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a b s t r a c t

Nowadays, hundreds of millions of people use social networks to express their opinions
and communicate with their friends. It is of importance to model and estimate the
user influence in social networks. Since most studies perform Monte Carlo simula-
tion to evaluate the user influence in the independent cascade model, which leads
to tremendous computational costs, we introduce a duplicate forwarding model to
characterize the diffusion process in social networks, and analyze the user influences
below and above the diffusion threshold theoretically. After getting the user influence
ranking, we propose a Spearman-like correlation coefficient to measure the correlation
between two rankings, and find the analysis results from the duplicate forwarding model
achieve much better accuracy than the measurements degree, betweenness, k-core and
PageRank in estimating the user influence ranking in the independent cascade model.
This approach can provide insights in modeling and estimating the influences of social
network users, and can be easily extended to estimate the influence ranking for different
seed sets in the problem of influence maximization.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of mobile communication technologies, many people are used to using mobile devices
o connect to the Internet, and use social networks like Facebook, Twitter and Weibo to express their opinions and
ommunicate with their friends. Therefore, a large amount of attention from academic and industrial societies has been
aid to the studies on social networks [1–3]. Noting that information can be forwarded along the relationships in a social
etwork, which may incur a chain reaction, researchers call this phenomenon word-of-mouth effect [4]. Some advertisers
tart to deploy advertisements in popular social networks, and hope to spread them to a large number of users, which
s regarded as viral marketing [5,6]. An important issue here is to understand the diffusion dynamics and then rank
sers according to their influences [7–9]. This information will be useful for an advertiser to decide how to deploy an
dvertisement.
Many efforts have been devoted to the research of diffusion dynamics in the area of epidemiology, and researchers

sually use the Susceptible–Infectious–Susceptible (SIS) model and Susceptible–Infectious–Removed (SIR) model [10,11]
o investigate the diffusion dynamics. An interesting phenomenon here is the existence of epidemic threshold, above
hich the epidemic may spread and never terminate. There are some studies which consider the impact of network
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tructure on the epidemic threshold [12–15]. However, the diffusion process in social networks is very different from
hat in epidemiology, and cannot be characterized by these models accurately. Two famous models in the research of
ocial networks are independent cascade model [16,17] and linear threshold model [18]. In the former one, an active
ode tries to influence its inactive neighbors with given probabilities, and these influence behaviors are independent.
n the latter one, each node is assigned with a weight, and an inactive node will be influenced if the sum of its active
eighbors’ weights is larger than a given threshold. Based on these models, many studies focus on the problem of influence
aximization in social networks [19–23].
A fundamental problem in influence maximization is to evaluate the function σ (S), which is the expected number

f activated users with S being the seed set. However, it has been proved that computing σ (S) is #P-hard in both
ndependent cascade model and linear threshold model [24,25]. To overcome the #P-hardness, Kempe et al. [19] use
onte Carlo simulation to evaluate σ (S). Unfortunately, this approach needs to generate a large amount of samples to
et a good estimation for σ (S), which leads to tremendous computational costs. Leskovec et al. [26] propose an early
ermination heuristic to prune nodes with small influences at subsequent iterations to reduce the number of simulations.
oyal et al. [27] improve the work [26] by avoiding unnecessary simulations, but fail to achieve significant speedups [28].
hou et al. [29] use matrix analysis to get an upper bound of influence quickly, and then receive better performance
ompared with [26] and [27]. Although considerable efforts have been devoted to accelerate the simulation process of
stimating σ (S), significant computational costs are still required, which has been reported by [28] and [30].
In this paper, we introduce a duplicate forwarding model to characterize the diffusion process in social networks,

