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With the development of wireless technology, various emerging mobile applications are attracting signifi-

cant attention and drastically changing our daily lives. Applications such as augmented reality and object

recognition demand stringent delay and powerful processing capability, which exerts enormous pressure

on mobile devices with limited resources and energy. In this article, a survey of techniques for mobile de-

vice energy optimization is presented in a hierarchy of device design and operation, computation offloading,

wireless data transmission, and cloud execution of offloaded computation. Energy management strategies for

mobile devices from hardware and software aspects are first discussed, followed by energy-efficient compu-

tation offloading frameworks for mobile applications that trade application response time for device energy

consumption. Then, techniques for efficient wireless data communication to reduce transmission energy are

summarized. Finally, the execution mechanisms of application components or tasks in various clouds are

further described to provide energy-saving opportunities for mobile devices. We classify the research works

based on key characteristics of devices and applications to emphasize their similarities and differences. We

hope that this survey will give insights to researchers into energy management mechanisms on mobile de-

vices, and emphasize the crucial importance of optimizing device energy consumption for more research

efforts in this area.
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1 INTRODUCTION

Mobile devices have experienced incredible changes in the past few decades, starting from devices
with single function like voice services to devices providing diverse applications and services to
users. Mobile devices are computing devices made for portability, thus are small and lightweight
enough to operate in the hand, bringing great convenience to people’s daily lives [MD 2019]. Based
on statistics from Statista, the number of worldwide mobile device users is expected to exceed five
billion in 2019 [sta 2018]. However, performing computing with mobile devices brings undeniable
challenges that cannot be ignored, such as memory, processing, battery lifetime, compared with
their static counterparts [Namboodiri and Ghose 2012]. The discrepancy in growth rate between
the batteries’ volumetric/gravimetric energy density and the power requirements brings unprece-
dented challenges to resource-constrained mobile devices [Lin et al. 2014].

From the perspective of device hardware, take a smartphone as an example, it usually contains
the following necessary components in a mobile operating system, such as processors, memory,
sensors, battery, display, and wireless network interfaces. Most of these components are especially
power hungry to inadvertently drain out the battery energy quickly. For example, the processors
are considered to be one of the most energy-intensive components on mobile devices [Tian et al.
2018]. From the perspective of the applications running on mobile operating systems (OSs), with
the ubiquitousness of mobile devices such as smartphones, tablets, and IoT devices, numerous
applications have emerged and attracted great attention. These novel applications, such as mobile
games, augmented reality, and object recognition, are all computational and energy-consuming.
Taking into account the physical size constraint on mobile devices, these applications are always
restricted by mobile devices’ limited resources and battery power [Guo and Liu 2018].

Mobile cloud computing (MCC), edge computing (EC), and fog computing (FC) as new
paradigms open up the possibility of energy-saving opportunities for mobile devices by offloading
computation, communication, or resource-intensive application components to powerful servers
for execution. Offloading is a process of data migration from mobile devices to an external comput-
ing platform, such as a cluster, grid, or cloud [CO 2019]. MCC utilizes powerful servers to replace
mobile devices for processing power-consuming tasks to prolong the battery lifetime. However,
cloud servers are spatially far from mobile devices; thus, offloading tasks to remote clouds may
incur significant transmission energy consumption. Fortunately, mobile edge computing (MEC)
and FC can efficiently solve this problem by making the abundant resources closer to mobile de-
vices, thus decreasing the application execution latency and transmission energy consumption.
However, though offloading can reduce the burden of mobile devices, it is a complicated technol-
ogy when performing offloading taking into account various factors, e.g., application partition,
network conditions, and cloud availability.

Several surveys on MC have been published in the recent past. However, few of them investigate
advanced energy optimization techniques of mobile devices. Welch [1995] only briefly surveyed
several research works that reduce energy consumption of a few hardware components (e.g., CPU
and hard drives) on mobile devices. By comparison, Rodriguez et al. [2013] provided a detailed re-
view of software optimization for energy management on mobile devices. Nevertheless, the energy
optimization for hardware components and cloud-assisted offloading strategies for mobile devices
are not fully explored in this work. Kumar et al. [2013] discussed various offloading strategies to
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Fig. 1. A bird’s-eye view of the central idea of this article.

Fig. 2. Organization of the article in different sections.

optimize device energy consumption. However, the significant wireless communication energy of
mobile devices incurred by offloading is not considered in their work. Cui et al. [2013] save device
energy by only investigating the techniques on energy-efficient wireless transmission. In general,
all aforementioned works describe the energy optimization methods for mobile devices from only
one angle. These surveys do not provide a comprehensive investigation of mobile device energy
optimization techniques.

Contribution and article organization. In this article, a survey of mobile device energy op-
timization techniques is presented. Figure 1 provides a bird’s-eye view of the central idea of this
article. Figure 2 gives the organization of the article in different sections.

We first discuss the background and motivations for energy optimization of mobile devices (Sec-
tion 2). We then review techniques for energy management of a mobile device from perspectives of
both hardware and software (Section 3). In Section 4, we compare computation offloading strate-
gies for energy savings by migrating computation-intensive application components to powerful
servers for execution. We discuss research works on how to optimize wireless communication en-
ergy incurred by computation offloading in Section 5. Further, we summarize works on application
and task execution mechanisms in clouds (Section 6). Concluding remarks of this article followed
by a discussion on future challenges are presented in Section 7.

Scope of the article. The scope of device energy optimization covers a broad range of tech-
niques, including MC, MCC, and MEC. For ease of presentation, the scope of this article is limited
in the following way. We concentrate on works that optimize device energy consumption. We do
not include works that focus on device performance improvement or other goals. We hope this
article can be a valuable resource for developers, mobile OS designers, and other researchers.

2 BACKGROUND AND MOTIVATION

2.1 A Note on Acronyms

In this section, the list of acronyms used in this article are summarized in Table 1 for a concise
presentation.
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Table 1. List of Acronyms

Symbol Description Symbol Description

MC Mobile Computing CC Cloud Computing

EC Edge Computing FC Fog Computing

MCC Mobile Cloud Computing MEC Mobile Edge Computing

3G/4G/5G Third/Fourth/Fifth Generation IoT Internet of Things

RAN Radio Access Network NFC Near-Field Communication

MDC Mobile Device Cloud OS Operating System

MPSoC Multiprocessor System-on-Chip DVFS Dynamic Voltage and Frequency Scaling

FPS Frames Per Second DAG Directed Acyclic Graph

TIG Task Interaction Graph IPC Inter-Process Communication

RPC Remote Procedure Call HW Hardware

VMM Virtual Machine Manager AP Access Point

DNN Deep Neural Network IP Internet Protocol Address

CNN Convolutional Neural Network MDP Markov Decision Process

2.2 Background of Mobile Computing

The success of the father of radio, Guglielmo Marconi [2019], in producing radio waves over long
distances marked the beginning of wireless network technologies. The advances in wireless net-
work technologies have further brought about a new computing paradigm, that is, MC, which is a
computing paradigm allowing delivery of data via wireless-enabled mobile devices without need-
ing to connect to a fixed physical link. Users carrying these devices can access various services via
a shared infrastructure. MC usually refers to the cooperation between mobile communication, mo-
bile hardware, and mobile software [mc 2019]. Mobile communication refers to the infrastructure
that guarantees seamless and reliable communication between devices. Mobile hardware refers to
the device components that are responsible for receiving or accessing services. Mobile software
refers to the programs running on mobile hardware to process demands from applications. The
three components work collaboratively to provide services to users. However, the power crisis of
mobile devices also raises more concerns for them. Next, we give a brief introduction to two cru-
cial computing paradigms promoted by virtual technologies, namely, MCC and MEC, which bring
new energy-saving opportunities to mobile devices with limited resources.

MCC. MCC, also called MoClo, combines the techniques of cloud computing (CC), MC, and
wireless communication to provide bountiful computing and storage resources to mobile users
[Liu et al. 2013a]. CC is an information technology that delivers shared pools of system resources
(e.g., processors, software, and storage) over communication networks [Cong et al. 2018; Wang
et al. 2020]. By leveraging this computing paradigm, mobile applications can be developed and
hosted in the context of MCC. This technique enables developers to design mobile applications
for users without needing to consider the power and resource limits in mobile devices. In other
words, the processes of data storage and data processing are happening in an infrastructure outside
of mobile devices. Mobile users can leverage various CC platforms instead of power-limited mobile
devices to execute a variety of computation-intensive applications or services.

MEC. MEC refers to the technique allowing tasks to be executed closer to mobile users. MEC
is pushed forward by the rapid developments of MCC, in which mobile devices use a variety of
resources in remote clouds through radio access networks, which may require significant trans-
mission energy for data transferring. MEC frees MCC from this problem by deploying resources
closer to mobile devices. In this context, the data produced by mobile devices is allowed to be
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Table 2. A Summary of Crucial Computing Paradigms Based on Requirement Characteristics

Requirements CC MCC EC FC MEC

Latency High High Low Low Low

Location of service Network core Network core Network edge Network edge Network edge

Location awareness No No Yes Yes Yes

Deployment Centralized Centralized Distributed Distributed Distributed

Mobility No Yes Yes Yes Yes

Security No No Yes Yes Yes

processed at edge servers, instead of sending it to remote servers for execution [Shi et al. 2016].
Moreover, mobile devices not only play the role of data consumers but also serve as data pro-
ducers. In this way, mobile devices can not only use services (e.g., watching a YouTube video) in
edge servers but also produce various data (e.g., taking photos). MEC provides various services
including computing offloading, data storage, and processing for mobile users.

Table 2 summarizes computing paradigms’ requirement characteristics. CC and MCC are de-
ployed with centralized data centers to provide services to users. In centralized computing ar-
chitecture, processing/computing is performed more on central servers. On the contrary, EC and
FC are distributed computing paradigms in which computation is performed on geographically
distributed device nodes, making resources and services closer to users [EC 2019]. Due to high
concentration and unified management of resources in CC, data security and privacy could be
guaranteed to some extent. However, edge or fog servers may not guarantee data security and pri-
vacy since these distributed server nodes are more vulnerable to threats and attacks. For latency-
sensitive applications, CC and MCC paradigms with high latency and long transmission distance
are not suitable choices. These two computing paradigms also lack location-awareness, thus are
only suitable for indoor personal computer users. EC, FC, and MEC overcome these problems by
providing distributed and localized services to users. In this way, users can enjoy high-rate local
connections without the need to search over the remote clouds [Luan et al. 2015]. Moreover, con-
sidering high user mobility in the contexts of EC, FC, and MEC, it is necessary to develop mobility
management schemes to guarantee service continuity when mobile users roam across different
edge/fog/mobile edge base-stations.

2.3 Motivation Behind Energy Optimization

Wireless devices such as smartphones, tablets, and IoT devices enable people to access network
services whenever and wherever possible. However, people are increasingly concerned about de-
vices’ energy when enjoying the great convenience brought by these devices. MCC and MEC para-
grams provide new insights to augment device capabilities and prolong their battery lifespan by
offloading computational parts of an application to remote servers or nearby edge/fog servers for
execution. However, offloading is a complicated process especially in dynamic wireless network
environment [Chun and Maniatis 2010]. Before offloading, it is necessary to judiciously determine
whether, what, when, and where to offload tasks under intermittent wireless channels to achieve
device energy savings. Next, we analyze the energy optimization challenges for mobile devices
from perspectives of device hardware and software techniques, computation offloading strategies,
wireless transmission techniques, and execution mechanisms in clouds, respectively.

Mobile hardware and software. Mobile hardware and software are integrated in devices to
provide services by connecting to the Internet via Bluetooth, cellular networks, or WiFi. Mobile
hardware usually consists of processors, memory, battery, display, sensors, and the like. Mobile
software includes mobile OSs (e.g., Android, iOS, and Windows Phone) and applications or services
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running on OSs. Powered by a lithium battery and with the support of mobile hardware, mobile de-
vices can run mobile OSs to permit applications or services to be installed to satisfy users’ require-
ments. However, due to limited battery lifetime, users need to recharge their devices frequently,
which seriously deteriorates user experience. Managing device energy consumption is imperative
but challenging considering the following factors. First, energy-efficient device resources man-
agement for applications’ use is important. An energy-aware OS is necessary for mobile devices
to efficiently manage and control applications’ use of resources [Chu et al. 2011]. Second, some
components usually consume more energy than others, such as, processors, sensors, and display.
Meanwhile, the thermal coupling effects existing among processors cannot be ignored when opti-
mizing energy. Third, considering increasingly complex mobile applications such as power-hungry
deep neural networks that are hard to deploy in resource-constraint mobile devices, energy opti-
mized methods for these specific applications are also needed. Finally, it is necessary to achieve
energy-efficient long-term sensing of user behaviors since more and more applications need to
monitor and recognize users’ activities continuously.

Computation offloading strategies. Enabled by virtualization techniques, energy constraints
on mobile devices can be alleviated by offloading computational tasks of an application to clouds
for execution [Lin et al. 2013; Wu and Wolter 2015]. In particular, a mobile application can be
partitioned with a different granularity level (i.e., coarse [Shiraz and Gani 2014] or fine [Ge et al.
2012] grain). The partitioned parts of the mobile application are offloaded to powerful comput-
ing resources (e.g., cloud servers and edge servers) for execution. However, Altamimi et al. [2012]
and Nguyen et al. [2016] argued that before implementing offloading techniques, it is necessary to
judge whether computation offloading is energy-efficient for mobile devices considering various
factors such as fluctuant wireless network connections. Thus, to fulfill the prospective energy-
saving benefits of computation offloading on mobile devices, the following several points need to
be considered. First, consider whether computation offloading is an effective solution for prolong-
ing the battery lifetime. Sometimes, offloading for remote execution may be meaningless compared
with local execution due to incurred transmission energy costs. Second, consider which portion of
an application should be sent to the clouds once the offloading decisions are made. Finally, consider
how to judiciously make offloading decisions (i.e., static or dynamic) for offloading computational
tasks of an application to the clouds under the intermittent wireless network environment.

Wireless communication techniques. Wireless refers to communication or transmission of
data between two or more nodes that are not connected by a fixed physical link [wir 2019]. Data
is sent through the air by using electromagnetic waves in a wireless network environment. Most
mobile devices have built in wireless network interfaces (e.g., 3G, 4G, Bluetooth, and WiFi) that can
be used to reach the Internet. The offloaded computational tasks can be sent to powerful clouds for
processing through these wireless interfaces. Kalic et al. [2012] found that different communication
technologies usually consume different amounts of energy. Thus, understanding the relationship
between energy consumed and transferred data amount is necessary when using 3G, 4G, Blue-
tooth, and WiFi, respectively. Compared with good wireless connectivity, mobile devices usually
consume more energy when transmitting data under bad wireless connections [Shu et al. 2013]. In
this way, offloading is not a feasible scheme since the extra communication overheads exceed the
saved local energy. Thus, when performing offloading, both the energy consumption of wireless
interfaces and the dynamic characteristics of wireless network channels need to be considered.

