A Cost-Driven Top-K Queries Optimization Approach on Federated RDF Systems

Ningchao Ge, Zheng Qin, Peng Peng, Member, IEEE, Mingdao Li, Fellow, IEEE

Abstract—RDF (Resource Description Framework) is a model widely used to construct knowledge bases, while SPARQL (SPARQL Protocol and RDF Query Language) is the standardized structured query language to manipulate RDF data. Recently, many data providers have published their RDF datasets in their own autonomous sites and provided SPARQL query interfaces, called RDF sources. In order to integrate multiple RDF sources, researchers put forward the federated RDF system to support the federated SPARQL queries. However, existing studies can only support efficient basic queries but not top-k queries. Toward this end, we propose a cost-driven top-k queries optimization approach in federated RDF systems, which can support both top-k queries for single variable ordering and expression ordering. Firstly, we propose an optimized query decomposition method to decompose the federated query into multiple subqueries. Secondly, while considering the top-k operator, we propose a cost model to evaluate the query cost and join cost of subqueries. The optimal query plan can be obtained by the costed-based query plan generation algorithm. Finally, combined with the characteristics of top-k queries, an incremental query plan execution strategy is developed to minimize the total query cost. Experimental results show that the proposed method is effective, efficient and scalable.

Index Terms—Federated RDF systems, query optimization, SPARQL, top-k

1 INTRODUCTION

As the standard organization model for Web of Linked Data, RDF (Resource Description Framework) [9] has been widely used in various fields. RDF represents data as a triple in the form of \(<\text{subject}, \text{predicate}, \text{object}>\) or \(<\text{subject}, \text{attribute}, \text{value}>\). To manipulate RDF data, the standardized structured query language, SPARQL (SPARQL Protocol and RDF Query Language) [29], is released by W3C (World Wide Web Consortium). In recent years, an increasing number of data providers have published their datasets using the RDF model. These datasets are often maintained at their own sites, which provide the SPARQL interfaces to support users to submit SPARQL queries. An autonomous site with a SPARQL interface is called an RDF source in this paper.

The federated RDF systems [8], [23], [33] are put forward to integrate multiple RDF sources. Up to now, many federated RDF systems [4], [19], [24] have been developed and implemented the federated query system. In a federated RDF system, different RDF sources cannot communicate with each other directly. Thus, it is desired to develop a control site to manipulate these RDF autonomous sources. The famous federal RDF systems include the biological information federated RDF systems with 57 RDF sources issued by the European Molecular Biology Laboratory.

Since SPARQL is the query language designed for centralized RDF system, it cannot be directly executed on federated RDF system. In a general method, for a federated SPARQL query submitted by user, it is first decomposed into multiple subqueries, which can be executed on the corresponding RDF sources separately. Then, the results of subqueries are joined together to obtain the final result. Now, many works have been put forward to optimize the SPARQL processing in federated RDF systems, but most of them mainly focus on implementing and optimizing the basic queries [13], [24], [32], [34] in federated SPARQL systems. Few of them discuss how to evaluate the top-k queries, which are queries returning \(k\) answers with the highest rank order by utilizing a ranking function. There are two common types of ranking functions, namely, single variable and expression. For SPARQL, top-k queries can be expressed by including the ORDER BY and LIMIT clauses, as shown in Fig. 1 and Fig. 2.

Example 1.1. A top-k query example with single variable ordering is shown in Fig. 1.

Example 1.2. A top-k query example with expression ordering is shown in Fig. 2.

Compared with the basic query, top-k query can quickly provide users with the most concerned information. Especially, in the federated RDF system with a large amount of data, efficient top-k query is more important. There exist a few previous work [13], [32] can support top-k federated SPARQL query, but they only support single variable

1. https://www.ebi.ac.uk/rdf/services/sparql
contributions, ing top-k SPARQL queries. Support both single variable ordering and expression ordering. Previous work, and adopts a new optimization method to reduce the number of candidate RDF sources for each subquery. It further reduces the number of candidate RDF sources for each subquery. SPLENDID [13] built an inverted index based on the VOID (vocabulary of interlinked datasets) of each RDF system. FMQO [25] further discussed how to optimize multiple queries evaluation by rewriting the set of input queries into a smaller set of rewritten queries. FedX [34] transferred all triples in the query statement to all RDF sources, and determine the relevant RDF sources through ASK in SPARQL syntax. SPARQL Query Evaluation in Federated RDF Systems. According to the standard of W3C, SPARQL is only valid for centralized RDF system. It can be running over federated RDF system with some extra design. At present, there are many federation RDF system [28], [30], [36] which can support SPARQL basic queries. Harth et al. [14] and Prasser et al. [28] converted a SPARQL query into a minimum bounding boxes connection by using an index similar to the R-Tree [7], named QTree, and then the RDF sources of each triple in the SPARQL query can be obtained. DARQ [30] obtained the relevant RDF sources according to an index called service description, which describes which triple patterns can be answered. Different from DARQ [30], HiBISCuS [32] constructed the query graph into a directed labeled hypergraph in the stage of determining RDF sources, which further reduces the number of candidate RDF sources for each subquery. SPLENDID [13] built an inverted index based on the VOID (vocabulary of interlinked datasets) of each RDF source. FMQO [25] further discussed how to optimize multiple queries evaluation by rewriting the set of input queries into a smaller set of rewritten queries. FedX [34] transferred all triples in the query statement to all RDF sources, and determine the relevant RDF sources through ASK in SPARQL syntax.