here messages are forwarded in an all-or-none way and a user can forward multiple messages to a given neighbor.
lthough there are some differences between the independent cascade model and the duplicate forwarding model, we
how that the user influence rankings in these two models are highly positively correlated, and an influential user in
ne model is very likely to be influential in the other one. Specifically, we adopt generating function [31] to analyze the
ser influence in the duplicate forwarding model theoretically, and estimate the user influence rankings below and above
he diffusion threshold respectively. Besides, we choose 4 real-world networks, and conduct simulations to estimate the
ser influence ranking in the independent cascade model. We propose a Spearman-like correlation coefficient to measure
he correlation between two rankings, and study the accuracies of using the results from the duplicate forwarding model,
egree, betweenness [32], k-core [33] and PageRank [34] to estimate the user influence ranking in the independent cascade
odel. We find that the duplicate forwarding model achieves the best accuracy.
In our view, the analysis framework and results in this paper are of use to model and estimate the user influence

n social networks, and can provide help in solving the influence maximization problem. Note that we can apply this
pproach to rank seed sets according to their influences, i.e. σ (·). For example, given seed sets S1, S2, . . . , we can add a
ser si for Si in the network, and add directed edges with influence probability 1 from si to v, where v ∈ Si. Then we get
new network, and can estimate the user influence ranking for s1, s2, . . . , which is actually the influence ranking for the
eed sets S1, S2, . . . in the original network.

. Models

In this section, we first introduce the network model. Then we describe the all-or-none forwarding mechanism which
s adopted in many social networks, and introduce the duplicate forwarding model.

.1. Network model

Nowadays, Facebook is arguably one of the most popular social networks. In Facebook, a relationship is established
hen a request for friendship is accepted by a user, which adds each other to their contact lists. If one user removes the
ther, the relationship is broken. That is to say, relationships in Facebook are symmetric.
In this paper, we consider symmetric relationships, and model a social network as an undirected graph, where nodes

epresent users and edges represent relationships between user pairs. We exclude isolated users, since they will never be
nvolved in a diffusion process. Letting the user number be N , we arrange users and denote the ith user by user i, where
≤ i ≤ N . Then the network topology can be represented as an adjacency matrix A, where for each ai,j ∈ A, ai,j = 1 if
sers i and j are connected, and ai,j = 0 if they are not connected.
Note that the adjacency matrix A is symmetric, since we take undirected networks into account. Actually, a social

etwork with directed relationships can also be considered in this framework, and the corresponding adjacency matrix
s asymmetric.

.2. Duplicate forwarding model

In many social networks, messages are forwarded in an all-or-none way. For example, in Facebook, a user can update
ts status to broadcast things which happen in its daily life. These messages are pushed to the personal pages of all its
eighbors, where messages are arranged in a reverse chronological order. After browsing (i.e., reading) the messages, its
eighbors can use buttons such as share to forward them to their neighbors. This phenomenon is shown in Fig. 1. In
ig. 1(a), suppose user 1 generates a message (say M ), which will be pushed to all its neighbors (i.e., users 2, 3, 4, 5).
1
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Fig. 1. An illustration for the all-or-none forwarding mechanism.

After receiving this message, user 2 can decide whether to react to it. If it chooses to do so, a message (say M2) will be
forwarded to all its neighbors (i.e., users 1, 5, 6, 7), which is depicted in Fig. 1(b). If user 2 chooses to do nothing, none of
its neighbors will receive M2. Besides, forwarded messages can be further forwarded, which incurs a chain reaction. This
is the so-call word-of-mouth effect.

In this paper, we adopt the all-or-none forwarding mechanism in the duplicate forwarding model. Note that the content
of M2 may be different from that of M1 in Fig. 1. To simplify the model, we ignore the heterogeneity of message contents,
and let M2 be a duplicate of M1. Then we can focus on the number of messages which are received by users after a user
generates a message.

We further let the probability that a user chooses to forward a received message be p. Actually, the probabilities of
forwarding a given message will be different for different users, since they may have various personal interests. We assume
homogeneous behaviors here to get a simple model, and can consider heterogeneous behaviors by adopting weighted
social network models like [35,36] to extend the model.

Note that there are some differences between the independent cascade model and duplicate forwarding model, which
are described in the following.