Execution mechanisms in clouds. MCC provides mobile devices with powerful offloading
sites (e.g., servers) or device clone (e.g., CloneCloud [Chun et al. 2011] and ThinkAir [Kosta et al.
2012]) in remote clouds for executing offloaded tasks. However, the offloading process may fail
considering long distance between devices and remote clouds, and unstable wireless connections.
MEC offers a new perspective to provide offloading sites more near to mobile devices, such as edge
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servers (e.g. cloudlets [Jararweh et al. 2014; Satyanarayanan et al. 2009] and fog servers [Luan
et al. 2015]) that co-locate with cellular base-stations. In this way, the computational tasks can be
offloaded to nearby edge servers rather than remote cloud servers to save transmission energy.
In addition to powerful cloud servers and edge servers, Miluzzo et al. [2012] further presented
their vision in which mobile devices are playing an indispensable role in MCC. Specifically, they
envision a computing platform called mobile device cloud in which task migrationhas occurred
between nearby devices. In this way, the offloaded tasks can be performed among nearby devices
to save transmission energy when wireless connections are intermittent and unavailable.

3 MANAGE ENERGY CONSUMPTION ON DEVICES

The capacity of mobile devices is severely restricted by limited storage and computing resources
as well as the fast drained battery power [Pathak et al. 2011]. It is essential to optimize energy
consumption of the energy-consuming entities and the applications or services running on OSs to
prolong the battery lifetime. Mobile OSs (e.g., Android, iOS, Windows 10 Mobile, and BlackBerry
10) running on mobile devices (e.g., smartphones and tablet) are designed to provide services to
users. These OSs have been fully exploited and developed to help people better understand the
energy usage of their devices. However, they still have much room for improvement in the aspects
of both energy usage control for mobile applications running on them and proactive resources
management based on user’s habits and customs (Section 3.1). Mobile hardware usually includes a
wireless inbuilt modem for data connection, display, cellular, Bluetooth, WiFi, Global Positioning
System (GPS), cameras, processors, memory, and near-field communication (NFC) [MOS 2019].
Thereinto, different mobile modules or components consume different amounts of energy, and
contribute to battery life exhaustion in different levels. For example, processors (e.g., CPUs, GPUs,
and application processors), memory, sensors (e.g., GPS, accelerometer, and touchscreen sensors),
and display are considered the most power consumers among mobile hardware. Thus, exploring
the characteristics and operating modes of these modules or components can better optimize their
energy consumption (Section 3.2).

Mobile applications running on mobile OSs provide innovative services for users. However,
while mobile hardware and OS vendors have made positive progress to make mobile platforms
more energy-efficient at all levels, these improvements cannot stop poorly designed applica-
tions from unnecessarily draining the battery lifetime. Some existing techniques can help de-
velopers understand the energy usage patterns of applications. Even so, they do not provide
guidance about how to save energy for applications. Thus, it is necessary to design energy-
efficient mobile applications or services, and develop customized energy optimization methods for
these computation/memory/communication-intensive mobile applications or services running on
resource/power-limited mobile devices (Section 3.3). Aside from mobile devices and applications,
mobile users and ambient environments also play an important role in optimizing device energy
consumption. Mobile devices always interact with their users and surrounding environments. On
one hand, users’ behaviors (i.e., zooming and scrolling) demand a different amount of CPU re-
sources during application execution. On the other hand, the changes of a device’s contact surface
and orientation can impact the heat transfer coefficient of the device and affect the system-on-a-
chip (SoC) temperature. Thus, energy-efficient continuous sensing and recognizing users’ activi-
ties and environment is necessary for modern power-limited mobile devices (Section 3.4). Table 3
classifies the energy optimization techniques for mobile devices in a more granular level.

3.1 Design Operating Systems

Roy et al. [2011] argued that modern mobile OSs need to provide isolation, delegation, and subdi-
vision, which are three key mechanisms in an OS for energy usage. However, few existing works
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Table 3. A Fine-grained Classification of Energy Optimizations on Mobile Devices

Classification References
Mobile OS [Chu et al. 2011] [Roy et al. 2011] [Rodriguez and Crowcroft 2011]
Display [Chu et al. 2011] [Maghazeh et al. 2015] [Kim et al. 2014] [Lee et al.

2014]
Memory [Chu et al. 2011] [Roy et al. 2011] [Hsieh et al. 2015] [Lee et al. 2014]
PDN [Lee et al. 2014]
Sensors (e.g., GPS and
accelerometer)

[Chu et al. 2011] [Liang et al. 2014] [Paek et al. 2010] [Lin et al.
2010] [Kjærgaard et al. 2011] [Priyantha et al. 2011] [Lee et al. 2014]
[Liu et al. 2013b] [Yan et al. 2012]

Processors (e.g., CPU,
GPU, and application
processor)

[Tian et al. 2018] [Chu et al. 2011] [Roy et al. 2011] [Rodriguez and
Crowcroft 2011] [Priyantha et al. 2011] [Maghazeh et al. 2015]
[Hsieh et al. 2015] [Lee et al. 2014] [Singla et al. 2015] [Pathania
et al. 2015] [Pathania et al. 2014] [Chuang et al. 2017] [Kadjo et al.
2015] [Kim et al. 2015] [Li et al. 2013c] [Chen et al. 2015] [Yang
et al. 2013a] [Paterna and Rosing 2015]

Prediction algorithms [Chu et al. 2011] [Maghazeh et al. 2015] [Hsieh et al. 2015] [Singla
et al. 2015] [Chuang et al. 2017] [Kim et al. 2015] [Nirjon et al.
2012] [Donohoo et al. 2012] [Deng and Balakrishnan 2012] [Bui
et al. 2013] [Li et al. 2013a] [Tong and Gao 2016] [Habak et al. 2015]
[Gai et al. 2016]

Green mobile
application or service

[Kjærgaard et al. 2011] [Maghazeh et al. 2015] [Chuang et al. 2017]
[Han et al. 2016b] [Li and Halfond 2014] [Cun et al. 1990] [He et al.
2017]

User activity and
environment

[Liang et al. 2014] [Kim et al. 2015] [Yan et al. 2012] [Li et al. 2013c]
[Chen et al. 2015] [Yang et al. 2013a] [Paterna and Rosing 2015]
[Rodriguez and Crowcroft 2011]

Energy bugs [Jiang et al. 2017] [Pathak et al. 2011] [Pathak et al. 2012] [Liu et al.
2013b]

have comprehensively studied these three aspects. They designed a new OS, Cinder, to better
understand and control energy use for energy-constrained mobile devices. In Cinder, two new ab-
straction concepts are presented to support the above three mechanisms for controlling the energy
use of applications. These two new concepts are called reserves and taps, which are responsible
for storing and distributing energy for the use of applications, respectively. Reserves are in charge
of fine-grained energy accounting and allocating a given amount of energy to applications. Taps
determine and control the energy flowing rate limits between these reserves. The collaboration
between reserves and taps gives an opportunity for OSs to manage energy based on intentions
of applications. Experimental results show that compared with uncooperative radio access, their
cooperative resource sharing method in Cinder can save 12.5% power for mobile devices.

Mobile hardware and traditional OS vendors have developed different approaches (e.g., isola-
tion, delegation, and subdivision) to extending the device battery life at various levels. However,
their efforts are limited by the strict stratification of OSs, which makes it difficult to achieve cross-
layer optimizations. Rodriguez et al. [2011] observed that the resource states of mobile devices and
the device usage patterns and habits of users are different; thus, they presented a user-centered
and energy-aware mobile OS, ErdOS, on top of Android OS to save energy for mobile devices. Er-
dOS adopts two techniques and integrates them together to reduce energy consumption. The first
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Fig. 3. Mobile hardware architecture

[Yaghmour 2012].

Fig. 4. Hardware power consumption

[Carroll and Heiser 2010].

Fig. 5. Effect of thermal throttling on frequency and temperature in Linux governor [A. Prakash and Henkel

2016].

technique is essentially a proactive resources management system that uses users’ habits and cus-
toms to predict their future resource requirements of mobile applications to achieve better re-
sources management. In particular, ErdOS adopts contextual information-based clustering algo-
rithms to learn and infer users’ activities. The second technique leverages low-power Bluetooth
technology and inter-process communication to explore opportunistic access to neighboring de-
vices’ available resources to provide access control strategies. Experimental results show that Er-
dOS can save 11% energy as compared to the case in which each device accesses the GPS receiver
locally.

3.2 Optimize Hardware Modules

Mobile devices usually consist of processors (e.g., CPU, GPU, and application processor), mem-
ory, sensors (e.g., accelerometer, compass, and GPS), display, camera, and wireless network in-
terfaces. Figure 3 shows a general mobile hardware components architecture [Yaghmour 2012].
These components are energy consumers and contribute different levels of power consumption
to the exhaustion of the battery. Figure 4 shows the average power consumption of partial hard-
ware components in mobile devices [Carroll and Heiser 2010]. Usually, the power consumption
of a component consists of static and dynamic power consumption [Xiao 2011]. The former relies
on the hardware physical characteristics while the latter is decided by the applications or services
running on OSs. It is crucial to understand the relationship among device power consumption,
hardware activities, and software operations. Much of the research has optimized the energy of
mobile devices by optimizing these power-hungry hardware modules. Next, we introduce these
research works in detail.

Since the CPUs and GPUs on heterogeneous MPSoCs are very close, even a moderate increase
in temperature will directly affect the temperature variation of other components. We call this
phenomenon as thermal coupling effect [A. Prakash and Henkel 2016]. Figure 5 studies the impact
of thermal throttling on the frequency in a Linux governor and shows the relationship between
temperature and frequency of processors. From Figure 5(a), we can see that due to thermal manage-
ment imbalance between CPUs and GPUs and thermal inertia, the MPSoC temperature continues
to increase to beyond 70◦C, causing a significant processor frequency throttling for reducing chip
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temperature. From Figure 5(c) and (c), we can see that when the frequency of the GPU (CPU)
increases, the CPU (GPU) temperature also rises. Usually, hotter devices require more power to
maintain normal operations. Thus, it is necessary to perform cooperative thermal management
for mobile devices with multiple processors (e.g., CPU and GPU).

Pathania et al. [2014] noted that 3D mobile games, which require collaboration between CPU
and GPU on SoCs, usually consume significant energy. In order to achieve efficient energy man-
agement for mobile devices, they presented a CPU-GPU power management mechanism by per-
forming dynamic voltage and frequency scaling (DVFS) dynamically while maintaining stable per-
formance. This mechanism achieves the range of target frames per second (FPS) with minimal
power by dynamically exploiting CPU-GPU DVFS capabilities. However, the method in this work
assumes that the relationship between FPS and CPU-GPU costs is perfectly linear, thus leading
to power inefficiency. Pathania et al. [2015] overcame this shortcoming by developing models to
capture the complex dynamics involved in the relationship. They used linear regression models
to study the relationship between power and performance under a wide range of operating con-
ditions. Meanwhile, they integrated an online learning method to further refine the parameters
at runtime to make the models more accurate. Based on the models, a power management strat-
egy is proposed to efficiently optimize device power consumption. Experimental results show that
compared with default Linux power managers [Pallipadi and Starikovskiy 2006] and an integrated
power manager [Pathania et al. 2014], their proposed method can achieve 29% and 20% higher
power-efficiency (i.e., FPS/Watt) for mobile games.

Chuang et al. [2017] adopted power management methods in Pathania et al. [2015] and devel-
oped an online learning method on top of it. The method learns the relationship between energy
consumption and performance at runtime based on historical data to save energy. Experimental
results show that their governor saves 26% device energy as compared to Linux performance gov-
ernor. Kadjo et al. [2015] also used FPS to characterize user experience. They argued that different
applications require different computing resources to satisfy the desired FPS of applications. They
optimized energy consumption of graphic applications by managing CPU and GPU frequencies
dynamically. The interplay between CPU and GPU is first modeled as a queuing system, and an
energy-aware coordination method is then used to alter CPU’s and GPU’s frequencies. Specifi-
cally, CPU generates commands and inserts them into a queue while GPU executes the commands
ejected from the queue. Further, a controller is formulated to adjust the frequencies of CPU and
GPU dynamically for energy optimization. Experimental results show that compared with Android
power management, their method can save 17.4% energy for mobile devices.

Paek et al. [2010] noted that GPS is more accurate than other positioning systems but also more
power-hungry. In urban areas, GPS is usually imprecise; thus, it is reasonable to compromise po-
sition accuracy to save energy. They designed an adaptive positioning mechanism called Rate-
Adaptive Positioning System (RAPS) that combines novel techniques to decide when to activate
GPS. First, RAPS leverages a duty-cycled accelerometer to detect users’ movement. Second, RAPS
stores the detected user location information to turn on GPS adaptively. Third, RAPS detects GPS
unavailability (e.g., indoors) by employing celltower-RSS blacklisting and avoids activating GPS
in these places. Lin et al. [2010] made full use of the available sensing mechanisms in devices
to enable them to work in tandem to avoid unnecessary energy waste. They presented a-Loc, a
system location service, to adaptively manage location sensors, accuracy, and device energy. a-
Loc adopts Bayesian estimation to capture and construct users’ location, and decides applications’
accuracy requirements dynamically. Based on accuracy requirements, a-Loc adaptively adjusts en-
ergy expenditure using the available sensors. However, Kjærgaard et al. [2011] noted that many
applications require not only the current position but also the historical motion. Thus, they pre-
sented a sensor management strategy to sense trajectory and decide when to sample data for
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Fig. 6. The conceptual diagram and the power conversion efficiency of the PDN in a smartphone platform

[Lee et al. 2014].

different sensors (e.g., accelerometer, compass, and GPS). Further, they proposed multiple trajec-
tory updating protocols to cooperatively save power using trajectory simplification algorithms to
simplify data before sending it to remote servers. Finally, they designed an energy-efficient system
that combines sensor management strategy with trajectory update protocols to optimize energy
consumption of location-sensing and data transmission. Experimental results show that compared
with the system of Lange et al. [2009], their method can save 5% device power.

Kim et al. [2014] noted that no change in display content can still result in frequent update
frames of applications, thus wasting significant power. They designed an energy-effective strat-
egy to save display energy without compromising graphical quality. They first defined content
rate as the metric to represent the number of meaningful frames. Content rate decides a proper
refresh rate for displaying content on display panels. Then, by using double buffering and grid-
based comparison, a runtime system is designed to measure the content rate dynamically. Finally,
based on the changes in content rate, the methods of section-based control and touch boosting are
developed to dynamically alter refresh rate. Specifically, the former method implements a match
between the content rate and the refresh rate based on a predefined section table. This method can-
not respond to the sudden changes of the frame rate. Thus, the latter boosting technique is further
proposed to enforce the refresh rate when a touch event occurs. Experimental results show that
their method can reduce 230 mW power consumption compared with devices that do not use their
method. Maghazeh et al. [2015] observed that significant power can be saved by scaling resolution
and users are willing to accept a lower resolution when battery power is low. Thus, they presented
a perception-aware adaptive method to scale resolution when playing a game. The method uses a
powerful statistical model to quantify user perceptions and predict user perceptions dynamically
based on this model. Further, an online heuristic is presented to adaptively adjust resolution based
on system dynamics to maintain the tradeoff between system power and user perception of the
quality. Experimental results show that the method can save 70% power as compared with a default
resolution (i.e., 3860 × 2160).