These above methods were only efficient for basic queries, but not for top-k queries. The conference version of this paper, FedTopK [12], implemented a federated RDF system to support efficient top-k SPARQL queries for the single variable ordering, but it does not consider expression ordering top-k SPARQL queries. In this paper, the optimization and expansion are made to further improve the efficiency of top-k query with single variable ordering based on FedTopK. In addition, the incremental query scheme proposed in this paper can also effectively support top-k query with expression ordering.

2 RELATED WORK

Top-k Query Optimization. Top-k query optimization is a practical research, which has been well studied in relational databases. For SPARQL, it is expressed by ORDER BY and LIMIT clauses. The existing research studies [6], [22], [26], [35] mainly focus on top-k query optimization over centralized RDF system. Bozzon et al. [6], [22] improved the efficiency of top-k query on RDF graph by extending the SPARQL algebra and SPARQL-RANK. Wang et al. [35] utilized the graph-exploration to further improve the query efficiency instead of the join method. The works of Wang et al. [37] and Yang et al. [38] are aimed at specific query types (such as star query). Ihm et al. [18] improved the query efficiency of top-k by building partition index. Jiang et al. [20] quickly obtained query results by adopting heuristic pruning and incremental algorithm.

SELECT * WHERE {
 ?place org:type <http://dbpedia.org/ontology/Place>.
 ?place owl:sameAs ?nytplace.
} ORDER BY DESC (?areaLand+?areaWater) LIMIT 3

Fig. 2. A top-k query example with expression ordering: find the top places and the count of its news with the largest sum of land area and sea area.

2 RELATED WORK

Top-k Query Optimization. Top-k query optimization is a practical research, which has been well studied in relational databases. For SPARQL, it is expressed by ORDER BY and LIMIT clauses. The existing research studies [6], [22], [26], [35] mainly focus on top-k query optimization over centralized RDF system. Bozzon et al. [6], [22] improved the efficiency of top-k SPARQL queries in a materialize-then-sort processing scheme, which computes all the matching solutions (e.g. thousands) even if only a limited number of (e.g. ten) are requested. It leads to the huge query cost and network communication overhead, especially for large federated RDF systems.

To support efficient top-k SPARQL queries for the single variable ordering on federated RDF systems, an effective top-k query optimization scheme is developed in the conference version of this paper [12]. This paper extends our previous work, and adopts a new optimization method to support both single variable ordering and expression ordering top-k SPARQL queries.

In summary, the proposed scheme has following mainly contributions:

- We propose a query decomposition and source selection optimization strategy, which allow to merge some triple patterns with the same multiple sources into one subquery. It can improve query efficiency by reducing the number of remote requests.
- We construct a cost model and design a cost-driven optimal query plan generation algorithm with dynamic programming, which can optimize the join order by controlling the execution order and execution strategy (serial and parallel) of top-k queries.
- We propose an incremental query plan execution strategy to support efficient evaluation of top-k queries. The strategy can effectively improve the query efficiency by avoiding many unnecessary results.
- We implement a federated RDF system, named FedTopKPro, which can support both top-k queries for single variable ordering and expression ordering. The experimental results on FedTopKPro show that our method is much better than previous works with effectiveness and total run time.

3 BACKGROUND

In Section 1, we introduce the information of federated RDF systems. The Web resources are expressed by unique identification IDs in RDF, which are called Internationalized Resource Identifiers (IRIs). SPARQL is a standardized query syntax.

SELECT * WHERE {
 ?role swc:heldBy ?writer.
 ?geonameplace dp:foundingDate ?foundingDate.
 ?place g:population ?population.
 ?place g:long ?longitude.
 ?place g:lat ?latitude.
 ?place owl:sameAs ?geonameplace.
} ORDER BY DESC (?population) LIMIT 3

Fig. 1. A top-k query example with single variable ordering: find the top three neighboring cities and its attributes with the largest population for writers.
language used to query RDF datasets. In the context of federated RDF system, we extend the idea of authoritative source in [17]. In order to facilitate readers understanding of the follow-up content, this section will give definitions of related terms and research issues in this paper. The definitions of related terms are similar as found in [5], [15], [16], [24], [27].

Definition 3.1. (RDF Graph). An RDF dataset is a set of triples. Triple patterns are the description of subjects, predicates and objects, can be expressed as: \(TP = (I \cup N) \times (I \cup N \cup L) \). Among that, \(I \) is the set of IRIs, \(N \) is the set of blank elements and \(L \) the set of literals. An RDF graph is a graphical description of triple patterns. In RDF graph, the vertexes are transformed from subjects and objects of \(TP \) and predicates are the label of edges.

Definition 3.2. (Federated RDF System) A federated RDF system can be expressed as \(F = (S, g, d) \), where (1) \(S \) is a set of source sites that can be obtained by looking up IRIs in an implementation of \(F \); (2) \(g: S \rightarrow 2^TP \) is a mapping that associates each source with a subgraph of RDF graph \(TP \); and (3) \(d: I \rightarrow S \) is a partial, surjective mapping that models the fact that looking up IRI of resource \(t \) matches in the retrieval of the source represented by \(d(I) \). Let \(\mu : \mathbb{N} \rightarrow \mathbb{L} \) be the set of all triple patterns. Then, a basic graph pattern (BGP) is a set \(Q \subseteq TP \), and the set of queries is \(\mathbb{Q} \subseteq TP \).

In this paper, we support top-k queries in SPARQL with an ORDER BY clause that can be formulated as a ranking criterion on a variable.

Definition 3.4. (Top-k SPARQL Query). A top-k SPARQL query can be expressed as: \(TSQ = <Q, f, k> \), where \(Q \) is a BGP pattern, \(f \) is the ranking function, including single variable ordering and express ordering. And \(k \) is the maximum number of results.

