including reachability queries (Section 4.1.2), shortest path queries
(Section 4.2.3), and community searches (Section 5.1.2) over temporal graphs, respectively.

2.2. Location-based graphs

A graph with location information is called a location-based graph, which can be defined as follows.

Definition 2 (Location-based Graph). A location-based graph G V ; Eð Þ is a graph in which each vertex v 2 V is associated with
a location v :l ¼ v :x;v :yð Þ. Here v:x 2 R and v:y 2 R are the coordinates of latitude and longitude.

Fig. 3 illustrates a location-based graph with 13 vertices. As illustrated, each vertex representing a person is associated
with a geographical location.

Personalized graph queries over location-based graphs have also attracted much attention for their wide use in location-
based service (LBS) applications such as travel recommendations and social activity organizations. In these LBS applications,
users are allowed to share their location information with their friends. As a result, we can find people who are geograph-
ically close and have close social connections.

In this paper, we review studies on personalized queries, including shortest path queries (Section 4.2.2) and community
searches (Section 5.3.2) over location-based graphs, respectively.

2.3. Keyword-based graphs

A keyword-based graph is a graph where each vertex is associated with keywords. Formally, the keyword-based graph
can be introduced as follows.

Definition 3 (Keyword-based Graph). A keyword-based graph G ¼ V ; Eð Þ consists of a vertex set V and an edge set E, where
each vertex v 2 V is associated with a keyword set v:} ¼ s1; s2; . . . ; sif g (si is a string attribute description). Each keyword,
within v:}, represents different attributes of the vertex v.

Fig. 4 shows a social network graph with 14 vertices, where each vertex is associated with a keyword set to denote its
traits.

The keyword-based graphs are widespread in many real-life applications including social networks, bibliographical net-
works, knowledge graphs, and so on [110]. As introduced in [134], the keywords of each user (vertex) can represent location,
v1

v2

v1

v3

v2

v3

v3

v4

v1

v2 v3

0 1 2 3 4 5 6 7 8

(a) A temporal graph (b) A projected graph

Fig. 2. A Temporal Graph and its Projected Graph at the Time Interval 1;6½ �.

964

Fig. 3. An Example of a Location-based Graph [38].

Fig. 4. An Example of a Keyword-based Graph [135].

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
interests, and other contents generated by the user. Over the keyword-based graph, we can obtain user groups composed of
users having similar interests, which make these groups stable and active.

In this paper, we review related work on community searches (Section 5.3.2) over keyword-based graphs.

2.4. Weight-based graphs

A graph with numerical attributes is called a weight-based graph, which could be formulated as follows.

Definition 4 (Weight-based Graph). A weight-based graph G ¼ V ; Eð Þ consists of a vertex set V and an edge set E, where each
vertex v 2 V or each edge e 2 E is associated with a weight (i.e., influence) v:w 2 R or e:w 2 R . Here the weight w of a vertex
or an edge represents its importance.

There is an example of a weight-based graph in Fig. 5 where each edge e 2 E has a weight e:w denoting the similarity
between two vertices.

Weight-based graphs are widely utilized in social networks, road networks, and other fields. Take the road network as an
example. An edge in a road network has a weight to represent the travel cost or distance between two vertices. Weight infor-
mation is a significant factor affecting shortest path queries on road networks.

In this paper, we summarize the related work of similarity queries and community searches over weight-based graphs in
Sections 3:3:1 and 5:3:4, respectively.
965

v1 v3

v6 v7v4 v5

v10 v11v8 v9

v2

4

4 8

3 5

7 15 16

6 6

5
3

Fig. 5. An Example of a Weight-based Graph.

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
2.5. Heterogeneous graphs

In bibliographic networks and knowledge graphs, heterogeneous information networks are prevalent. These networks are
composed of various types of vertices and various connections between vertices. In this paper, heterogeneous information
networks are also called heterogeneous graphs.

Definition 5 (Heterogeneous Graph [136]). A heterogeneous graph G ¼ V ; Eð Þ is a directed graph in which each vertex v 2 V
has a vertex type mapping function w : V !V and each edge has a vertex type mapping function / : E! E. Each vertex has a
vertex type w vð Þ 2V and an edge e 2 E has an edge type / eð Þ 2 E.

As shown in Fig. 6, there is a heterogeneous graph of a database system and logic programming (DBLP) network which
contains four different vertex types, i.e., the authors a1; . . . ; a4, the papers p1; . . . ; p4, the topic t1, and the venue v1. At the

same time, there are three kinds of directed edge types denoting different relationships, that are, ‘‘author!write
paper”, ‘‘pa-

per !mention
topic”, and ‘‘paper !pubInvenue”.

In this paper, we review the research on reachability queries (Section 4.1.2), shortest path queries (Section 4.2.2), and
community searches (Section 5.3.5) over heterogeneous graphs, respectively.

2.6. Probability graphs

Due to privacy preservation, noise measurements, and inconsistent information sources, probability graphs exist widely
in social networks, biological networks, and mobile networks. In this paper, we focus on the personalized queries over prob-
ability graphs in which edges are uncertain.

Definition 6 (Probability Graph). A probability graph G ¼ V ; E; pð Þ, also known as an uncertain graph, is composed of a vertex
set V and an edge set E where each edge e 2 E has an existence probability e:p.

The probability graph usually carries possible world semantics [137,138], and the existence probability of a possible
world g is calculated as
Fig. 6. An Example of a Heterogeneous Graph.

966

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Pr gð Þ ¼
Y
e2E0

e:p�
Y

e2EnE0
1� e:pð Þ; ð1Þ
where E0 includes all the edges within G and e:p represents the existential probability of an edge e.
Fig. 7(a) shows an uncertain graph where each connection/edge has an existence probability. All possible worlds and their

existence probabilities are depicted in Fig. 7(b).
In numerous applications, uncertainty has been an inherent property of graph data. Personalized graph queries over prob-

ability graphs have attracted extensive attention. In this paper, we survey similarity queries (Section 3.3.2), reachability
queries (Section 4.1.2), and shortest path queries (Section 4.2.2) over probability graphs, respectively. Fig. 8. Table 1.

Table 2 shows the frequently-used symbols in this paper. Fig. 9.
3. Point-related personalized queries

In point-related personalized graph queries, similarity query is focused a lot. It is a fundamental problem to measure sim-
ilarities among different vertices in the applications of graph analysis and mining, such as recommendation systems [139],
Fig. 7. An Example of Possible Worlds [51].

Fig. 8. An Example of the Iterative and Random Walk Methods.

967

Table 2
The Summary of Frequently-used Symbols.

Symbol Definition

G A simple graph
u;v A vertex
e An edge
V ; E The vertex set and edge set of G
n, m The number of vertices and edges
q;Q A query vertex and a query vertex set
deg vð Þ The degree of a vertex v
ts , te The start and end times of a vertex v
} A keyword set
e:p The existence probability of an edge e
Pr Gð Þ The existence probability of a possible world instance G
Sim u;vð Þ The SimRank similarity score of two vertices u and v
v :w, e:w The weight of a vertex v and an edge e
v :l ¼ v :x; v :yð Þ The location of a vertex v
w : V !V The mapping function of vertex type
/ : E! E The mapping function of edge type

Fig. 9. An Example of a Fingerprint Tree [8].

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
link prediction [140], spam detection [141], and graph mining [142]. In general, a similarity measure can be utilized to clus-
ter different objects, such as for collaborative filtering in a recommender system, where similar users and items are grouped
according to user preferences [7]. Table 3.

In Section 3.1, we give an overview of the famous similarity models. Consider the SimRank similarity model is acknowl-
edged as one of the most popular and promising models to measure the similarity between two vertices [41]. In the rest part
of this section, Simrank computing models and SimRank similarity queries, which belong to classic point-based personalized
graph queries, over different types of graphs are reviewed in Section 3.2 and Section 3.3.
3.1. Preliminary

In this section, we introduce the similarity model utilized to measure the similarity between vertices.
3.1.1. Similarity models
At present, there are many different connection-based, also called link-based, similarity models, including Jaccard [143],

Dice [144], Cosine [145], Bibliographic Coupling [146], Co-citation [147], and SimRank [7]. In Table 3, we illustrate different
similarity models for two vertices u and v, where N uð Þ (N vð Þ) denotes the neighbor set vertices of vertex u (v), c c 2 0;1½ �ð Þ is a
damping factor, I uð Þ (I vð Þ) and O uð Þ (O vð Þ) are separately the in-neighborhood and out-neighborhood vertices of vertex u (v),
jI uð Þj (jI vð Þj) denotes the in-neighborhood number of vertex u (v), and Ii uð Þ (Ij vð Þ) is the ith (jth) in-neighborhood of vertex u
(v).

The similarity models, Jaccard, Dice and Cosine, are widely utilized in information retrieval. The co-citation similarity
model was first introduced by Small et al. [147] in the fields of citation analysis and bibliometrics as a fundamental metric
to characterize the similarity between scientific papers. Besides, Bibliographic Coupling was proposed by Kessler et al. [146]
to measure paper similarities. It is designed based on the observation that authors of papers on the same topic tend to cite
the same papers. Unlike the above models, SimRank is proposed on the basis of the intuition that two objects are similar if
they are referenced by similar objects [7].
968

Table 3
Similarity Models.

Similarity models Equations

Jaccard jN uð Þ \ N vð Þj=jN uð ÞÞ [N vð Þj
Dice 2jN uð Þ \ N vð Þj=jN uð Þj þ jN vð Þj

Cosine jN uð Þ \ N vð Þj=
ffi
jN uð Þj2 þ jN vð Þj2

q

Co-citation jI uð Þ \ I vð Þj
Bibliographic Coupling jO uð Þ \ O vð Þj

SimRank c
jI uð ÞjjI vð Þj

PjI uð Þj
i¼1

PjI vð Þj
j¼1 s Ii uð Þ; Ij vð Þ

� �

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Consider the popular similarity models shown in Table 3. The Jaccard, Dice, Cosine, Co-citation, and Bibliographic Cou-
pling similarity models only consider the neighborhood vertices of the query vertices and can only mine the local similarity
of vertices. Compared with these similarity models, SimRank iterative takes into account the neighborhood of the neighbor-
hood as shown in row 6 of Table 3. Then, the SimRank model has two advantages: the first one is capturing the entire topol-
ogy of a given graph; the another one is effectively evaluating the similarity between each pair of vertices. Accordingly,
SimRank is recognized as the most popular model in the existing similarity models. Therefore, in this paper, we mainly focus
on the SimRank model and SimRank-based similarity queries.

3.1.2. SimRank computing methods
Since Jeh et al. [7] proposed the SimRank model, different computing methods of SimRank were designed. These methods

mainly contain three categories: iterative method [7], random walk method [7,8], and non-iterative method [127]. The cal-
culation formulas of the three methods are shown in Table 4. Here, S is the SimRank score matrix that contains the SimRank
scores of any two vertices in a given graph,W denotes the column normalized matrix of an adjacency matrix, I represents an
identity matrix, _ is the operator that sets the diagonal elements of the left-hand side to the corresponding elements of the
right-hand side, t is the number of iterations, and D is a diagonal matrix. In the random walk method, for two vertices u and
v, pft u;v ;wð Þ represents the probability of a pair of random walks, i.e., it starts from u and v, respectively, walks on the length
of t and first meets at vertex w.

Consider the iterative and random walk methods [7]. The iterative method obtains the similarity of any two vertices
through an iterative formula, while the random walk method computes the similarity of any two vertices according to
the first-meeting probability of the reverse random walk. Fig. 8 shows an example of SimRank’s iterative and random walk
methods. Let the damping factor c be 0.6. Based on the iterative method, the similarity of the vertices v4 and v5 is
s v4;v5ð Þ ¼ 0:6= 2� 2ð Þ½ � � s v2;v2ð Þ þ s v2;v3ð Þ þ s v3;v2ð Þ þ s v3;v3ð Þ½ � ¼ 0:48, where the similarity between each vertex and
itself is 1, and s v2;v3ð Þ ¼ 0:6= 1� 1ð Þ½ � � s v1; v1ð Þ ¼ 0:6. Besides, according to the random walk method, vertices v4 and v5

meet in two cases:

1) by two paths v4 v2 ! v5 and v4 v3 ! v5 with t ¼ 1;
2) by two paths v4 v2 v1 ! v3 ! v5 and v4 v3 v1 ! v2 ! v5 with t ¼ 2.

As a result, we have s v4; v5ð Þ ¼ 1
2� 1

2� 0:62 þ 1
2� 1

2� 0:62 þ 1
2� 1

2� 0:61 þ 1
2� 1

2� 0:61 ¼ 0:48.
As pointed out in [11], the iterative method is infeasible and inefficient, especially when the graph changes dynamically

and frequently. To bridge this gap, Li et al. [11] developed a non-iterative method that can be utilized to calculate the sim-
ilarity scores for arbitrary subsets of vertices. In addition, these similarity scores can be updated incrementally. To enable
non-iterative calculations, the SimRank equation is rewritten as a non-iterative form by adopting the Kronecker product
and vectorization operator. In [20], Maehara et al. introduced a SimRank linearization technique which can efficiently trans-
form the SimRank computing to a linear equation problem. Besides, they use a more precise diagonal matrix D to replace
1� cð ÞI in the formula of the non-iteration method in [20]. Later, in [127], Zhang et al. analyzed the relationship between
the non-iterative method and the random walk method. They inferred that the non-iterative method can be transformed
to the random walk method without guaranteeing first-meeting [127].

Among the three SimRank computing methods, iterative methods have the highest accuracy. However, they are not
appropriate for large and dynamic graphs. For static graphs, current iterative solutions are not efficient in time and space.
Table 4
SimRank Computing Methods.

Computing Method Formula

Iterative [7] St ¼ cW0St�1W
� � _ I

Random Walk [7] Sim u; vð Þ ¼P1
t¼0c

tP
w2Vpft u;v ;wð Þ

No-iterative [11,20] S ¼ cW0SWþ 1� cð ÞI
S ¼ cW0SWþD

969

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Non-iterative methods have lower time and space complexities than iteration methods. Since the computing procedure has
uncertainty, the accuracy of random walk methods cannot be ensured.

3.2. SimRank similarity queries over simple graphs

SimRank similarity queries in simple graphs can be divided into four categories: single-pair, single-source, partial-pairs,
and all-pairs SimRank similarity queries. Particularly, a single-pair SimRank similarity query returns the SimRank score for
two given vertices, a single-source SimRank similarity query returns the SimRank scores for a vertex and all vertices in a
given vertex set, a partial-pairs SimRank similarity query retrieves the SimRank scores for all vertex pairs between two given
vertex sets, and an all-pairs SimRank similarity query retrieves the SimRank scores for all vertex pairs in a given graph. In this
section, in addition to simple SimRank similarity queries, we also introduce their important variants, top k and threshold-
based SimRank similarity queries, which aim to compute vertex pairs with size constraints.

3.2.1. Single-pair SimRank similarity queries
In [40], Wang et al. proposed the pairwise SimRank estimation (PSE) problem, which belongs to the single-pair SimRank

similarity query.

Problem 1 (Pairwise SimRank Estimation [40]). Given a graph G ¼ V ; Eð Þ, a vertex pair u;vð Þ for u;v 2 V , and an error-bound
�, return the SimRank score ŝ u;vð Þ such that ĵs u;vð Þ � s u; vð Þj < �.

For single-pair SimRank similarity queries, there are online algorithms and index-based algorithms designed based on the
no-iterative and random walk methods, respectively.

In the online algorithms, Li et al. [148] designed a random walk method, which repeatedly aggregates the meeting prob-

ability of k-hop from the query vertices u and v. The time complexity is O Kd2 �min dK
;n2

n o� �
, where K ¼ dlogc�e � 1. In

[20], a no-iterative method with a diagonal correction matrix Dwas first designed, which can convert the calculation of Sim-
Rank to a linear equation problem. The query time needs O tmð Þ. For accelerating the method of [20], Li et al. [24] devised a
parallel algorithm, namely CloudWalker-MCSP. It computes a length-n indexing vector on the Apache Spark platform.
Although the approaches in [20,24] can effectively handle single-pair SimRank similarity queries, neither can gain accurate
query results. In [40], the authors presented an online algorithm, namely backward local push and MC sampling (BLPMC),
based on the random walk method. BLPMC applies the technique of backward local push to reduce the size of random walk
sampling.

There have also been plenty of index-based algorithms using the random walk method [8,18,30,40]. In [8], the single-pair
SimRank similarity query was first resolved based on the random walk method. A fingerprints tree index was constructed to
efficiently organize the random walk information. Fig. 9 illustrates an example of a fingerprint tree. Since the first meeting
times for vertex u1 and u2 is 3, so the value of directed edge u2;u1ð Þ in fingerprint tree is 3.

Furthermore, He et al. [18] introduced a position matrix that can efficiently save the first-meeting probability of any two
random walks. By iteratively computing the position matrix, final query results can be gained directly. In [30], an index-
based algorithm, SimRank via local updates and sampling (SLING), was designed based on a reverse random walk method
by adopting local update and sampling techniques. SLING algorithm needs O 1=�ð Þ query time, O n=�ð Þ index space, and
O m=�þ n= logn= d�2

� �� �
index constructing time, where d is the failure probability and � is the maximum additive error

allowed in any SimRank score. The state-of-the-art work of single-pair SimRank similarity queries over simple graphs
was developed by Wang et al. [40]. They designed two index-based algorithms, namely forward local push and MC sampling
(FLPMC) and forward and backward local push and MC sampling (FBLPMC), to process static and dynamic single-pair Sim-
Rank similarity queries, respectively. These algorithms adopt backward and forward local push strategies for reducing the
size of random walk samples.

3.2.2. Single-source SimRank similarity queries
A single-source SimRank similarity query can be formally defined as follows.

Problem 2 (Simple Single-source SimRank Similarity Query [39]). Given a graph G ¼ V ; Eð Þ and a vertex u u 2 Vð Þ, compute the
SimRank scores s u;vð Þ of vertex pairs (u;v) for all the vertices v 2 V .

Top k and threshold-based single-source SimRank similarity queries are two important variants of the simple single-
source SimRank similarity query, which return k vertices with the highest SimRank scores and vertices with SimRank scores
larger than a specified threshold, respectively.