Hsieh et al. [2015] explored the impact of the memory access footprint on energy consumption
of mobile games. They designed a memory-aware scheme to optimize energy by considering CPU,
GPU, and memory governors cooperatively. They first analyzed memory usage characteristics of
off-chip during game play, and found that the time it takes to access main memory is critical to
graphics performance. Based on this observation, they constructed a regression model to forecast
memory accesses time during frame rendering. Finally, based on the predicted time taken to access
memory, a cooperative memory-aware CPU-GPU governor is proposed to make a DVFS decision
in case of pushing out a new frame. Experimental results show that compared to default system
governors, their method can save 13% device energy.

The above works ignore the power conversion efficiency from the battery to other modules.
As shown in Figure 6(a), the power delivery network (PDN) of a mobile device consists of multi-
ple dc-dc converters, in which the power dissipations can lead to massive power loss. Figure 6(b)
shows that the overall device power efficiency is about 70%, meaning that a significant energy will
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Fig. 7. Convolutional layer channel pruning

[He et al. 2017].
Fig. 8. Three-stage compression pipeline [Han

et al. 2016b].

be wasted when the power converts from the battery to other modules. Lee et al. [2014] studied
the relationship between power converter configurations and various operating conditions. They
found that the efficiency of DC-DC converters drops dramatically when DC-DC converters are
operating under undesirable operating conditions. Thus, they designed DC-DC converter models
for each module in mobile devices and leveraged linear regression to analyze power conversion
efficiency. Two optimization methods are proposed to minimize power loss of DC-DC convert-
ers. One is a static switch method that maximizes the efficiency of DC-DC converters based on
statistical load behavior information. The other is a dynamic switch method that achieves high
efficiency enhancement by adaptively controlling DC-DC converter switches under varying load
conditions. Experimental results show that their method can reduce 19% energy consumption for
mobile devices.

3.3 Improve Mobile Applications and Services

The improvements of hardware and battery techniques cannot stop poorly designed applica-
tions from unnecessarily draining the battery power. Existing tools (e.g., cycle-accurate simulators
[Brooks et al. 2000], power monitors [McIntire et al. 2006], program analyses [Hao et al. 2013], and
statistical-based measurement techniques [Li et al. 2013b]) could help developers understand ap-
plication energy usage patterns. However, they do not provide guidelines about how to modify
code for energy reduction. Li et al. [2014] conducted extensive evaluations of commonly used ap-
plication programming practices to provide guidance for application developers. In particular, they
collected a flock of developer-oriented tips and recommendations from the official Android devel-
opers website. Among these recommended practices, they mainly studied network usage, memory
consumption, and low-level code practices, which are rigorously evaluated to judge whether they
are useful for application developers. In particular, for network usage, they found that when in-
vestigating the code practices of making HTTP requests, transmitting larger files is more energy-
efficient as compared with transmitting smaller files. For memory consumption, they found that
high memory usage usually consumes a small amount of energy of applications. For low-level
programming practices (e.g., static invocations), their experimental results show that static in-
vocations can reduce 15% energy consumption as compared with virtual invocations. The above
investigative results offer valuable guidance to application developers to optimize the energy con-
sumption of mobile applications.

Developers can benefit from code practices to design energy-efficient applications. However,
this approach may be inefficient for deep neural network (DNN)-based applications (e.g., object
recognition) that require large computation and storage overheads of devices. Thus, reducing neu-
ral network size is an efficient method to decrease computation and storage requirements when
deploying DNNs on devices. Cun et al. [1990] proposed a method, Optimal Brain Damage (OBD),
to reduce learning network size by selectively deleting weights. To this end, a theoretically justi-
fied measure method is proposed to compute weight saliency. The weight parameters with small
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“saliency” can be deleted since their deletions hardly affect the training error. Experimental re-
sults show that OBD can reduce the amount of neural network parameters by four times. Different
from selectively deleting weights, He et al. [2017] introduced a novel channel pruning scheme for
compacting the convolutional neural network (CNN) by utilizing the redundancy inter-channels.
Figure 7 shows the process of channel pruning for a single convolutional layer. The goal of the
channel pruning method in this figure is not only to reduce the feature map B’s width but also
to maintain the feature map C’s outputs. If the channels have been trimmed, the corresponding
filters’ channels having these trimmed channels as inputs can be removed. In addition, the filters
that generate these channels can also be deleted. Usually, channel pruning involves channel selec-
tion and reconstruction. Motivated by this, they further proposed an iterative algorithm including
two stages. First, they used LASSO regression to select the most typical channels and remove the
redundant channels. Then, they adopted the linear least squares method to reconstruct the out-
puts based on the remaining channels. Experimental results show that their method can achieve
2x acceleration for ResNet while suffering only 1.4% accuracy loss.

Han et al. [2015] introduced a novel approach to reduce network size by removing superflu-
ous connections to reduce the number of weights. On top of this method, they proposed a deep
compression method, which contains two crucial steps including trained quantization and Huff-
man coding, to further compress deep neural networks, as shown in Figure 8 [Han et al. 2016b].
Trained quantization aims to quantize the pruned weights to make multiple connections that share
the same weight. Huffman coding as a lossless data compression technique is utilized to encode the
weights by using the variable-length codewords to ease the pressure on network storage. Com-
pared with the original network, their proposed pruned network layer takes 7x less energy on
CPU, 3.3x less on GPU, and 4.2x less on mobile GPU on average. Based on the method of deep
compression, an efficient inference hardware accelerator, Efficient Inference Engine (EIE), is fur-
ther designed to work on this compressed model [Han et al. 2016a]. Experimental results show
that compared with DaDianNao (Application-Specific Integrated Circuit (ASIC)), EIE can achieve
2.9x better throughput, 19x energy efficiency, and 3x area efficiency.

3.4 Sense Activities and Environments

The above works ignore the interactions between devices and users when optimizing energy con-
sumption. In fact, it turns out that fully exploring behaviors and activities of mobile users can
help save device energy. For example, ErdOS [Rodriguez and Crowcroft 2011], which has been
introduced in Section 3.1, is a user-centered and energy-aware mobile OS. In ErdOS, two tech-
niques are adopted and integrated to learn and infer users’ activities. One is a proactive resources
management system that infers users’ habits and customs based on contextual information-based
clustering algorithms. The other explores the opportunistic access to neighboring devices’ avail-
able resources using connections between users to provide access control strategies. Experimental
results show that compared with accessing the GPS receiver locally, ErdOS can save up to 11%
energy by learning users’ activities and sharing GPS reads with nearby devices.

The following works optimize device power consumption based on user experience and user
satisfaction. Li et al. [2013c] investigated the correlations among user experience, runtime system
activities, and the minimal required frequency of an application processor. Based on these corre-
lations, they designed an inference model that inputs the runtime statistics and outputs the most
energy-efficient power state of the application processor. Using this inference model, an adaptive
power management scheme, SmartCap, is proposed to automatically identify the most energy-
efficient state of the application processor according to the system activities. Chen et al. [2015]
put forward a user experience-oriented CPU-GPU governing framework to save energy without
posing significant impact on user experience. This framework includes three modules. The first
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module monitors application executions and identifies users’ demands at runtime. Based on the
monitoring results, the second module adjusts the policies for processors’ governors dynamically.
To prevent the module from casually making frequency-scaling decisions for processors, the third
module is responsible for communicating between two modules to interpret the frequency-scaling
intents. Yang et al. [2013a] explored the effect of CPU utilization on user satisfaction. They found
more than a simple linear relationship between user satisfaction and the CPU utilization. They
proposed an adaptive CPU frequency scaling scheme, Human and Application driven frequency
scaling for Processor Power Efficiency (HAPPE), which takes the users’ and applications’ require-
ments into account. The scheme learns the necessary CPU frequencies satisfying the requirements
of users and applications for each CPU utilization level using a learning algorithm. The learning
algorithm contains two periods. The first period is the training period. For each user and appli-
cation, the algorithm trains the user-application frequency profile based on users’ inputs the first
time running this application. Specifically, a few keystrokes are used as the users’ inputs to explore
their satisfactory CPU frequency level. Then, the desired CPU frequencies at different CPU uti-
lization levels are stored. After the training period, users do not need to provide the inputs unless
their requirements change. If the requirements change, HAPPE will learn the new necessary CPU
frequencies to satisfy the new requirements. Experimental results show that their methods can
save 45.1%, 84%, and 25% energy as compared with the governor in Pathania et al. [2014], Linux
ondemand DFS strategy, and default Linux CPU frequency controller, respectively.

Kim et al. [2015] observed that users’ behaviors (i.e., zooming and scrolling) usually demand
a different amount of CPU resources during application execution. They designed a user activity
recognition framework to sense user’s activities at runtime and make system decisions to reduce
power consumption. Three crucial modules are contained in this framework. The first module
makes activity profiles for each user’s interaction, which are processed by event handlers. The
event handlers are the functions that solve diverse user interactions. Based on a user’s activity
profile, the second module constructs the user activity model for each application to classify the
obtained activity profiles. According to the user activity model, the third module recognizes the
user’s activities dynamically at runtime. Finally, an energy-efficient power and thermal manage-
ment method is designed to adjust the system configurations according to the user’s activities
dynamically. Experimental results show that compared to a default Linux ondemand governor,
their proposed framework can achieve 28% reduction in CPU energy consumption.

The following two works investigate energy-efficient device management for continuous user
activity recognition (e.g., sit, stand, or walk). Yan et al. [2012] learned the characteristics of the
energy consumed by the activity recognition applications and found that two independent param-
eters, sampling frequency and classification features, can impact the energy consumed by applica-
tions. Different configurations of these two parameters are required by different activities to realize
their diverse accuracy levels. Based on this observation, an adaptive activity recognition mecha-
nism is presented to recognize the activities continuously, and adjust two parameters dynamically
for these activities. Liang et al. [2014] found that it is reasonable to shorten the operating time of
the activity recognition sensors through reducing sampling frequency. They designed a hierarchi-
cal recognition approach to recognizing the users’ activities by setting low sampling frequency
and reducing frequency-domain feature extraction to achieve long-term activity monitoring. Like
Kim et al. [2015], this approach first models the templates for each activity by extracting features
from the sampled data. Then, the features are extracted from the sliding window and the simi-
larities between the target activity and the templates are calculated. Based on the similarities, the
target activity is classified into the corresponding template type. Experimental results show that
their methods can save 25% power as compared with a non-adaptive recognition scenario, and can
extend battery life by 3.2 hours by setting a low sampling frequency, respectively.
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Different from the above works that concentrate more on mobile users, Paterna et al. Paterna
and Rosing [2015] investigated the influence of the ambient environment on the energy consumed
by devices. They observed that the changes of device’s contact surface and orientation can impact
the heat transfer coefficient of the device and affect the SoC temperature. Thus, they addressed the
heat transfer variations and the thermal coupling effect among the components on mobile devices.
First, under different operating environment conditions, they analyzed the influences of the above
ambient variations on the thermal profile. Subsequently, a variation-aware strategy is presented
to model the thermal behavior by using the data from available corresponding sensors. Finally,
a proactive thermal control management method is devised to manage both the frequencies of
CPU and GPU to adapt to the changes of users and environments while meeting the temperature
constraints. Experimental results show that compared with existing techniques that consume as
much as 1W on average, their proposed method consumes 0.6W power on average.

3.5 Summary

Shannon’s law predicts that the transmission performance can be doubled in 8.5 months, the bat-
tery manufacturers need to spend at least 5 years to achieve similar growth in power density, and
the memory performance takes 12 years to achieve 2x improvement. The development speed of
hardware technology falls behind the growth rate of application requirements. Usually, high per-
formance demands more power. Hence, it is crucial to trade off performance and power within a
particular design. In this section, we summarize energy optimization methods from perspectives of
mobile OSs, mobile hardware, mobile application or services, user activities, and ambient environ-
ment perception. Current mobile devices face a new class of abnormal system behaviors that could
happen in any entities in a device (e.g., hardware, application, or OS), leading to serious battery
drain [Pathak et al. 2011]. Effective approaches for diagnosing and handling these energy bugs
could be found in Jiang et al. [2017] and Liu et al. [2013b]. Modern mobile OSs are modified based
on a general-purpose OS without regarding energy efficiency as a goal. In fact, mobile OSs need not
only the abilities to provide energy usage patterns for components and applications, but also the
capacities to adaptively control and manage system energy and resource usages for applications.
For mobile hardware, energy-efficient and component-specific algorithm developments and low-
power component designs can be utilized to save energy at multiple levels (e.g., transistor-level).
For example, Kumar et al. [2010] argued that adopting a new generation of semiconductor tech-
nology can reduce device energy consumption. However, given Moore’s law, the semiconductor
manufacturers need to spend 1.5 years to improve the microprocessor performance by two times.
As transistors become smaller, even though each transistor consumes less power, more transistors
for better performance will cause more power consumption.

DVFS can efficiently manage device power by adjusting the processor clock frequency and the
supply voltage. It is widely used in computer hardware to maximize power savings while still main-
taining ready compute performance availability. Hence, combining DVFS and efficient prediction
algorithms could provide devices more energy-saving opportunities by proactive managing sys-
tem resources. The design principle of most mobile applications running on devices are usability
factors-driven rather than energy efficiency-driven. Thus, application-oriented energy optimiza-
tion methods are necessary to provide more opportunities for further energy reduction, especially
for computation/storage/communication-intensive applications. The convergence of MC and CC
has spawned a new computing paragram, namely MCC. In the context of MCC, the data storage
and processing run outside of mobile devices. In this way, the restrictions of mobile devices such
as battery life and storage capacity can be effectively solved. In the next section, an introduction
on computation offloading strategies for these computation/storage/communication-intensive ap-
plications is given in detail. Computation offloading can alleviate the device energy pressure by
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Table 4. A Comparison Summary of Device Energy Optimization Methods from Multiple

Aspects, Such as Optimization Target, Power/Energy Savings, Performance Improvement,

Benchmark Schemes, and Experimental/Simulation Platforms

References
Optimization

target Power/Energy Performance Benchmarks Platforms

[Roy et al. 2011] OS +12.5% ∗ non-coop HTC Dream

[Yang et al. 2013a] CPU +25% ∗ Linux controller Linux laptop

[Kim et al. 2015] CPU +9.5% ∗ [Li et al. 2013c] MDP8660

[Pathania et al.
2015]

CPU-GPU +29% +29% Linux power
manager

Odroid-XU+E

[Chuang et al.
2017]

CPU-GPU +26% ∗ Linux performance
governor

Google Nexus 7
device

[Kadjo et al. 2015] CPU-GPU +17.4% −0.9% Android power
management

Intel Baytrail-based
Android

[Singla et al. 2015] CPU-GPU +16% ∗ use a fan Linux kernel

[Chen et al. 2015] CPU-GPU +45.1% ∗ [Pathania et al.
2014]

Samsung Galaxy S4

[Paterna and
Rosing 2015]

CPU-GPU +40% ∗ [Rodero and et al.
2010]

MSM8660

[Li et al. 2013c] app processor +11%∼+84% ∗ linux DFS strategy Motorola ME525

[Paek et al. 2010] GPS +3.8x ∗ always on GPS Nokia N95

[Lin et al. 2010] GPS +45% ∗ periodic GPS Android G1

[Kjærgaard et al.
2011]

GPS +36% ∗ EnTracked Nokia N97 device

[Priyantha et al.
2011]

processor &
sensor

+3 orders of
magnitude

∗ current HTC Touch
Pro architecture

HTC Touch Pro

[Yan et al. 2012] accelerometer +20% ∗ non-adaptive
recognition scenario

Samsung Galaxy S2

[Liang et al. 2014] accelerometer +3.2 hours ∗ sampling frequency
(20Hz)

Samsung i909

[Kim et al. 2014] display +230 mW −5% default method Galaxy S3 LTE

[Maghazeh et al.
2015]

display +70% ∗ default resolution
(3860×2160)

Odroid-XU3 board

[Hsieh et al. 2015] memory +13% ∗ default governors Odroid-XU3

[Lee et al. 2014] PDN +19% ∗ default method MSM8660

[Li and Halfond
2014]

coding
practices

+15% ∗ virtual invocations Samsung Galaxy II

[He et al. 2017] CNN ∗ +5x tensor factorization CNN

[Han et al. 2016a] DNN +19x +2.9x DaDianNao (ASIC) DNN

[Pathak et al. 2012] ebug +20%∼+65% ∗ default method Android

∗ indicates that the corresponding reference does not provide specific performance discussions and analysis.

offloading computational parts of an application to cloud servers for execution. Table 4 gives a
summary of the performance comparisons of device energy optimization techniques.