• In the independent cascade model, after getting activated, a user starts to influence its inactive neighbors. If this
user fails to activate a neighbor, it cannot influence this neighbor again. That is to say, each edge will be involved
at most once during a diffusion process. However, in the duplicate forwarding model, a user can forward multiple
messages to a given neighbor during a diffusion process.

• In the independent cascade model, after getting activated, a user seeks to influence its inactive neighbors indepen-
dently. However, in the duplicate forwarding model, messages will be forwarded in an all-or-none way. If a user
chooses to forward a message, all its neighbors will receive it simultaneously.

Although the independent cascade model is a little different from the duplicate forwarding model, we propose a
hypothesis (i.e., Hypothesis 1) here to characterize the relationships between the user influence rankings of these two
models.

Hypothesis 1. The user influence ranking in the independent cascade model should be highly positively correlated with
that in the duplicate forwarding model.

That is to say, if user i is more influential than user j in the independent cascade model, it is very likely that user i is
also more influential than user j in the duplicate forwarding model. This hypothesis will be validated through experiments
in the following.

3. User influence in the duplicate forwarding model

In the duplicate forwarding model, we take into account the mean number of messages which are received by users
after a user (say user i) generates a message, and denote it by ui. Intuitively, we know the value of ui will grow and
approach infinity with increasing p. So we denote the diffusion threshold by ρ, which is a critical value for p. If p ≥ ρ,
the diffusion process may never terminate, and infinite messages may be received by users.

In the following, we first analyze ui and ρ theoretically, and get the user influence ranking in the duplicate forwarding
model below the diffusion threshold. Since ui makes no sense when the diffusion threshold is exceeded, we introduce and
calculate qi, which is the probability that infinite messages will be received after user i generates a message, to quantify
the user influence when p ≥ ρ, and then get the user influence ranking above the diffusion threshold.

3.1. User influence below diffusion threshold

Letting the probability of k messages are received after user i generates a message be gi,k, we can get a generating
function

Gi(x) =

∑
gi,kxk. (1)
k

3
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hen we can obtain the user influence ui by

ui =

∑
k

kgi,k = G′

i(1). (2)

According to the properties of generating function [37], we have

Gi(x) =

∏
j∈Ni

(1 − p)x + pxGj(x), (3)

here Ni is the neighbor set of user i, the term (1−p)x accounts for the situation that user j receives but does not forward
the message, and the term pxGj(x) stands for the situation that user j receives and then forwards the message. Noting

Gj(1) =

∑
k

gj,k = 1, (4)

we know

(1 − p)x + pxGj(x)
⏐⏐⏐
x=1

= 1 (5)

for any user j. Then from Eq. (3), we can get

G′

i(1) =

∑
j∈Ni

d
[
(1 − p)x + pxGj(x)

]
dx

∏
j′∈Ni\j

(1 − p)x + pxGj′ (x)
⏐⏐⏐⏐
x=1

=

∑
j∈Ni

(1 − p) + pGj(x) + pxG′

j(x)
⏐⏐⏐
x=1

=

∑
j∈Ni

1 + pG′

j(1)

= |Ni| + p
∑
j∈Ni

G′

j(1). (6)

We write Eq. (6) in matrix form, and have

G′(1) = A1 + pAG′(1), (7)

where A is the adjacency matrix, and

G′(1) =
(
G′

1(1),G
′

2(1), . . . ,G
′

N (1)
)⊤

,

1 = (1, 1, . . . , 1)⊤.

So we get

G′(1) = (I − pA)−1A1, (8)

from which we know the elements in G′(1) will grow and then approach infinity when the determinant of I− pA arrives
at the first 0. Among the eigenvalues of A, let the largest one be λA. Then the diffusion threshold ρ can be got by

ρ =
1
λA

, (9)

and the elements in G′(1) will be infinite if p ≥ ρ.
Therefore, if p < ρ, we can calculate the user influence ui from Eqs. (2) and (8) for each user, and then get the user

nfluence ranking in the duplicate forwarding model accordingly.

.2. User influence above diffusion threshold

Note that even if p ≥ ρ, a diffusion process may be terminated due to the diffusion fluctuations. Here we introduce
i, which is the probability that infinite messages will be received after user i generates a message, to quantify the user
nfluence in the duplicate forwarding model when p ≥ ρ, and try to calculate qi in the following.