� Simple Single-source SimRank Similarity Query. Yu et al. [26] proposed the SimRank] (SR]) algorithm on the basis of the
non-iterative method. They designed an efficient method that can accurately calculate the diagonal correction matrix D.
This method can solve the connectivity trait problem of SimRank through a kernel-based calculation. Here the connectiv-
ity trait problem is a phenomenon in which the SimRank score decreases with the increase of paths between vertices.
Later, Liu et al. [34] presented an online algorithm based on the random walk method with a provable approximation
guarantee. Besides, three pruning rules were designed for computing the first-meeting probability of a given vertex uwith
970

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
respect to partial walks. In [42], the authors noted that the SimRank similarity method has the disadvantage of zero sim-
ilarity, i.e., ‘‘a path between two vertices does not contribute to the SimRank score if its length is odd”, and then a Sim-
Rank* model was developed. Based on SimRank*, the authors devised ss-gSR* for geometric SimRank* computing and ss-
eSR* for exponential SimRank* computing, respectively, where ss-gSR* and ss-eSR* are both memory-efficient algorithms.
In [44], Li et al. proposed CrashSim which is more efficient to READS [32], SLING [30], or Probesim [34]. They also
extended CrashSim to CrashSim-T for the SimRank similarity query in temporal graphs. In [47], a novel matrix random
sampling approach was proposed to accelerate the computation with less memory cost. Wang et al. [43] pointed out that
the exact SimRank algorithm is time-consuming for a large graph with more than 106 vertices. To address this concern,
they investigated the approach to compute the exact single-source and top k SimRank results on large graphs.
Apart from the above online algorithms, there are also index-based algorithms for simple single-source SimRank similar-
ity queries. In [30,39], a single-source SimRank similarity query was computed based on the property that the SimRank
score s u;vð Þ of two given vertices u and v is equivalent to the probability that two

ffiffiffi
c
p

-walks meet. The
ffiffiffi
c
p

-walks meet
means that a vertex u in the graph stops at the current vertex with a probability of 1� ffiffiffi

c
p

, or walks to the in-degree
neighbor of the current vertex with a probability of

ffiffiffi
c
p

. In [30], an index was constructed to store all the random walk
information, but the solution in [39] only considered hub vertices which can reduce space cost without sacrificing query
efficiency. Due to the limitations of memory and computational power, a single machine fails to process a large graph.
Therefore, Wang et al. [149] researched single source SimRank queries in a distributed environment. They proposed a dis-
tributed framework, namely DISK, based on the linearized formulation of SimRank which includes offline and online
phases.
� Top k Single-source SimRank Similarity Query. Lee et al. [14] introduced two random walk methods, master and slave
random walks, and then proposed a local top k search method, namely TopSim. The master random walk starts from any
vertex and ends at the query vertex. The start vertex of the slave randomwalk is consistent with the master randomwalk.
It passes through the same long path as the master random walk and stops at certain points in the master random walk
path. The final results are the k vertices with the highest scores on the product graph. Kusumoto et al. [21] adopted a non-
iterative method to calculate the SimRank scores of vertex pairs. Furthermore, two upper limits are utilized to prune
unqualified vertex pairs through MC simulation. Finally, the final results are obtained by adaptive tactics.
In [25], Shao et al. designed an index-based algorithm on the basis of sampling random walks. First, a random walk index
is constructed by sampling a set of one-way graphs. A one-way graph is a graph in which each vertex in the reversed
graph contains only one random walk. Then, the results are computed by utilizing the connectivity of the one-way graph,
which can be updated efficiently.
� Threshold-based Single-source SimRank Similarity Query. The threshold-based single-source SimRank similarity query
was first researched in [16]. Focusing on the threshold-based single-source SimRank similarity query, Fujiwara et al. [16]
designed the SimMat algorithm without an index. SimMat can also be utilized to process the top k single-source SimRank
similarity query. It first calculates the approximate SimRank similarity of partial vertex pairs based on the Sylvester equa-
tion and then prunes unqualified vertex pairs according to the Cauchy-Schwartz inequality. Later, in [45], Liu et al.
improved the query efficiency by integrating several random walk sampling strategies and solved both the threshold
and top k single-source SimRank similarity queries based on the problem of multi-armed bandits.

3.2.3. Partial-pairs SimRank similarity queries
The simple partial-pairs SimRank similarity query was first investigated in [27]. It is also called partial-pairs SimRank

assessment and can be defined as follows.

Problem 3 (Simple Partial-pairs SimRank Similarity Query). Given a graph G ¼ V ; Eð Þ, and two collections of vertices A and B,
compute the SimRank score s u;vð Þ of each vertex pair u;vð Þ for u 2 A and v 2 B.

Different from the simple partial-pairs SimRank similarity query, the top k and threshold-based partial-pairs SimRank
similarity queries return k vertex pairs with the highest SimRank scores and vertex pairs with SimRank scores larger than
a specified threshold, respectively.

� Simple Partial-pairs SimRank Similarity Query. For a simple partial-pairs SimRank similarity query, there is only an
online approach. In [27], Yu et al. proposed an iterative method based on a seed germination technique. Moreover, a hash-
ing structure was introduced to decrease unnecessary computations without loss of accuracy.
� Top k Partial-pairs SimRank Similarity Query. Sun et al. [12] first investigated the top k partial-pairs SimRank similarity
query, which is also called the link-based similarity join. Given two sets of vertices in a graph, it returns k vertex pairs
with the highest similarity according to an e-function of a common measurement similar to SimRank. They presented
an iterative deepening join algorithm, which is an online algorithm adopting the iterative computation method. In each
iteration, unqualified vertex pairs could be identified according to their approximate SimRank similarity.
Wang et al. [41] studied an approximate algorithm for the top k SimRank query where partial-pair is a pair set Q instead of
two collections of vertices A and B. Although such query can be processed by the approaches to multiple single-pair sim-
ilarity queries or typical partial-pair similarity queries, it may lead to inefficiency due to the existence of many redundant
971

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
calculations. Inspired by this, the Carmo algorithmwas developed. It first uses a heap to improve the state-of-art pairwise
estimation method BLPMC [40], and then introduces the upper and lower bound estimation method to prune the search
space for better query performance.
� Threshold-based Partial-pairs SimRank Similarity Query. In [35], Zheng et al. presented a SimRank-based join (SRJ)
query that aims to compute vertex pairs from two vertex sets U and V that satisfy a threshold constraint. A filter-and-
refine framework was proposed for the SRJ query. In the filter phase, it computes a shortest path distance-based upper
bound of SimRank to avoid redundant SimRank computations. Besides, they also proposed a simple method to identify
whether a vertex u is in the h-hop neighbors of another vertex v; this method can be utilized to avoid computation on
the shortest path distance. In the verification phase, the SimRank scores of the left vertex pairs are computed on the basis
of an h� go coverþ vertex set. Here, the h� go coverþ of a vertex-pair graph G is a set of vertices whose removal leaves a
graph G0 without a circle and each simple path in G0 is of length no longer than h for h P 1.

3.2.4. All-pairs SimRank similarity queries
There are three types of all-pair SimRank similarity queries, including simple, top k and threshold-based all-pair SimRank

similarity queries. In particular, a simple all-pairs SimRank similarity query is formulated as follows.

Problem 4 (Simple All-pairs SimRank Similarity Query). Given a graph G ¼ V ; Eð Þ, return SimRank scores of all vertex pairs
(u;v) for u;v 2 V .

Again, the goal of top k and threshold-based all-pairs SimRank similarity queries is to return k vertex pairs with the high-
est SimRank scores and vertex pairs whose SimRank scores exceed a specified threshold, respectively. It is worth noticing
that all algorithms for all-pairs SimRank similarity queries are online.

� Simple All-pairs SimRank Similarity Query. In [17,19], the partial sum was introduced to the iterative calculation of
SimRank. In particular, the partial sum for two given vertices u and v is
s u;vð Þ ¼ c
jI uð ÞjjI vð Þj

X
x2I uð Þ

X
y2I vð Þ

s I xð Þ; I yð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

PartialI vð Þ xð Þ;

where PartialI vð Þ xð Þ denotes the partial sum of vertex v. As shown in Fig. 10, vertices u and v have a common in-neighbor
vertex a. To get s u;wð Þ and s v ;wð Þ for a given vertex w; PartialI vð Þ að Þ ¼ s a; dð Þ needs to be computed twice because
s u;wð Þ ¼ 0:8

4�1� s a; dð Þ þ s b; dð Þ þ s c; dð Þ þ s d; dð Þ½ �, and s v ;wð Þ ¼ 0:8
4�1� s a; dð Þ þ s b; dð Þ þ s c; dð Þ þ s d; dð Þ½ �.In [19], the compu-

tational order of partial sums is adjusted based on the observation that the partial sum of a vertex is closely related to
that of the vertex having the most common in-neighbors.
Many parallel approaches to SimRank have been developed to gain better performance. He et al. [10] introduced graphics
processing units (GPUs) to efficiently implement the no-iterative method proposed in [11]. Cao et al. [13] designed an
incremental calculation equation of SimRank, called Delta-SimRank, and devised a feasible parallel algorithm based on
MapReduce. Li et al. [24] used Spark to compute the diagonal correction matrix D in parallel and then adopted the MC
method to speed up the online query. In [37], Huang et al. designed a method that divides an objective graph due to
the idea of modularity maximization and constructs a collapsed graph based on blocks. Moreover, the similarity between
vertices inside a block and between different blocks is computed. Finally, the approximate SimRank similarity of all the
vertex pairs is obtained. In [46], Wang et al. devised a novel local push based algorithm for processing all-pairs SimRank.
Moreover, they proposed an iterative parallel two-step framework for local push to exert the advantage of modern hard-
wares with multicore CPUs.
There are also numerous studies on the optimization of SimRank similarity models. In [9,23,42], the zero similarity prob-
lem of SimRank was considered, i.e., s u;vð Þ ¼ 0 if there is no node having equal distance to both vertex uand v. In Fig. 11,
when c ¼ 0:6 and iterative number T ¼ 20, the SimRank values of partial pairs are shown in Table 5. As shown, there are
Fig. 10. An Example of Partial Sum.

972

Fig. 11. A Zero-similarity Example.

Table 5
The SimRank Scores of s �; fð Þ.

Vertex Pairs a; fð Þ b; fð Þ c; fð Þ d; fð Þ e; fð Þ f ; fð Þ g; fð Þ h; fð Þ i; fð Þ
SimRank score 0 0 0.39 0 0 1 0.39 0.36 0.38

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
many zero-similarity scores. On one hand, the SimRank values of s a; �ð Þ is 0 (e.g. s a; fð Þ ¼ 0) for I að Þ ¼ 0. On the other
hand, because the lengths of the in-linked paths between two vertices are not equal, there are many zero-similarity
scores.
Zhao et al. [9] first noted the zero-similarity problem and designed a P-Rank model in consideration of both internal and
external link relationships. Although P-Rank can reduce the partial zero similarity, SimRank is still equal to zero when the
in-link and out-link paths of the two given vertices have unequal lengths. Additionally, Chen et al. [23] proposed Asym-
metric Network Structure Context Similarity (ASCOS) based on the observation that ‘‘if the length of the path between
two given vertices is an odd number, this path does not contribute to SimRank”. To some extent, ASCOS resolves the
zero-similarity problem. However, when the length is even, SimRank may also be zero. In [42], SimRank* was presented
to record the information of all the reachable paths for two given vertices, which essentially resolves the zero-SimRank
problem. Table 6.
� Top k All-pairs SimRank Similarity Query. In [22], Tao et al. proposed the top k all-pairs SimRank similarity query. More-
over, two online algorithms were developed by converting the SimRank calculation between vertices into dot product cal-
culations. It encodes each vertex as a vector, selects 2k candidate vertices, and chooses the last k solutions by a tree-based
WAND algorithm. This method requires too many redundant calculations to re-scan the 2k candidate vertices. Li et al.
[33] designed an incremental algorithm for computing SimRank. They also introduced an iterative batch pruning frame-
work, where unqualified vertex pairs can be iteratively pruned.
� Threshold-based All-pairs SimRank Similarity Query. In [28], Maehara et al. formulated a threshold-based all-pairs
SimRank similarity query and proposed an approximate algorithmwith an arbitrary accuracy without an index. This algo-
rithm consists of two phases, filter and verification, based on a no-iterative method. In the filter phase, the Gauss-
Southwell algorithm and the stochastic threshold technique are used to calculate candidate vertex pairs, which is efficient
to reduce the redundant calculations of SimRank. In the verification phase, the MC algorithm is invoked to prune unqual-
ified vertex pairs that do not meet a given threshold constraint.

3.3. SimRank similarity queries over attributed graphs

3.3.1. Weight-based graphs
In [50], Antonellis et al. focused on query rewriting for sponsored search over an undirected weight-based graph. They

pointed out that if overlooking the weighted information in the graph, it may get inaccurate similarity values for given vertex
pairs. For example, in Fig. 12, the weights of edges e a; bð Þ and e b; cð Þ are 1 and 10, respectively. Apparently, compared to a; b is
973

Table 6
Classification of SimRank-based Similarity Queries.

Query/ Graph Algorithms

Method Type Accuracy Algorithm

Single-pair/Simple Random Walk Index-based yes Fingerprints[8], FLPMC/BFLPMC [40], ISP [18], SLING [30]
Online yes BLPMC [40], SinglePair [148]

No-iterative Online no CloudWalker-MCSP [24], LIN [20]
Single-source/Simple Random Walk Index-based yes PRsim [39], READS [32], SLING [30], TSF(tk) [25]

Online yes CrashSim(td) [44], Exactsim(tk) [43], Probesim(tk) [34], SimTab
(tk,td) [45], TopSim(tk) [14]

No-iterative Online yes MSR(tk) [21], SR] [26]
no CloudWalker-MCSS [24], LIN(tk,td) [20], RSSD [47], SimMat(tk,td)

[16]
Iterative Online no Ss-gSR*/ss-eSR* [42]

Partial-pairs/Simple Random Walk Online no Carmo(tk) [41]
No-iterative Online yes PrunPar/Par-SR [27]
Iterative Index-based yes h-go over+(td) [35]

Online no IDJ-LB1/LB2(tk) [12]
All-pairs/Simple Random Walk Online yes SRK-Join(tk) [22]

no ASCOS [23], KSimJoin(tk) [33]
No-iterative Online yes FLP-SR [153], Inc-SR [36], LIN(tk,td) [20], MonteCarlo(td) [28], SR]

[26]
no CloudWalker-MCAP [24], GPUSRB [10], LIN(tk,td) [20], NI_Sim [11],

PBiGG [154]
Iterative Online yes C-Rank [31], Naive [7], OIP-DMST [17], OIP-SR [19], Psum-SR

[155]
no Delta [13], LP [46], P-Rank [9], PartitionSimRank [37], SOR-SR [15],

SimRank* [42], WebSim [29]
All-pairs/Weight Random Walk Online no ASCOS++ [23]

Iterative Online no SimRank++ [50]
Single-source/Temporal Random Walk Online no CrashSim-T(td,na) [44]

Single-source/Probabilistic Random Walk Online no IDP [51], SS-OP [52]
Single-pair/Probabilistic Random Walk Online no SR-TS/SR-SP [52]

Single-pair/Heterogeneous Random Walk Online no Hetesim [49]
Single-source/Heterogeneous Iterative Online no Pathsim(tk) [48]

Fig. 12. An Example of Weight-based Graphs.

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
more similar to c, however, their SimRank values are the same without considering the weight information. To address this
concern, SimRank over a weight-based graph was investigated in [50] and computed by the random walk method. In addi-
tion, two algorithms were designed on the basis of the weights of edges and evidence in a click graph. The weight-based
SimRank was demonstrated to be the best method for creating rewrites on the basis of the click graph.

Later, Chen et al. [23] pointed out that SimRank faces the problem that paths with odd numbers are ignored in the com-
putation of SimRank. To address this issue, two new similarity measures, ASCOS and ASCOS++, were developed. Compared to
SimRank, ASCOS can gain a more complete similarity. Furthermore, ASCOS++ improves ASCOS by taking into account the
weights of edges in all the paths between two given vertices. Both ASCOS++ and ASCOS are appropriate for distributed
environments.

3.3.2. Temporal graphs
To the best of our knowledge, there is only one work that focuses the SimRank similarity query in temporal graphs, i.e.,

the CrashSim-T algorithm [44].

Problem 5 (Single-source SimRank Similarity Queries over Temporal Graphs). Given a temporal graph G ¼ V ; Eð Þ, a query
vertex u 2 V , and a time interval T1; Tt½ �, the problem aims to find a vertex setx such that each vertex v inx; s u;vð Þ can meet
the certain query requirement during the given time interval T1; Tt½ �.

Two certain query requirements are proposed by Li et al. [40] that is trend and threshold. The trend and threshold mean
that in the time interval T1; Tt½ �, the all s u;vð Þ should continuously increase with time and no less than a threshold all the
time, separately. Li et al. improved their CrashSim algorithm, which is based on the random walk model and solved the sim-
ple graph single-source SimRank similarity query problem, to CrashSim-T. CrashSim-T first implements the CrashSim algo-
rithm on the temporal graph and then uses a delta pruning and a difference pruning strategy to reduce the time-consuming.
974

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
3.3.3. Probability graphs
In real-life applications, including social networks and biological networks, there are many uncertain graphs where edges

are associated with probability values. Du et al. [51] first investigated similarity queries over uncertain graphs.

Problem 6 (All-pairs Similarity Queries over Probability Graphs). Given an uncertain graph G ¼ V ; E; Pð Þ, where V is a vertex
set, E is an edge set, and P denotes the probabilities of the edges within E, compute the probabilistic SimRank scores of all
vertex pairs. The probabilistic SimRank score S u;vð Þ of two vertices u and v can be computed as

S u;vð Þk ¼ cWTS u;vð Þk�1W þ 1� cð ÞI,where c 2 0;1½ � is the decay factor, I is an identity matrix with S0 ¼ I, and W is a
probabilistic transition matrix.
In [51], the probabilistic SimRank was used to evaluate the similarity between two vertices in the probability graphs. In
an uncertain graph G and two given vertices u and v, when u and v reach the same vertex, the SimRank score of the vertex
pair (u; v) is equal to the inverse of the stationary probability. In addition, a probabilistic transition matrix is utilized to
describe the transition probability of two vertices. The transition probabilities can be gained by computing those on multiple
subgraphs. Based on this observation, the SubG algorithm was designed to calculate the probabilistic transition matrix. After
that, a dynamic programming algorithm was developed to boost query performance.

In [51], the k-step transition probability matrix W kð Þ was supposed to have an equivalent relationship with the kth power
of the one-step transition probability matrixW 1ð Þ. As introduced in [150,52], this assumption is unreasonable because it does
not correspond to the commonly used possible world model. To solve this problem, Zhu et al. [150,52] exploited a new Sim-
Rank measurement for uncertain graphs. For two given vertices u and v, the SimRank similarity is computed on the basis of
the probabilities of two random walks that start from u and v, and meet at the same vertex after k transitions for all k. To
compute SimRank effectively, efficient algorithms for single-pair and single-source top k SimRank similarity were designed.
Finally, a backward tracking technique and an upper bound of the SimRank scores were introduced to further improve the
processing efficiency of top k single-source SimRank similarity queries.

3.3.4. Heterogeneous graphs
The similarity query over heterogeneous graphs not only faces the data sparseness problem but also meets the difficulty

of mining latent relationships between heterogeneous data objects. To address these issues, Xi et al. [151] studied the infor-
mation integration problem about how to combine the broad variety of heterogeneous data and relationships effectively and
efficiently for the purpose of improving the performance of information applications. A Unified Relationship Matrix (URM)
was proposed to represent a set of heterogeneous data objects and their interrelationships. For a given heterogeneous graph
with N type data, URM is
LURM ¼

L1 L12 � � � L1N

L21 L22 � � � L2N

..

. ..
. . .

. ..
.