4 OFFLOAD COMPUTATION FROM DEVICES

The computing and storage resources, as well as severe energy constraints caused by limited bat-
tery life, are the major bottlenecks for mobile devices. Fortunately, offloading is an effective so-
lution that enhances devices’ computing and storage capabilities through sending computational
tasks to powerful servers for execution. Most research on offloading decisions focuses on two
areas: improving performance and saving energy. In this section, we mainly focus on offloading
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strategies that target energy efficiency improvement for mobile devices. The process of offload-
ing usually includes three crucial steps, that is, application partition, preparation, and offloading
decision [Akherfi et al. 2018]. Application partition divides an application into the offloadable
and the non-offloadable portions. The former portions (i.e., offloadable) will be migrated to the
powerful servers (e.g., remote clouds or edge clouds) for execution while the latter portions (i.e.,
non-offloadable) will be executed locally. Preparation performs necessary actions for offloadable
parts to enable their successful offloading and execution, including remote servers selection, code
transmission, and the like. The offloading decision is the final step that makes offloading decisions
for the offloadable parts before transmitting them to the remote cloud servers or the edge servers.
In particular, based on the offloading object, offloading can be divided into data offloading and com-
puting offloading. The former migrates data from one network to another while the latter migrates
a computing process to the clouds for execution. Moreover, according to the offloading methods, of-
floading can be classified into fine-grained (or partial) offloading and coarse-grained (or complete)
offloading. Fine-grained offloading strategies divide an application and only offload parts of the ap-
plication and transmit as little data as possible, while coarse-grained offloading strategies usually
migrate the entire application to a cloud server to ease the burden on the application programmers.

Many researchers have attempted to enable mobile devices to apply remote execution to im-
prove energy efficiency and application performance. Since offloading migrates calculations to
computers with richer resources, it involves whether to migrate calculations and which calcula-
tion decisions to migrate. Computation offloading is productive only when energy savings from
computation offloading exceed the cost incurred by other factors (e.g., data communication, pri-
vacy and security guarantee) (Section 4.1). Once determined to perform computation offloading,
the application offloading decision should be judiciously made before sending the offloaded por-
tions to clouds (Section 4.2). It is noted that if the processes of partition, preparation, and of-
floading decisions are all done at the design process of an application, then this offloading mech-
anism is called static offloading, which does not consider the real execution context, thus may
be energy-inefficient. Motivated by the highly dynamic characteristics of wireless network chan-
nels, dynamic offloading is emerging to make offloading decisions at runtime to adapt to different
network conditions (Section 4.3). In this context, an application is partitioned with different gran-
ularity levels and the offloadable parts are dynamically migrated to powerful servers to adapt to
the unstable network environment. Table 5 summarizes the energy-efficient offloading strategies
for computation/storage/communication-intensive mobile applications.

4.1 To Offload or Not to Offload?

Mobile devices can benefit from computation offloading to extend the battery lifetime and improve
user experience. However, Nguyen et al. [2016] argued that it is crucial to explore the energy us-
age of local execution and network communication before performing offloading. The following
works discuss the factors that need to be considered before performing computation offloading.
Namboodiri et al. [2012] analyzed the energy characteristics for the cloud and the non-cloud ver-
sions of an application to judge which of them can save more energy in MCC. First, they compared
the energy consumed by three mobile applications (i.e., word processing, multimedia, and games)
under cloud and non-cloud versions on mobile devices with different form-factors. Second, an
analytical model is proposed to generalize these comparison results and adaptively analyze the
energy consumption of two application versions under dynamic communication and device pro-
cessing capabilities. The model uses the metric, AppScore, to evaluate the performance of locally
or remotely executed applications. Finally, based on the AppScore rating of two versions of the ap-
plication, an algorithm called GreenSpot is developed to dynamically make the decision on which
version is more energy-efficient. Specifically, it first accepts the users’ request of the application
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Table 5. A Classification of Energy-efficient Offloading Strategies

Classification References

Security [Roy et al. 2011] [Rodriguez and Crowcroft 2011] [Kumar and Lu 2010] [Mtibaa
et al. 2014]

Commun-
ication

[Namboodiri and Ghose 2012] [Guo and Liu 2018] [Shu et al. 2013] [Chun et al.
2011] [Barbera et al. 2013] [Cuervo et al. 2010] [Kovachev et al. 2012] [Lin et al.
2014] [Liu et al. 2016] [Qian and Andresen 2014] [Yang et al. 2013b] [Kwon and
Tilevich 2013] [Zhang et al. 2017a] [Barbarossa et al. 2013] [Ding et al. 2013a]
[Nirjon et al. 2012] [Dogar et al. 2010] [Hoque et al. 2014] [Bui et al. 2013] [Li et al.
2013a] [Zhang et al. 2013] [Zhang et al. 2015a] [Tong and Gao 2016] [Yao et al.
2013] [Zhang et al. 2015b] [Kosta et al. 2013] [Terefe et al. 2016] [Goudarzi et al.
2017] [Zhang et al. 2017b] [Zhang et al. 2018] [Shi et al. 2012] [Magurawalage et al.
2014] [Gai et al. 2016] [Zhou et al. 2015] [Rahimi et al. 2012] [Shi et al. 2014]

Coarse
granularity

[Namboodiri and Ghose 2012] [Shiraz and Gani 2014] [Kosta et al. 2012] [Barbera
et al. 2013] [Cuervo et al. 2010] [Xia et al. 2014] [Li et al. 2013a] [Zhang et al. 2013]
[Zhang et al. 2015a] [Kosta et al. 2013]

Fine granularity [Guo and Liu 2018] [Chun et al. 2011] [Kovachev et al. 2012] [Lin et al. 2014] [Liu
et al. 2016] [Balakrishnan and Tham 2013] [Kemp et al. 2010] [Qian and Andresen
2014] [Xia et al. 2014] [Yang et al. 2013b] [Kwon and Tilevich 2013] [Zhang et al.
2017a] [Barbarossa et al. 2013] [Tong and Gao 2016] [Yao et al. 2013] [Zhang et al.
2015b] [Kwon and Tilevic 2012] [Wang et al. 2013] [Terefe et al. 2016] [Goudarzi
et al. 2017] [Fan et al. 2017] [Zhang et al. 2017b] [Zhang et al. 2018] [Chen et al.
2018] [Shi et al. 2012] [Mtibaa et al. 2014] [Habak et al. 2015] [Wu et al. 2016]
[Magurawalage et al. 2014] [Gai et al. 2016] [Ravi and Peddoju 2015] [Zhou et al.
2015] [Rahimi et al. 2012] [Shi et al. 2014]

Static [Li et al. 2001] [Xian et al. 2007] [Xia et al. 2014]

Dynamic [Guo and Liu 2018] [Wu and Wolter 2015] [Lin et al. 2013] [Shiraz and Gani 2014]
[Ge et al. 2012] [Shu et al. 2013] [Chun et al. 2011] [Kosta et al. 2012] [Cuervo et al.
2010] [Kovachev et al. 2012] [Lin et al. 2014] [Liu et al. 2016] [Balakrishnan and
Tham 2013] [Kemp et al. 2010] [Qian and Andresen 2014] [Yang et al. 2013b] [Kwon
and Tilevich 2013] [Zhang et al. 2017a] [Barbarossa et al. 2013] [Ding et al. 2013a]
[Li et al. 2013a] [Zhang et al. 2013] [Zhang et al. 2015a] [Tong and Gao 2016] [Yao
et al. 2013] [Zhang et al. 2015b] [Kwon and Tilevic 2012] [Kosta et al. 2013] [Wang
et al. 2013] [Terefe et al. 2016] [Goudarzi et al. 2017] [Beck et al. 2015] [Fan et al.
2017] [Zhang et al. 2017b] [Zhang et al. 2018] [Chen et al. 2018] [Shi et al. 2012]
[Mtibaa et al. 2014] [Habak et al. 2015] [Wu et al. 2016] [Magurawalage et al. 2014]
[Gai et al. 2016] [Ravi and Peddoju 2015] [Zhou et al. 2015] [Rahimi et al. 2012]

as the input; then, it judges which version of this application is available and determines the most
energy-efficient version based on the analytical results on energy consumption.

Further, Kumar et al. [2010] considered the data privacy and security issues during offloading.
To prevent data from being attacked, they argued that the offloaded data needs to be preprocessed
(e.g., data encryption) before sending to the clouds. However, these operations will inevitably in-
cur additional energy consumption for mobile devices, which has a very important impact on the
offloading decision. Barbera et al. [2013] were concerned more about the significant communica-
tion cost between mobile devices and clouds, especially under poor network connectivity. They
investigated the feasibility of computation offloading and data backups between mobile devices
and clouds. In this context, each mobile device has two types of software clones in the cloud,
namely, off-clone and back-clone. The former is used to perform computation offloading while the
latter is used to restore data. Based on the analysis of network availability and signal quality, they
evaluated and reported the necessary communication cost to achieve synchronization between
devices and clones. Finally, they presented Logger, an Android application to continuously record
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Fig. 9. The high-level view of MAUI

[Cuervo et al. 2010].

Fig. 10. The architecture of

MACS [Kovachev et al. 2012].

and collect the events occurring in the device to study the overheads incurred by the two clones.
Measurements results show that Logger can accurately assess the feasibility and communication
costs of two clones. In general, before performing offloading, factors such as data privacy and se-
curity, wireless communication overhead, and cloud availability need to be carefully considered
and evaluated to achieve green offloading.

4.2 Partition and Prepare Offloadable Tasks

Cuervo et al. [2010] designed a fine-grained offloading system, MAUI, as shown in Figure 9, that
not only performs fine-grained partition but also reduces the burden on programmers. With MAUI,
the developers only need to provider an initial partition of applications. In particular, MAUI lever-
ages several properties of the managed code environment to achieve the goal. First, code porta-

bility is used to make two versions of an application. More specifically, one version is processed
locally while the other version is processed remotely. Subsequently, MAUI combines reflection

and type safety to determine the offloadable parts of an application dynamically. Further, MAUI
evaluates each offloadable part and uses serialization to decide its network transmission overhead.
Finally, based on the measurements of transmission and computing overheads, the offloading pro-
cess is formulated as a linear programming problem, and the solution can obtain the network
condition-aware dynamic application partition methods to minimize device energy consumption.
Experimental results show that MAUI can achieve about 10x, 27%, and 45% energy savings for face
recognition, video game, and chess, respectively.

Inspired by MAUI [Cuervo et al. 2010], Kovachev et al. [2012] developed an effective offloading
strategy to partition and offload computational tasks of an application to the cloud at runtime to
reduce device energy consumption. They designed Mobile Augmentation Cloud Services (MACS),
as shown in Figure 10, a middleware to enable adaptive partition and offloading between mobile
devices and clouds. First, MACS develops an offloadable lightweight application model to indicate
the computational tasks corresponding to the services encapsulating specific functionalities. Then,
based on available devices and communication conditions (e.g., CPU load and bandwidth), the
partition decision is formulated as an optimization problem to divide the application into two
parts. Finally, according to the optimization solution, MACS offloads the corresponding portions
of the application to the cloud for execution. Evaluation results show that MACS can achieve 95%
energy savings as compared to local execution.

Lin et al. [2014] observed that task-level offloading can provide lower power consumption for
mobile devices. They studied task scheduling and offloading problems in MCC to save energy
under application completion time constraints. An application is divided into smaller tasks with
execution requirements. They first proposed a scheduling algorithm to allocate the tasks within the
minimal latency. Then, a task migration algorithm is designed to perform tasks offloading among
local device cores and the remote cloud to achieve energy savings. Further, DVFS is utilized to
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Fig. 11. The architecture of Phone-

2Cloud [Xia et al. 2014].

Fig. 12. The system model of Clone-

Cloud [Chun et al. 2011].

adjust the frequencies of the local cores to further reduce the energy consumption. Finally, a linear-
time rescheduling mechanism is presented to migrate the tasks to reduce the time complexity.
Experimental results show that compared with local execution, their proposed method can achieve
up to 74.9% energy savings.

Liu et al. [2016] argued that it is necessary to offload appropriate but not all the tasks to the
cloud to reduce additional transmission cost to further save energy for mobile devices. In their
work, an application can be partitioned into the smaller tasks including not only sequential tasks
but also parallel tasks. They presented an energy-efficient scheduling mechanism to migrate the
appropriate tasks to the cloud to save energy under the execution constraints. Specifically, an ap-
plication is first decomposed into two types of the smaller tasks, and their execution is mapped into
a directed acyclic graph (DAG). Subsequently, based on the hybrid tasks, they formulated the task
dispatching problem as a constrained shortest path problem. Finally, they handled this problem
by adopting the classical Lagrangian relaxation-based aggregated cost method and obtained the
approximate optimal solution. Experimental results show that their method can achieve 81.93%
energy reduction as compared with the local strategy.

Balakrishnan et al. [2013] observed that an application can be partitioned into the intercon-
nected entities to form a Task Interaction Graph (TIG). Each TIG consists of vertices and edges.
The vertices indicate the computation cost of tasks while the edges indicate the transmission cost
between tasks. They studied the problem of assigning tasks to the external resources (e.g., cloud
servers) and applying the DVFS technique to save energy for mobile devices. To this end, the task
offloading is first formulated as a quadratic assignment problem to achieve the allocations of “task-
resource” and “resource-frequency,” respectively. Subsequently, they dealt with the allocation op-
timization problem by designing a two-level genetic approach. The inner level adopts the DVFS
technique to identify the appropriate operating frequencies for resources, while the outer level
uses the proposed slack time-based scheduling method to assign tasks in a TIG to these resources.
Experimental results show that their method can save 35% energy compared with local execution.

4.3 Migrate Offloadable Tasks

Static partitioning strategies [Li et al. 2001; Xian et al. 2007] partition applications in the develop-
ment phase. Xia et al. [2014] developed an offloading system, Phone2Cloud, to perform offload-
ing for devices. Phone2Cloud consists of seven crucial components, as shown in Figure 11. Based
on the methods in Kumar and Lu [2010] and Liu et al. [2010], Phone2Cloud provides a modified
offloading-decision-making mechanism. Given an application, Phone2Cloud makes offloading de-
cisions as follows. First, it uses time predictor to predict the average application execution time
based on the CPU workload monitored by the resource monitor. Then, it compares the predicted
result and the user-defined execution threshold of the application. If the predicted time is greater
than the threshold, then parts of the application will be migrated to the cloud servers. Otherwise,
it compares the energy consumption for processing the application locally and remotely. If the
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Fig. 13. The architecture of ThinkAir

[Kosta et al. 2012].