According to the properties of generating function [37], we have

Gi(1) =

∑
k

gi,k < 1 (10)

f p ≥ ρ, and Gi(1) is actually the probability that finite messages will be received after user i generates a message.
Therefore, we obtain

q = 1 − G (1), (11)
i i

4
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Table 1
Properties of networks adopted in simulations.
Network # of node # of edges Description

email-Eu-core 986 16,064 E-mail network
CollegeMsg 1893 13,835 Messages on a Facebook-like platform at UC-Irvine
soc-sign-bitcoin-alpha 3775 14,120 Bitcoin Alpha web of trust network
p2p-Gnutella08 6299 20,776 Gnutella peer to peer network from August 8 2002

Fig. 2. Simulation times for ũi and analysis times for ui (or qi) in different networks with varied p.

and get

1 − qi =

∏
j∈Ni

(
1 − p + p(1 − qj)

)
(12)

from Eq. (3). Then we rearrange Eq. (12), and have

qi = 1 −

∏
j∈Ni

(
1 − pqj

)
. (13)

Note that we have an equation for each user from Eq. (13), and then get an equation system with N equations and N
ariables. Therefore, we can compute qi by solving this equation system through iterative calculation, and then get the
ser influence ranking in the duplicate forwarding model accordingly.

. Verification

In the independent cascade model, we define the user influence ũi as the average number of users which are activated
i.e., receive messages) during a diffusion process, which is caused by user i generating a message.

Noting that there is no efficient approach to calculate the exact value of ũi at this moment, we first conduct simulations
o estimate it in this section. Then we introduce a Spearman-like correlation coefficient to measure the correlation
etween two user influence rankings. Based on this correlation coefficient, we study the correlation between the user
nfluence rankings of ũi and ui (or qi), as well as the correlations between the user influence rankings of ũi and other
easurements such as degree, betweenness, k-core and PageRank.

.1. Simulations for ũi in the independent cascade model

We select 4 networks from http://snap.stanford.edu/data/ to conduct simulations. Note that if there are multiple
onnected components in a network, we can take into account these connected components separately. To simplify the
imulations, we choose the largest connected component for each network. Besides, we consider undirected edges and
elete edges connecting a node to itself, and then get 4 networks with undirected edges and no self-loops. Some properties
f these networks are listed in Table 1.
In each simulation, all users are inactive at the beginning, and a user is selected to be the first active one and start

o influence its inactive neighbors with probability p independently, which may activate a chain reaction. Note that if a
5
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Fig. 3. Simulation results for the mean and standard deviation of ũi ’s for different networks with varied p in the independent cascade model.

Table 2
Diffusion threshold ρ in the duplicate forwarding model.
Network ρ = 1/λXA

email-Eu-core 0.013
CollegeMsg 0.021
soc-sign-bitcoin-alpha 0.021
p2p-Gnutella08 0.035

user fails to activate a neighbor, it cannot influence this neighbor again. Furthermore, we repeat each simulation 100,000
times, and calculate the average number of activated users ũi to estimate the user influence for user i.

Since the simulations are quite time consuming, we choose all users for the network email-Eu-core, and 1000 users
ith the largest degrees for the networks CollegeMsg, soc-sign-bitcoin-alpha and p2p-Gnutella08 to estimate ũi. All
imulations are carried out on a machine with an Intel(R) Core(TM) I7-8700 CPU (3.20 GHz, 12 threads) and 32 GB main
emory. We also adopt the multi-threading technology to accelerate the simulations. The times spent in estimating ũi