LN1 LN2 � � � LNN

2
66664

3
77775;
where Li (for 1 6 i 6 N) denotes data objects within the same data space, which is a m �m matrix (m is the total number of
objects of the data type i); Lij i– jð Þ represents data objects within different data space, which is a m � n matrix (m is the total
number of objects of the data type i;n is the total number of objects of the data type j). After that, they also presented a uni-
fied similarity-calculating algorithm, SimFusion, where URM is combined with the iterative computing model. SimFusion
measures the similarity of heterogeneous data objects by taking into account relationships from multiple sources.

In [48], Sun et al. proposed a variant of SimRank, Pathsim, for heterogeneous graphs. It is a new variant of SimRank based
on Meta-Path to calculate the similarity between vertices of the same type in heterogeneous graphs. They verified the effec-
tiveness of PathSim by calculating the top k vertices with the highest similarity for a given type of vertex. Later, [49]
extended the similarity search in heterogeneous graphs and proposed the Hetesim model where as well as the similarity
between two objects with the same type, the similarity between two objects with different types needs to be taken into
account. Hetesim utilized the relevance path instead of the meta-path to modify the SimRank model. As a result, it is suc-
cessfully used to predict and verify disease genes [152].

3.4. Discussion

In Table 6, we conduct a comprehensive classification of SimRank similarity queries, where the ‘‘td” and ‘‘tk” in parenthe-
ses after the algorithm name represent the corresponding threshold variant problem and top k variant problem, respectively
and no brackets indicate the non-variant problem and the algorithm names in italics indicate parallel algorithms. From
Table 6, we can conclude that: 1) there is considerable research on SimRank similarity queries over simple graphs, while
the research of SimRank similarity queries over attributed graphs is still in its early days. 2) Among the three computational
methods of SimRank, random walk methods are mostly adopted in single-pair and single-source similarity queries, while
iterative methods are frequently utilized in all-pairs and partial-pairs similarity queries. 3) For SimRank similarity queries,
975

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
most of the proposed algorithms are online, and only a few algorithms are devised based on indexes. 4) All the accuracy of
SimRank similarity queries on attributed graphs is not given. 5) Only a few parallelism works for similarity query work.

It is a chance to investigate more insight into regular patterns for attribute graph similarity queries and improve the accu-
racy of the query. Also, more parallelism work can be designed to accelerate the queries.

4. Path-related personalized queries

In this section, we survey the studies about path-related graph queries, including reachability queries and shortest path
queries, which are widely used in online mapping and navigation services. These queries are two personalized graph queries
that are closely related to paths. We review the latest studies of these queries on simple graphs and attributed graphs. We
also classify the approaches to reachability queries and shortest path queries into two categories: online algorithms and
index-based algorithms.

4.1. Reachability queries

The reachability query is an important graph management operator which checks if there is at least one path between
two given vertices. It is widely used in online social networks, biological networks, and other real-life applications. In this
subsection, we summarize some latest and representative work of reachability queries over simple graphs, temporal graphs,
heterogeneous graphs, and probability graphs.

4.1.1. Simple graphs
The reachability query over simple graphs can be formulated as follows.

Problem 7 (Reachability Query over Simple Graphs). For a given directed graph G ¼ V ; Eð Þ, a source vertex vs and a target
vertex v t , decide whether there is a directed path from vs to v t in the graph G.

For reachability queries over simple graphs, there are both online algorithms and index-based algorithms.
Online algorithms. The breadth-first search (BFS) algorithm is a classical algorithm for reachability queries. Given a

graph G, a source vertex v s, and a target vertex v t , BFS traverses all the reachable vertices and edges of the given graph G
from vs until v t is found or all the other vertices in G are visited. The BFS algorithm is time-consuming, especially for large
graphs. To resolve this issue, there are many follow-up studies in [156,54,157]. Then et al. [54] devised the multi-source BFS
(MS-BFS) algorithm which improves query performance by running multiple concurrent BFSs for the same graph. MS-BFS
can achieve efficient graph traversal by exerting its advantages of sharing common computations across concurrent BFSs,
greatly reducing the number of random memory accesses, and avoiding synchronization costs.

Moreover, a distributed algorithm for reachability queries was developed by Fan et al. [53]. This method collects corre-
sponding paths from each subgraph and constructs a dependency graph to reduce redundant computations. As shown in
Fig. 13, a given graph is divided into three subgraphs, P1; P2, and P3, which are induced by blue, green and purple vertices,
respectively. For a query q s; tð Þ, it returns two paths p s;4ð Þ and p s;8ð Þ from P1. Similarly, the paths p 4;7ð Þ and p 5;7ð Þ are
returned from P2 and the paths p 7; tð Þ; p 8; tð Þ; p 7;5ð Þ and p 8;5ð Þ are returned from P3. Based on these graphs, a dependency
graph depicted in Fig. 13(b) is constructed. After that, we can get the final result directly based on the dependency graph.

Although the dependency graph proposed in [53] helps reduce the search space and improve the query performance, it
needs to construct dependency graphs for different queries, which is time-consuming. In addition, the dependency graph is
only stored in a single machine, and it is apparent that the query efficiency will be seriously affected when the scale of the
dependency graph is very large.
Fig. 13. An Example of an Original Graph and a Dependency Graph [53].

976

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Apart from the above accurate algorithms, Sengupta et al. [61] proposed ARROW which adopts a random walk to obtain
approximate results. The basic idea of ARROW is to constrain the range and length of randomwalk. Notice that the efficiency
and accuracy of ARROW are affected by two parameters r and l, which are the number of random walks and the length of
each walk, respectively. The approximate idea is also used to deal with the problem of reachability queries under regular
simple paths [70].

Index-based algorithms. In [65], Gurajada et al. presented a graph-based index for distributed set reachability (DSR)
queries. Instead of constructing the global dependency graph proposed in [53], DSR builds a boundary graph for the given
graph and stores it in each computing node to improve the query efficiency by processing those subgraphs that contain
source vertices in parallel. Besides, there exists at most one round of message exchanges performed during the query. How-
ever, DSR suffers a limitation of huge space overhead because the boundary graph needs to be stored in all the computing
nodes. In addition, an extra centralized index is deployed on each computing node to get better query performance, resulting
in redundant space costs.

In [64], Zhou et al. constructed a transitive reduction (TR) graph for retaining long paths as much as possible, and then
built an equivalence reduction (ER) graph by merging vertices with the same in-neighbors and out-neighbors. This method
can efficiently reduce the scales of graphs and prune the redundant computations of paths. Three types of graphs are shown
in Fig. 14. Specifically, due to the two paths from vertex 1 to vertex 4 in Fig. 14(a), the path p 1;4ð Þ can be deleted since the
path p 1;3;4ð Þ is longer than it. In addition, vertices 6 and 7 will be merged because of in�G 6ð Þ ¼ in�G 7ð Þ ^ out�G 6ð Þ ¼ out�G 7ð Þ.
Although the ER graph is useful in reducing the search space, it causes excessive redundant calculations for irrelevant ver-
tices, especially when the source vertex is close to the destination vertex in the original graph.

Different to the indexes mentioned above, there are also many indexes constructed on the basis of hop labels. In [55],
Cohen et al. proposed the 2-hop index that builds two reachable vertices as 2-hop neighbors. Due to its huge space complex-
ity O n �m1=2

� �
, this index is not appropriate for large graphs. After that, the SCARAB method [59] was designed based on a

backbone structure. SCARAB can achieve a reasonable trade-off between the index space overhead and query performance.
Specifically, a given query q s; tð Þ can be transformed to a new query q Bs;Btð Þ. Here Bs and Bt are the sets of backbone vertices
which can be reached from the vertices s and reach the vertex t, respectively.

Hop labels based on topological folding (TF) were proposed in [56] to accelerate the reachability query. For a given direc-
ted acyclic graph (DAG) G, the transformed topological folding graph G� is established to construct hop labels of all vertices. It
is effective to decrease the size of hop labels. Based on the transformed topological folding graph, the query procedure con-
tains three steps. First, G ¼ VG; EGð Þ is transformed to many subgraphs G1; . . . ;Gtf Gð Þ where each subgraph Gn is equipped with
a transformed topological folding G�n ¼ V�n; E

�
n

� 	
. The subgraph Giþ1 and the corresponding topological level G�iþ1 are produced

based on Gi and G�i . Second, for each v 2 V�;u 2 V� is recorded in v 0s in-label set Lin vð Þwhen u can reach v. Likewise,w 2 V� is
recorded in v 0s out-label set Lout vð Þ when v can reach w. Third, given two vertices s and t, it returns ‘‘true” if
Lout sð Þ \ Lin tð Þ– £. This means that vertices s and t are reachable. The structure of graphs based on TF are shown in
Fig. 15 where G2 is constructed based on G�1, and G3 is constructed based on G�2.

In [58], Zhang et al. constructed a scalable hop-based index in the distributed environment. Specifically, it constructs a
fixed number of labels for each vertex and adopts effective pruning strategies to reduce the search space. However, the query
efficiency is affected by the number of labels. In the worst case, its query efficiency is not better than BFS as it needs to tra-
verse all reachable paths.

Most existing algorithms use greedy methods to construct hop labels of the vertices, which causes a high cost of mate-
rializing the transitive closure. To alleviate this problem, a hierarchical-labeling scheme [57] was developed to effectively
reduce the construction cost while maintaining a good query performance. Moreover, a distributed-labeling scheme was
proposed to optimize the recursive hierarchical decomposition operations in the hierarchical-labeling scheme and further
narrow the size of hop labels. In [63], the independent permutation (IP) labeling scheme was presented to process reacha-
bility queries by employing randomness. After that, due to the high cost of checking vertices, a k-minwise independent per-
mutation was employed. Moreover, to further improve the performance of IP [63], the bloom-filter labeling scheme (BFL)
[62] was presented. BFL can achieve better pruning ability and improve query performance accordingly. However, both of
these two approaches can only gain the approximate results of reachability queries.
Fig. 14. An Example of an Graph Construction [64].

977

Fig. 15. An Example of TF Structure [56].

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
4.1.2. Attributed graphs
Attributed graphs involving path-related personalized queries mainly contain temporal graphs, heterogeneous graphs,

and probability graphs.

� Temporal Graphs. The reachability query over temporal graphs can be defined as follows.

Problem 8 (Reachability Query over Temporal Graphs). Given a temporal graph G ¼ V ; Eð Þ consisting of a vertex set V and an
edge set E, where each edge e ¼ u;vð Þ is associated with a time interval to represent its active time, a source vertex vs, a
target vertex v t , and a time interval ts; te½ �, determine whether vs can reach v t within the given time interval.

The latest algorithms for reachability queries over temporal graphs are all index-based. In [66], Wu et al. proposed TopChain,
which is a labeling scheme based on hop labels. Specifically, a temporal graph G is first transformed into a DAG, and a set of
chains is then constructed to boost query performance. An original temporal graph and its transformed graph are shown in
Fig. 16. Assume that the travel time for each edge is only 1 unit, and the weight of each edge represents its start time. From
the edge e a; b;1ð Þ in the original graph, we obtain two vertices a;1ð Þ and b;2ð Þ. This means that a can reach bwithin the min-
imal time interval [1,2].
To avoid the extra overhead of graph transformation in [66], Zhang et al. [67] developed a scalable hop index TVL which is a
distributed labeling scheme for temporal graphs. Furthermore, TVL adopts effective pruning strategies to accelerate the
query process. Moreover, TVL is constructed based on the message propagation technique, which is efficient in reducing
the time cost of index construction. However, the performance of TVL depends heavily on the number of labels. In [68],
Wen et al. applied the 2-hop index to span-reachability queries on temporary graphs which aims to explore a temporal path
between each two vertices in a given time interval.
�

Heterogeneous Graphs. In [71,70], the authors investigated the reachability query over heterogeneous graphs.

Problem 9 (Reachability Query over Heterogeneous Graphs). Given a multi-relation direction graph G V ; E; Lð Þ, where V is a
vertex set, E is an edge set, and L is an edge label set, a source vertex vs, and a target vertex v t , determine whether there is at
least one path from vs to v t consisting of edges with labels in L.

Reachability query algorithms for heterogeneous graphs can also be divided into two types: online and index-based.
-Online algorithm. Recently, Wadhwa et al. [70] designed an online algorithm, namely ARRIVAL, to address reachability
Fig. 16. An Example of TopChain Structure [66].

978

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
queries over regular simple paths. A sampling method and a random walk method are adopted to improve the query per-
formance of the BFS-based method. Meanwhile, the length of the walk is adjusted to achieve a trade-off between time over-
head and the accuracy of results.
-Index-based algorithm. In [71], an index-based algorithm was developed to solve label-constrained reachability (LCR)
queries over large graphs. This algorithm was presented based on a new landmark-based index that selects a small number
of landmark vertices to store their reachable vertices. Specifically, for a given query q v s;v tð Þ, if v s is a landmark vertex, the
query can be directly answered by hop labels of v s. Otherwise, this method explores the graph until finding another land-
mark vertex or the vertex v t . In the above approach, it is difficult to specify the number of landmark vertices, which seriously
affects query performance and space cost. To further improve the query efficiency, in [72], Peng et al. applied the 2-hop index
to solve the LCR query. This method can efficiently reduce the redundant computation by adjusting the order of traversal
paths. This also contributes to reducing the time cost of index construction.
�

Probability Graphs. Reachability queries and their variants over probability graphs were widely studied in [76,74,77,75].
Problem 10 (Reachability Query over Probability Graphs). Given a probability graph G ¼ V ; E; Pð Þ consisting of a vertex set V
and a directed edge set E, where P is a probability function assigning a probability of existence to each edge in E, a source
vertex vs, and a target vertex v t , return the probability that vs can reach v t .

Existing approaches to the reachability query on probability graphs can also fall into two categories: online algorithms
and index-based algorithms.

-Online algorithms. In [74], Li et al. proposed a recursive stratified sampling (RSS) method, to measure reliability in prob-
ability graphs. Compared with the Monte Carlo (MC) sampling method [73], it provides better efficiency in simplification of
graphs and variance reduction. In [75], the lazy propagation sampling method was developed to avoid unnecessary probing
of edges, which contributes to improving query performance.

-Index-based algorithms. Apart from the above online algorithm, there were two index-based algorithms exploited in
[76,77]. Li et al. [76] adopted a bit-vector-based compact structure to minimize space overhead and invoked BFS to deal with
reliability queries based on a compacted structure. In [77], Maniu et al. devised the ProbTree index which can dramatically
improve the efficiency of reliability queries. Specifically, the ProbTree index is first built for a given original uncertain graph
G. Then, the MC sampling method is adapted to process an equivalent graph Gq, which is constructed from the ProbTree
index.

4.1.3. Discussion
Table 7 shows some representative approaches of reachability queries. In Table 7, Single represents reachability queries

that aim to identify the reachability between the source vertex and the target vertex, while Batch represents reachability
queries for multiple source and target vertices which can also be called batch reachability queries. As illustrated, there is
limited research on batch reachability queries.

Both index-based and online algorithms are developed to resolve reachability queries. The online algorithms can be uti-
lized to process graphs that are frequently updated, but it is inefficient to deal with reachability queries in large graphs. Over
large graphs, there are twomethods to improve the query performance of reachability queries. The first method is to design a
parallel algorithm with better performance than traditional serial algorithms. Another method is to organize large graphs as
indexes and design effective algorithms to narrow the search space.

4.2. Shortest path queries

The shortest path query is a fundamental problem in graph data management. It has numerous applications such as GPS
navigation and route planning. Similar to the reachability query, we carry out a classified summary for the related work of
Table 7
Classification of Representative Solutions to Reachability Queries.

Graph Query Algorithm

Type Technique

Simple Single Online Dependency graph [53], Mutil-source BFS [54]
Index-based Graph reconstruction [64], Hierarchy-based [57,59,60], Hop-

based [55–58], Random walk [61], Sampling and hop-based
[62,63]

Batch Index-based Graph reconstruction [65]
Temporal Single Index-based Graph reconstruction [66], Hop-based [67,68]

Heterogeneous Single Online Iteratively update path [69], Random walk [70]
Index-based Landmark and hop-based [71,72]

Probabilistic Single Online Sampling [73–75]
Index-based Compact structure [76], The tree index [77]

979

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
shortest path queries over simple graphs, location-based attributed graphs, temporal graphs, heterogeneous graphs, and
probability graphs.

4.2.1. Simple graphs
The shortest path query over simple graphs can be formulated as follows.

Problem 11 (Shortest Path Query over Simple Graphs). Given a graph G ¼ V ; Eð Þ with a vertex set V and an edge set E, where
each edge e ¼ u;vð Þ 2 E is associated with a weight (distance) e:w, a source vertex vs, and a target vertex v t , return the path
between vs and v t with the smallest total weights (distances).

For the shortest path queries over simple graphs, both online and index-based algorithms were developed. Some repre-
sentative work is introduced in the following.

Online algorithms. Dijkstra’s algorithm [78] is a famous method to find the shortest path by network traversal. Based on
Dijkstra’s algorithm, the A� algorithm [79] can obtain better query performance. It benefits from a heuristic function to com-
pute the priority of each vertex and reduces redundant paths. Likewise, in [80], Fredman et al. further improved Dijkstra’s
algorithm by using a Fibonacci heap (F-heap). However, it is not suitable for these algorithms to deal with large-scale graphs
since they produce too many redundant calculations on irrelevant vertices.

Index-based algorithms. The hop-based label has been used in many existing studies about the shortest path query
[81,82,158]. The main idea is to precompute a set of hop labels for each vertex [158]. In [81], Akiba et al. proposed an exact
method PLL for shortest path queries on large-scale networks. It executes a breadth-first search to recompute distance labels
for vertices, and adopts effective pruning strategies to improve the building efficiency. In addition, this method can also pro-
vide an extremely high query efficiency. In [84], Li et al. presented PSL which supports building the PLL index in parallel. In
addition, two effective pruning strategies are deployed to restrain the search space. Notice that both these two methods are
more suitable for small-world graphs. In [86], Li et al. further devised CT-Index which is more scalable than PSL. Specifically,
CT-Index adopts a core-decomposition to partition the data graph as the core part and the forest part. Then, it builds PSL and
the tree-index for the parts of core and forest, respectively.

In [83], Takuya et al. first proposed two kinds of dynamic indexing schemes for contemporary queries and historical
queries, respectively. Compared with other existing methods, these two methods can get exact query results and efficiently
handle dynamic graph updates. In [85], Takanori et al. combined an online bidirectional breadth-first search and offline
shortest-path trees (SPTs) to avoid full computation of prohibitively large data structures. In addition, the proposed SPTs
structure can also be updated accurately in dynamic graphs.

4.2.2. Attributed graphs
The attributed graphs involving path-related personalized queries mainly contain location-based graphs, temporal

graphs, heterogeneous graphs, and probability graphs.

� Location-based Graphs. In [94,3], the shortest path query over location-based graphs is researched, which can be formu-
lated as follows.

Problem 12 (Shortest Path Query over Location-based Graphs). Given a location-based graph G ¼ V ; Eð Þ with a vertex set V
and an edge set E, where each vertex represents a road junction and each edge represents a road segment associated with a
weight (length) e:w, a source vertex vs, and a target vertex v t , return the path from vs to v t that has the minimum sum of
edge weights (lengths).