Fig. 14. High-level view of Jade

[Qian and Andresen 2014].

remote energy consumption is greater than the local, then the entire application will be processed
locally. Otherwise, parts of the application will be migrated to the cloud servers. Experimental
results show that Phone2Cloud can save energy when the input size of “word count” is larger than
256KB.

Static offloading schemes cannot adapt to fluctuating network conditions, thus may be energy-
inefficient in some cases. Kemp et al. [2010] presented a practical dynamic offloading mechanism,
Cuckoo, to migrate the computational tasks to nearby mobile devices or the cloud servers. Cuckoo
consists of a runtime system, a resource manager, and a programming model. The runtime system
is configured to determine the target of maximizing computation speed or minimizing energy us-
age. The resource manager is designed for users to collect remote available resources for execution,
such as laptops, servers, and other cloud resources. Considering the fact that mobile devices may
be disconnected from the networks, the programming model is designed to provide an interface
for developers to build applications supporting local and remote execution. Cuckoo simplifies the
development of applications and provides a dynamic offloading system to determine the offload-
able portions of an application at runtime. Experimental results show that Cuckoo can reduce the
battery power consumption by 40 times compared with local execution.

Chun et al. [2011] argued that the partition methods for an application are different under differ-
ent wireless network connections. They presented an offloading system, CloneCloud, as shown in
Figure 12, to adaptively partition and send an application to the cloud device clone under dynamic
wireless network. Specifically, given an application, like MAUI [Cuervo et al. 2010], CloneCloud
first uses static analysis to identify the offloadable points of an application, then leverages dynamic
profiling to evaluate the cost (e.g., energy consumption) of these possible offloadable points. Based
on the cost model, a mathematical optimizer is adopted to select the offloadable points to perform
offloading. Subsequently, the threads at the chosen points are offloaded from the mobile device to
a cloud device clone (i.e., an application-level virtual machine). Finally, the threads executed on
the device clone and their created new states at the same time are both returned to the device to
combine with the initial process. Experimental results show that compared with local execution,
CloneCloud can achieve up to 20x energy savings for mobile devices.

Kosta et al. [2012] solved the non-scalability of MAUI [Cuervo et al. 2010] and the limited envi-
ronmental conditions considered of CloneCloud [Chun et al. 2011] by presenting a new offloading
framework, ThinkAir, to achieve method-level offloading. As shown in Figure 13, first, ThinkAir
uses the device clone in the cloud to process the offloadable methods to solve the non-scalability
of MAUI. Second, ThinkAir adopts an online method-level offloading mechanism to overcome the
restrictions in static analysis of CloneCloud by considering the hardware, software, and network
conditions simultaneously. Finally, in the cloud side, ThinkAir performs on-demand resource al-
location for the offloadable methods with different resource requirements and exploits parallelism
for methods execution to improve execution speed and save energy. Experimental results show
that ThinkAir can achieve energy savings for an application (e.g., N-queens puzzle) of two orders
of magnitude compared with local execution.
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Qian et al. [2014] presented a computation offloading system, Jade, to perform dynamic fine-
grained code offloading among multiple mobile devices owned by a user to minimize their energy
consumption. Jade consists of three key components, as shown in Figure 14. The profiler is in
charge of continuously monitoring and collecting the characteristic information of the device and
the wireless network, such as CPU workload, network bandwidth, and battery level. Subsequently,
based on the collected monitoring results, the optimizer makes the offloading decision to determine
where to offload by solving an optimization problem. Finally, the communication manager looks
for the available mobile devices to execute offloadable code and coordinates among these devices.
Further, for a different amount of data transmission, Jade selects WiFi for big data transfer and
Bluetooth for small data transfer. Experimental results show that Jade can achieve 74% and 86%
energy savings for FaceDetection and TextSearch, respectively.

We have elaborated on some classic computation offloading frameworks; there are also some
dynamic offloading methods that describe computation offloading mechanisms from other per-
spectives. Yang et al. [2013b] observed that CloneCloud [Chun et al. 2011] usually transfers all
reachable objects from the cloud to devices, which increases the transmission time. They lever-
aged the compiler code analysis techniques to evaluate the possibility to compress the amount of
transferred data by transferring only the essential objects. Kwon et al. [2013] presented an adaptive
offloading strategy to offload the suspected energy consumption hotspots in an application spec-
ified by the programmer under fluctuating network conditions. Zhang et al. [2017a] developed a
generic offloading model and a scheduling algorithm for video applications to adaptively offload
tasks to the cloud in fine granularity under dynamic wireless connections. Barbarossa et al. [2013]
also studied task migration mechanism under a dynamic wireless environment. They designed a
cross-layer optimization framework that jointly takes application requirements, scheduling, and
radio resource allocation into account to optimally allocate radio resources for the offloadable data
communication. In addition to data communication, Liu et al. [2010] focused more on the privacy
risks incurred by offloading. They used steganography techniques to hide offloadable data to pre-
vent cloud servers from recognizing the real information to protect data privacy.

4.4 Summary

In this section, we summarize a variety of energy-efficient offloading strategies for mobile devices.
Static or dynamic offloading mechanisms can reduce application execution time and save device
power by migrating computational tasks to clouds. We divide these offloading strategies into
two categories. The first category refers to the methods that offload tasks to the clouds in a
fine-grained and energy-aware manner. These kinds of methods require programmers to modify
application programs to achieve application partition and make offloading decisions. The second
category refers to the coarse-grained computation offloading schemes. In this scenario, the entire
application/process/program is migrated to the clouds. In this way, the programmers could fully
leverage the efficient dynamic offloading strategies without having to modify the application
source code. The energy consumption during offloading usually involves the power consumed dur-
ing application execution, remote cloud communication, and other operations (e.g., data privacy
and security protection for offloadable tasks). Thus, compared with local execution, offloading may
not always be energy-efficient considering that the total energy for executing these operations
could exceed the local execution energy. That is, offloading is feasible only when the energy con-
sumed by local devices is more than the total energy consumed incurred by data transmission and
other energy-consuming operations during offloading. When the amount of computation is large,
complete offloading strategies should be adopted. Otherwise, partial offloading strategies should be
adopted to avoid unnecessary data communication/transmission energy waste. Further, in order to
make use of the abundant cloud resources, a better balance of energy costs between data communi-
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Table 6. A Comparison Summary of Computation Offloading Strategies

Method D_e T_e C_e C_p Off_loc Off_parti

CloneCloud � � × × remote_cloud offline

ThinkAir � � × × remote_cloud online

MAUI � � × × remote_cloud runtime

MACS � � × × remote_cloud adaptive

Cuckoo � � × × remote_cloud runtime

Phone2Cloud � � × × remote_cloud offline

Jade � � × × mobile_device runtime

MCCTS � � × × remote_cloud offline

EETS � � × × remote_cloud offline

QAPTS � � × × proxy offline

FDEO � � × × remote_cloud offline

SECH � � × × remote_cloud runtime

EA-MRDA � � × × remote_cloud adaptive

Method Deci. Gran. Ene. Perf. Benchmark Reference

CloneCloud dyn thread +20x +20x local_execution [Chun et al. 2011]

ThinkAir dyn method +100x +100x local_execution [Kosta et al. 2012]

MAUI dyn method +10x +1x local_execution [Cuervo et al. 2010]

MACS dyn service +90% +20x local_execution [Kovachev et al. 2012]

Cuckoo dyn method +40x +60x local_execution [Kemp et al. 2010]

Phone2Cloud sta app +86% +91% local_execution [Xia et al. 2014]

Jade dyn class +74% +40% local_execution [Qian and Andresen 2014]

MCCTS dyn task +20% +95% exhaustive_search [Lin et al. 2014]

EETS dyn task +82% +26% local_execution [Liu et al. 2016]

QAPTS dyn task +35% ÷ local_execution [Balakrishnan and Tham 2013]

FDEO dyn thread +94% +85% local_execution [Yang et al. 2013b]

SECH dyn program +80% ÷ local_execution [Kwon and Tilevich 2013]

EA-MRDA dyn task +15% ÷ local_execution [Zhang et al. 2017a]

D_e: Device energy, T_e: Transmission energy, C_e: Cloud server energy, C_p: Cloud price, Off_loc: Offloading location,

Off_parti: Offloading partition, Deci.: Decision, Gran.: Granularity, Ene.: Energy saving, Perf.: Performance improvement.

� indicates that the factor is considered in the literature. � implies that the literature mentions the factor but does not

conduct an in-depth study of it. × indicates that the literature does not consider the factor. ÷ implies that the literature

does not give a clear explanation of the factor.

cation and local execution is required. Although numerous studies have achieved tradeoff of energy
between data transmission and local execution, most of them concentrate more on performance
improvement (e.g., response time). The communication/transmission energy consumption
between mobile devices and remote clouds plays a crucial role during offloading, thus cannot
be ignored when offloading. In the next section, various wireless communication/transmission
energy optimization mechanisms are introduced for saving devices’ energy. Table 6 gives a
summary of performance comparisons of offloading strategies.

5 REDUCE COMMUNICATION ENERGY OF DEVICES

Wireless transmission energy consumption incurred by offloading cannot be ignored under poor
wireless signal. Wireless communication technology is one of the most important information
transmission mediums among devices. It refers to a variety of wireless communication devices
(e.g., smartphones, tabs, and laptops) and technologies ranging cellular, WiFi, Bluetooth, NFC,

ACM Computing Surveys, Vol. 53, No. 2, Article 38. Publication date: April 2020.



38:24 P. Cong et al.

Table 7. A Classification of Transmission Energy Consumption Optimizations

Classification References
Wireless interface
power model

[Pluntke et al. 2011] [Hoque et al. 2014] [Ding et al. 2013b] [Yao
et al. 2013]

Communication
protocols

[Yoo and Park 2011] [Pluntke et al. 2011] [Nirjon et al. 2012]
[Hoque et al. 2014]

Wireless network
interfaces’
characteristics

[Qian and Andresen 2014] [Yoo and Park 2011] [Pluntke et al.
2011] [Ding et al. 2013a] [Nirjon et al. 2012] [Donohoo et al. 2012]
[Deng and Balakrishnan 2012] [Dogar et al. 2010] [Hoque et al.
2014] [Bui et al. 2013] [Ding et al. 2013b] [Kosta et al. 2013]

Intermittent/unstable
wireless network
connectivity

[Guo and Liu 2018] [Chun et al. 2011] [Kosta et al. 2012] [Kwon
and Tilevich 2013] [Zhang et al. 2017a] [Barbarossa et al. 2013]
[Bui et al. 2013] [Li et al. 2013a] [Zhang et al. 2013] [Zhang et al.
2015a] [Tong and Gao 2016] [Yao et al. 2013] [Zhang et al. 2015b]
[Kwon and Tilevic 2012] [Terefe et al. 2016] [Goudarzi et al. 2017]
[Shi et al. 2012] [Magurawalage et al. 2014] [Gai et al. 2016] [Zhou
et al. 2015] [Shi et al. 2014]

Device sleep (doze off) [Dogar et al. 2010]
Data compression [Shu et al. 2013] [Yao et al. 2013]

and the like. Modern wireless devices usually include cellular networks (e.g., 2G, 2.5G, 3G, and
4G), Bluetooth, and WiFi. Bluetooth is a peer-to-peer wireless technology for data communication
between mobile devices over short distances. Due to the short operating range, Bluetooth is fairly
low power. WiFi is known as a Local Area Network (LAN) technology based on IEEE 802.11 stan-
dards due to its moderate coverage area. Using WiFi, mobile devices connect to the Internet via a
Wireless LAN and a wireless access point (AP). In case of a mobile device that needs access to the
clouds—if it is not located near a WiFi AP—then it may need a cellular radio (e.g., 2G, 2.5G, 3G, and
4G) for long distance communication. Overall, Bluetooth consumes much less power than WiFi,
and a lot less power than cellular technologies, but still significantly more than technologies such
as Bluetooth Low Energy (BLE) and Zigbee, which are short-range networking technologies.

In telecommunication, a communication protocol (e.g., Transmission Control Protocol (TCP))
refers to a system of rules allowing two or more devices to transmit information [CP 2019]. Tradi-
tional TCP protocol may be energy-inefficient for transfering data. It is necessary to design or uti-
lize more energy-efficient transmission protocols to achieve energy savings transmission between
mobile devices and remote clouds (Section 5.1). We have known that different wireless commu-
nication interfaces (e.g., Bluetooth, WiFi, 2G, 3G, and 4G) usually consume different amounts of
energy. In other words, these interfaces may achieve energy optimal transmission under differ-
ent conditions. This characteristic enables a new insight to save device energy by making these
interfaces work in tandem (Section 5.2). Taking into account the fact that the wireless network
connectivity is usually unstable and intermittent, it is feasible to transmit most of the offloaded
parts under good connection conditions to avoid significant transmission energy consumption in-
curred under poor connection conditions (Section 5.3). Table 7 summarizes strategies for reducing
wireless transmission energy consumption.

5.1 Utilize Energy-Efficient Protocols

Yoo et al. [2011] noticed that Wireless Local Area Network (WLAN) interfaces consume
greater energy than Bluetooth interfaces in mobile devices. Thus, they explored energy-saving
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possibilities by utilizing WLAN and Bluetooth collaboratively. A distributed group mechanism
called Cooperative Networking protocol (CONET) is designed to reconfigure the groups dy-
namically based on each device’s bandwidth, energy, and application requirements. A group is a
Bluetooth Personal Area Network (PAN) that contains one head node and a couple of common
nodes. The head node is regarded as a gateway between PAN and WLAN, and is responsible
for forwarding packets from clusters to WLAN. In this way, the common nodes can turn off the
WLAN interfaces and access the WLAN infrastructure through low-power Bluetooth. Experi-
mental results show that compared with WLAN-only communication, their proposed CONET
can achieve 25% device energy reduction.

Pluntke et al. [2011] found that Multipath TCP (MPTCP) is an efficient mechanism to switch flow
among multiple network paths without breakage. This characteristic motivates them to explore
the energy-saving ideas by selecting the most energy-efficient wireless network interface avail-
able on mobile devices. They designed a novel multipath scheduling algorithm to achieve energy
savings by adaptively controlling wireless interface switching according to current connectivity
conditions. Specifically, based on the application model and the wireless interfaces’ energy models,
the scheduling problem is formulated as a Markov decision process (MDP) to obtain the optimal
schedule schemes automatically. Experimental results show that compared with the oracle sched-
uler, their proposed multipath scheduling algorithm can help a device achieve up to 23% and 9%
energy savings for 3G and WiFi, respectively.