hrough simulations for different networks with varied p are plotted in Fig. 2(a), from which we know the simulation
imes increase with p for all networks. Besides, we also depict the times spent in calculating ui (or qi) through theoretical
nalysis for different networks with varied p in Fig. 2(b), and note that the analysis times are much less than the simulation
nes, especially when p is large. For example, the simulation time for ũi in the network p2p-Gnutella08 with p = 0.5
s 179, 497.45 s, but the corresponding analysis time for qi is only 0.57 s, which is about 300,000 times less than the
imulation one. So we can conclude that the user influence in the duplicate forwarding model (i.e., ui and qi) can be
nalyzed efficiently.
To study the gaps between different ũi’s, we calculate the mean and standard deviation for ũi’s in each network. We

lso vary the value of p to show the impact of p on the mean and standard deviation of ũi’s. The simulation results for the
ean and standard deviation of ũi’s with varied p are plotted in Fig. 3, from which we know the mean of ũi’s increases
ith p, and the standard deviation of ũ ’s approaches 0 when p is large for all networks. The reason is when p is large,
i

6
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Fig. 4. The Spearman-like correlation coefficients between user influence rankings of ûi with varied p in the independent cascade model, where
.01 ≤ p ≤ 1.

ny user may be able to influence a large fraction of users, and the gaps between different ũi’s are small. Therefore, we
an claim that if the influence probability in a network is high enough, the user influences for different users will be close
n the independent cascade model, and we can choose any user to incur a wide spread. Besides, since the values of ũi’s
re small at p = 0.01, the standard deviation of ũi’s is almost invisible. Actually, the value of the standard deviation at
= 0.01 is much larger than that of the mean.

.2. Correlation definition

In this paper, we introduce a Spearman-like correlation coefficient to measure the correlation between two user
nfluence rankings. Let Xi and Yi be the rank values for user i in two user influence rankings, and di = Xi − Yi. Here
e assign users of an identical user influence with the same rank value, which is equal to the mean of their positions in
he ascending order. This is actually equivalent to averaging out the rank value over all possible permutations.

The formula for the Spearman-like correlation coefficient is given by

r = 1 −
6
∑

i d
2
i

N(N2 − 1)
, (14)

here N is the user number. Note that the formula for the Spearman correlation coefficient is

rs =

∑
i(Xi −

∑
i Xi/N)(Yi −

∑
i Yi/N)√∑

i(Xi −
∑

i Xi/N)2
∑

i(Yi −
∑

i Yi/N)2
, (15)

nd Eq. (14) is actually the same as Eq. (15) if all rank values are distinct integers.
7
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Fig. 5. The Spearman-like correlation coefficient between the user influence rankings of ûi and ui (or qi) with varied p, as well as the Spearman-like
orrelation coefficients between the user influence rankings of ûi and other measurements such as degree, betweenness, k-core and PageRank.

However, if all users have an identical user influence, the numerator and denominator of Eq. (15) will be 0, and then
s will make no sense. Unfortunately, we find users will indeed have an identical user influence if p is large enough.
herefore, we cannot use the Spearman correlation coefficient, i.e. Eq. (15), to measure the correlation between two user
nfluence rankings. In this paper, we adopt Eq. (14), and call r the Spearman-like correlation coefficient. Besides, we know
that r ≤ 1, and the value of r should be close to 1 if two user influence rankings are highly positively correlated.

4.3. Correlations between user influence rankings

In the independent cascade model, to reduce the impact of simulation fluctuations on the value of ũi, we normalize ũi
y letting

ûi =
ũi

maxj ũj
, (16)

nd keep three decimal places. Then we rank users according to ûi. We compute the Spearman-like correlation coefficient
etween user influence rankings of ûi with varied p, and plot the results in Fig. 4. We find that the user influence ranking
aries dramatically with p in the independent cascade model.
To get the user influence ranking in the duplicate forwarding model, we first calculate the diffusion threshold ρ for

ach network from Eq. (9), which is listed in Table 2. For p < ρ, we compute the user influence ui from Eqs. (2) and (8), and
et the user influence ranking for each network. For p ≥ ρ, we calculate qi, which is the probability that infinite messages
ill be received after user i generates a message, from Eq. (13), and get the corresponding user influence ranking. Note
hat we do the same operations of normalization and rounding for ui and qi as those for ũi.