The shortest path query over a location-based attributed graph is similar to that over simple graphs. The following online and
index-based algorithms were designed to process the shortest path query.
Online algorithms. The main idea of the online algorithms for the shortest path query is to utilize a cache to boost query
performance. In [94], Thomsen et al. proposed a global cache algorithm for batch shortest path queries over location-
based graphs. Here, the cache structure stores the path information with the most benefit. As introduced in [95], the global
cache algorithm in [94] has a low cache hit ratio. To address this issue, a cache refreshing algorithm was developed to
increase the cache hit ratio to a certain extent. However, due to the lack of a suitable scheduling scheme, it is still a major
challenge to achieve a high cache hit ratio. Recently, a query decomposition algorithm was designed by Li et al. [3] for the
purpose of further improving the cache hit ratio. In [3], a cache-based technique was adopted to avoid redundant computa-
tions. In particular, a given query set S; Tð Þ, where S is a source vertex set and T is a target vertex set, is divided into several
query subsets according to an angle threshold. Then, for each query qi ¼ si; tið Þ, if it cannot gain final results by only visiting
the paths stored in the cache, the A� algorithm is invoked to traverse all the vertices in a given graph.
Fig. 17 shows an example of the cache structure presented in [3]. For a path p1 ¼ v1;v2;v3;v4ð Þ, it is stored in inverted lists of
related vertices v1; v2;v3, and v4 as shown in Fig. 17(b). According to the inverted list in Fig. 17(b), the sub-graph depicted in
Fig. 17(c) is constructed again by combing all the paths in the path list shown in Fig. 17(a).
Index-based algorithms. In the index-based algorithms for the shortest path query, two famous indexes, G-tree and
hierarchy-based indexes, have been widely used.
980

Fig. 17. An Example of the Cache Structure [3].

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
In [93], Zhong et al. designed a balanced search tree, namely G-tree, to organize a road network which is recursively divided
into sub-networks. Here, each node of the G-tree represents a sub-network. Fig. 18 shows an example of the G-Tree. As
shown, there are border vertices v1 and v2 in G4. Likewise, G2 contains two border vertices v2 and v9.
The G-tree is an efficient index for boosting the query performance of the shortest path query in most cases. However, it has
no advantage for the shortest path query where source and target vertices are close in a road network but distant in the G-
Tree. To resolve this issue, Li et al. [88] presented a novel index, namely G�-tree, which can avoid redundant traversal costs
by adding shortcuts between leaf nodes. In the G�-tree, shortcuts are inserted between some leaf nodes. As shown in Fig. 19,
the basic structure of the G�-tree is similar to the G-tree [93]. From Fig. 19(b), there are two shortcuts in the G�-tree, one is
between G4 and G6, and the another is between G5 and G7. For a given query q v2;v3ð Þ, it can be accelerated by the shortcut
between G4 and G6.
Geisberger et al. [87] first proposed a hierarchy-based index, called contraction hierarchy (CH), to accelerate the shortest
path query. In CH, each vertex v is first assigned a specific order r vð Þ as the vertex hierarchy by some predefined criteria.
Then, for each vertex v, it visits all the neighbors N vð Þ of v and adds edges between neighbor pairs. In [4], Zhu et al. developed
an arterial hierarchy (AH) index that integrates spatial information into CH. Notice that CH and AH cannot be utilized to
effectively process the shortest path query when a source vertex s is far from a target vertex t.
In [90], Ouyang et al. proposed a shortcut-centric paradigm focusing on exploring a small number of shortcuts to maintain
the index of a dynamic road network. Given a road network G ¼ V ; E;/ð Þ, before constructing the shortcut index G0, the ver-
tices are ranked by their importance, and we obtain a total vertex order c. For each neighbor pair u;wð Þ of a given vertex v, a
new edge with a weight of / u; vð Þ þ / v;wð Þ is added if it satisfies (1) there is not an edge between u and v and (2) c uð Þ > c vð Þ
Fig. 18. An Example of the G-Tree [93].

Fig. 19. An Example of G�-Tree [88].

981

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
and c wð Þ > c vð Þ. If there is an edge between vertices u and v, its weight is set to min / u;wð Þ;/ u;vð Þ þ / v;wð Þf g. By this way,
G0 is transformed to a shortcut supporting graph (SS-Graph) G� which is a directed graph that contains two types of vertices,
including shortcut type vertices and supporting relation type vertices. Fig. 20 depicts an example of SS-Graph. Here, a short-
cut between v1 and v2 needs to be constructed since the topological order of v0 is the smallest among the three vertices.
Although avoiding extra computations when updating the weight values of edges in dynamic graphs on SS-Graphs, the topo-
logical order of vertices will seriously affect the number of shortcuts and the size of SS-Graph, which may cause a huge space
overhead. And it will also affect the performance of the algorithm.
Besides the above hierarchy-based indexes, Dian et al. [89] designed a hierarchical 2-hop index (H2H) that aims to achieve a
trade-off between space overhead and query performance. In H2H, each vertex in a given graph is assigned a specific order
according to a decomposition tree constructed by an improved tree decomposition algorithm [159]. For each vertex in the
graph, it stores the shortest paths for all the ancestor nodes as well as the positions of the vertices in the same tree node.
Although H2H is conducive to reducing the size of hop labels, the construction of a decomposition tree requires extra time
and space overhead. In addition, H2H cannot be used to deal with dynamic graphs since it is difficult to update the decom-
position tree.
Fig. 21(c) shows an example of the H2H index based on the decomposition tree in Fig. 21(b). For the vertex v7, the corre-
sponding node in the H2H index stores the shortest distances between itself and all its ancestor vertices v1;v2;v3;v4;v5,
and v7. In Fig. 21(c), a node of the decomposition tree stores a vertex and its neighbors. Because vertex v7 and its neighbors

v3 and v1 are at the 6th;4th and 5th levels of the decomposition tree, the node of v7 also contains this position information.
In [92], Wei et al. proposed the UE index for shortest path queries on dynamic road networks. In UE, the shortcut between
each two vertices in a valley path is constructed based on a specific ranking strategy. Here, for any two vertices u and v, the
path p u;vð Þ is a valley path if r wð Þ < min r uð Þ; r vð Þf g where w is a middle vertex. In addition, an improved bi-directional
query method is devised to enhance the query efficiency. Given a query vertex pair u;vð Þ, it expands upward edges
e u;wð Þ to r wð Þ > r uð Þ from the source vertex u. Similarly, downward edges e w;vð Þ where r wð Þ > r vð Þ are expanded from
the target vertex v. The query process can be early terminated when u and v both reach the same middle vertex.

� Temporal Graphs. In [98], the time-dependent shortest path query was researched.

Problem 13 (Time-dependent Shortest Path Query). Given a time-dependent graph (road network) G ¼ V ; E;Wð Þ, where V is a
vertex set and E is a directed edge set, each edge e 2 E is associated with a time-dependent weight function we, a source
vertex vs with a departure time t, and a target vertex v t , retrieve the exact fastest travel time from vs to v t and its associated
path.
Fig. 20. An Example of a Graph Transformation Process [90].

Fig. 21. An Example of the H2H Index [89].

982

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Recently, two index-based algorithms have been developed for the time-dependent shortest path query. Wang et al. [98]
proposed a new height-balanced tree-structured index, namely TD-G-tree, for fast processing shortest path queries over
temporal graphs. A hierarchical graph partitioning technique is utilized to divide a given temporal graph (road network) into
hierarchical partitions. In this way, a balanced tree is built, where the tree nodes correspond to different partitions and each
parent–child pair represents a partition and its sub-partitions. Then, time-dependent shortest paths are computed for border
vertices linking different partitions. Based on TD-G-tree, an effective algorithm is developed to compute the optimal solution
through dynamic programming and chronological divide-and-conquer techniques. Li et al. [97] proposed the time-
dependent hop labeling (THop) with partitioning graphs into sub-graphs. An online approximate and bottom-up compres-
sion techniques were introduced to further decrease the space overhead of this index, save construction time, and gain better
query efficiency. It combines a linear piecewise function and a 2-hop-based labeling scheme to solve the shortest path query
on the time-dependent graph.
In [100], Wu et al. investigated the problem of classic shortest path queries in temporal graphs. Then, the authors proposed
the one-pass algorithm and a graph transformation technique, respectively. In [99], Konstantinos et al. constructed an appro-
priate reachability index TimeReach. For each node u, it maintains a list of elements in time-dependent strongly connected
components (SCCs). It is conducive to efficiently get the query results when the two nodes are in the same SCC. For the query
that the two nodes belong to different SCCs, it is split into a series of sub-queries. The results of corresponding sub-queries
are combined to produce the answer for the query through an AND (OR) operator for conjunctive (disjunctive) queries.

� Heterogeneous Graphs. In [101], Zhang et al. focused on the shortest path query over heterogeneous graphs.

Problem 14 (Correlation Constrained Shortest Path Query). Given a multi-relation graph G V ; E;R; Fð Þ, where V is a vertex set, E
is an edge set, R is a set of allowable relations in G, and F : E! R for R#R and R–£ is a mapping function assigning each
edge e 2 E a subset of R, two vertices vs; v t 2 V , and a correlation constraint C, compute the shortest path pst from vs to v t

such that each vertex in pst satisfies the constraint C.
Zhang et al. [101] investigated a general approach to the shortest path query over heterogeneous graphs. The correlation
constraints including necessity and denial were taken into account. Additionally, the authors presented a vertex encoding
scheme, called hybrid relation encoding, which is a lightweight index that can efficiently reduce the search space. Based
on the hybrid relation encoding, the BFS algorithm and an efficient heuristic algorithm are extended to effectively process
the shortest path query under relevant constraints.

� Probability Graphs. In [102], Chen et al. studied the threshold-based shortest path query over probability graphs.
Problem 15 (Threshold-based Shortest Path Query over Probability Graphs). For a given probability graph G ¼ V ; Eð Þ consisting
of a vertex set V and an edge set E, where each edge is associated with a probability of existence, two vertices v s;v t 2 V , and a
probabilistic threshold s, compute paths between two vertices v s and v t with shortest path probabilities larger than the
threshold s. The shortest path probability of a path P is calculated as
Table 8
Classific

S

L

Te
Hete
Pro
SP Pð Þ ¼
X

Pr Gið Þ;

where Gi represents a possible world instance of the given graph G and P is the shortest path in Gi.
ation of Representative Solutions to Shortest Path Queries.

Graph Query Algorithm

Type Technique

imple Single Online Greedy [78–80]
Index-based Hop-based and Tree-based [86], Pruned hop-based [81–84], Shortest-path trees [85]

ocation Single Index-based G-Tree [93], Hierarchical [87,4], G�-Tree [88], Hierarchical and hop [89], Shortcuts
and hierarchical [90], Shortcuts [91,92]

Batch Index-based Cache refreshing [95], Global cache [94], Graph reconstruction [96], Task decompo-
sition and local cache [3]

mporal Single Index-based Condense graph[99], G-Tree Hop [97,98], Graph transform [100]
rogeneous Single Index-based Hierarchy [101]
babilistic Single Online Filter framework [103], Sampling [102]

983

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
In most uncertain graph models, edges are assumed to be independent. However, this assumption is invalid in numerous
applications. Inspired by this, Cheng et al. [102] proposed a new uncertain graph model that can effectively show some hid-
den relationships among edges sharing the same vertices. They devised several sampling approaches to compute approxi-
mate results of shortest path probabilities on the correlated uncertain graph.

4.2.3. Discussion
As shown in Table 8, we make a simple classification of some representative research on shortest path queries. In Table 8,

Single represents the shortest path query from a source vertex to a target vertex, and Batch represents the shortest path
query with many source vertices and target vertices. Similar to reachability queries, there are limited studies on batch short-
est path queries.

For shortest path queries, there are online algorithms and index-based algorithms. Online algorithms can process the
shortest path query on frequently updated graphs. However, they are not appropriate to process large graphs. To effectively
process the shortest path query over large-scale graphs, the index-based algorithms are better choices than online
algorithms.

5. Subgraph-related graph queries

In this section, we survey the studies about community searches (CS) [132], which belong to subgraph-related graph
queries. Specifically, for a graph G, CS retrieves connected cohesive subgraphs that contain given query vertices. CS is signif-
icant in real-life applications including advertising and viral marketing, content recommendation, and team building.

There are numerous common cohesive subgraph models, such as k-core [160], k-ECC [161], k-truss[162,163], and k-clique
[164]. In these cohesive subgraph models, the more cohesive the model is, the less inefficient the query is [6]. Considering
the cohesiveness, query efficiency, and popularity, we focus on community searches based on k-core and k-truss in this
paper. And more cohesive subgraph definitions can be found in [6]. In the following, we divide CS problems into two cate-
gories: CS over graphs without attributes which are called simple graphs; CS over attributed graphs, which include temporal
graphs, location-based graphs, keyword-based graphs, weight-based graphs, and heterogeneous graphs.

5.1. Preliminary

In this subsection, we introduce the basic concepts of k-core and k-truss.

Definition 7 (k-Core). Given a graph G and an integer k k P 0ð Þ, the k-core of G is defined as the largest subgraph of G, where
the degree of each vertex is not less than k.
Definition 8 (Core Number). Given a vertex v 2 V , the core number of v is the largest value of k such that the corresponding
k-core includes v.

Fig. 22 shows k-cores and the core number of each vertex in the graph. As illustrated, the 3-core of the given graph con-
sists of four vertices, including A, B, C, and D, and the 2-core contains five vertices that are A, B, C, D, and E. It is obvious that
3-core#2-core#1-core.

Different from k-core, k-truss is a cohesive subgraph based on triangles.

Definition 9 (Support). Given a graph G V ; Eð Þ, the support of an edge e 2 E, denoted by sup e;Gð Þ, is the number of triangles
containing e.
Fig. 22. An Example of a k-core.

984

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Definition 10 (Subgraph Trussness). Given a graph G V ; Eð Þ, the subgraph trussness of G0 2 G, denoted by s G0
� �

, is the largest
k k � 2ð Þ for all edges in G0 that satisfies sup e;Gð Þ 6 k� 2.
Definition 11 (Edge Trussness). Given a graph G V ; Eð Þ, the edge trussness of e 2 E, denoted by s eð Þ, is the maximum subgraph
trussness of G0, which must contain edge e.
Definition 12 (k-truss). The k-truss is the maximal subgraph of G such that it contains at least three vertices and every edge
is incident to at least k triangles, i.e., the support of each edge in k-truss is no less than k� 2.

Fig. 23 shows a 4-truss A;B;C;Df g and a 3-truss A;B;C;D; Ef g of the graph.

5.2. k-core-based community search

5.2.1. Simple graphs
Simple graphs include undirected graphs and directed graphs. We survey the research of k-core-based community

searches over undirected and directed graphs.

� Undirected Graphs. A graph G V ; Eð Þ is an undirected graph if all edges within G are undirected. On undirected graphs, we
focus on three CS-related problems that are size-unbounded CS [104], size-bounded CS [104], and the best k-core [165].
In [104], Sozio et al. investigated the size-unbounded CS problem over undirected graphs for the first time.

Problem 16 (Size-unbounded CS [104]). Given an undirected simple graph G V ; Eð Þ, a set of query vertices Q 	 V , and a
cohesive constraint, find a connected subgraph H VH; EHð Þ of G, such that Q #VH , and there is no other subgraph H0 of G
meeting the cohesive constraint and containing H.

To solve the size-unbounded CS problem, there are both online and index-based algorithms.
There are two online algorithms, Global [104] and Local [105], devised for the size-unbounded CS. Sozio et al. [104] pre-
sented a greedy algorithm, called Global, to search size-unbounded communities. The algorithm follows the framework in
[166] to iteratively compute cohesive subgraphs [167] by removing vertices that do not satisfy a cohesive constraint. In
[105], Cui et al. designed the Local algorithm which extends its neighbors incrementally to a community from the query ver-
tex until the current community is the best. Although Global and Local have the same time complexity, Local always achieves
higher efficiency in practice. This is because it dispenses with accessing the entire graph.
In [106], Barbieri et al. devised the ShellStruct index that organizes all k-shells of a given graph G into a tree. Specifically, the

ith layer of the tree contains the ith shell for 1 6 i 6 k. The space cost of ShellStruct is O nð Þ. The connected component tree can
also be stored in the suitable lowest-common-ancestor (LCA) data structure, which was introduced in [168].
As pointed out in [104], the CS problem of size-unbounded faces a limitation that the returned communities may be very
large. Consider that in many applications (including organizing a meeting), the number of participants cannot exceed the
predetermined size. As a result, communities with a bounded size are desirable, and the size-bounded CS problem was pre-
sented to compute communities with at most k vertices [104]. Some heuristic algorithms were proposed in [104] to improve
its query efficiency.
In [169], Li et al. researched the minimum k-core search problem whose goal is to compute the minimum k-core including
given query vertices.Definition 13 (Minimum k-core). Given a graph G ¼ V ; Eð Þ and a query set Q, the minimum k-core is the
k-core of G such that it contains all the vertices within Q and it has the minimum size.

The minimum k-core search problem was proven to be NP-hard. The heuristic algorithms for this problem are efficient but
they face two limitations, i.e., designing on the basis of scoring functions and having no guarantee of the query result.
Fig. 23. An Example of k-truss.

985

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Inspired by this, Li et al. [169] provided new lower and upper bounds of the optimal result and devised a progressive search
algorithm (PSA) that can achieve a good trade-off between the quality of the final result and query performance. Three lower
bounds were presented to effectively obtain the lower bound for the optimal result. In addition, an onion layer based upper
bound algorithm, namely L-Greedy, was developed based on the idea of expanding the partial subgraphs by adding the
promising vertices incrementally.
The common k-core-based community search, such as the minimum k-core search problem [169], requires to input k man-
ually. Obviously, without a guideline, it is difficult for users to specify an appropriate value of k. Inspired by this, Chu et al.
[165] introduced the concept of the best k-core.Definition 14 (Best k-core [165]). Given a graph G ¼ V ; Eð Þ, the best k-core of
G is defined as the k-core with the highest scores where 0 6 k 6 kmax and kmax is the maximum core number of vertexes in the
graph G.

Chu et al. [165] studied the problem of computing the highest score of k-core with two community scoring metrics, including
modularity and average degree, respectively. A direct method is to calculate the scores of all the possible k-cores and pick out
the k-core with the highest score. However, this method is inefficient for large-scale graphs. To alleviate this issue, a light-
weight vertex ranking method and a core forest were designed to incrementally calculate the scores. Specifically, the authors
proposed a vertex ranking strategy where the neighbor sets of vertices are arranged in ascending order. Then, a core forest is
adopted to organize all the k-cores for 0 6 k 6 kmax as trees; each tree represents a connected component in the graph. Based
on it, the proposed algorithm computes the scores of k-cores incrementally with k reducing from kmax to 0.