Fig. 1 shows the single variable ordering example top-k SPARQL query, where \(f \) is the single variable \(?population \) and \(k = 3 \). Fig. 2 shows the express ordering example top-k SPARQL query, where \((?areaLand + ?areaWater) \) is the express \(f \) and \(k = 3 \). A match of BGP \(Q \) may involve different RDF sources over a federated RDF system. Specifically, a match distributed over a set of sources \(S' \subseteq S \) is a function \(\mu \) from variables in \(Q \) to RDF terms in \(\bigcup_{t \in S'} g(t) \).

Definition 3.5. (Match of Top-k SPARQL Query over Federated RDF System) Firstly, we need to denote two functions. The first function is \(\mu : V \rightarrow I \cup N \cup L \). It is a mapping \(\mu \) from \(V \) to \(I \cup N \cup L \). For a triple pattern \(t \) of a SPARQL query, we denote by \(\mu(t) \) the triple obtained by replacing the variables in \(t \) according to \(\mu \). Secondly, for a federated RDF system \(F = (S, g, d) \) and a BGP \(Q \). Given \(S' \subseteq S \), a mapping \(\mu \) is said to be a match of \(Q \) if and only if \(\mu(tp) \in \bigcup_{t \in S'} g(t) \) for each triple pattern \(t \) in \(Q \). Finally, the match result of a top-k SPARQL query \(TSQ = <Q, f, k> \) is a no-more-than-k-sized list of matches of \(Q \), with the highest rank order by the ranking function \(f \).

The problem to be studied in this paper is defined as follows:

Fig. 3 shows a federated RDF system as a graph distributed among four different sources. Given a resource with the IRI “dp:Ireland,” “dp:Ireland” = DBpedia, this means that “dp:Ireland” is dereferenced by the host DBpedia.

Definition 3.3. (Basic Graph Pattern) SPARQL is a structured query language to manage RDF dataset, and the basic graph pattern (BGP) is its basic query block. We use \(V \) to express the variables set of a SPARQL query, and those variables all bind to RDF triple patterns from \(I \cup N \cup L \). Triple patterns are consisted with some triples \(ts \in (I \cup N) \times (I \cup N) \times (I \cup L) \). For convenience of explanation, we neglect the blank element of each triple pattern. Let \(TP \) be the set of all triple patterns. Then, a basic graph pattern (BGP) is a set \(Q \subseteq TP \), and the set of queries is \(\mathbb{Q} \subseteq TP \).
Fig. 4. The scheme of top-k query processing in federated RDF systems.

Given a federated RDF system $F = (S, g, d)$ and a top-k SPARQL query $TSQ = \langle Q, f, k \rangle$, the problem to be researched is to obtain the query result of TSQ.

4 FRAMEWORK

As shown in Fig. 4, the framework of top-k query processing mainly consists of three parts: query decomposition and source localization, cost-driven query plan generation and incremental query plan execution. For a top-k SPARQL query submitted by a user, we propose an auxiliary index to decompose the query into subqueries according to its RDF sources (see Section 5). Then, the optimal query plan can be obtained by a cost-driven query plan generation algorithm with dynamic programming (see Section 6). Finally, according to the query plan, these decomposed subqueries are sequentially sent to their corresponding RDF sources for execution in serial or parallel. Among that, combined with the characteristics of top-k query, an incremental query plan execution optimization strategy is carried out. It can further reduce the cost of subqueries execution to ensure that the overall cost and network communication are minimized (see Section 7).

5 QUERY DECOMPOSITION AND SOURCE LOCALIZATION

SPARQL is the query language designed for centralized RDF system, and cannot be directly executed on federated RDF system. In order to evaluate a SPARQL query over federated RDF systems, it needs to be decomposed into a series of subqueries, which can be executed on single RDF source. Basically, each triple pattern in the BGP of a SPARQL query maps to a set of RDF sources based on the constant values of subject, predicate and object. If a triple pattern is variables-only, it maps to all RDF sources in the federated RDF system. For the top-k SPARQL query $Example \; 1.1$, the mapping between triple patterns and its relevant RDF sources is shown in Fig. 5.

The basic query decomposition and source localization methods combine the triple patterns with the same single RDF source into one subquery. For the example query in Fig. 1, it should be decomposed into seven subqueries, as shown in Fig. 6. The subquery q_1 is composed of the triple patterns $<\text{?role swc:heldBy ?writer}>$ and $<\text{?writer hasf:based_near ?geonameplace}>$, because they have the same single RDF source Swffood. Note that, because the relevant RDF sources of $<\text{?place g:long ?longitude}>$ and $<\text{?place g:lat ?latitude}>$ are not single, they cannot be merged into one subquery even if their RDF sources are the same.

However, triple patterns $<\text{?place g:long ?longitude}>$ and $<\text{?place g:lat ?latitude}>$ can be merged into one subquery in reality, because they always appear in pairs over each RDF source. The number of subqueries affects the number of remote accesses, which will take up a lot of time overhead in distributed environment. Thus, we propose an index-based optimized query decomposition and source localization optimization strategy to reduce the number of subqueries, which allow to merge some triple patterns with the same multi-sources into one subquery.