For comparison, we adopt different measurements for user influence such as degree, betweenness, k-core and PageRank
ere. We compute the values of these measurements for each user, and do the same operations of normalization and
8
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Table 3
P-values for the Spearman-like correlation coefficients between the user influence rankings of ûi and ui (or qi) for
different networks with varied p.
email-Eu-core CollegeMsg soc-sign-bitcoin-alpha p2p-Gnutella08

p p-value p p-value p p-value p p-value

0.01 0 0.01 0 0.01 0 0.01 0
0.02 0 0.02 0 0.02 0 0.02 0
0.03 0 0.03 0 0.03 0 0.03 0
0.04 0 0.04 0 0.04 0 0.04 0
0.05 0 0.05 0 0.05 0 0.05 0
0.06 0 0.06 0 0.06 0 0.06 0
0.07 0 0.07 0 0.07 0 0.07 0
0.08 0 0.08 0 0.08 0 0.08 0
0.09 0 0.09 0 0.09 0 0.09 0
0.1 0 0.1 0 0.1 0 0.1 0
0.2 0 0.2 0 0.2 0 0.2 0
0.3 0 0.3 0 0.3 0 0.3 0
0.4 0 0.4 0 0.4 0 0.4 0
0.5 0 0.5 0 0.5 0 0.5 1.08×10−255

0.6 0 0.6 0 0.6 0 0.6 0
0.7 0 0.7 0 0.7 0 0.7 0
0.8 0 0.8 0 0.8 0 0.8 0
0.9 0 0.9 0 0.9 0 0.9 0
1 0 1 0 1 0 1 0

Fig. 6. Comparison of ũi and ui (or qi) for users in the network email-Eu-core with different p.
9
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Fig. 7. Comparison of ũi and ui (or qi) for users in the network CollegeMsg with different p.

rounding for these values as those for ũi. Then we get the user influence rankings accordingly. Note that these user
influence rankings do not change with p.

Then we calculate the Spearman-like correlation coefficient between the user influence rankings of ûi and ui (or qi)
rom Eq. (14), as well as the Spearman-like correlation coefficients between the user influence rankings of ûi and other
easurements such as degree, betweenness, k-core and PageRank. The results are depicted in Fig. 5.
We observe that the Spearman-like correlation coefficient between the user influence rankings of ûi and ui (or qi),

hich is labeled will ‘‘ui (or qi)’’ in Fig. 5, is very close to 1. That is to say, these two user influence rankings are highly
ositively correlated, and we can use the user influence ranking of ui (or qi) to estimate that of ûi. We also note that
here are some fluctuations around p = 0.7 in the network soc-sign-bitcoin-alpha, and around p = 0.5 in the network
2p-Gnutella08. There may be some properties of these networks which lead to these fluctuations in the independent
ascade model, and we will consider them in our future work. So we can conclude that the user influence in the duplicate
orwarding model can be used as a good measurement to estimate the user influence ranking in the independent cascade
odel.
Besides, we observe that the Spearman-like correlation coefficients between the user influence rankings of ûi and

ther measurements, which are labeled will ‘‘degree’’, ‘‘betweenness’’, ‘‘k-core’’ and ‘‘PageRank’’ in Fig. 5, will approach
.5 if p is close to 1 in these networks. That is because if p is close to 1, all users may have identical ûi in the
ndependent cascade model, and then have identical rank value in the user influence ranking. However, the rank values
or the measurements degree, betweenness, k-core and PageRank may be distinct integers. For example, we take any
easurement (say betweenness) into account, and let the user number N = 2n + 1. We know the rank values for
etweenness may be distinct integers, and the range is [1, 2n + 1]. Since all users may have an identical rank value
f n for ûi if p is close to 1, the Spearman-like correlation coefficient should be

r = 1 −
6
∑

i d
2
i

N(N2 − 1)
10
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Fig. 8. Comparison of ũi and ui (or qi) for users in the network soc-sign-bitcoin-alpha with different p.