� Directed Graphs. For a direct graph G V ; Eð Þ with a vertex set V and an edge set E, let din vð Þ and dout vð Þ are the in-degree
and out-degree of a vertex v 2 V . Moreover, for a subgraph G0#G, its in-degree din G0

� �
and out-degree dout G0

� �
are denoted

as mindin vð Þ and mindout vð Þ for v 2 G0, respectively.
Problem 17 (Community Search on Directed Graph (CSD)). Given a directed graph G V ; Eð Þ, a query vertex q, and two nonneg-
ative integers k and l, obtain a connected subgraph Gq #G satisfying Gq contains the vertex q;8v 2 Gq; din Gq

� �
P k and

dout Gq
� �

P l, i.e., Gq is a D-core.
A straightforward method for CSD is to iteratively delete unqualified vertices that do not satisfy the D-core constraint

until all remaining vertices form a D-core. Similar to the Global algorithm in [104], the method requires O mþ nð Þ time,
and it is inefficient when processing large graphs. To further improve query performance, Fang et al. [107] developed an
index where a two-dimensional table is utilized to organize all the D-cores. Furthermore, the space cost of the index is
reduced dramatically based on the nested property of D-cores.

5.3. Attributed graphs

5.3.1. Temporal graphs
In [116], Li et al. first investigated the persistent community search problem on temporal graphs, which can be formu-

lated based on the following concepts.

Definition 15 (Maximal h; kð Þ-Persistent-Core Interval). For a given temporal graph G ¼ V ; Eð Þ and two nonnegative
parameters h and k, a time interval ts; te½ � with te � ts P h is a maximal h; kð Þ-persistent-core interval of G if it holds that
for each t 2 ts; te � h½ �, the projected graph of G in t; t þ h½ � is also a connected k-core subgraph and there is no other time
interval containing t; t þ h½ � and satisfying the above constraints.
Definition 16 (Core Persistence). Let T ¼ ts1 ; te1

 �

; :::; tsr ; ter½ �� 	
be the interval set corresponding to all the intervals of the

maximal h; kð Þ-persistent-core of G. F h; k;Gð Þ denotes the core persistence of Gwith parameters h and k. Specifically, core per-
sistence is the total length of all the maximal h; kð Þ-persistent core intervals of G minus r � 1ð Þh if and only if T is not empty.
Problem 18 (Persistent Community Search (PCS) Problem). For a given temporal graph G, three nonnegative parameters h; s,
and k, return an induced subgraph G0 of G where the core persistence of G0 is not less than s, and G0 is maximal.

In [116], the PCS problem was proven to be NP-hard. A temporal graph reduction approach was proposed to refine the
input graph. This approach adopts the meta-interval decomposition technique to decompose the entire time interval into
a set of meta-intervals, and then uses the meta-intervals to calculate and hold the degree of persistence of the vertices. Based
on the refined temporal graph, a branch and bound algorithm was developed by integrating some pruning rules.

5.3.2. Location-based graphs
There are many CS problems over geo-social networks, such as geo-social group queries with a minimum acquaintance

constraint [115], spatial-aware community searches [113], radius-bounded k-core searches [38], and skyline cohesive group
986

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
queries [170]. All these CS problems satisfy the k-core constraint. However, they meet different spatial constraints. In the
following, we introduce four CS queries and their related work.

� Spatial-aware Community Search. Two famous SACs are the minimum covering circle (MCC) search and the spatial-
aware community (SAC) search.

Problem 19 (Minimum Covering Circle (MCC) Search). Given a vertex set S where each vertex is associated with a location,
calculate the spatial circle that contains all the vertices in the given set S and is with the smallest radius.
Problem 20 (Spatial-aware Community (SAC) Search). For a given geo-social network G V ; Eð Þ, a query vertex q, and an integer
k, return a connected induced subgraph Gq of G such that it contains the query vertex q, the degree of each vertex within Gq is
not less than k, and MCC of the vertex set in Gq has the smallest radius.

In [171], the authors pointed out that three points on the boundary can determine a spatial circle. Accordingly, a basic exact
algorithm of the SAC search problem first computes a community and then finds a subset of the community that meets the
cohesive and spatial constraints. This algorithm requires O m � n3

� �
time. Obviously, for large-scale graphs, it is computation-

ally expensive. To address this problem, Fang et al. [113] proposed two approximation algorithms, namely AppInc and
AppAcc. AppInc takes the smallest circle centered on q as a feasible solution. Its approximation ratio is 2. Another approx-
imate algorithm, AppAcc, can achieve a ratio of 1þ �A where 0 < �A < 1. Moreover, this algorithm can identify and output
final results progressively, as introduced in [114].

� Radius-bounded k-core Search. In [38], the radius-bounded k-core search (RB-k-core search) was identified for the first
time.

Problem 21 (Radius-Bounded (RB) k-Core Search [38]). For a given geo-social network G V ; Eð Þ, a positive integer k, a radius r,
and a query vertex q 2 V , find all the connected subgraphs Gq of G containing q such that 8v 2 Gq; deg vð ÞP k, the radius of
MCC of Gq is less than r and there is no other subgraph G0q containing Gq.
For the RB k-core search problem, Wang et al. [38] designed three algorithms: TriV, BinV, and RotC. TriV contains three steps:
generating all the candidate circles containing q; checking the given radius bound; and computing the maximum k-core in
each candidate circle. The time complexity of TriV is O mn3

� �
. Then, the authors developed a binary-vertex-based algorithm

called BinV to reduce candidate circles. For each pair of vertices in G, BinV only generates a circle passing through a pair of
vertices with a radius of r. The RotC algorithm shares the computation of adjacent circles to improve query efficiency.

� Geo-social group queries. In [115], Zhu et al. formulated the geo-social group query with a minimum acquaintance
constraint.

Problem 22 (Geo-social Group Queries (GSGQ) with a Minimum Acquaintance Constraint). For a given geo-social network
G V ; Eð Þ with a positive integer k, a query vertex q 2 V , and a spatial constraint K, return a connected subgraph Gq #G
containing q such that 8v 2 Gq; deg vð ÞP k;Gq meets the constraint K, and there is no other subgraph G0q satisfying the same

constraints with Gq and Gq 	 G0q.
Zhu et al. [115] introduced three different spatial constraints: (1) a spatial rectangle containing Gq; (2) a circle with a center

vertex q and its radius is less than the kth nearest distance between q and vertices in Gq; and (3) a circle satisfying (2) and Gq

contains kþ 1 vertices.
To gain good query performance, the Social Aware R-tree (SAR tree) index was proposed in [115]. In particular, the index
integrates the spatial locations and social relationships between different vertices. To further reduce I/O cost, a SaR�-tree
was developed. Based on these two indexes, effective algorithms [115] were presented to solve GSGQs under different spatial
constraints.

� Skyline Cohesive Group Queries. Existing work on cohesive group queries over geo-social networks faces two limita-
tions, i.e., the lack of flexibility and the impracticality of spatial distance. Recently, Li et al. [170] investigated the skyline
cohesive group query in large road-social networks.
987

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Definition 17 (Road-social Group). Given a road-social network G ¼ Gr;Gsð Þ consisting of a road network Gr and a social net-
work Gs, a query vertex q, a meeting point set P, a distance threshold r, two non-negative parameters k and l, a subgraph C of
Gs is a road-social group if it satisfies the following two properties: (1) C is a k; lð Þ-core (k-core of size l) containing q; and (2)
there is at least a meeting point p 2 P such that the upper bound of the distances between p and each vertex v 2 C is not
longer than r.
Problem 23 (Skyline Cohesive Group Query). Given a road-social network G ¼ Gr ;Gsð Þ, return road-social skyline groups that
are not dominated by any other road-social group. Here, for two given road-social groups C1 and C2;C1 dominates C2 if C1 is
better than C2 in terms of the social and spatial cohesiveness, or C1 and C2 have the same core number, however, C1 is better
than C2 in terms of spatial cohesiveness.

To address the skyline cohesive group query, Li et al. [170] first devised efficient pruning strategies and proposed an exact
algorithm. Furthermore, a novel cd-tree was designed to organize the social and the distance information. Based on the
cd-tree, greedy algorithms were developed to gain better query performance.

5.3.3. Keyword-based graphs
The community search on keyword-based graphs has been extensively studied [109–112]. In the following, we introduce

attributed community queries on keyword-based graphs.

Problem 24 (Attributed Community Query (ACQ)). Given a keyword-based graph G V ; Eð Þ, a positive integer k, a query vertex
q 2 V , and a keyword set S#W qð Þ, compute an attributed community (AC) set of q. AC holds the following properties: (1) it is
a maximal connected induced subgraph of G containing the query vertex q; (2) the degree of each vertex is not less than k;
and (3) all the vertices in AC share the largest set of keywords in S.

A simple approach to ACQ was proposed by Fang et al. [111]. It first enumerates all nonempty subsets of S and checks
whether each subset is connected and contains q. The subgraphs with the most shared keywords are returned as the final
results. The method is time-consuming and impractical for large-scale graphs. In addition, a hierarchical structure index,
namely CL-tree, was proposed to organize vertices associated with different keyword sets. It builds an inverted list for each
vertex p. For each keyword e of the vertex p, the ID list of vertices that contains e is computed and maintained. To construct
the CL-tree, it requires O ma nð Þð Þ time and O lnð Þ space overhead, where l is the average size of W vð Þ over the vertex set V.
Fang et al. [110] also devised a maintenance algorithm for the CL-tree. By using the CL-tree to organize the graph, final
results can be obtained by identifying the k-core containing q with the largest keyword set.

Fig. 24 shows an example of the CL-tree. In node r2, the inverted list of keywords z contains E. For the node r3, the inverted
list of keywords y includes A, C, and D.

5.3.4. Weighted-based graphs
At present, there are two types of community searches on weighted graphs, namely single-dimensional influential CS and

multi-dimensional influential CS. In [6], the authors reviewed the single-dimensional influential CS. In this paper, we focus
on the multi-dimensional influential CS.

If each vertex corresponds to a set of multi-dimensional numerical vectors, the undirected graph is a multi-valued graph.
Li et al. [121] first defined the skyline community in multi-valued graphs.

Definition 18 (Domination). Let G1 and G2 be two induced subgraphs of G with influence values f G1ð Þ and f G2ð Þ,
respectively. If f G1ð ÞP f G2ð Þ for all dimensions and f i G1ð Þ > f i G2ð Þ for a dimension i, then G1 dominates G2, denoted as
G1
 G2.
Problem 25 (Skyline Community Search). Given a multi-valued graph G and an integer k, find all the skyline communities G0,
which are induced subgraphs, such that they are connected k-cores and are not dominated by any other connected k-core, or
connected k-cores containing G0 whose influences are equal to f G0

� �
.

Li et al. [121] focused community searches over the graphs where each vertex is associated with two-dimensional attri-
butes. They proposed the SkylineComm2D algorithm to process the skyline community search problem. It calculates the
maximum value of the f 1 dimension to obtain the skyline community with influence f 1; f 2ð Þ. Then, it refines constraints
to compute the maximal f 2. After obtaining f 2, it executes the above process until there is no k-core meeting the given con-
straints. The time complexity of SkylineComm2D is O s mþ nð Þð Þ and the space complexity of SkylineComm2D is O mþ nþ sð Þ
where m and n are the number of edges and vertices, respectively, and s is the number of 2D skyline communities.

In view of the higher-dimensional situation, a space-partition algorithm was proposed, which divides the irregular two-
dimensional space into several overlapping regular two-dimensional subspaces. The approach was then extended to a
higher-dimensional case. The time and space complexities of the 3D skyline community search algorithm are
O s2 mþ nð Þ� �

and O mþ nþ sð Þ, respectively.

988

Fig. 24. An Example of the CL-tree [111].

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
5.3.5. Heterogeneous graphs
In [136], Fang et al. investigated the problem of community search on large heterogeneous graphs. For a given heteroge-

neous graph and a query vertex q, it returns a community containing q such that all the vertices in this community are of the
same type as q as well as close relationships. The community search problem on heterogeneous graphs was presented based
on the following concepts.

Definition 19 (HIN (heterogeneous graph) Schema). Given an HIN G ¼ V ; Eð Þ, where V is a vertex set and E is an edge set,
mappings w : V !A and / : E! R are from V to a vertex type set A, and from E to an edge type set R, respectively. The
schema of G denoted by TG is a directed graph over A and R, i.e., TG ¼ A;Rð Þ.
Definition 20 (Meta Path). For an HIN schema TG ¼ A;Rð Þ, a meta-path P of length l is defined as A1!R1
A2!R2

. . .!Rl
Alþ1,

where Ai 2A and Ri 2 R for 1 6 i 6 l.
Let P be a meta-path linking two vertices of the target type and the P-neighbors for a given vertex v are all vertices which

can form the P meta-path with v. Given a vertex v and a vertex set S where each vertex is of the target type, Fang et al. [136]
defined basic-degree (b-degree) a v ; Sð Þ as the number of P neighbors of v within the set S. Based on b-degree, they formu-
lated three k; Pð Þ-core models, that is, basic (k; P)-core, edge-disjoint (k; P)-core, and vertex-disjoint (k; P)-core.

The community search over HINs can be formulated as follows.

Problem 26 (Community Search over HINs). Given an HIN G, a query vertex q, a symmetric meta-path P, an integer k k > 0ð Þ,
and a specific k; Pð Þ-core model, return the k; Pð Þ-core containing q.

Fang et al. [136] designed a basic algorithm to calculate basic k; Pð Þ-cores. This algorithm constructs an induced homoge-
neous graph GP , and then returns the connected k-core containing q from GP . To speed up the search procedure, the authors
further developed a batch search strategy and two labeling strategies. For edge-disjoint k; Pð Þ-cores, two efficient query algo-
rithms were devised by peeling vertices progressively and pruning vertices in a batch manner. These approaches can also be
adjusted to compute vertex-disjoint k; Pð Þ-cores. Finally, to further improve query efficiency, meaningful meta-path cores are
precomputed and organized as a compact index, namely CoreIndex.

5.4. k-truss-based community search

In this section, we introduce the related work about k-truss-based community search over simple and attributed graphs,
respectively.

5.4.1. Simple graphs
In this subsection, triangle-connected truss community and closest truss community searches over simple graphs are

reviewed, respectively.
Triangle-connected Truss Community. For an undirected graph G V ; Eð Þ, Huang et al. [122] proposed a problem of

triangle-connected k-truss community search with the goal of computing the communities containing a specified query ver-
tex. The authors also proposed the notion of triangle connectivity in [122]. Two triangles are adjacent if and only if they have
a common edge. For two given edges e1; e2 2 E, they are triangle-connected if they belong to the same triangle, or can be
reached by a series of adjacent triangles.

Based on the triangle connectivity, the triangle-connected truss community (TTC) search is defined as follows.

Problem 27 (TTC Search). Given an undirected graph G V ; Eð Þ, a query vertex q 2 V , and an integer k P 2, retrieve subgraphs
H#G which satisfy the following properties:
989

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
1. H contains the query vertex q such that 8e 2 E Hð Þ; sup e;Hð ÞP k� 2ð Þ;
2. 8e1; e2 2 E Hð Þ; e1 and e2 are triangle-connected;
3. There is no other subgraph H0 of G that contains H and satisfies the above properties.

For the graph in Fig. 25(a) with a query vertex q and k ¼ 5, there are 2 triangle-connected 5-truss communities containing
the vertex q as shown in Fig. 25(b).

An online approach [122] and two index-based approaches, namely TCP-index [122] and EquiTruss [123], were proposed
to solve the TTC search problem. Huang et al. [122] proposed an online approach to search TTC for G. It firstly computes the
trussness of all edges in G by truss decomposition [172]. Then it searches the incident edges of the query vertex q and checks
the edges with trussness not less than k to obtain triangle-connected truss communities. The online algorithm computes TTC
in a BFS manner and iterates until all incident edges of q have been processed. Finally, k-truss communities which include
the query vertex q are obtained. However, this algorithm is inefficient because it will produce a lot of redundant edge
accesses when detecting unqualified edges. Meanwhile, Huang et al. [122] also presented a triangle connectivity-
preserving index, namely TCP-index, to improve the query efficiency. For each vertex in G, the truss number and triangle
adjacency relationship are stored in a compact tree-shape index. For each edge, it needs to access the index twice [122].
The query time is linear to the size of the community, which is optimal. The time complexity of TCP-index construction

is O
P

u;vð Þ2E mindegG uð Þ; degG vð Þ
� �

) and space complexity is O mð Þ.
Fig. 26 illustrates the TCP-index of the graph G in Fig. 25(a). When querying 5-truss communities, it retrieves two vertex

sets of 5-truss edges, that are, x1; x2; x3; x4f g and s1; s2; s3; s4f g.
In [123], Akbas and Zhao proposed k-truss equivalence to further improve the query efficiency. The k-truss equivalence

can be used to represent both the triangle connectivity and k-truss cohesiveness in the triangle-connected truss community.
Specifically, given two edges e1; e2 2 E; e1 and e2 are k-truss equivalence, if and only if (1) s e1ð Þ ¼ s e2ð Þ ¼ k, and (2) e1 and e2
are triangle-connected in a k-truss. Accordingly, edges in a given graph G can be divided into mutually exclusive equivalence
classes, each of which represents a TTC. As a result, it can directly find the triangle-connected communities containing the
vertex q on EquiTruss without accessing the graph G. Fig. 27 shows the EquiTruss index of the graph in Fig. 25(a). Different
from TCP-index, the truss community query based on EquiTruss-index is more efficient because it only needs to visit each
edge once [123].

Closest Truss Community. For a query vertex q, the TTC model can find all overlapping communities. However, because
of the strict constraint of triangle connectivity, TTC may fail to search communities for multiple query vertices. To address
this issue, Huang et al. [124] presented the problem of the closest truss community (CTC) search.

Problem 28 (CTC Search). Given an undirected simple graph G V ; Eð Þ and a query vertex set Q 2 V , compute a subgraph H#G
which satisfies the following properties:
1. H is a connected k-truss and contains query vertices within Q, i.e., Q #H;8e 2 E Hð Þ; sup e;Hð ÞP k� 2ð Þ;
2. H is a subgraph with the smallest diameter among all subgraphs satisfying Property 1.

As shown in Fig. 28(a), the subgraph in the region shaded gray is a 4-truss containing the query vertex set Q ¼ q1; q2; q3f g
with diameter 4. Fig. 28(b) shows a 4-truss containing Q with a diameter 3.
Fig. 25. The TTC Search k ¼ 5ð Þ.

990

Fig. 26. TCP-index Tq for Vertex q of G in Fig. 25(a).

Fig. 27. EquiTruss Index of G in Fig. 25(a).

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Huang et al. [124] proved that the problem of finding a k-truss with the minimum diameter is NP-hard. It is difficult to
obtain a solution with an approximation ratio of less than 2 since it is closely related to the minimum diameter. In [124], the
authors also proposed the method which first finds a maximal connected k-truss containing given query vertices with the
largest trussness. Then it iteratively removes the vertex farthest from the query vertices and maintains the trussness. To fur-
ther improve the efficiency of the CTC search, Huang et al. proposed two optimization strategies, namely bulk deletion and
local exploration, respectively. The bulk deletion is a greedy strategy to achieve quick termination at the expense of the accu-
racy of results. It accelerates the pruning process by removing at least k vertices in batches. Besides, local exploration is a
heuristic strategy to obtain the closest truss community from the local neighborhoods of query vertices.

5.4.2. Keyword-based attributed graphs
To find the communities which consist of vertices with similar attributes and contain given query vertices, Huang and

Lakshmanan [125] investigated an attribute-driven truss community (ATC) search based on k; dð Þ-truss and an attribute
score function. A k; dð Þ-truss is a subgraph H of G where each edge is contained by at least k� 2 triangles. Besides, the com-
munication cost between the vertices of H and query vertices is no greater than d.