There are two stages during our optimized query decomposition and source localization for a top-k SPARQL query. In the first stage, all the predicates of each RDF source are maintained as the meta data. Then an auxiliary index can be built by utilizing meta data. The auxiliary index can be used to determine whether triple patterns with the same multi-sources can be merged into one subquery. In the second stage, for each triple pattern of a top-k SPARQL query: if its predicate is a constant, its RDF sources can be located by meta data. Otherwise, all the RDF sources of federated RDF system are its RDF sources. Furthermore, if the subject or object of the triple pattern is a constant, we can use ASK query of SPARQL to prune irrelevant RDF sources. For triple patterns with the same multi-sources, it needs to judge whether they can be merged into one subquery by auxiliary index. For other triple patterns, it adopts the basic query decomposition method.

As the core of the optimization method, the first stage can also be called the auxiliary index building stage. We need to get meta data at the control site as key-value pairs $<P, S>$ first, where S is the RDF sources set of a constant predicate P. The time complexity of generating the meta data is $O(|E|)$, where E represent the set of edges in the

Fig. 5. Relevant RDF sources for each triple pattern in top-k query Example 1.1.
federated RDF system. Then, the auxiliary index is built by utilizing the meta data, as shown in Algorithm 1.

Algorithm 1. Auxiliary Index Generation

```
Input: The meta data Map = {< P, S >}
Output: Auxiliary index Mul_merge
for i = 1 to |Map| do
    if |S_i| == 1 then
        Map.remove(P_i, S_i);
    Initialize an empty query result map Map_R;
    for j = i + 1 to |Map| do
        if S_j == S_i then
           .getResult(P_i, Map_R);
            R_m = query(P_i ∪ P_j);
            if R_i ⊆ R_j then
                Mul_merge.put(P_i ∪ P_j, true);
            else
                Mul_merge.put(P_i ∪ P_j, false);
        end
    end
end
Return Mul_merge
```

The key-value pairs with single RDF source are removed from meta data (Lines 1-3 in Algorithm 1). Generally, the order of magnitude of remaining key-value pairs with multi-sources is in the hundred, and the number of predicates pairs < P_i, P_j > with same multi-sources is not much, donated as M. For a predicate pair < P_i, P_j > with the same multi-sources, we obtain the query results of P_i and P_j respectively (Lines 4-10 in Algorithm 1). Finally, the auxiliary index is obtained by comparing the join results of P_i and P_j with query result of P_i ∪ P_j (Lines 11-14 in Algorithm 1). Among them, we utilize the strategy of space for time to reduce the time cost caused by multiple queries on the same predicate, as shown in Algorithm 2. Let C and J express the execution times of function getResult() and joining operation respectively, the time complexity of Algorithm 1 is O(M × (2C + J)).

Algorithm 2. Function getResult(P, Map_R)

```
if Map_R.getKeySet().contain(P) then
    R = Map_R.get(P);
else
    R = query(P);
Map_R.put(P, R);
Return R
```

Generally, the federated RDF system consists of published RDF datasets. A version of RDF dataset will not change unless the version is updated. When a new version of an RDF dataset is released, rigorous organizations usually publish data update logs. In this case, we can update the auxiliary index incrementally by analyzing the data update log. In the worst case, if the index needs to be reconstructed when the update log cannot be obtained. Because the index construction is completed in the online stage before the system is used, this is acceptable in the process of federated RDF system upgrade.

For the top-k SPARQL query Example 1.1, five subqueries can be obtained by utilizing the proposed method, as shown in Fig. 7. We use Q to express the set of subqueries.

6 COST-DRIVEN QUERY PLAN GENERATION

There are huge differences of query overhead between different subqueries execution orders. A subqueries execution order is called a query plan. In order to evaluate the query cost of a query plan, we designed a cost model. The query cost and join cost of each subquery can be evaluated by this model.

6.1 Cost Model Design

According to the definition of distributed database system books [11], the total execution time for a database query can be expressed as follows:

$$
Total\ time = T_{CPU} \times \#\ insts + T_{I/O} \times \#I/Os + T_{MSG} \times \#msgs + T_{TR} \times \#bytes
$$

The first two terms of the Equation (1) express the query execution times of server. They depend on the performance of the server. The data transmission time is determined by the two last terms. In the distributed database system, the data communication often occupies a large amount of overhead and it is the goal that needs to be optimized. In order to evaluate and optimize that communication overhead, this paper designs a cost model.

For a federated RDF system with m RDF sources, the set of RDF sources can be represented as S = {s_1, s_2, s_3, ..., s_m}. For each RDF source s_i, the set of its predicates is denoted as P_i = {P_{i1}, P_{i2}, P_{i3}, ..., P_{im}}, where n is the number of distinct predicates. In RDF source s_i, the number of triple patterns containing the predicate P_{ij} can be expressed as follows:

$$
Sum(P_{ij}) = card(\sigma_{P \rightarrow P_i}(s_i))
$$

where σ represents the selection operation of database, and card() is a counting function. Among that, the number of distinct subjects and objects of triple patterns containing the predicate P_i is denoted as follows:

$$
Subject(P_{ij}) = card(dom(\pi_S(\sigma_{P \rightarrow P_i}(s_i))))
$$

$$
Object(P_{ij}) = card(dom(\pi_O(\sigma_{P \rightarrow P_i}(s_i))))
$$

where π represents the projection operation of database, and dom() is a deduplication function. On this basis, we define the front join factor and rear join factor for the predicate P_{ij}, donated as β_S(P_{ij}) and β_O(P_{ij}). They can be calculated as follows:

$$
\beta_S(P_{ij}) = \frac{Sum(P_{ij})}{Subject(P_{ij})}
$$

$$
\beta_O(P_{ij}) = \frac{Sum(P_{ij})}{Object(P_{ij})}
$$
\[\beta_{ij}(P_{ij}) = \frac{\text{Sum}(P_{ij})}{\text{Object}(P_{ij})} \] (6)