5.2 Leverage Characteristics of Wireless Interfaces

Ding et al. [2013a] noted that the number of WiFi APs is limited for mobile devices to affect the
computation offloading opportunities. They designed a cooperating WiFi-based offloading archi-
tecture to achieve energy savings for mobile devices. This architecture leverages the combination
of cellular, WiFi, and mobile users to make them work collaboratively to save energy. An energy-
aware algorithm is presented to make offloading decisions by selecting the most energy-efficient
WiFi AP for computation offloading. For example, mobile devices may start offloading data over
the 3G interface but try to find WiFi APs at the same time to prefetch and transfer data with lower
energy overheads. Experimental results show that their method can reduce 80% device energy
consumption when offloading mobile traffic to WiFi networks.

Similar to the ideas presented in Pluntke et al [2011], Ding et al. [2013a], and Nirjon et al. [2012]
investigated energy saving opportunities by dynamically switching between wireless interfaces
based on the TCP characteristics. Donohoo et al. [2012] also developed a strategy to adaptively
manage wireless interfaces according to the spatiotemporal and device context. However, differ-
ent from Nirjon et al. [2012], they leveraged machine learning algorithms to learn the users’ usage
patterns of mobile devices to predict the configurations of wireless interfaces. Based on the predic-
tion results, the wireless interface states are managed dynamically to achieve the optimal energy
configurations. Deng et al. [2012] also adopted machine learning algorithms to manage wireless
interfaces. However, the contents they learned and predicted are network traffic activities. Based
on the predicted network traffic activities, their proposed traffic-aware technique can control the
state transitions of a 3G/LTE radio based on their energy consumption. Dogar et al. [2010] consid-
ered reducing transmission energy from another aspect, that is, allowing mobile devices to sleep
when transferring data. They designed a system, Catnap, to achieve this goal by leveraging the
bandwidth discrepancy between the wireless and the wired links to look for sleep opportunities.
Experimental results show that Catnap can prolong the battery lifetime by up to 5x by allowing
mobile devices to sleep.

Hoque et al. [2014] reduced the wireless communication energy of mobile devices by forming
the multimedia traffic into periodic bursts when accessing multimedia services. To this end, they
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explored the relationship between burst size and the power consumed by wireless network in-
terfaces in mobile devices. They found that the power consumption of these wireless interfaces
shows different characteristics when the burst size of traffic and buffer size on mobile devices
do not match properly. According to this observation, an energy model for wireless interfaces is
designed to analyze the energy consumption of bursty traffic. Finally, a power-frugal multime-
dia delivery system, EStreamer, is proposed to decide an energy-optimal burst size according to
the wireless interfaces energy model. Experimental results show that their method can extend 3x
battery lifetime by forming the multimedia traffic into periodic bursts.

5.3 Adapt to Intermittent Wireless Connectivity

Bui et al. [2013] noted that mobile devices are energy-consuming when aggregating bandwidth
over multiple wireless interfaces. They designed an energy-efficient bandwidth aggregation mid-
dleware, GreenBag, to support data-streaming services over LTE and WiFi links. GreenBag uses
a link management mechanism to dynamically deliver data streaming in an energy-efficient way
under varying wireless networks. More specifically, it first uses a segmentation method to split
data. Subsequently, it performs load balancing between LTE and WiFi links. Then, based on cur-
rent wireless connectivity conditions, it predicts the future wireless connectivity conditions and
determines the corresponding load ratio between LTE and WiFi links for each data segment. Fi-
nally, GreenBag conducts a cut-off policy to opportunistically stop the use of a redundant link
to achieve energy savings on mobile devices. Experiment results show that GreenBag can reduce
about 25% energy consumption as compared with non-energy-aware methods.

Shu et al. [2013] developed a strategy, eTime, to transmit data in an energy-efficient way under
intermittent wireless connections. Encouraged by prefetching-friendly or delay-tolerant applica-
tions, eTime first manages applications’ data by configuring resources in the cloud. Then, based on
current wireless network conditions, it makes transmission decisions dynamically by using Lya-
punov optimization techniques to balance energy consumption and application execution delay. It
looks for the good opportunities to prefetch the commonly used data under good connection con-
ditions and delay the transmission of delay-tolerant data under bad connection conditions. Zhang
et al. [2013] also presented an optimization framework to judiciously execute applications locally
or remotely to save device energy under stochastic wireless channel conditions. On the device side,
the energy consumed by computation is optimized through adapting the CPU frequency according
to the workload dynamically. On the cloud side, the transmission energy consumption is optimized
by adapting the data transmission rate to the stochastic wireless channels. These two scheduling
problems are first formulated as constrained optimization problems. Subsequently, they obtained
closed-form solutions for the optimal scheduling strategies. Experimental results show that their
schemes can achieve 35% and 13x energy savings as compared with a random strategy and local
execution, respectively.

Tong et al. [2016] proposed an application-aware transmission scheduling scheme by adaptively
scheduling workloads between mobile devices and remote clouds based on the characteristics of
the causality and the runtime dynamics of applications. First, considering the causality of an ap-
plication, an efficient offline scheduling algorithm is designed to dispatch the workloads based on
a predetermined transmission order. Further, taking into account the dynamics of the application
running as well as predicting the future execution paths of the application, a stochastic scheme is
presented to extend the offline scheduling mechanism to online scheduling. Experimental results
show that when the application delay constraint is tight, their method can save 40% energy as
compared with Bundle transmission [Zhao et al. 2013].

Ding et al. [2013b] investigated the effect of wireless connection conditions on the energy con-
sumed by mobile devices. Usually, poor signal strength may cause data retransmission and increase
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Fig. 15. The architecture of ENDA

[Li et al. 2013a].

Fig. 16. The architecture of COS-

MOS [Shi et al. 2014].

transmission time, incurring more transmission energy consumption. Thus, they measured the ad-
ditional energy consumption for data transmission due to the weak wireless signal strength. Based
on the measurement results and the signal strength factor, an online power model is designed for
WiFi and 3G to analyze the power behaviors of the applications or services at runtime. This power
model can explore the dynamics of the wireless signal strength to save interface energy by de-
laying data transmission until a good wireless signal strength is encountered for delay-insensitive
applications or services. Experimental results show that their method can save up to 23.7% and
21.5% transmission energy under WiFi and 3G, respectively.

Satyanarayanan et al. [2009] investigated the next-generation alternative technologies to han-
dle the defects existing in resource-constrained mobile devices and distant-delayed cloud comput-
ing when running immersive applications. They introduced a new computing architecture called
cloudlet, a small cloud data center with rich resources at the Internet edge to provide services for
nearby mobile devices. In this architecture, mobile users quickly instantiate custom service soft-
ware on nearby cloudlets using virtual machine (VM) technology and then use the service over a
wireless LAN. Based on cloudlets, Li et al. [2013a] presented a novel architecture, ENDA, to make
computation offloading decisions under intermittent wireless network conditions. As shown in
Figure 15, ENDA considers three computing resources including mobile devices, cloudlets, and
clouds. In this context, these three computing resources are interacted with each other to collab-
oratively perform offloading under dynamic network conditions. In particular, most operations
of decision-making are placed on the remote clouds and cloudlets. On the cloud tier, a greedy
searching mechanism is proposed to forecast users’ behavior activities based on the historical
data stored in servers. Then, a cloud-enabled WiFi AP selection mechanism is presented to find
the most energy-efficient access point, i.e., cloudlets, to offload for mobile devices. Experimental
results show that ENDA can achieve optimal offloading decisions for almost all data sizes while ex-
isting random methods can only produce the most energy-efficient decision with a 1/3 probability.

Shi et al. [2014] designed COSMOS, a system that provides dynamic computation offloading
mechanisms for mobile devices. As shown in Figure 16, COSMOS consists of three main compo-
nents. The COSMOS Master is responsible for managing cloud resources and exchanging informa-
tion with mobile devices. The COSMOS Server is in charge of executing the offloaded tasks. The
COSMOS Client is responsible for monitoring the application executions and the wireless network
conditions and making offloading decisions. In order to achieve the computation offloading ben-
efits, they presented a risk-control offloading mechanism. The risk-control offloading mechanism
can properly assess the “returns” and the “risks” for offloaded tasks when making offloading de-
cisions. Specifically, when a task is initiated, the offloading controller evaluates its return and risk
before performing data migrating. If the risk-adjusted return is larger than a threshold, the offload-
ing controller will send the task to the cloud. Otherwise, the task is executed locally. Moreover, the
risk-control offloading mechanism also monitors the network connectivity status, which has an

ACM Computing Surveys, Vol. 53, No. 2, Article 38. Publication date: April 2020.



38:28 P. Cong et al.

important effect on the assessments of return and risk when offloading tasks. If network connectiv-
ity changes, the offloading mechanism will re-calculate the risk-adjusted return and dynamically
vary its offloading decision. Experimental results show that compared with CloneCloud [Chun
et al. 2011] assuming stable network connectivity, COSMOS can save about 10x cost for offloading.

5.4 Summary

The issues of frequent network disconnection, low bandwidth access, unstable network conditions,
and fragile wireless communication security are often happening in wireless communication. In
this section, wireless transmission energy consumption for mobile devices is optimized from low-
power communication protocols, wireless network interfaces’ power characteristics, and adaptive
transmission under dynamic network conditions. In particular, data compression [Yao et al. 2013]
is also an efficient method for transmission energy optimization. Usually, when offloading to re-
mote clouds, long-distance and low-power communication techniques are needed. In a low-power
wide-area network (LPWAN), low-bit-rate long-distance data communication can be achieved
among mobile devices. This characteristic makes LPWAN more energy-efficient than a WAN
when performing offloading. Other available energy-efficient wireless technologies such as Long
Range (LoRa) [A. Augustin and Townsley 2016], Narrowband IoT (NB-IOT) [R. Ratasuk and Ghosh
2016; R. Sinha and Hwang 2017], and LTE Machine type communication (LTE-M) [U. Raza and
Sooriyabandara 2017] also offer good solutions to long-distance offloading problems. However,
none of these wireless technologies are widely supported global standards, thus making their im-
plementation challenging and even impossible. In general, transmission energy can be saved from
three points. First, select the optimal wireless interface based on where the data or method is
offloaded. If possible, try to make these wireless interfaces work in a collaborative manner for of-
floading. Second, compress the offloaded parts of applications as much as possible to reduce the
amount of data transferred under the premise of not affecting applications’ normal operations.
Third, adaptively adjust offloading strategies when offloading data to the cloud based on wireless
network conditions to avoid energy waste in poor wireless connectivity scenarios. Data security
and privacy protection is also an important concern when transmitting data over the network.
Usually, these issues can be addressed from a mobile device side, cloud data centers side, and data
transmission process. A common way to prevent offloaded data from being attacked is to encrypt
offloaded data using encryption techniques. However, encryption operations will incur additional
energy consumption for devices and affect offloading decisions [Kumar and Lu 2010]. MEC is
emerging as an effective technique for optimizing wireless communication energy consumption
between devices and remote clouds by providing offloading services closer to users. For easy clas-
sification and presentation, we put the contents of MEC/FC in Section 6. In the next section, we
introduce various cloud execution mechanisms. Table 8 gives a summary of the performance com-
parisons of transmission energy optimizations.

6 EXECUTE OFFLOADED COMPUTATION IN CLOUDS

Numerous cloud-assisted MC platforms have been investigated to achieve computation of-
floading. These cloud-assisted mobile platforms can be classified into three categories, namely,
infrastructure-based remote clouds (e.g., CloneCloud), infrastructure-based edge/fog clouds (e.g.,
Cloudlets, mobile edge servers, and fog servers), and ad-hoc virtual clouds (e.g., mobile device
cloud). No matter which cloud-assisted mobile computing platform, they are all equipped with
powerful servers that possess richer computing and storage resources, as well as powerful pro-
cessing capacity compared to mobile devices. Usually, a entire offloading process can be described
simply as follows. Supposing that a mobile device is running an application including three meth-
ods (i.e., method A, B, and C). In particular, the Method B is a computation-intensive method that
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Table 8. A Comparison Summary of Transmission Energy Optimizations

Method BT 3G 4G WiFi Com_prot WireInter_P_m Comments

CONET � × × � TCP × distributed clustering

MPTCP × � × � TCP � multipath TCP

MADNet × � × � TCP × mobile traffic offloading

Catnap × × × � TCP × device sleep

EStreamer × � � � TCP � rate-adaptive streaming

GreenBag × � � � TCP � bandwidth aggregation

eTime × � × � ÷ � prefetch data

EOOF × × × × ÷ × stochastic wireless channel

AATS × � � × ÷ � application-aware transfer

WSS × � � � TCP � model signal strength

ENDA × � × � ÷ × WiFi AP selection

MCS × × × × ÷ × mobile cloudlet systems

COSMOS × � × � ÷ × reduce offloading cost

EETS × × × � ÷ × data compression

Method Off. Off_parti Deci. Gran. Ene. Benchmark Reference

CONET × × × × +25% wlan_only [Yoo and Park 2011]

MPTCP × × × × +23% 3G_only [Pluntke et al. 2011]

MADNet � adaptive dyn traffic +80% 3G_only [Ding et al. 2013a]

Catnap × × × × +2x∼+5x non_sleep [Dogar et al. 2010]

EStreamer × × × × +1.5x∼+3x no EStr. [Hoque et al. 2014]

GreenBag × × × × +14%∼+25% non_energy-aware [Bui et al. 2013]

eTime × × × × +20%∼+35% random strategy [Shu et al. 2013]

EOOF � × dyn app +13x mobile execution [Zhang et al. 2013]

AATS � adaptive dyn thread +40% bundle transmission [Tong and Gao 2016]

WSS × × × × +23.7% poor signal strength [Ding et al. 2013b]

ENDA � × dyn app Pro: 1/3 random WiFi APs [Li et al. 2013a]

MCS � adaptive dyn code +4% (cost) local execution [Zhang et al. 2015a]

COSMOS � adaptive dyn task +10x (cost) CloneCloud [Shi et al. 2014]

EETS � adaptive dyn task +99% (accuracy) non-offloading [Yao et al. 2013]

BT: Bluetooth, Com_prot: Communication protocol, WireInter_P_m: Wireless interface power model, Off.: Offloading,

Off_parti: Offloading partition, Deci.: Decision, Gran.: Granularity, Ene.: Energy saving. � indicates that the factor is con-

sidered in the literature. × indicates that the factor is not considered in the literature. ÷ implies that the literature does not

give a clear explanation of the factor.

needs to be migrated from mobile devices to cloud servers for execution. Correspondingly, meth-
ods A and C are executed on local mobile devices. Based on current network conditions, the mobile
device will make dynamic offloading decisions for method B to reduce transmission energy con-
sumption. And the cloud schedules its powerful virtual computation resources (e.g., servers) for
executing the offloaded components (i.e., method B). Once the cloud completes the task execution,
it returns and merges the execution result of method B with that of the methods A and C executing
on the local mobile device.