Problem 29 (ATC Search). Given a graph G, a query Q ¼ Vq;Wq
� �

, and two parameters k and d, retrieve an attributed truss
community (ATC) H that satisfies the following properties:

1. H is a k; dð Þ-truss containing query vertices Vq;
Fig. 28. The CTC Search.

991

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
2. H owns the maximum attribute score f H;Wq
� �

among the subgraphs satisfying Property 1.

Here, the attribute score of the community H is denoted by Wq. The score function is f H;Wqð Þ ¼P
w2Wq

score H;wð Þ2
jV Hð Þj , where

score H;wð Þ ¼ jVw \ V Hð Þj is the number of vertices covering the query attribute w.
Fig. 29(a) shows a keyword-based attributed graph G. Given a query vertex set Vq ¼ q1; q2f g and a query attribute set

Wq = {‘DB’, ‘DM’}, H is a k; dð Þ-truss for Vq in G with k ¼ 4 and d ¼ 2 as depicted in Fig. 29(b).
The ATC search is proven to be NP-hard. To help efficiently processing of the ATC search, Huang et al. [125] presented a

greedy framework and proposed an algorithm for ATC in a top-down manner. The algorithm first finds the maximal k; dð Þ-
truss of G, then it prunes vertices with the smallest ‘‘attribute marginal gain” from the k; dð Þ-truss and ensures the remaining
nodes meet the k; dð Þ-truss constraints. At last, it returns the k; dð Þ-truss with the maximum attribute score among all max-
imal k; dð Þ-trusses as the final result. To further boost the query efficiency, Huang et al. [125] presented a novel index, namely
attributed truss index (ATindex). This index maintains structural trussness and attribute trussness at the same time. In addi-
tion, a local exploration strategy is proposed for efficiently computing a small neighborhood subgraph around the query
vertices.

5.4.3. Weighted graphs
Zheng et al. [126] proposed a weighted truss community (WTC) model which aims to search k-truss communities over

edge-weighted graphs.

Definition 21 (Weighted Truss Community). Given an undirected weighted graph G ¼ V ; E;Wð Þ and an integer k, a weighted
k-truss community is an induced subgraph H#G such that the following properties hold:
1. 8e1; e2 2 E Hð Þ; e1 and e2 are triangle connected in H;
2. 8e 2 E Hð Þ; supH eð ÞP k� 2;
3. There is no other subgraph H0 of G that H#H0 and H0 satisfies the above properties.
Problem 30 (WTC Search). Given an undirected weighted graph G V ; E;Wð Þ, parameters k and r, return r weighted k-truss
communities H with the largest weights w Hð Þ. Here, the community weight of H is w Hð Þ ¼ mine2E Hð Þw eð Þ.

Fig. 30 shows a weighted graph G with k ¼ 5 and r ¼ 1. The 5-truss community C1 has the largest weight x C1ð Þ ¼ 0:8.
Therefore, C1 is returned as the result of WTC.

A straightforward approach to find r communities with the largest community weights is to enumerate all weighted k-
truss communities. However, it is time-consuming, especially in large graphs. To improve the query efficiency, Zheng et al.
[126] proposed an index structure, namely KEP-Index, which organizes all the communities in a given graph G as a tree-
shaped structure. All the weighted k-truss communities form a partial order relationship. As a result, the query time of
WTC based on the KEP-index is linear to the size of the results.
Fig. 29. An Example of the ATC Search.

992

Fig. 30. An Example of the WTC Search.

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
5.5. Discussion

Tables 9 and 10 show the related work on k-core-based and k-truss-based community searches over different types of
graphs, respectively. Different from point-related and path-related personalized graph queries, there are abundant studies
about the CS problem, one of the most famous subgraph-related personalized graph queries, over various attributed graphs.
Most of these CS problems were proposed based on the k-core model, while the research on k-truss-based CS is relatively
less.
Table 9
Classification of k-core-based Community Search.

Graph Problem Algorithm

Type Technique

Simple Size-unbounded CS Index-based ShellStruct index [106]
Online Greedy algorithm [104], Local [105]

Size-unbounded CS Online Heuristic algorithms [104]
Minimum k-core Online Progressive search algorithm and L-Greedy [169]
The best k-core Online Vertex rank and core forest [165]
D-core CS Index-based NestIdx index [107], PathIdx index [107], and UnionIdx index [107]
Persistent CS Online Prune-and-search approach [116]

Location-based Spatial-aware CS Online AppInc [113] and AppAcc [113]
RB-k-core CS Online TriV [38], and RotC [38]
Geo-social CS Index-based Social-aware Rtree [115]
Skyline Cohesive GQ Index-based Cd-tree [170]

Keyword-based Attributed CS Index-based CL-tree [111]
Weighted-based Skyline CS Online SkylineComm2D [121]]
HINs k; Pð Þ-core CS Index-based CoreIndex [136]

Table 10
Classification of k-truss-based Community Search.

Graph Problem Algorithm

Type Technique

Simple Triangle-connected Truss CS Index-based EquiTruss index [123], TCP-index [122]
Online Online search [122]

Closest Truss CS Online Bulk deletion and local exploration, Greedy algorithm [124]
Keyword-based Attribute-driven truss CS Online Greedy framework [125]
Weighted-based Weighted truss CS Index-based KEP-Index [126]

993

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
As shown in Tables 9 and 10, the algorithms for solving the CS problems are divided into two categories: index-based
algorithms and online algorithms. According to the nested property of k-core and k-truss, many index-based algorithms
were proposed where all the communities are organized as a tree structure. Unlike index-based algorithms, most online
algorithms first calculate a maximal cohesive subgraph and then prune unqualified vertices which do not satisfy the con-
straints. In addition, there are also online algorithms that filter the vertices unsatisfying the attribute constraints and then
verify whether the remaining vertices constitute a cohesive subgraph. Compared to online algorithms, index-based algo-
rithms require less query time. In contrast, online algorithms have an obvious advantage in terms of space overhead.
6. Future work

In this section, we discuss the challenges faced by personalized graph queries and propose a list of interesting future
directions.
6.1. Personalized graph queries for new application scenarios

In many real-life applications, new types of graphs, including heterogeneous graphs, multilevel graphs, and signed
graphs, attract increasing attention. Although there are colorful works about personalized graph queries, there is very little
research on the corresponding queries over the aforementioned graphs. Take the similarity query as an example. At present,
it also lacks an efficient similarity model for the similarity query over heterogeneous graphs, multilevel graphs, or signed
graphs. Additionally, there are also many applications whose requirements cannot be satisfied by one type of personalized
graph query. When organizing a dinner, it may need to find a group of users that have a close social relationship and at least
one favorite POI. Consequently, it is imperative to research personalized graph queries over these new types of graphs.
Related research outcomes are significant for meeting the requirements of users in many new real-life applications.

There are also some personalized graph hybrid graph queries, such as skyline cohesive group query [38] and k; rð Þ-core-
based community search [135], that are proposed to satisfy complex application requirements of users. The skyline cohesive
group query proposed in [38] has a close relationship with both the path-related and subgraph-related graph query. Consider
the k; rð Þ-core-based community search in [135]. It combines the point-related and subgraph-related graph query. With the
rapid development of society, the preferences of users will be more complex and diversified. Accordingly, new hybrid per-
sonalized graph queries need to be investigated to meet these complex requirements.
6.2. User-friendly personalized graph queries

In most personalized graph queries, the query results depend on the important input parameters specified by users. In
general, different parameters bring different query results. For instance, in the k-truss-based community search, there is
no solution that could help users specify the parameter k instead of manual selection. It is a major challenge for users to
provide appropriate parameters without guidelines.

In [6], Fang et al. suggested that the values of parameters can be computed automatically on the basis of historical query
logs. Moreover, the crowdsourcing platform can also be utilized to facilitate query suggestions about parameters. In addition
to the aforementioned directions, another direction is identifying new personalized graph queries that are parameter-free
and studying interactive personalized graph queries. For example, Lin et al. [165] presented the best k-core with the goal
of computing the k-core with the highest scores.
6.3. Why-not personalized graph queries

In practice, users always gain unexpected results without appropriate parameters. Inspired by this, why-not problems
have received considerable attention because they help users explore the reason for obtaining unexpected results and pro-
vide suggestions for users to obtain their expected results. According to a designed loss function and user requirements, the
main idea is to automatically adjust the query point or specify parameters. For example, in [173], the why-not subgraph
matching problem adjusts the query subgraph until the expected results are obtained. The why-not problem is useful to
improve the quality and usability of database systems. There have been some related studies in data management [174–
176]. However, the research of why-not personalized graph queries is still in the early stage.
6.4. Personalized graph queries with size constraints

Some personalized graph queries face the challenge of a prohibitively larger number of query results. Accordingly, it is
difficult for users to make a final decision from so many results manually.

To address this issue, it is an effective direction to research personalized graph queries with size constraints. In addition, it
is better to offer users various choices to meet their distinct requirements. For example, we can investigate the top k sim-
ilarity query that aims to return the best k results with the largest difference.
994

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
Most of the existing algorithms for personalized graph queries cannot obtain any result before completing the calculation
of the entire result set. In addition to new personalized graph queries that can return a controllable size of results, another
direction is to devise progressive algorithms for corresponding queries. As a result, users can gain query results progres-
sively, and they can stop the query in a timely manner when enough results are returned.
6.5. Distributed approaches to personalized graph queries

The existing approaches to personalized graph queries are mainly in-memory algorithms. They are based on the assump-
tion that the memory of a single machine is large enough to store a given graph. With the explosive growth in the size of
graphs, this assumption is invalid in most cases. For example, a well-known social network data set Friendster consists of
65,608,366 vertices and 1,806,067,135 edges. A single machine cannot meet the memory requirement of personalized graph
queries over such a big data set.

To address this concern, it is urgent to research these queries over distributed environments and propose effective dis-
tributed algorithms. To reduce communication costs, effective graph partition and pruning strategies are necessary. In addi-
tion, index techniques can also be introduced to boost query performance.
6.6. High-performance approaches to personalized graph queries

Numerous personalized graph queries have been proved to be NP-hard. In most cases, we cannot obtain exact results in a
reasonable time. As a result, many approximate approaches are presented to trade off some accuracy for efficiency. However,
over large-scale graphs, these approximate approaches may also have performance bottlenecks.

Recently, the technology of general-purpose graphics processing units (GPGPU) has made considerable progress and
development. GPU has attracted many researchers for its features of massive parallelism and highmemory access bandwidth
[177]. It has played an important role in accelerating various graph queries. To address the performance problem of person-
alized graph queries, especially over large graphs, one direction is to investigate these queries in a heterogeneous environ-
ment and exert the advantages of GPUs which is a high degree of parallelism.
6.7. Graph neural networks for personalized queries

Graph neural networks (GNN), based on deep learning technologies for graphing structured data, have achieved superior
performance across various graph-based tasks, such as computer vision, natural language processing and recommendation
systems [178]. Recently, researchers have investigated solving various graph query tasks with GNNs [179–183]. Graph
embedding is able to embed vertices into low-dimensional space while reserving the graph topology information. In this
latent space, it is empirical to provide fast graph similarity computations [181] and conduct similarity search based on prox-
imity embedding [179,180]. ICS-GNN [183] proposed a community search method based on GNN to locate the target com-
munity over a subgraph collected on the fly from an online network. It is more flexible and lightweight than the traditional
rule-based methods. [184] utilizes GNN to detect communities with overlapping.

Although these works have demonstrated the effectiveness of GNNs for graph query tasks, it still remains a big challenge
to learn the rich attribute information such as time, location and so on through GNNs for personalized query tasks in practise.
6.8. Graph query languages and personalized queries

Graph query languages use special declarative languages to support high-level interfaces to query the graphs [133].
Recently there are some basic graph query languages that are proposed [185–188] and are developing. These graph query
languages can be categorized into two kinds, i.e., RDF graph model-based (SPARQL [188]) and property graph model based
(PGQL [185], Cyper [186], and G-core [187]). The property graph model-based graph query languages can support the def-
inition of attributed graphs in the personalized graph queries, while the RDF is not straight weight suitable [189]. However,
there is no standard graph query language for property graph query right now, unlike the SPARQL for the RDF-based graph
model.

Therefore, there are opportunities for graph query languages due to the complexity of personalized graph queries. For
example, the supporting queries can support a lot of path-related queries, but there are no languages that can tackle the sim-
ilar queries and the community queries mentioned in this paper. To deal with these graph queries, more utility syntax and
operators should be designed while considering the scalability for more complex queries. The research of personalized graph
queries not only gives inspiration to graph query languages to design suitable operators and syntax to support these queries,
but also comprised the foundation solving methods for graph query languages. Almost all of the existing graph query lan-
guages use path-match as the essential technique for many graph queries, then the methods proposed for path-related graph
queries in this survey can be taken into account as the basic method in the graph query language engines.
995

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
7. Conclusion

In this paper, we conduct a comprehensive survey on personalized graph queries, whose goal is to compute personalized
query results for users on the basis of their personalized preferences in terms of specified query vertices, structures, and
attributes. We focus on the latest research on personalized graph queries, as well as some classic studies. These researches
are classified into three categories: point-related, path-related, and subgraph-related graph queries for the first time. After
analyzing the state-of-the-art approaches to these personalized graph queries, we discuss the challenges they face and also
point out a list of future directions as guidelines for researchers.

CRediT authorship contribution statement

Peiying Lin: Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft, Writing – review &
editing. Yangfan Li: Investigation, Writing – original draft. Wensheng Luo: Investigation, Writing – original draft. Xu Zhou:
Investigation, Writing – original draft. Kenli Li: Writing – review & editing, Resources. Keqin Li: Writing – review & editing,
Resources.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The research was supported by China Scholarship Council, the NSFC (Grant Nos. 61802032, 61772182, 61772088), the
Hunan Province Key Laboratory of Industrial Internet Technology and Security (2019TP1011), the Key Area Research Pro-
gram of Hunan (2019GK2091), and the Emergency Special Project of NSFC (Grant No. 61751204).

References

[1] Z. Du, J. Tang, Y. Ding, Polar++: Active one-shot personalized article recommendation, IEEE Trans. Knowl. Data Eng. (2019) 1.
[2] M. Sarwat, R. Moraffah, M.F. Mokbel, J.L. Avery, Database system support for personalized recommendation applications, ICDE (2017) 1320–1331,

https://doi.org/10.1109/ICDE.2017.174.
[3] L. Li, M. Zhang, W. Hua, X. Zhou, Fast query decomposition for batch shortest path processing in road networks, in: 36th IEEE International Conference

on Data Engineering (ICDE’20), IEEE, 2020, pp. 1189–1200.
[4] A.D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, S. Zhou, Shortest path and distance queries on road networks: towards bridging theory and practice, in:

Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, ACM, 2013, pp. 857–868.
[5] V.J. Wei, R.C.-W. Wong, C. Long, Architecture-intact oracle for fastest path and time queries on dynamic spatial networks, in: Proceedings of the 2020

ACM SIGMOD International Conference on Management of Data, 2020, pp. 1841–1856.
[6] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, X. Lin, A survey of community search over big graphs, VLDB J. 29 (1) (2020) 353–392.
[7] G. Jeh, J. Widom, Simrank: a measure of structural-context similarity, in: Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, 2002, pp. 538–543.
[8] D. Fogaras, B. Rácz, Scaling link-based similarity search, in: Proceedings of the 14th international conference on World Wide Web (WWW’05), 2005,

pp. 641–650.
[9] P. Zhao, J. Han, Y. Sun, P-rank: a comprehensive structural similarity measure over information networks, in: Proceedings of the 18th ACM Conference

on Information and Knowledge Management (CIKM’09), ACM, 2009, pp. 553–562.
[10] G. He, H. Feng, C. Li, H. Chen, Parallel simrank computation on large graphs with iterative aggregation, in: Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, 2010, pp. 543–552.
[11] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, T. Wu, Fast computation of simrank for static and dynamic information networks, in: 13th International

Conference on Extending Database Technology (EDBT’10), Vol. 426, ACM, 2010, pp. 465–476..
[12] L. Sun, C. Cheng, X. Li, D. Cheung, J. Han, On link-based similarity join, PVLDB 4 (11) (2011) 714–725.
[13] L. Cao, B. Cho, H.D. Kim, Z. Li, M.-H. Tsai, I. Gupta, Delta-simrank computing on mapreduce, in: Proceedings of the 1st international workshop on big

data, streams and heterogeneous source mining: Algorithms, systems, programming models and applications, ACM, 2012, pp. 28–35..
[14] P. Lee, L.V. Lakshmanan, J.X. Yu, On top-k structural similarity search, in: IEEE 28th International Conference on Data Engineering (ICDE’12), IEEE,

2012, pp. 774–785.
[15] W. Yu, W. Zhang, X. Lin, Q. Zhang, J. Le, A space and time efficient algorithm for simrank computation, World Wide Web 15 (3) (2012) 327–353.
[16] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, M. Onizuka, Efficient search algorithm for simrank, in: 29th IEEE International Conference on Data Engineering

(ICDE’13), IEEE, 2013, pp. 589–600.
[17] W. Yu, X. Lin, W. Zhang, Towards efficient simrank computation on large networks, in: 29th IEEE International Conference on Data Engineering

(ICDE’13), 2013, pp. 601–612.
[18] J. He, H. Liu, J.X. Yu, P. Li, W. He, X. Du, Assessing single-pair similarity over graphs by aggregating first-meeting probabilities, Inf. Syst. 42 (2014) 107–

122.
[19] W. Yu, X. Lin, W. Zhang, J.A. McCann, Fast all-pairs simrank assessment on large graphs and bipartite domains, IEEE Trans. Knowl. Data Eng. 27 (7)

(2014) 1810–1823.
[20] T. Maehara, M. Kusumoto, K.-I. Kawarabayashi, Efficient simrank computation via linearization, arXiv preprint arXiv:1411.7228 (2014)..
[21] M. Kusumoto, T. Maehara, K.-I. Kawarabayashi, Scalable similarity search for simrank, in: Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data, ACM, 2014, pp. 325–336.
[22] W. Tao, G. Li, Efficient top-k simrank-based similarity join, in: International Conference on Management of Data, SIGMOD 2014, ACM, 2014, pp. 1603–

1604..
[23] H.-H. Chen, C.L. Giles, Ascos++ an asymmetric similarity measure for weighted networks to address the problem of simrank, ACM Trans. Knowl.