The above five parameters will be calculated statistically in the offline stage to form the meta data of the cost model. They need to be calculated only once until the RDF data is updated. For a subquery with two triple patterns, their predicates are \(P_1 \) and \(P_2 \) respectively, if they have no common vertex, then the query cost of the subquery is as follows:

\[\text{cost}(q) = \text{Sum}(P_1) \times \text{Sum}(P_2) \] (7)

Otherwise, there are three types of connection: \textit{subject} – \textit{subject}, \textit{subject} – \textit{object} and \textit{object} – \textit{object} between the two triple patterns. Here we assume that the connection type is \textit{subject} – \textit{subject}, the query cost of the subquery can be calculated as follows:

\[\text{cost}(q) = \beta_S(P_1) \times \beta_S(P_2) \times \text{Min} \left\{ \frac{\text{Sum}(P_1)}{\beta_S(P_1)}, \frac{\text{Sum}(P_2)}{\beta_S(P_2)} \right\} \] (8)

For other connection types, it is only necessary to change \(\beta_S(P) \) in the Equation (8) into \(\beta_O(P) \). All the query costs of subquery collection \(Q \) will be calculated by Equation (7) and (8).

For two subqueries \(q_1 \) and \(q_2 \), the query cost of them are \(\text{cost}(q_1) \) and \(\text{cost}(q_2) \) respectively. If there is no common column between the query result of them, the join cost of their query result is as follows:

\[\text{cost}(q_1 \bowtie q_2) = \text{cost}(q_1) \times \text{cost}(q_2) \] (9)

Otherwise, their execution order determines the join cost of their query result. Because SPARQL has a common characteristic, which allows adding VALUES clause after the current query to narrow the matching range of subgraph. The content of VALUES clause is the results of the previous query. We assume that the \(q_1 \) is executed first, and the common column between the query result of them is the subject of a triple pattern \(P \) in \(q_2 \). The join cost of their query result is as follows:

\[\text{cost}(q_1 \bowtie q_2) = \text{cost}(q_1) \times \beta_S(P) \] (10)

If the common column between the query result of them is the object of the triple pattern \(P \), it needs to change \(\beta_S(P) \) in the Equation (10) into \(\beta_O(P) \). Similarly, if the \(q_2 \) is executed first, and the common column between the query result of them is the subject of a triple pattern \(P \) in \(q_1 \). The join cost of their query result is as follows:

\[\text{cost}(q_2 \bowtie q_1) = \text{cost}(q_2) \times \beta_S(P) \] (11)

6.2 Optimal Query Plan Generation

A query plan represents an execution order and execution mode (serial or parallel) of subqueries \(Q \). There are huge differences in query efficiency between different query plans. Given a subquery set \(Q \), how to find the optimal query plan which can minimize the query cost. This problem has been solved well in relational database [11], and it is a typical dynamic programming problem.

Therefore, based on the cost model in Subsection 6.1, we design an optimal query plan generation algorithm with dynamic programming as shown in Algorithm 3. If the cost of optimal query plan with \(i \) subqueries is expressed by \(C[dp[i]] \), and its recurrence is as follows:

\[C[dp[i]] = \text{Min}\{C[dp[i-2] \bowtie (q_i \bowtie q_{i-1})], C[(q_i \bowtie q_{i-1}) \bowtie dp[i-2]]\} \] (12)

Algorithm 3. Cost-Driven Optimal Query Plan Generation Algorithm

Input: A set of subqueries \(Q \)

Output: A query plan \(QP \), which owning the min total cost

1. Initialize an empty hash map \(dp \);
2. Initialize an empty set \(Q^0 \) and \(TC = \text{Double.MAX_VALUE} \);
3. for \(i = 1 \) to \(|Q| \) do
 4. \(Q_j = \text{Select}(Q^0, S); /\text{See Algorithm 4} \)
 5. while \(Q_j \neq \emptyset \) do
 6. \(Q_j = \text{Select}(Q^0, S) \);
 7. \(SC = \text{cost}(S), dp.put(S, SC) \);
 8. if \(SC > TC \) then
 9. \(Q_j = \text{Select}(Q^0, S) \);
 10. \(Q_j \bowtie dp.put(S, SC) \);
 11. if \(dp.get(S) < TC \) then
 12. \(TC = SC, QP = Q_j \);
 13. Return \(QP \)

where \(q_i \) and \(q_{i-1} \) are subqueries in \(dp[i-1] \), which can be left joint and right joint with \(q_i \), respectively. Among that,
\[C[dp[i]] = \text{cost}(q_i), C[dp[i-2]] = \text{Min}\{\text{cost}(q_i \bowtie q_{i-1}), \text{cost}(q_{i-1} \bowtie q_i)\} \]. The time complexity of Algorithm 3 is \(O(n^3) \), where \(n \) is the size of the subqueries set \(Q \).