In this section, we take a far-to-near sequence to describe the execution mechanisms of mo-
bile cloud applications in these cloud-assisted platforms. The infrastructure-based remote clouds
are empowered by device clones and execution engines in cloud servers. Remote clouds replace
the local mobile devices to execute application components for battery lifetime extension of
these mobile devices (Section 6.1). The infrastructure-based edge/fog clouds execute the offloaded
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Table 9. A Classification of Execution Mechanisms in Clouds

Classification References
Remote servers [Guo and Liu 2018] [Shu et al. 2013] [Cuervo et al. 2010] [Kovachev

et al. 2012] [Lin et al. 2014] [Liu et al. 2016] [Balakrishnan and Tham
2013] [Kemp et al. 2010] [Xia et al. 2014] [Liu et al. 2010] [Kwon and
Tilevich 2013] [Zhang et al. 2017a] [Barbarossa et al. 2013] [Ding et al.
2013a] [Zhang et al. 2013] [Tong and Gao 2016] [Yao et al. 2013]
[Kwon and Tilevic 2012] [Wang et al. 2013] [Terefe et al. 2016]
[Goudarzi et al. 2017] [Ravi and Peddoju 2015] [Zhou et al. 2015]

Remote cloud clone [Chun et al. 2011] [Kosta et al. 2012] [Barbera et al. 2013] [Yang et al.
2013b] [Zhang et al. 2015b] [Kosta et al. 2013]

Edge servers [Guo and Liu 2018] [Zhang et al. 2015a] [Beck et al. 2015] [Fan et al.
2017] [Zhang et al. 2017b] [Zhang et al. 2018] [Chen et al. 2018]
[Habak et al. 2015] [Wu et al. 2016] [Gai et al. 2016] [Ravi and Peddoju
2015] [Zhou et al. 2015] [Shi et al. 2014]

Mobile device cloud [Tian et al. 2018] [Qian and Andresen 2014] [Shi et al. 2012] [Mtibaa
et al. 2014] [Mtibaa et al. 2013b] [Mtibaa et al. 2013a] [Habak et al.
2015] [Wu et al. 2016]

Collaborative
execution

[Guo and Liu 2018] [Li et al. 2013a] [Zhang et al. 2015b] [Kwon and
Tilevic 2012] [Wang et al. 2013] [Terefe et al. 2016] [Habak et al. 2015]
[Wu et al. 2016] [Magurawalage et al. 2014] [Gai et al. 2016] [Ravi and
Peddoju 2015] [Zhou et al. 2015] [Rahimi et al. 2012]

computational tasks of an application by employing mobile edge/fog servers to co-locate with
the nearby base stations to overcome long-distance data transmission incurred by remote clouds
(Section 6.2). The ad-hoc virtual clouds consists of a group of nearby mobile devices that work in
tandem to accomplish computation offloading when the remote and edge/fog servers are unavail-
able (Section 6.3). In general, each of the above cloud-assisted mobile platform can independently
complete the computation offloading process and relieve the burden on energy-limited mobile de-
vices. However, as stated in Zhang et al. [2015a], the issues of intermittent wireless networks may
exist considering users’ mobility, complex network, and diverse wireless connectivity mechanisms,
thus may fail the whole offloading process. Thus, it is necessary for multiple cloud-assisted mobile
platforms to complete the offloading process collaboratively to achieve energy savings for mobile
devices (Section 6.4). Table 9 summarizes the application/task execution mechanisms in diverse
mobile cloud-assisted platforms.

6.1 Execute Computation in Remote Clouds

Zhang et al. [2015b] performed offloading between mobile devices and remote clouds to save device
energy. In this context, the cloud possesses a device clone for each mobile device, and an applica-
tion is constructed as sequential tasks that can be processed locally or remotely. In this study, an
application has n tasks; the data sizes of the input and the output for each task ωi are represented
by αi and βi (i = 1, 2, . . . ,n), respectively. The goal is to judiciously offload the tasks between mo-
bile devices and remote clouds under stochastic wireless channels. They considered three channel
models that have a different channel state. According to the context of each task and the chan-
nel state, a task is assigned to be executed locally or sent to the remote clouds for execution. In
particular, the task execution process is formulated as a shortest path problem with constraints,
which is subsequently solved by either the enumeration algorithm or the Lyapunov optimization
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to obtain the optimal or sub-optimal solutions, respectively. Simulation results show that compared
with local and remote execution, their method can save 5x and 20% energy, respectively.

Kwon et al. [2012] developed an energy-efficient strategy to perform offloading without having
to partition an application to prevent network power outages. Similar to CloneCloud [Chun et al.
2011], the proposed strategy offloads the power-intensive parts to the cloud for execution. Similar
to MAUI [Cuervo et al. 2010], the proposed strategy uses checkpointing to synchronize the states
between mobile devices and remote clouds. A clear difference of the proposed strategy from the
above two methods is that it can execute the power-intensive parts of an application in the cloud
without needing to conduct application partition. Specifically, it just needs to replicate the applica-
tion execution states that switch between the mobile devices and the remote clouds to save device
energy and deal with the case of network outages. When the wireless network is connected, the
power-intensive portions of the application will be offloaded by delivering only the needed states
to the remote clouds. Otherwise, the execution in the remote clouds will be redirected back to the
mobile devices. Experimental results show their approach can help applications consume up to
60% fewer Joules than their original versions.

Kosta et al. [2013] investigated computation offloading between mobile devices and the clouds,
and device-to-device communication offloading in the clouds. They proposed a distributed com-
puting platform, Clone2Clone, as shown in Figure 17 to save device energy. In this platform, each
device has its clone in the cloud, and these device clones are connected in a peer-to-peer way
to exploit networking services. Specifically, CloneDS is responsible for mapping not only a mo-
bile user to a clone but also a clone to an IP. Each newly created clone first needs to register and
lookup from the CloneDS. Then, it starts Peer-to-Peer connections with other clones and its IP can
be obtained through a CloneDS lookup by mobile users. Finally, mobile users connect to its clone
through its public IP, and install any application in their cloned devices. In general, Clone2Clone
puts computation and communication tasks in the cloud, which greatly reduces the computation
and communication overheads on mobile devices. Experimental results show that Clone2Clone
can achieve 30% energy savings for document editing as compared with SPORC [Feldman et al.
2010].

Wang et al. [2013] considered such a scenario that multiple homogeneous servers in a cloud
are dedicated to processing offloaded tasks from multiple mobile devices simultaneously. They
proposed a two-stage game formulation method to solve the offloading issues. In the first stage,
mobile devices decide which parts of the service requests should be sent to the remote clouds
to minimize their power consumption. In the second stage, according to the arrival rate of the
service requests, these requests are assigned to a server by the cloud controller, and parts of the
computing resources of the server are allocated to process these service requests. Finally, the con-
vex optimization technique is leveraged to solve this two stage game formulation to obtain the
optimal offloading strategy between mobile devices and the remote clouds. Experimental results
show that their method can save 21.8% energy as compared with local execution.

Terefe et al. [2016] offloaded computation to multiple heterogeneous servers with differ-
ent capabilities. They developed an offloading method that differentiates data-intensive and
computation-intensive components of applications, and offloads them to appropriate servers.
Specifically, they first proposed two energy models for applications and wireless network
channels, respectively. Then, the multi-server partitioning problem is formulated by using a MDP
framework. Finally, an energy-efficient multi-server offloading strategy algorithm is designed
based on a value iteration method. This algorithm obtains an efficient solution to the multi-server
partitioning problem. Likewise, Goudarzi et al. [2017] studied heterogeneous multi-site applica-
tion offloading between mobile devices and remote clouds to balance energy consumption and
execution time. An application is represented by a relation graph that contains vertices and edges.
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Fig. 17. The architecture of Clone2Clone [Kosta

et al. 2013].

Fig. 18. The architecture of Serendipity [Shi

et al. 2012].

Vertices refer to the constituent parts of the application while edges refer to the invocations
among these constituent parts. They first presented a weighted cost model to describe the local
and remote execution overheads (vertices) and invocations costs (edges) by online or offline
profiling. Then, a multisite offloading scheme based on application size is designed to solve the
offloading problem. For small-scale applications, the branch-and-bound method is leveraged to
obtain the optimal solution. For large-scale applications, they used particle swarm optimization to
achieve a near-optimal solution. Experimental results show that their method can save 38% energy
as compared with Multi-factor Multi-site Risk-based Offloading (MMRO) [Wu and Huang 2014].

6.2 Execute Computation in Edge Clouds

Instead of offloading to the remote clouds, Beck et al. [2015] saved transmission energy consump-
tion by offloading the applications or tasks to the edge servers that are deployed on nearby base
stations. In this context, they investigated energy-efficient video encoding offloading during video
calls. They presented an MEC-based video telephony system, called Mobile Edge-Voice over Long
Term Evolution (ME-VoLTE), to offload the encoding efforts to the nearby edge servers. In ME-
VoLTE, mobile devices first select low-compression optimization to reduce the encoding efforts.
Subsequently, the video data is transferred to the edge servers by using encoding techniques, which
are less computation-intensive and more energy-efficient. Finally, the edge servers leverage a more
powerful and higher compression ratio codec to transcode the video data on behalf of the mobile
devices before forwarding the data to the remote participants. Experimental results show that
ME-VoLTE can achieve 13% power savings for mobile devices as compared with local execution.

Fan et al. [2017] noted that a single mobile edge server cannot process the increasing tasks
offloaded from the mobile devices in time. They focused on the joint offloading problem among
multiple mobile edge servers to manage device energy. To achieve this, a novel cooperative offload-
ing strategy is proposed to augment the computation offloading ability of the original edge server
by further offloading the extra tasks to other edge servers. Specifically, the original edge server
first sends the offloading request (e.g., necessary task information) to the target edge server. Then,
the target edge server processes the corresponding tasks, and eventually returns the processing
results to the original edge server. Simulations results show that compared to a non-cooperation
scheme, their proposed offloading strategy can achieve 45% improvement of total benefits (i.e., exe-
cution time and energy consumption). Zhang et al. [2017b] also considered computation offloading
in the context of multi-cell MEC. They proposed a dynamic offloading strategy to simultaneously
optimize the allocation of transmission channels and edge computing resources to balance en-
ergy consumption and execution latency. For a single server, they formulated and solved the of-
floading problem by computing the local and edge execution overheads separately, then compared
them to make the optimal offloading decision. For multiple servers, they formulated the offload-
ing problem as a mixed integer nonlinear problem, and proposed an iterative search algorithm to
solve this non-convex problem and obtain a suboptimal solution. Experimental results show that
compared with local execution and edge server execution, their method can achieve 63% and 57%
cost savings, respectively.
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Zhang et al. [2018] also balanced the energy consumption and the task execution latency.
However, their proposed online dynamic offloading scheme novelly utilizes the energy harvesting
devices to collect energy from the circumambient environment to power mobile devices. Their
scheme can optimize the energy consumption and execution delay while maintaining stable
battery level. The scheme uses the Lyapunov optimization method to make offloading decisions
(e.g., local execution, edge execution, or drop) considering the information related to tasks,
network condition, harvestable energy, and device energy. Likewise, Chen et al. [2018] also
adopted energy harvesting devices. However, these energy harvesting components are deployed
on edge servers rather than mobile devices to collect ambient renewable energy. In such a mobile
edge environment, multiple mobile devices attempt to perform computation offloading to the
edge servers simultaneously. They formulated this multi-device offloading problem and also
utilized the Lyapunov optimization method to solve and obtain the optimal energy harvesting
strategy, task scheduling, and resource allocation schemes. Experimental results show that their
methods can save 14% device energy and achieve up to 31.9% higher system utility as compared
to CPU-only and a random scheduling scheme, respectively.

6.3 Execute Computation in Mobile Device Clouds

Shi et al. [2012] considered such a scenario that mobile devices are connected with each other to
perform offloading. They designed a system, Serendipity, as shown in Figure 18, to offload compu-
tation to the available mobile devices to save energy. Specifically, after receiving a job submitted
by a user, the job engine uses the job profiler to construct a job profile to evaluate tasks’ executive
time and energy consumption on every mobile node. Meanwhile, the job initiator constructs a job
model that contains multiple PNP-blocks, which is the basic job component for offloading. Then,
the job engine offloads the tasks to either the local master or other mobile nodes for execution
based on wireless connectivity characteristics. A worker is responsible for executing a task; after
its execution, the master returns the results to the job initiator, which will then trigger a new PNP-
block. After processing all the tasks, the job initiator returns the final results and the offloading
process finishes. Experimental results show that Serendipity can achieve up to 6.6x speedup and
complete more jobs in the same amount of time compared with local execution.

Mtibaa et al. [2014] introduced an offloading framework including task manager, task offloader,
and task forwarder to offload computation among mobile devices. In particular, after receiving a
task from an application, the manager stores the status and the characteristics of the task. The
offloader decides whether and what computation to migrate based on the interaction with the
privacy and security engine and the execution overhead comparison between the local and other
devices. The forwarder updates the available connections to nearby devices and stores the his-
torical contact information and social information to infer expected connections. They used an
experimental approach in Mtibaa et al. [2013b] to estimate the opportunistic offloading energy
consumption. Then, a data driven approach is adopted to compare multiple offloading algorithms.
Finally, based on the social information shared by devices’ users [Mtibaa et al. 2013a], a social-
based algorithm is designed to select the most appropriate mobile node for offloading. Experimen-
tal results show that their method can achieve 4x energy savings compared with local execution.

Tian et al. [2018] leveraged reinforcement learning and DVFS techniques to optimize energy
consumption among multiple mobile devices. As shown in Figure 19, for each mobile device, the
interaction between the local power manager and processors constitutes a learning process. Specif-
ically, the DVFS controller determines the dynamic Voltage/Frequency (V/F) level according to
the processors’ feedback state information. Further, the control strategy (V/F level) of the DVFS
controller is sent to the cloud at regular intervals to deliver information to other mobile devices.
The cloud is responsible for collecting the local control strategies from the whole system and com-
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Fig. 19. Multi-device collaborative

[Tian et al. 2018].

Fig. 20. The architecture of MAPCloud

[Rahimi et al. 2012].

bining them to form a global control strategy, which will subsequently be shared with the mobile
devices in this system. Finally, each mobile device decides its control scheme according to the local
and global strategies. Experimental results show that their method can achieve 10% device energy
savings as compared to learning-based approaches.

6.4 Execute Computation in Hybrid Clouds

Habak et al. [2015] presented femtocloud containing multiple mobile devices and a cloudlet to
provide a self-configuring mobile device cloud. Mobile devices periodically calculate their avail-
able computation resources and send this information to the control device (cloudlet). Meanwhile,
users’ behavior data are collected by the profiling module to predict the device presence time in
this context. For the control device (cloudlet), after receiving the arriving tasks, it predicts the
presence time of each device, the execution workload of each task, and the new participated avail-
able devices. Then, based on the above information, the task scheduling module is in charge of
mapping the tasks to the mobile devices. Likewise, Wu et al. [2016] also combined mobile de-
vices and cloudlets to perform computation migration collaboratively. In this context, the cloudlet
provides cloud services with lower latency at the edge while mobile devices work in tandem to
achieve energy-efficient computing. In particular, the application and task models are the same as
the models in Zhang et al. [2015a] and Shi et al. [2012], respectively. When the cloudlet is unavail-
able due to insufficient computing resources, a central scheduler will control the mobile devices
to provide offloading collaboratively. The central scheduler assigns the tasks to the reliable mobile
devices by using a centralized scheduling method to reduce energy consumption. Experimental
results show that compared with local and single resource execution, their method can save 72%
and 65% energy, respectively.