Discovery Data 10 (2) (2015) 1–26.
996

http://refhub.elsevier.com/S0020-0255(22)00605-3/h0005
https://doi.org/10.1109/ICDE.2017.174
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0015
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0015
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0015
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0020
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0020
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0020
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0025
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0025
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0025
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0030
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0035
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0035
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0035
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0040
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0040
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0040
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0045
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0045
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0045
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0050
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0050
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0050
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0060
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0070
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0070
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0070
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0075
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0080
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0080
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0080
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0085
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0085
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0085
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0090
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0090
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0095
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0095
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0105
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0105
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0105
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0115
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0115

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
[24] Z. Li, Y. Fang, Q. Liu, J. Cheng, R. Cheng, J. Lui, Walking in the cloud: Parallel simrank at scale, PVLDB 9 (1) (2015) 24–35.
[25] Y. Shao, B. Cui, L. Chen, M. Liu, X. Xie, An efficient similarity search framework for simrank over large dynamic graphs, PVLDB 8 (8) (2015) 838–849.
[26] W. Yu, J.A. McCann, High quality graph-based similarity search, in: Proceedings of the 38th International ACM SIGIR Conference on Research and

Development in Information Retrieval, ACM, 2015, pp. 83–92.
[27] W. Yu, J.A. McCann, Efficient partial-pairs simrank search on large networks, PVLDB 8 (5) (2015) 569–580.
[28] T. Maehara, M. Kusumoto, K.-I. Kawarabayashi, Scalable simrank join algorithm, in: 31st IEEE International Conference on Data Engineering (ICDE’15),

IEEE, 2015, pp. 603–614.
[29] M. Zhang, H. Hu, Z. He, L. Gao, L. Sun, Efficient link-based similarity search in web networks, Expert Syst. Appl. 42 (22) (2015) 8868–8880.
[30] B. Tian, X. Xiao, Sling: A near-optimal index structure for simrank, in: Proceedings of the 2016 International Conference on Management of Data,

SIGMOD Conference 2016, ACM, 2016, pp. 1859–1874.
[31] S.-H. Yoon, S.-W. Kim, S. Park, C-rank: A link-based similarity measure for scientific literature databases, Inf. Sci. 326 (2016) 25–40.
[32] M. Jiang, A.W.-C. Fu, R.C.-W. Wong, Reads: a random walk approach for efficient and accurate dynamic simrank, PVLDB 10 (9) (2017) 937–948.
[33] R. Li, X. Zhao, H. Shang, Y. Chen, W. Xiao, Fast top-k similarity join for simrank, Inf. Sci. 381 (2017) 1–19.
[34] Y. Liu, B. Zheng, X. He, Z. Wei, X. Xiao, K. Zheng, J. Lu, Probesim: scalable single-source and top-k simrank computations on dynamic graphs, PVLDB 11

(1) (2017) 14–26.
[35] W. Zheng, L. Zou, L. Chen, D. Zhao, Efficient simrank-based similarity join, ACM Transactions on Database Systems (TODS) 42 (3) (2017) 1–37.
[36] W. Yu, X. Lin, W. Zhang, J.A. McCann, Dynamical simrank search on time-varying networks, VLDB J. 27 (1) (2018) 79–104.
[37] X. Huang, X. Gao, J. Tang, G. Wu, A parallel method for all-pair simrank similarity computation, Algorithms and Architectures for Parallel Processing –

18th International Conference (ICA3PP’18), vol. 11334, Springer, 2018, pp. 593–607.
[38] K. Wang, X. Cao, X. Lin, W. Zhang, L. Qin, Efficient computing of radius-bounded k-cores, in: 34th IEEE International Conference on Data Engineering

(ICDE’18), IEEE, 2018, pp. 233–244.
[39] Z. Wei, X. He, X. Xiao, S. Wang, Y. Liu, X. Du, J.-R. Wen, Prsim: Sublinear time simrank computation on large power-law graphs, in: Proceedings of the

2019 International Conference on Management of Data, SIGMOD Conference 2019, ACM, 2019, pp. 1042–1059.
[40] Y. Wang, L. Chen, Y. Che, Q. Luo, Accelerating pairwise simrank estimation over static and dynamic graphs, VLDB J. 28 (1) (2019) 99–122.
[41] Y. Wang, Z. Feng, L. Chen, Z. Li, X. Jian, Q. Luo, Efficient similarity search for sets over graphs, IEEE Trans. Knowl. Data Eng. (2019).
[42] W. Yu, X. Lin, W. Zhang, J. Pei, J.A. McCann, Simrank*: effective and scalable pairwise similarity search based on graph topology, VLDB J. 28 (3) (2019)

401–426.
[43] H. Wang, Z. Wei, Y. Yuan, X. Du, J.-R. Wen, Exact single-source simrank computation on large graphs, in: Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, 2020, pp. 653–663.
[44] M. Li, F.M. Choudhury, R. Borovica-Gajic, Z. Wang, J. Xin, J. Li, Crashsim: An efficient algorithm for computing simrank over static and temporal graphs,

in: 2020 IEEE 36th International Conference on Data Engineering (ICDE), IEEE, 2020, pp. 1141–1152.
[45] Y. Liu, L. Zou, Q. Ge, Z. Wei, Simtab: accuracy-guaranteed simrank queries through tighter confidence bounds and multi-armed bandits, Proceedings of

the VLDB Endowment 13 (12) (2020) 2202–2214.
[46] Y. Wang, Y. Che, X. Lian, L. Chen, Q. Luo, Fast and accurate simrank computation via forward local push and its parallelization, IEEE Trans. Knowl. Data

Eng. (2020).
[47] J. Lu, Z. Gong, Y. Yang, A matrix sampling approach for efficient simrank computation, Inf. Sci. 556 (2021) 1–26.
[48] Y. Sun, J. Han, X. Yan, P.S. Yu, T. Wu, Pathsim: Meta path-based top-k similarity search in heterogeneous information networks, Proceedings of the

VLDB Endowment 4 (11) (2011) 992–1003.
[49] C. Shi, X. Kong, Y. Huang, S.Y. Philip, B. Wu, Hetesim: A general framework for relevance measure in heterogeneous networks, IEEE Trans. Knowl. Data

Eng. 26 (10) (2014) 2479–2492.
[50] I. Antonellis, H. Garcia-Molina, C. Chang, Simrank++ query rewriting through link analysis of the clickgraph (poster), in: Proceedings of the 17th

international conference on World Wide Web (WWW’08), ACM, 2008, pp. 1177–1178.
[51] L. Du, C. Li, H. Chen, L. Tan, Y. Zhang, Probabilistic simrank computation over uncertain graphs, Inf. Sci. 295 (2015) 521–535.
[52] R. Zhu, Z. Zou, J. Li, Simrank on uncertain graphs, IEEE Trans. Knowl. Data Eng. 29 (11) (2017) 2522–2536.
[53] W. Fan, X. Wang, Y. Wu, Performance guarantees for distributed reachability queries, PVLDB 5 (11) (2012) 1304–1316.
[54] M. Then, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham, A. Kemper, T. Neumann, H.T. Vo, The more the merrier: Efficient multi-source graph

traversal, PVLDB 8 (4) (2014) 449–460.
[55] E. Cohen, E. Halperin, H. Kaplan, U. Zwick, Reachability and distance queries via 2-hop labels, SIAM J. Comput. 32 (5) (2003) 1338–1355.
[56] J. Cheng, S. Huang, H. Wu, A.W.-C. Fu, Tf-label: a topological-folding labeling scheme for reachability querying in a large graph, in: Proceedings of the

2013 ACM SIGMOD International Conference on Management of Data, ACM, 2013, pp. 193–204.
[57] R. Jin, G. Wang, Simple, fast, and scalable reachability oracle, PVLDB 6 (14) (2013).
[58] T. Zhang, Y. Gao, C. Li, C. Ge, W. Guo, Q. Zhou, Distributed reachability queries on massive graphs, in: Database Systems for Advanced Applications -

24th International Conference (DASFAA’19), vol. 11448, Springer, 2019, pp. 406–410..
[59] R. Jin, N. Ruan, S. Dey, J.Y. Xu, Scarab: scaling reachability computation on large graphs, in: Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, ACM, 2012, pp. 169–180.
[60] S. Seufert, A. Anand, S. Bedathur, G. Weikum, Ferrari: Flexible and efficient reachability range assignment for graph indexing, in: 29th IEEE

International Conference on Data Engineering (ICDE’13), 2013, pp. 1009–1020.
[61] N. Sengupta, A. Bagchi, M. Ramanath, S. Bedathur, Arrow: Approximating reachability using random walks over web-scale graphs, in: 35th IEEE

International Conference on Data Engineering (ICDE’19), IEEE, 2019, pp. 470–481.
[62] J. Su, Q. Zhu, H. Wei, J.X. Yu, Reachability querying: Can it be even faster?, IEEE Trans Knowl. Data Eng. 29 (3) (2016) 683–697.
[63] H. Wei, J.X. Yu, C. Lu, R. Jin, Reachability querying: An independent permutation labeling approach, PVLDB 7 (12) (2014) 1191–1202.
[64] J. Zhou, S. Zhou, J.X. Yu, H. Wei, Z. Chen, X. Tang, Dag reduction: Fast answering reachability queries, in: Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD Conference 2017, ACM, 2017, pp. 375–390.
[65] S. Gurajada, M. Theobald, Distributed set reachability, in: Proceedings of the 2016 International Conference on Management of Data, ACM, 2016, pp.

1247–1261.
[66] H. Wu, Y. Huang, J. Cheng, J. Li, Y. Ke, Reachability and time-based path queries in temporal graphs, in: 32nd IEEE International Conference on Data

Engineering (ICDE’16), IEEE, 2016, pp. 145–156.
[67] T. Zhang, Y. Gao, L. Chen, W. Guo, S. Pu, B. Zheng, C.S. Jensen, Efficient distributed reachability querying of massive temporal graphs, VLDB J. 28 (6)

(2019) 871–896.
[68] D. Wen, Y. Huang, Y. Zhang, L. Qin, W. Zhang, X. Lin, Efficiently answering span-reachability queries in large temporal graphs, in: 36th IEEE

International Conference on Data Engineering (ICDE’20), IEEE, 2020, pp. 1153–1164.
[69] S. Gao, K. Anyanwu, Prefixsolve: efficiently solving multi-source multi-destination path queries on rdf graphs by sharing suffix computations, in:

Proceedings of the 22nd international conference on World Wide Web (WWW’13), 2013, pp. 423–434.
[70] S. Wadhwa, A. Prasad, S. Ranu, A. Bagchi, S. Bedathur, Efficiently answering regular simple path queries on large labeled networks, in: Proceedings of

the 2019 International Conference on Management of Data, SIGMOD Conference 2019, ACM, 2019, pp. 1463–1480.
[71] L.D. Valstar, G.H. Fletcher, Y. Yoshida, Landmark indexing for evaluation of label-constrained reachability queries, in: Proceedings of the 2017 ACM

International Conference on Management of Data, SIGMOD Conference 2017, ACM, 2017, pp. 345–358.
[72] Y. Peng, Y. Zhang, X. Lin, L. Qin, W. Zhang, Answering billion-scale label-constrained reachability queries within microsecond, PVLDB 13 (6) (2020)

812–825.
997

http://refhub.elsevier.com/S0020-0255(22)00605-3/h0120
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0125
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0130
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0130
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0130
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0135
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0140
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0140
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0140
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0145
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0150
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0150
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0150
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0155
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0160
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0165
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0170
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0170
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0175
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0180
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0185
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0185
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0185
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0190
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0190
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0190
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0195
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0195
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0195
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0200
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0205
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0210
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0210
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0215
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0215
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0215
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0220
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0220
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0220
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0225
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0225
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0230
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0230
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0235
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0240
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0240
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0245
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0245
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0250
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0250
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0250
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0255
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0260
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0265
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0270
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0270
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0275
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0280
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0280
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0280
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0285
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0295
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0295
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0295
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0300
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0300
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0300
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0305
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0305
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0305
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0310
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0315
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0320
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0320
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0320
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0325
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0325
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0325
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0330
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0330
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0330
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0335
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0335
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0340
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0340
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0340
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0345
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0345
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0345
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0350
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0350
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0350
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0355
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0355
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0355
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0360
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0360

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
[73] G.S. Fishman, A comparison of four monte carlo methods for estimating the probability of s-t connectedness, IEEE Trans. Reliab. 35 (2) (1986) 145–
155.

[74] R.-H. Li, J.X. Yu, R. Mao, T. Jin, Recursive stratified sampling: A new framework for query evaluation on uncertain graphs, IEEE Trans. Knowl. Data Eng.
28 (2) (2015) 468–482.

[75] Y. Li, J. Fan, D. Zhang, K.-L. Tan, Discovering your selling points: Personalized social influential tags exploration, in: Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference 2017, ACM, 2017, pp. 619–634.

[76] R. Zhu, Z. Zou, J. Li, Top-k reliability search on uncertain graphs, in: 2015 IEEE International Conference on Data Mining (ICDM’15), IEEE, 2015, pp.
659–668.

[77] S. Maniu, R. Cheng, P. Senellart, An indexing framework for queries on probabilistic graphs, ACM Transactions on Database Systems (TODS) 42 (2)
(2017) 1–34.

[78] E.W. Dijkstra et al, A note on two problems in connexion with graphs, Numerische mathematik 1 (1) (1959) 269–271.
[79] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100–

107.
[80] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. ACM 34 (3) (1987) 596–615.
[81] T. Akiba, Y. Iwata, Y. Yoshida, Fast exact shortest-path distance queries on large networks by pruned landmark labeling, in: Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, 2013, pp. 349–360.
[82] T. Akiba, Y. Iwata, K.-I. Kawarabayashi, Y. Kawata, Fast shortest-path distance queries on road networks by pruned highway labeling, in: 2014

Proceedings of the sixteenth workshop on algorithm engineering and experiments (ALENEX), SIAM, 2014, pp. 147–154.
[83] T. Akiba, Y. Iwata, Y. Yoshida, Dynamic and historical shortest-path distance queries on large evolving networks by pruned landmark labeling, in:

Proceedings of the 23rd international conference on World wide web (WWW’14), ACM, 2014, pp. 237–248.
[84] W. Li, M. Qiao, L. Qin, Y. Zhang, L. Chang, X. Lin, Scaling distance labeling on small-world networks, in: Proceedings of the 2019 International

Conference on Management of Data, SIGMOD Conference 2019, ACM, 2019, pp. 1060–1077.
[85] T. Hayashi, T. Akiba, K. Kawarabayashi, Fully dynamic shortest-path distance query acceleration on massive networks, in: Proceedings of the 25th

ACM International on Conference on Information and Knowledge Management (CIKM’16), ACM, 2016, pp. 1533–1542.
[86] W. Li, M. Qiao, L. Qin, Y. Zhang, L. Chang, X. Lin, Scaling up distance labeling on graphs with core-periphery properties, in: Proceedings of the 2020

International Conference on Management of Data, SIGMOD Conference 2020, ACM, 2020, pp. 1367–1381.
[87] R. Geisberger, P. Sanders, D. Schultes, D. Delling, Contraction hierarchies: Faster and simpler hierarchical routing in road networks, in: International

Workshop on Experimental and Efficient Algorithms, Springer, 2008, pp. 319–333.
[88] Z. Li, L. Chen, Y. Wang, G*-tree: An efficient spatial index on road networks, in: 35th IEEE International Conference on Data Engineering (ICDE’19),

IEEE, 2019, pp. 268–279.
[89] D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, Q. Zhu, When hierarchy meets 2-hop-labeling: Efficient shortest distance queries on road networks, in:

Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, ACM, 2018, pp. 709–724.
[90] D. Ouyang, L. Yuan, L. Qin, L. Chang, Y. Zhang, X. Lin, Efficient shortest path index maintenance on dynamic road networks with theoretical guarantees,

PVLDB 13 (5) (2020) 602–615.
[91] D. Zhang, D. Yang, Y. Wang, K.-L. Tan, J. Cao, H.T. Shen, Distributed shortest path query processing on dynamic road networks, VLDB J. 26 (3) (2017)

399–419.
[92] V.J. Wei, R.C. Wong, C. Long, Architecture-intact oracle for fastest path and time queries on dynamic spatial networks, in: Proceedings of the 2020

International Conference on Management of Data, SIGMOD Conference 2020, ACM, 2020, pp. 1841–1856.
[93] R. Zhong, G. Li, K.-L. Tan, L. Zhou, Z. Gong, G-tree: An efficient and scalable index for spatial search on road networks, IEEE Trans. Knowl. Data Eng. 27

(8) (2015) 2175–2189.
[94] J.R. Thomsen, M.L. Yiu, C.S. Jensen, Effective caching of shortest paths for location-based services, in: Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD 2012, ACM, 2012, pp. 313–324.
[95] J.R. Thomsen, M.L. Yiu, C.S. Jensen, Concise caching of driving instructions, in: Proceedings of the 22nd ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, ACM, 2014, pp. 23–32.
[96] S. Wang, X. Xiao, Y. Yang, W. Lin, Effective indexing for approximate constrained shortest path queries on large road networks, PVLDB 10 (2) (2016)

61–72.
[97] L. Li, S. Wang, X. Zhou, Time-dependent hop labeling on road network, in: 35th IEEE International Conference on Data Engineering (ICDE’19), IEEE,

2019, pp. 902–913.
[98] Y. Wang, G. Li, N. Tang, Querying shortest paths on time dependent road networks, PVLDB 12 (11) (2019) 1249–1261.
[99] K. Semertzidis, E. Pitoura, K. Lillis, Timereach: Historical reachability queries on evolving graphs, in: Proceedings of the 18th International Conference

on Extending Database Technology (EDBT’15), Vol. 15, OpenProceedings.org, 2015, pp. 121–132..
[100] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, Y. Xu, Path problems in temporal graphs, PVLDB 7 (9) (2014) 721–732.
[101] X. Zhang, M.T. Özsu, Correlation constraint shortest path over large multi-relation graphs, PVLDB 12 (5) (2019) 488–501.
[102] Y. Cheng, Y. Yuan, G. Wang, B. Qiao, Z. Wang, Efficient sampling methods for shortest path query over uncertain graphs, International Conference on

Database Systems for Advanced Applications (DASFAA’14), Vol. 8422, Springer, 2014, pp. 124–140.
[103] L. Zou, P. Peng, D. Zhao, Top-k possible shortest path query over a large uncertain graph, in: Web Information System Engineering (WISE’11), vol.