Algorithm 4. Function Select(Q, S)

1. Initialize an empty set \(R \);
2. // Get result columns collection of subqueries \(S \);
3. \(\text{Column}_S = \text{getColumns}(S) \);
4. for \(i = 1 \) to \(|Q| \) do
5. // Get result columns collection of subquery \(q_i \).
6. \(\text{Column}_{q_i} = \text{getColumns}(q_i) \);
7. if \(\text{Column}_{q_i}.\text{retainAll}(\text{Column}_S).\text{size()} > 0 \) then
8. \(R.add(q_i) \);
9. Return \(R \)

Example 6.1. As shown in Fig. 7, the set of subqueries for the input query \(Q \), contain five elements from \(q_1 \) to \(q_5 \). The optimal query plan corresponds to \(S \) when \(i = 2 \) in line 3 of Algorithm 3. Firstly, \(Q' = Q - \{q_2\}, S = \{q_2\} \) in line 4. Then, the subquery \(\{q_1, q_2\} \) is selected as \(Q_j \) in line 6, because the result columns of them can intersect with result columns of \(S \), as shown in Algorithm 4. The cost \(SC \) for \(S \) is \(\{q_2\} \) can be calculated by the Equation (10) and (11), and put \(S, SC > \) to the hash map \(dp \) in line 10. If the cost of the current partial query plan \(SC \) is bigger than the cost of an overall query plan generated before, it means that the current query plan is not
optimal, and the loop should be out in line 12. Otherwise, continue the above operations until \(Q' = \emptyset \) in line 5. Finally, the optimal query plan of the top-k query Example 1.1 can be obtained as: \(QP = \{ (q_3), \{q_1, q_2\}, \{q_3\}, \{q_1\} \} \). It represents the execution order and execution model as shown in Fig. 8.

7 Incremental Query Plan Execution

The query plan generated by Algorithm 3 can minimize the query cost when querying all the results that satisfy the triple patterns condition. However, as we all know, for top-k queries, an efficient query approach does not need to get all the intermediate results that meet the triple patterns condition. Therefore, we put forward to an incremental query plan execution optimization strategy to further improve the query efficiency of a top-k query.

7.1 Execution for Single Variable Ordering Top-K Query

For the query plan \(QP \) of single variable ordering example top-3 query in Example 1.1, we assume that its query execution plan can be shown in Fig. 9. Before the final result is selected, all the results of each subquery need to be queried, even if only top three results need to be returned to users.

In order to reduce the unnecessary intermediate results, we adopt an incremental query plan execution method, and the query plan execution process of this method is shown in Fig. 10. Its idea is to execute the subquery with ordering variable first under the same priority. The rank join will be done for the current results, and then some pieces of data are incrementally selected from the ordered results as the VALUES clause of the subsequent subqueries. During the incremental selection process, we assume that the data is evenly distributed.

Algorithm 5 gives the detail incremental execution algorithm of query plan. In the first stage, the query executor executes one round for all subqueries according to the query plan (lines 3 to 11). For the query plan \(QP \) in Example 6.1, the subquery \(q_2 \) is executed first. Then, subqueries \(q_1 \) and \(q_3 \) are executed with a values clause that generated from the result of \(q_2 \) in parallel, and so on. Among them, the subquery with ordering variable will be executed first under the same priority. Then, the current query results are sorted immediately (lines 6 to 10). For \(QP \), the subquery with ordering variable, \(q_3 \), is executed before \(q_2 \). Let \(SUM \) represent the number of query results after \(qi \) is executed (line 8), and let \(COUNT \) represent the number of results after the first stage query (line 12). While \(COUNT < k \) and \(M < SUM \), it means that selecting \(M \) pieces of the sorting results is not enough to generate the final top-k results. Then, the query executor enter the second stage for the loop query (lines 13 to 25) until the query end condition is met.

7.2 Execution for Expression Ordering Top-K Query

The expressions are usually the addition and subtraction of several variables in expression ordering top-k queries. To deal with the problem of ordering the calculation results after addition and subtraction, there is a classical threshold accepting algorithm [10]. On this basic, we propose a TA-based rank join method to deal the intermediate results that generating by subqueries with variables in expression. For an expression ordering top-k query, the expression usually contains two or more variables. According to the distribution of variables, the basic execution process of query plan can be divided into three categories: (1) The ordering variables are distributed in subqueries set with the same priority. (2) The ordering variables are distributed in subqueries sets with adjacent priorities. (3) The ordering variables are distributed in subqueries sets with nonadjacent priorities.

Algorithm 5. Incremental Execution Algorithm of Query Plan

| Input: A query plan \(QP \) |
| Output: The results \(R \) of the query plan \(QP \) |
| 1 Initialize an empty result set \(R \); |
| 2 Initialize \(INDEX = 0, COUNT = 0, M = 0, N = 0, SUM = 0 \); |
| 3 for \(i = 0 \to |QP| \) do |
| 4 for \(j = 0 \to |QP| \) do |
| 5 Execute subquery \(QP_{ij} \) in parallel, update set \(R \); |
| 6 if \(QP_{ij} \) contains the ordering variable then |
| 7 Backup current query status as \(T \); |
| 8 \(SUM = |R|, INDEX = i, M = K, N = 1 \); |
| 9 Remove \(QP_{ij} \) from \(QP \); |
| 10 Sort and select the first \(M \) results as the current result; |
| 11 Set the values clause of the next subquery; |
| 12 \(COUNT = |R| \); |
| 13 while \(COUNT < K \) and \(N \times M < SUM \) do |
| 14 Restore query status \(T \); |
| 15 if \(COUNT > 0 \) then |
| 16 \(N = K/COUNT \); |
| 17 else |
| 18 \(N = 2 \times N \); |
| 19 \(M = M \times N \); |
| 20 Select the first \(M \) results as the current result; |
| 21 for \(i = INDEX \to |QP| \) do |
| 22 for \(j = 0 \to |QP| \) do |
| 23 Execute subquery \(QP_{ij} \) in parallel, update set \(R \); |
| 24 Set the values clause of the next subquery; |
| 25 \(COUNT = |R| \); |
| 26 Return \(R \) |
As shown in Fig. 11(a), the subqueries q_3, q_4, and q_5 are at the same execution priority set and the ordering variables are distributed in subqueries q_4 and q_5. For this category, its optimization strategy is shown in Fig. 11(b), the subqueries with ordering variables q_4 and q_5 are executed together firstly. Then, the TA-Based rank join will be used to order the current query results. Finally, for the remaining subqueries, the incremental execution method is adopted, just like single variable ordering top-k query. Among that, if there are other subqueries in the same priority subqueries set that contain order variables. Those subqueries (here is q_3) should be executed between the current priority subqueries set (q_4 and q_5) and the next priority subqueries set (q_6 and q_7).