≈ 1 −
6 × 2

∑
1≤k≤n k

2

(2n + 1)
(
(2n + 1)2 − 1

)
= 1 −

6 × 2 × n(n + 1)(2n + 1)/6
4n(n + 1)(2n + 1)

=
1
2
. (17)

e can get the same result if we let N = 2n. This is the reason why the Spearman-like correlation coefficients between
the user influence rankings of ûi and other measurements will approach 0.5 if p is close to 1.

Actually, PageRank has been widely used to measure the importance of website pages, which are connected by directed
hyperlinks. However, from Fig. 5 we find that PageRank achieves poor performance to estimate the user influence ranking
in the independent cascade model. This phenomenon may be caused by the reason that the diffusion dynamics in the
independent cascade model are different from the browsing behavior dynamics in the Internet, and another potential
reason may be the networks we consider here are symmetric. It is interesting to study this phenomenon, and will be
included in our future work.

Then we calculate the corresponding p-values for the Spearman-like correlation coefficients between the user influence
rankings of ûi and ui (or qi) for different networks with varied p, and list the results in Table 3, from which we know the
correlations between these two user influence rankings are strongly statistically significant.

Finally, we compare the values of ũi and ui (or qi) for users with different p. For each network in Table 1, we let
p = 0.01, 0.5, 0.9 respectively, and also choose a value of p which is slightly larger than the diffusion threshold in Table 2.
The results are depicted in Figs. 6–9. We observe that ũi seems to be linearly correlated with ui (or qi) when p is small. That
s to say, after getting the values of ũi for some users by simulations, we can use linear fitting to estimate the influences
or the rest users. We believe this operation can significantly reduce the amount of samples in estimating σ (S), and then
rovide help in solving the influence maximization problem. Besides, although this linear correlation does not hold for
11
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Fig. 9. Comparison of ũi and ui (or qi) for users in the network p2p-Gnutella08 with different p.

= 0.5 (especially for the networks soc-sign-bitcoin-alpha and p2p-Gnutella08), the values of ũi and qi are still highly
ositively correlated for most users. When p = 0.9, most users get identical ũi (especially for the networks CollegeMsg,
oc-sign-bitcoin-alpha and p2p-Gnutella08), which can be predicted through the analysis results for qi from our approach.

. Conclusion and discussion

In this paper, we propose a duplicate forwarding model to characterize the diffusion process in social networks, and
nalyze the user influences below and above the diffusion threshold theoretically. Through extensive simulations, we
ind that the analysis results from the duplicate forwarding model achieve much better accuracy than the measurements
egree, betweenness, k-core and PageRank in estimating the user influence ranking in the independent cascade model.
owever, these inaccuracies of degree, betweenness, k-core and PageRank in estimating the user influence ranking may
e caused by the reason that these measurements do not consider the diffusion dynamics in the independent cascade
odel. Actually, they have been introduced to characterize different aspects of node importance in a network, and have
een successfully used in different areas.
In this paper, we assume symmetric relationships and homogeneous user behaviors to simplify the models, which

re unrealistic in reality. In our future work, we will consider asymmetric relationships (e.g., relationships in Twitter and
eibo) and the situation that different users may forward messages with different probabilities. That is to say, a weighted
irected network will be adopted to extend the network model. Then we can study the relationships between the user
nfluence rankings of the independent cascade model and the duplicate forwarding model in a more realistic environment.
ote that the diffusion dynamics in other diffusion models such as SIS model, SIR model and linear threshold model also
eed to be studied. What are the differences between the diffusion dynamics of the independent cascade model and
hese models? Can the duplicate forwarding model be modified to analyze the diffusion processes in these models? We
ill consider these problems in the future. Besides, in this paper we choose 4 moderate-size real-world networks in the
imulations, since it takes too much time to repeat each simulation 100,000 times, especially when the parameter p is
12
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arge. Actually, the user influence in the duplicate forwarding model can be analyzed efficiently, even for a network with
illions of users. We will try to accelerate the simulations, and verify the analysis results in larger networks. Finally, we
lan to adopt the proposed approach in the influence maximization problem, and verify its efficiency and accuracy.
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