6997, Springer, 2011, pp. 72–86..
[104] M. Sozio, A. Gionis, The community-search problem and how to plan a successful cocktail party, in: Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, 2010, pp. 939–948.
[105] W. Cui, Y. Xiao, H. Wang, W. Wang, Local search of communities in large graphs, in: Proceedings of the 2014 ACM SIGMOD International Conference

on Management of Data, ACM, 2014, pp. 991–1002.
[106] N. Barbieri, F. Bonchi, E. Galimberti, F. Gullo, Efficient and effective community search, Data mining and knowledge discovery 29 (5) (2015) 1406–

1433.
[107] Y. Fang, Z. Wang, R. Cheng, H. Wang, J. Hu, Effective and efficient community search over large directed graphs, IEEE Trans. Knowl. Data Eng. 31 (11)

(2018) 2093–2107.
[108] C. Giatsidis, D.M. Thilikos, M. Vazirgiannis, D-cores: measuring collaboration of directed graphs based on degeneracy, Knowl. Inf. Syst. 35 (2) (2013)

311–343.
[109] Y. Fang, R. Cheng, On attributed community search, in: MATES Workshop in PVLDB, Springer, 2017, pp. 1–21..
[110] Y. Fang, R. Cheng, Y. Chen, S. Luo, J. Hu, Effective and efficient attributed community search, VLDB J. 26 (6) (2017) 803–828.
[111] Y. Fang, R. Cheng, S. Luo, J. Hu, Effective community search for large attributed graphs, PVLDB 9 (12) (2016) 1233–1244.
[112] J. Shang, C. Wang, C. Wang, G. Guo, J. Qian, An attribute-based community search method with graph refining, J. Supercomput. (2017) 1–28.
[113] Y. Fang, R. Cheng, X. Li, S. Luo, J. Hu, Effective community search over large spatial graphs, PVLDB 10 (6) (2017) 709–720.
[114] Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu, X. Chen, On spatial-aware community search, IEEE Trans. Knowl. Data Eng. 31 (4) (2018) 783–798.
[115] Q. Zhu, H. Hu, C. Xu, J. Xu, W.-C. Lee, Geo-social group queries with minimum acquaintance constraints, VLDB J. 26 (5) (2017) 709–727.
[116] R.-H. Li, J. Su, L. Qin, J.X. Yu, Q. Dai, Persistent community search in temporal networks, in: 34th IEEE International Conference on Data Engineering

(ICDE’18), IEEE, 2018, pp. 797–808.
[117] R.-H. Li, L. Qin, J.X. Yu, R. Mao, Influential community search in large networks, PVLDB 8 (5) (2015) 509–520.
[118] S. Chen, R. Wei, D. Popova, A. Thomo, Efficient computation of importance based communities in web-scale networks using a single machine, CIKM

(2016) 1553–1562.
998

http://refhub.elsevier.com/S0020-0255(22)00605-3/h0365
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0365
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0370
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0370
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0375
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0375
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0375
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0380
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0380
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0380
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0385
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0385
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0390
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0395
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0395
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0400
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0405
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0405
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0405
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0410
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0410
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0410
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0415
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0415
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0415
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0420
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0420
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0420
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0425
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0425
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0425
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0430
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0430
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0430
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0435
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0435
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0435
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0440
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0440
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0440
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0445
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0445
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0445
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0450
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0450
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0455
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0455
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0460
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0460
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0460
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0465
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0465
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0470
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0470
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0470
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0475
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0475
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0475
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0480
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0480
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0485
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0485
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0485
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0490
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0500
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0505
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0510
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0510
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0510
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0520
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0520
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0520
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0525
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0525
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0525
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0530
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0530
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0535
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0535
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0540
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0540
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0550
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0555
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0560
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0565
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0570
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0575
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0580
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0580
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0580
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0585
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0590
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0590

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
[119] F. Bi, L. Chang, X. Lin, W. Zhang, An optimal and progressive approach to online search of top-k influential communities, PVLDB 11 (9) (2018) 1056–
1068.

[120] R.-H. Li, L. Qin, J.X. Yu, R. Mao, Finding influential communities in massive networks, VLDB J. 26 (6) (2017) 751–776.
[121] R.-H. Li, L. Qin, F. Ye, J.X. Yu, X. Xiao, N. Xiao, Z. Zheng, Skyline community search in multi-valued networks, in: Proceedings of the 2018 International

Conference on Management of Data, SIGMOD Conference 2018, ACM, 2018, pp. 457–472.
[122] X. Huang, H. Cheng, L. Qin, W. Tian, J.X. Yu, Querying k-truss community in large and dynamic graphs, SIGMOD (2014) 1311–1322.
[123] E. Akbas, P. Zhao, Truss-based community search: a truss-equivalence based indexing approach, PVLDB 10 (11) (2017) 1298–1309.
[124] X. Huang, L.V. Lakshmanan, J.X. Yu, H. Cheng, Approximate closest community search in networks, arXiv preprint arXiv:1505.05956 (2015)..
[125] X. Huang, L.V. Lakshmanan, Attribute-driven community search, PVLDB 10 (9) (2017) 949–960.
[126] Z. Zheng, F. Ye, R.-H. Li, G. Ling, T. Jin, Finding weighted k-truss communities in large networks, Inf. Sci. 417 (2017) 344–360.
[127] Z. Zhang, Y. Shao, B. Cui, C. Zhang, An experimental evaluation of simrank-based similarity search algorithms, PVLDB 10 (5) (2017) 601–612.
[128] C. Sommer, Shortest-path queries in static networks, ACM Computing Surveys (CSUR) 46 (4) (2014) 1–31.
[129] Y. Fang, X. Huang, L. Qin, W. Zhang, C. Cheng, X. Lin, D.M. Fragkiskos, G. Christos, N.P. Apostolos, V. Michalis, The core decomposition of networks:

theory, algorithms and applications, VLDB J. 29 (2020) 61–92.
[130] G. Rossetti, R. Cazabet, Community discovery in dynamic networks: A survey, ACM Computing Surveys (CSUR) 51 (2) (2018) 1–37.
[131] R. Bian, Y.S. Koh, G. Dobbie, A. Divoli, Identifying top-k nodes in social networks: A survey, ACM Comput. Surv. 52 (1) (2019).
[132] X. Huang, L.V. Lakshmanan, J. Xu, Community search over big graphs: Models, algorithms, and opportunities, in: 2017 IEEE 33rd international

conference on data engineering (ICDE), IEEE, 2017, pp. 1451–1454..
[133] Y. Wang, Y. Li, J. Fan, C. Ye, M. Chai, A survey of typical attributed graph queries, World Wide Web 24 (1) (2021) 297–346.
[134] C. Pizzuti, A. Socievole, A genetic algorithm for community detection in attributed graphs, in: International Conference on the Applications of

Evolutionary Computation, Vol. 10784, Springer, 2018, pp. 159–170..
[135] F. Zhang, Y. Zhang, L. Qin, W. Zhang, X. Lin, When engagement meets similarity: efficient (k, 2016, r)-core computation on social networks, arXiv

preprint arXiv:1611.03254.
[136] Y. Fang, Y. Yang, W. Zhang, X. Lin, X. Cao, Effective and efficient community search over large heterogeneous information networks, PVLDB 13 (6)

(2020) 854–867.
[137] N. Narayanaswamy, R. Vijayaragunathan, Parameterized optimization in uncertain graphs - A survey and some results, Algorithms 13 (1) (2020) 3.
[138] L. Li, H. Wang, J. Li, H. Gao, A survey of uncertain data management, Front. Comput. Sci. (2020) 1–29.
[139] Z. Abbassi, V.S. Mirrokni, A recommender system based on local random walks and spectral methods, in: Proceedings of the 9th WebKDD and 1st

SNA-KDD 2007 workshop on Web mining and social network analysis, Springer, 2007, pp. 102–108.
[140] D. Liben-Nowell, J. Kleinberg, The link-prediction problem for social networks, J. Am. Soc. Inf. Sci. Technol. 58 (7) (2007) 1019–1031.
[141] N. Spirin, J. Han, Survey on web spam detection: principles and algorithms, ACM SIGKDD explorations newsletter 13 (2) (2012) 50–64.
[142] Y. Zhou, H. Cheng, J.X. Yu, Graph clustering based on structural/attribute similarities, PVLDB 2 (1) (2009) 718–729.
[143] P. Jaccard, Étude comparative de la distribution florale dans une portion des alpes et des jura, Bull Soc Vaudoise Sci Nat 37 (1901) 547–579.
[144] L.R. Dice, Measures of the amount of ecologic association between species, Ecology 26 (3) (1945) 297–302.
[145] R. Baeza-Yates, B. Ribeiro-Neto, et al, Modern information retrieval, vol. 463, ACM Press, New York, 1999.
[146] M.M. Kessler, Bibliographic coupling between scientific papers, American documentation 14 (1) (1963) 10–25.
[147] H. Small, Co-citation in the scientific literature: A new measure of the relationship between two documents, J. Am. Soc. Inf. Sci. 24 (4) (1973) 265–

269.
[148] P. Li, H. Liu, J.X. Yu, J. He, X. Du, Fast single-pair simrank computation, in: ICDM, SIAM, 2010, pp. 571–582..
[149] Y. Wang, R. Xu, Z. Feng, Y. Che, L. Chen, Q. Luo, R. Mao, Disk: a distributed framework for single-source simrank with accuracy guarantee, Proceedings

of the VLDB Endowment 14 (3) (2020) 351–363.
[150] R. Zhu, Z. Zou, J. Li, Simrank computation on uncertain graphs, in: ICDE, IEEE, 2016, pp. 565–576..
[151] W. Xi, E.A. Fox, W. Fan, B. Zhang, Z. Chen, J. Yan, D. Zhuang, Simfusion: measuring similarity using unified relationship matrix, SIGIR (2005) 130–137.
[152] X. Zeng, Y. Liao, Y. Liu, Q. Zou, Prediction and validation of disease genes using hetesim scores, IEEE/ACM Trans. Comput. Biol. Bioinf. 14 (3) (2016)

687–695.
[153] Y. Wang, X. Lian, L. Chen, Efficient simrank tracking in dynamic graphs, ICDE, IEEE (2018) 545–556.
[154] J. Lu, Z. Gong, X. Lin, A novel and fast simrank algorithm, IEEE TKDE 29 (3) (2016) 572–585.
[155] D. Lizorkin, P. Velikhov, M. Grinev, D. Turdakov, Accuracy estimate and optimization techniques for simrank computation, PVLDB 1 (1) (2008) 422–

433.
[156] S. Hong, T. Oguntebi, K. Olukotun, Efficient parallel graph exploration on multi-core cpu and gpu, in: 2011 International Conference on Parallel

Architectures and Compilation Techniques (PACT’11), IEEE, 2011, pp. 78–88.
[157] J. Chhugani, N. Satish, C. Kim, J. Sewall, P. Dubey, Fast and efficient graph traversal algorithm for cpus: Maximizing single-node efficiency, in: 26th

IEEE International Parallel and Distributed Processing Symposium (IPDPS’12), IEEE, 2012, pp. 378–389.
[158] Y. Li, L.H. U, M.L. Yiu, N.M. Kou, An experimental study on hub labeling based shortest path algorithms, PVLDB 11 (4) (2017) 445–457..
[159] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of finding embeddings in ak-tree, SIAM J. Algebraic Discrete Methods 8 (2) (1987) 277–284.
[160] S.B. Seidman, Network structure and minimum degree, Social networks 5 (3) (1983) 269–287.
[161] A. Gibbons, Algorithmic graph theory, Cambridge University Press, 1985.
[162] Q. Liu, Y. Zhu, M. Zhao, X. Huang, J. Xu, Y. Gao, Vac: Vertex-centric attributed community search, in: 36th IEEE International Conference on Data

Engineering (ICDE’20), IEEE, 2020, pp. 937–948.
[163] Q. Liu, M. Zhao, X. Huang, J. Xu, Y. Gao, Truss-based community search over large directed graphs, in: Proceedings of the 2020 International

Conference on Management of Data, SIGMOD Conference 2020, ACM, 2020, pp. 2183–2197.
[164] M. Danisch, O. Balalau, M. Sozio, Listing k-cliques in sparse real-world graphs, in: Proceedings of the 2018 World Wide Web Conference on World

Wide Web (WWW’18), 2018, pp. 589–598.
[165] D. Chu, F. Zhang, X. LIN, W. Zhang, Y. Zhang, C.Z.Y. Xia, Finding the best k in core decomposition: A time and space optimal solution, in: 36th IEEE

International Conference on Data Engineering (ICDE’20), IEEE, 2020, pp. 685–696..
[166] M. Charikar, Greedy approximation algorithms for finding dense components in a graph, in: Approximation Algorithms for Combinatorial

Optimization, Third International Workshop (APPROX’00), Springer, 2000, pp. 84–95..
[167] A.V. Goldberg, Finding a maximum density subgraph, University of California Berkeley, 1984.
[168] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J. Comput. Syst. Sci. 30 (2) (1985) 209–221.
[169] C. Li, F. Zhang, Y. Zhang, L. Qin, W. Zhang, X. Lin, Efficient progressive minimum k-core search, PVLDB 13 (2019) 362–375.
[170] Q. Li, Y. Zhu, J.X. Yu, Skyline cohesive group queries in large road-social networks, in: 36th IEEE International Conference on Data Engineering

(ICDE’20), IEEE, 2020, pp. 397–408.
[171] J. Elzinga, D.W. Hearn, Geometrical solutions for some minimax location problems, Transp. Sci. 6 (4) (1972) 379–394.
[172] J. Wang, J. Cheng, Truss decomposition in massive networks, arXiv preprint arXiv:1205.6693 (2012)..
[173] M.S. Islam, C. Liu, J. Li, Efficient answering of why-not questions in similar graph matching, IEEE Trans. Knowl. Data Eng. 27 (10) (2015) 2672–2686.
[174] M.S. Islam, R. Zhou, C. Liu, On answering why-not questions in reverse skyline queries, in: 29th IEEE International Conference on Data Engineering

(ICDE’13), IEEE, 2013, pp. 973–984.
[175] L. Chen, Y. Li, J. Xu, C.S. Jensen, Towards why-not spatial keyword top-k) queries: A direction-aware approach, IEEE Trans. Knowl. Data Eng. 30 (4)

(2018) 796–809.
999

http://refhub.elsevier.com/S0020-0255(22)00605-3/h0595
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0595
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0600
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0605
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0605
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0605
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0610
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0615
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0625
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0630
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0635
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0640
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0645
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0645
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0650
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0655
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0665
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0675
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0675
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0675
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0680
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0680
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0685
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0690
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0695
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0695
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0695
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0700
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0705
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0710
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0715
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0720
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0725
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0725
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0730
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0735
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0735
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0745
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0745
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0755
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0760
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0760
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0765
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0770
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0775
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0775
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0780
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0780
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0780
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0785
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0785
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0785
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0795
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0800
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0805
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0805
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0810
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0810
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0810
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0815
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0815
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0815
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0820
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0820
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0820
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0835
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0835
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0840
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0845
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0850
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0850
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0850
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0855
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0865
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0870
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0870
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0870
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0875
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0875
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0875

P. Lin, Y. Li, W. Luo et al. Information Sciences 607 (2022) 961–1000
[176] L. Chen, Y. Li, J. Xu, C.S. Jensen, Direction-aware why-not spatial keyword top-k queries, in: 33rd IEEE International Conference on Data Engineering
(ICDE’17), IEEE, 2017, pp. 107–110.

[177] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, Q.-S. Hua, Graph processing on gpus: A survey, ACM Computing Surveys (CSUR) 50 (6) (2018).
[178] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive survey on graph neural networks, IEEE Trans. Neural Networks Learn. Syst. 32 (1)

(2020) 4–24.
[179] Z. Liu, V.W. Zheng, Z. Zhao, Z. Li, H. Yang, M. Wu, J. Ying, Interactive paths embedding for semantic proximity search on heterogeneous graphs, in:

Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining, 2018, pp. 1860–1869.
[180] Z. Liu, V.W. Zheng, Z. Zhao, H. Yang, K.C.-C. Chang, M. Wu, J. Ying, Subgraph-augmented path embedding for semantic user search on heterogeneous

social network, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 1613–1622.
[181] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, W. Wang, Simgnn: A neural network approach to fast graph similarity computation, in: Proceedings of the

Twelfth ACM International Conference on Web Search and Data Mining, 2019, pp. 384–392.
[182] Y. Hao, X. Cao, Y. Sheng, Y. Fang, W. Wang, Ks-gnn: Keywords search over incomplete graphs via graphs neural network, Advances in Neural

Information Processing Systems 34 (2021).
[183] J. Gao, J. Chen, Z. Li, J. Zhang, Ics-gnn: lightweight interactive community search via graph neural network, Proceedings of the VLDB Endowment 14

(6) (2021) 1006–1018.
[184] O. Shchur, S. Günnemann, Overlapping community detection with graph neural networks, arXiv preprint arXiv:1909.12201 (2019)..
[185] O. van Rest, S. Hong, J. Kim, X. Meng, H. Chafi, Pgql: a property graph query language, in: Proceedings of the Fourth International Workshop on Graph

Data Management Experiences and Systems, 2016, pp. 1–6.
[186] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, A. Taylor, Cypher: An evolving query

language for property graphs, in: Proceedings of the 2018 International Conference on Management of Data, 2018, pp. 1433–1445.
[187] R. Angles, M. Arenas, P. Barceló, P. Boncz, G. Fletcher, C. Gutierrez, T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, et al, G-core: A core for future

graph query languages, in: Proceedings of the 2018 International Conference on Management of Data, 2018, pp. 1421–1432.
[188] W. Ali, M. Saleem, B. Yao, A. Hogan, A.-C.N. Ngomo, A survey of rdf stores & sparql engines for querying knowledge graphs, VLDB J. (2021) 1–26.
[189] A. Debrouvier, E. Parodi, M. Perazzo, V. Soliani, A. Vaisman, A model and query language for temporal graph databases, VLDB J. 30 (5) (2021) 825–858.
1000

http://refhub.elsevier.com/S0020-0255(22)00605-3/h0880
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0880
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0880
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0885
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0890
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0890
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0895
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0895
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0895
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0900
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0900
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0900
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0905
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0905
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0905
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0910
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0910
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0915
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0915
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0925
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0925
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0925
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0930
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0930
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0930
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0935
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0935
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0935
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0940
http://refhub.elsevier.com/S0020-0255(22)00605-3/h0945

	Personalized query techniques in graphs: A survey
	1 Introduction
	2 Types of graphs
	2.1 Temporal graphs
	2.2 Location-based graphs
	2.3 Keyword-based graphs
	2.4 Weight-based graphs
	2.5 Heterogeneous graphs
	2.6 Probability graphs

	3 Point-related personalized queries
	3.1 Preliminary
	3.1.1 Similarity models
	3.1.2 SimRank computing methods

	3.2 SimRank similarity queries over simple graphs
	3.2.1 Single-pair SimRank similarity queries
	3.2.2 Single-source SimRank similarity queries
	3.2.3 Partial-pairs SimRank similarity queries
	3.2.4 All-pairs SimRank similarity queries

	3.3 SimRank similarity queries over attributed graphs
	3.3.1 Weight-based graphs
	3.3.2 Temporal graphs
	3.3.3 Probability graphs
	3.3.4 Heterogeneous graphs

	3.4 Discussion

	4 Path-related personalized queries
	4.1 Reachability queries
	4.1.1 Simple graphs
	4.1.2 Attributed graphs
	4.1.3 Discussion

	4.2 Shortest path queries
	4.2.1 Simple graphs
	4.2.2 Attributed graphs
	4.2.3 Discussion

	5 Subgraph-related graph queries
	5.1 Preliminary
	5.2 k-core-based community search
	5.2.1 Simple graphs

	5.3 Attributed graphs
	5.3.1 Temporal graphs
	5.3.2 Location-based graphs
	5.3.3 Keyword-based graphs
	5.3.4 Weighted-based graphs
	5.3.5 Heterogeneous graphs

	5.4 k-truss-based community search
	5.4.1 Simple graphs
	5.4.2 Keyword-based attributed graphs
	5.4.3 Weighted graphs

	5.5 Discussion

	6 Future work
	6.1 Personalized graph queries for new application scenarios
	6.2 User-friendly personalized graph queries
	6.3 Why-not personalized graph queries
	6.4 Personalized graph queries with size constraints
	6.5 Distributed approaches to personalized graph queries
	6.6 High-performance approaches to personalized graph queries
	6.7 Graph neural networks for personalized queries
	6.8 Graph query languages and personalized queries

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