For the second category, as shown in Fig. 12(a), the subqueries with ordering variables q_2 and q_5 are distributed in subqueries sets with adjacent priorities. It optimization strategy is shown in Fig. 12(b), the subquery q_2 and the subquery q_3 with the same variables as q_5 will be executed firstly. In particular, if q_2 and q_5 have the same variables, the q_3 will be remove from the subqueries set $\{q_2, q_3\}$ to $\{q_4, q_5\}$. Then, after the execution of q_5, the TA-Based rank join method will be used to ordering the current query results. Finally, the remaining subqueries in the two adjacent priority subqueries sets are merged together, and the incremental execution method is adopted until the remaining query plan execution is completed. Among that, if the variable v_3 is contained in q_1 but not q_2 and q_3, the q_6 will be executed after q_4. For the last category, as shown in Fig. 13(a), the subqueries with ordering variables q_2 and q_6 are distributed in subqueries sets with different and nonadjacent priorities. As shown in Fig. 12(b), the subquery q_1 will be selected and executed from the subqueries set $\{q_2, q_3\}$. Because q_2 has the same variables with q_6. Then, after the execution of q_6, the TA-Based rank join method will be used to ordering the current query results. The rest of the execution process is the same as the second category.

8 EXPERIMENTS

In this section, we evaluate our proposed federated top-k queries evaluation method (denoted as FedTopKPro) over.
both synthetic and real RDF benchmarks, WatDiv and LargeRDFBench. In the comparative experiment, we build up four indicators from previous work [1], [2], [39]: \#SST, \#QET, \#NRA and \#TRT. \#SST is the time of source selection, and \#QET represent the time of query execution. The number of remote accesses is denoted as \#NRA, and \#TRT denote the total run time from the beginning to the end of a query evaluation, which contains resource initialization time, source selection time, query execution time and resource release time.

8.1 Setting

LargeRDFBench. LargeRDFBench [31] is a comprehensive benchmark for evaluating and analyzing both the effectiveness and performance of federated RDF systems. It contains 13 datasets, involving Life Sciences, Cross Domain and Large Data. There are more than a billion triple patterns.

WatDiv. WatDiv [3] is a benchmark that enables diversified stress testing of RDF data management systems. In WatDiv, instances of the same type can have the different sets of attributes. We generate three datasets varying sizes from 100 million to 300 million triples and divide the schema graph of the collection into several connected subgraphs with METIS [21].

We conduct all experiments on a cluster of six machines running Linux. Five machines are used as RDF sources, and the other one is used as control site. There is 16 GB memory and 150 GB disk storage for each site, and each machine has one CPU with four-cores of 3.06 GHz. Our top-k query optimization method code implemented by Java is deployed on the control site. To assess the performance of our approach, we design ten top-k queries for LargeRDFBench and WatDiv (\(F_1 - F_{10}\) for LargeRDFBench and \(W_1 - W_{10}\) for WatDiv. Among that, \(F_1, F_3, F_5, F_7, F_9\) and \(W_1, W_3, W_5, W_7, W_9\) are top-k queries with single variable and the others are top-k queries with expression), respectively.

8.2 Evaluation of Proposed Optimization Strategies

In this experiment, we verify the effectiveness of our proposed optimization strategies.

8.2.1 Evaluation of Auxiliary Index Construction

we analyze the time complexity of the auxiliary index construction Algorithm 1, which is a polynomial time. We do some relevant experiments on WatDiv, and the experiments show that with the increase of the dataset size, the construction time cost of the auxiliary index increases linearly. It is worth noting that in time complexity \(M\) represents the number of same multi-source predicate combination. Therefore, only \(C\) and \(J\) increase the time cost of auxiliary index construction when the predicate is fixed and only the triples of datasets increase, as shown in the Fig. 14. Therefore, the auxiliary indexing algorithm is efficient.

8.2.2 Evaluation of Query Decomposition and Source Localization

In this experiment, we evaluate the effect of our proposed query decomposition and source localization using LargeRDFBench. We use FedTopK_NoSS to denote the first baseline method without the optimization of source localization strategy in Section 5. The difference between FedTopKPro and FedTopK_NoSS is the number of suqueries, so the performance comparison between them can be evaluated by \#NRA and \#TRT. As shown in Fig. 15, experimental results show that the number of remote access of FedTopKPro are reduced by 50% on average compared with FedTopK_NoSS, and the total runtime can be reduced by 20% on average.

8.2.3 Evaluation of Cost-Based Query Plan Generation

we also conduct experiments on LargeRDFBench to test the cost-based query plan generation method. We propose a baseline
named FedTopK_NoOQP to represent a baseline method without optimal query plan generation strategy in Section 6. It is the baseline method that does not adopt the cost-based optimal query plan strategy. As shown in Fig. 16, the average #NRA and #TRT of FedTopKPro is less 33% on average than FedTopK_NoOQP. The reason for this result is that the optimal query plan can preferentially execute other subqueries with lower cost before executing subqueries containing sorting variables, avoiding the unnecessary overhead in the circular execution strategy.