Magurawalage et al. [2014] noted that wireless network connectivity may be unavailable
when performing offloading. They presented a system architecture that contains mobile devices,
cloudlets, and remote clouds. This architecture dynamically determines the offloading location
when conducting computation offloading. Specifically, they first proposed an offloading method
to determine the offloading location (i.e., a cloud clone or a cloudlet) taking into account the task
energy characteristics and wireless network conditions. Subsequently, at cloudlets, a data caching
method is adopted to further enhance the system performance. Gai et al. [2016] also considered
such a system architecture to reduce additional wireless communication energy consumption.
However, they used dynamic programming techniques at cloudlets to dynamically predict and
allocate computing resources in the remote cloud for mobile devices based on the changing op-
erational environment. Experimental results show that their methods can save 90%, 60%, and 58%
energy as compared to mobile only, clone only, and traditional cloud methods, respectively.

Ravi et al. [2015] also proposed a cooperative offloading system to select appropriate comput-
ing resources (i.e., mobile devices, cloudlets, or remote clouds) for computation offloading. The
computing resource that consumes lower energy will be chosen to provide offloading services for
mobile devices. This resource chosen decision is made by a multi-criteria decision-making method
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taking into account many factors. Zhou et al. [2015] developed an offloading strategy among these
computing resources in a dynamic network environment to optimize energy consumption. More
specifically, they presented models for these computing resources to estimate their cost when per-
forming tasks offloading. Based on the above estimation results and the dynamic device context,
they designed a context-aware method to make decisions of where, when, and how to offload an
application. Experimental results show that their method can achieve up to 55.6% energy savings
as compared with local execution.

Rahimi et al. [2012] introduced a hybrid 2-tier computation offloading architecture, MAPCloud,
which saves device energy by collaboratively leveraging the resources of the local and public
clouds. As shown in Figure 20, the local clouds with the non-scalable resources are closer to the
mobile users for providing better performance via WiFi, while the public clouds with high latency
and power consumption provide the scalable resources for applications via 3G. In particular, they
designed a middleware for MAPCloud to implement mapping between tasks and resources. The
middleware preserves and maintains the resources and services available in the local and public
clouds. For every arrival application in the form of a workflow of tasks, the middleware looks up
the available resources or services in the local and public clouds, and utilizes admission control
to check whether the tasks of this application are schedulable. If schedulable, the tasks are sched-
uled onto the specific nodes using a scheduling algorithm. Further, since the resource allocation
optimization problem is NP-hard, a simulated annealing-based heuristic method called Cloud Re-
source Allocation for Mobile Applications (CRAM) is presented to derive a near optimal solution to
the “task-resource” assignment problem. Simulation results show that CRAM can save 32% device
power as compared with the public cloud only scheme.

Guo et al. [2018] noted that current hosted networks of MEC usually adopt network technolo-
gies with single access mode. They proposed a novel network architecture that utilizes hybrid
fiber-wireless (FiWi) networks to offload in an energy-efficient way. In this context, the collabo-
rative offloading problem is studied among mobile devices, edge servers, and cloud servers. They
formulated the collaborative offloading problem as a constrained optimization problem and pro-
posed an approximation offloading scheme to solve this problem. The scheme first computes the
processing time of each task in three computing modes separately. Subsequently, based on the
processing time calculation results, some tasks that cannot be processed locally are selected for
edge or remote execution considering their energy consumption. Finally, for the residual tasks that
can be processed in either of three computing modes, the amount of wireless channels is updated
iteratively, and the corresponding energy consumption is computed separately under three com-
puting modes. The computing mode that has the lowest energy consumption is selected to process
the tasks. Further, another distributed offloading scheme based on game theory is proposed for the
scenario with multiple wireless base stations. In this context, each mobile device is regarded as a
game player, and carries out their current optimal offloading strategies by observing other play-
ers’ offloading decisions. Experimental results show that their method can save 20% energy as
compared with the distributed computation offloading scheme [Chen et al. 2016].

6.5 Summary

In this section, the application/task execution mechanisms in diverse cloud platforms have been
studied in detail. Remote clouds provide sufficient computing and storage resources for execut-
ing the offloaded application components. Nevertheless, the long distance for data transmission
between the mobile devices and the remote clouds incurs significant transmission energy con-
sumption. Edge/fog clouds solve the above issues by making the computing and storage resources
closer to the mobile users. However, a single edge/fog server cannot process all the arrived tasks
due to its limited computing and storage resources compared with rich and powerful remote cloud
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servers. Thus, collaborative execution between multiple edge/fog servers is an effective method to
take away the pressure on the single edge/fog server. Intermittent and unstable wireless connec-
tivity may cause edge or remote servers to be unavailable to mobile devices. At this time, adjacent
mobile devices can work in tandem to execute the offloaded tasks by forming a mobile device cloud
to eliminate the limitations of offloading data to the remote or edge servers. Even with different
implementation characteristics, the role of these diverse mobile cloud-assisted platforms in mobile
device energy management cannot be underestimated. In reality, numerous heterogeneous clouds
could occur in the environments that have different characteristics. In this way, migrating the
same application to the different cloud environments for execution could lead to different calcula-
tions and communication time due to different cloud characteristics and network environments at
the same time. Hence, optimal cloud path offloading selection schemes are necessary to choose an
energy-efficient cloud-assisted mobile platform for tasks execution. However, the selection process
is complicated due to the need for analyzing various data and considering multiple factors such as
bandwidth, server speed, security and privacy, and cloud availability. Table 10 gives a summary of
the performance comparisons of cloud-assisted execution mechanisms.

7 CONCLUSIONS AND FUTURE CHALLENGES

In this article, a survey was presented on techniques for energy optimization of mobile devices.
We reviewed and summarized energy management methods from perspectives of devices’ hard-
ware and software, computation offloading strategies, energy-efficient wireless data transmission,
and cloud execution mechanisms for offloaded application components, respectively. We conclude
this article with a brief summary of challenges in this area from standpoints of mobile hardware
and software, computation offloading strategies in heterogeneous cloud environments, and com-
plicated tradeoffs between multiple parties (e.g., energy efficiency, transmission delay, quality of
service, and service pricing) involved in optimizing device energy consumption.

Challenges on mobile hardware and software design. Though mobile hardware has un-
dergone revolutionary development, from initial support for phone service to diverse services and
mobile applications, their capabilities such as storage, processing, and energy capacity are far from
meeting the requirements of these ever changing services and mobile applications. (1) Gap be-

tween hardware design and application requirements: Given Moore’s law, the semiconductor
manufacturers need to spend at least 1.5 years to increase the amount of on-chip transistors by
two times. However, it takes the battery manufacturers at least 5 years to achieve similar growth
in power density, which is a far cry from the growth rate of the number of on-chip transistors. The
increase in the volumetric/gravimetric energy density of the batteries lags behind the increased
power demand of mobile devices, leading to a power crisis in mobile devices. (2) Application

and service design: Usually, a well-designed mobile application or service could save significant
power compared with an inefficient and poorly designed application or service. Hence, mobile
application developers should leverage efficient energy-saving and performance-enhancing cod-
ing practices to design energy-aware mobile applications or services running on mobile devices.
(3) Summary: The above discrepancy between energy density and performance improvements
opens up a new horizon for researchers to explore the multifarious energy-saving opportunities for
mobile devices by collaboratively optimizing energy of hardware and software to make up for the
deficiency of limited resources on devices. For example, for computation/memory/communication-
intensive mobile applications, designing application-oriented energy-aware mobile OSs and mo-
bile hardware is urgently needed. Meanwhile, for application developers, fully exploring the
execution characteristics and energy usage patterns of applications running on mobile OSs is help-
ful to effectively utilize the hardware resources on mobile devices.
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Table 10. A Comparison Summary of Cloud Offloading Execution Mechanisms

Method Goal E_loc D_e T_e C_e Off_parti

CTE_MDP RC cloud clone � � × offline

DME RC cloud server � � × ×
Clone2Clone RC cloud clone � � × ×

TSGBO RC cloud server � × × (profit) offline

EMOP RC cloud server � � × adaptive

FHMCO RC cloud server � � × offline & online

ME-VoLTE EC edge server � � × ×
CCOA EC edge server � × × ×
ETEO EC edge server � � × offline

DOEHD EC edge server � � × ×
MUMTO EC edge server � � × ×

Serendipity MDC mobile device � � × offline

M2MCO MDC mobile device � � × ×
MDCPM MDC mobile device � × × ×

FemtoClouds HC cloudlet&device � � ×
ENOA HC cloudlet&clone � � × ×
DECM HC cloudlet&server � � × ×
FAHV HC cloudlet&server � � × ×
CSOS HC MDC&EC&RC � � × runtime

MAPCloud HC local&public � � × ×
GTCCO HC EC&RC � � × ×

Method Deci. Gran. Ene. Perf. Benchmark Reference

CTE_MDP dyn task +5x/+20% ÷ local_o/remote_o [Zhang et al. 2015b]

DME dyn functionality +60% +79% original version [Kwon and Tilevic 2012]

Clone2Clone × communication +30% ÷ SPORC [Kosta et al. 2013]

TSGBO dyn service request +21.8% 31.9% local execution [Wang et al. 2013]

EMOP dyn data/process +30.8% ÷ single site [Terefe et al. 2016]

FHMCO dyn task +38% +44% MMRO [Goudarzi et al. 2017]

ME-VoLTE dyn encoding effort +13% ÷ local execution [Beck et al. 2015]

CCOA dyn task +45% +45% non cooperation [Fan et al. 2017]

ETEO dyn task + 63% + 63% local execution [Zhang et al. 2017b]

DOEHD dyn task +14% ÷ CPU_only [Zhang et al. 2018]

MUMTO dyn task +31% +31% random scheme [Chen et al. 2018]

Serendipity dyn task +74% +6.6x local execution [Shi et al. 2012]

M2MCO dyn task +50% +4x local execution [Mtibaa et al. 2014]

MDCPM × × +10% +8x learning method [Tian et al. 2018]

FemtoClouds dyn task +26% +85% PreOb [Habak et al. 2015]

ENOA dyn app +90% +60% local_o/clone_o [Magurawalage et al. 2014]

DECM dyn task +58% ÷ traditional method [Gai et al. 2016]

FAHV dyn task +236% ÷ cloud_only [Ravi and Peddoju 2015]

CSOS dyn code +55.6% ÷ local execution [Zhou et al. 2015]

(Continued)

ACM Computing Surveys, Vol. 53, No. 2, Article 38. Publication date: April 2020.



38:38 P. Cong et al.

Table 10. Continued

Method Deci. Gran. Ene. Perf. Benchmark Reference

MAPCloud dyn task +32% +40% public_o [Rahimi et al. 2012]

GTCCO dyn task + 20% ÷ distributed_offload [Guo and Liu 2018]

E_loc: Execution location, D_e: Device energy, T_e: Transmission energy, C_e: Cloud server energy, Off_parti: Of-

floading partition, Deci.: Decision, Gran.: Granularity, Ene.: Energy saving, Perf.: Performance improvement. � in-

dicates that the factor is considered in the literature. � implies that the literature mentions the factor but does not

conduct an in-depth study of it. × indicates that the factor is not considered in the literature. ÷ implies that the

literature does not give a clear explanation of the factor.

Challenges on offloading between devices and clouds. Computation offloading is a com-
plex process since it involves collaborative operations among mobile devices, communication
channels, and cloud servers. MCC and MEC face many technical challenges, such as user mo-
bility, network bandwidth, cloud availability and heterogeneity, data security and privacy, making
offloading difficult to perform and implement in real-world environments. (1) Security, privacy,

and trust: A survey by Fujitsu Research found that 88% of potential cloud users are concerned
about their data security and privacy in the clouds. For effective deployment of MCC/MEC on
a global scale, cloud providers need to establish trustworthy mechanisms for its users. If cloud
providers are not worthy of their users’ trust, these users may refuse to use cloud services, then
offloading will become useless. Service-level agreement (SLA) builds a trust mechanism between
users and service providers by guaranteeing quality of service and data security in clouds. During
offloading, the offloaded data in communication channels may face new threats, such as infor-
mation leakage and malicious attacks. To this end, devices may leverage encryption technologies
to encrypt offloaded data before data transfer for ensuring data security and privacy. However,
encryption operations will bring additional energy consumption to devices. (2) Dynamic wire-

less network conditions: Dynamic wireless network conditions also pose energy optimization
challenges when performing offloading from mobile devices. For example, poor wireless connec-
tivity usually consumes greater device energy compared with good wireless connectivity. Thus,
developing effective forward-looking wireless signal prediction algorithms is especially necessary.
(3) Heterogeneous cloud environment: Heterogeneous cloud environment (e.g., remote clouds,
edge/fog clouds, and mobile device clouds) are usually in the different contexts with different com-
puting and storage capabilities (e.g., network bandwidth, cloud service price, server speed, and data
security), also bringing difficulty for choosing a green cloud offloading path for mobile devices.
(4) User mobility and diverse application and service: Due to the mobility of mobile devices,
offloading failures may occur, resulting in unpredictable performance of programs. Further, the
diversity of services and mobile applications also makes it intractable to design generic service or
application partition mechanisms. (5) Summary: To achieve energy-efficient offloading, it is im-
portant to develop application-aware, wireless signal-aware, and server-aware dynamic offloading
strategies to minimize mobile device energy consumption.

Challenges on tradeoffs among multiple parties for mobile energy optimization.

The energy consumption of mobile devices can be caused by OS design, hardware design and
management, application and service design, and wireless communication design. (1) Applica-

tion and hardware design tradeoff: Currently, the design principle of the mobile applications
and services just pursue the performance improvements and ignore the power limitation of mo-
bile devices. Thus, when designing mobile OSs and mobile hardware components, researchers
need to consider the requirements and the characteristics of the applications and the services.
Meanwhile, when designing applications and services, developers should not only pursue the
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performance improvements, but also consider the power crisis on mobile devices. Overall, design-
ing and developing power-aware applications and services is urgently needed for devices. (2) Ap-

plication and transmission design tradeoff: Different transmission technologies are designed
with different performance metrics such as bandwidth and cellular coverage. Usually, standard-
ized communication protocols often support unnecessary features for many applications, leading
to unnecessary power waste for transferring the useless data required for HTTP transactions while
application-specific communication protocols only support the specific dataset. Hence, balancing
the design principle of general-purpose and dedicated-purpose communication protocols is essen-
tial for green data communication. (3) Tradeoffs among various factors during offloading:

Offloading frees mobile devices from a power crisis; however, it is not free and could incur other
costs and energy required for data communication. During offloading, factors such as network
bandwidth, cloud service price, energy efficiency, transmission delay, user cost, server speed, and
cloud availability have different effects on offloading decisions. For example, when the wireless
network connectivity is stable, we can migrate vast data to the clouds for execution. Otherwise,
only a small quantity of data can be migrated to the clouds for transmission energy savings. Cloud
service price also has a direct influence on offloading decisions. For example, if the service price
is set too high, users will refuse to use cloud services and, thus, cannot use offloading services.
Hence, for service providers, designing an economical service delivery solution is critical. More-
over, if users expect to reduce communication latency and application execution time, they may
choose wireless interfaces with high bandwidth and purchase servers with high configurations,
but these operations will bring more energy consumption and capital expenditure. (4) Summary:

Most existing works focus more on the balance between performance improvement and energy
saving while ignoring other factors such as cloud service price, data security and privacy, and
offloading costs when optimizing device energy consumption. How to balance the above multi-
ple factors during computation offloading is a challenging and urgent problem to solve for the
researchers who are interested in this area.
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