8.2.4 Evaluation of Incremental Query Plan Execution

We design a baseline method FedTopK_NoQPEO, which does not include this query execution optimization strategy in Section 7, and also use LargeRDFBench to evaluate our incremental query plan execution method. As shown in Fig. 17, the average #NRA and #QET of FedTopKPro is less 50% on average than FedTopK_NoQPEO. The reason for this result is that the optimal query plan can effectively execute other subqueries with lower cost before executing subqueries containing sorting variables, improving the query efficiency of subqueries.

8.3 Comparison With Existing Methods

Previous researchers have implemented several federated RDF systems, such as FedX, HiBISCuS, SPLENDID. By comparing our proposed method with three previous methods, we can verify the efficiency of our proposed method.

Fig. 18 shows that the comparison results among FedX, HiBISCuS, SPLENDID and FedTopKPro on four indicators over LargeRDFBench. In Fig. 18(a), SPLENDID has the highest average #SST because it does not optimize the source selection. Both FedX and HiBISCuS regard source selection as one of their main optimization objective, so the results of these two methods on this indicator are excellent and slightly better than our method. Our method outperforms the previous three methods on the other three performance indicators in Fig. 18(b), Fig. 18(c) and Fig. 18(d). The #QET of our method is 10 times faster than FedX and 18 times faster than SPLENDID on average. Because we build a cost model and propose an algorithm to generate the optimal query plan based on this model. Similarly, HiBISCuS proposed a hypergraph-based source selection approach, which reduced the number of RDF sources in the query process, thus reducing its query time. It can be found that the trend of performance comparison results of #NRA is roughly the same as that of #QET. Therefore, we think that the number of remote access is proportional to the query execution time. At the beginning of FedTopKPro, we put forward an optimization idea focusing on shortening communication overhead of remote access, and this result can verify the correctness of our idea. Finally, the #TRT of our method is 10 times faster than FedX, 18 times faster than HiBISCuS and 22 times faster than SPLENDID on average. It is worth noting that the total query time of HiBISCuS is
obviously abnormal. Its source selection time, remote access times and query execution time are short, but the total query time is long. The reason for this result is that the resource initialization and resource release of this method occupy a large overhead.

8.4 Evaluation of Scalability

In order to further explore the superiority of our method, we compare the robustness of our approach with previous methods on synthetic datasets, WatDiv, with different scales. We generate three datasets varying sizes from 100 million to 300 million triples, and Fig. 19 shows the result. We can find that with the larger of datasets’ scales, the total runtime of four method all increases. However, the query cost of our method is always better than other methods, and the rate of increasing for our method is the smallest. Therefore, we think our method has strong robustness.

8.5 Evaluation of K

In order to evaluate the query efficiency of optimization schemes under different values of k, we have conducted experiments on WatDiv. A total of 10 top-k queries are set up in the experiment, among which 5 queries are single variable top-k query with k values from 10 to 80. The other five queries are expression top-k queries, and the values of k also vary from 10 to 80. The 10 top-k queries are executed 10 times respectively, and the performances of different k values obtained by averaging them are shown in the Fig. 20. The experimental results show that with the increase of k, the query time can increases linearly.

9 Conclusion

In this paper, we have studied the optimization both for single variable ordering and expression ordering top-k queries over federated RDF systems. The proposed scheme mainly involves query decomposition and source localization, the construction of cost model, the cost-based optimal query plan generation and the incremental query plan execution. In order to evaluate the reliability of the proposed scheme, we have done a lot of experiments. Firstly, through the horizontally comparison experiment between the three bases, the effectiveness of the various optimization strategies have been verified. Secondly, compared with the previous three typical query methods in the real datasets, the efficiency of our proposed optimal method have been verified. Finally, the robustness and scalability of proposed scheme have been verified by comparing with the previous three methods on synthetic datasets with different scales.

Fig. 19. Scalability comparison on different sizes of datasets.

Fig. 20. Efficiency on different values of k.

References

Peng Peng (Member, IEEE) received the BS degree in computer science from Beijing Normal University in 2009, and the PhD degree in computer science from Peking University in 2016. He is currently an associate professor with Hunan University. His research interests include graph database and distributed RDF system.

Mingdao Li received the BS degree in 2017 from Hunan University, where he is currently working toward the PhD degree in computer science and technology, advised by Dr. Peng Peng and Dr. Zheng Qin. His research interests include graph database and community search over large graphs.

Lei Zou (Member, IEEE) received the BS and PhD degrees in computer science from the Huazhong University of Science and Technology in 2003 and 2009, respectively. He is currently a professor with Peking University. His research interests include graph database and semantic data management.

Keqin Li (Fellow, IEEE) is currently a SUNY distinguished professor of computer science with the State University of New York. He is also a national distinguished professor with Hunan University, China. He has authored or coauthored more than 830 journal articles, book chapters, and refereed conference papers. His current research interests include cloud computing, fog computing and mobile edge computing, energy-efficient computing and communication, embedded systems and cyber-physical systems, heterogeneous computing systems, Big Data computing, high-performance computing, CPU-GPU hybrid and cooperative computing, computer architectures and systems, computer networking, machine learning, intelligent and soft computing. He holds more than 60 patents announced or authorized by the Chinese National Intellectual Property Administration. He is among the world’s top five most influential scientists in parallel and distributed computing based on a composite indicator of Scopus citation database. He has chaired many international conferences. He is currently an associate editor for the ACM Computing Surveys and CCF Transactions on High Performance Computing. He was served on the editorial boards of IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on Computers, IEEE Transactions on Cloud Computing, IEEE Transactions on Services Computing, and IEEE Transactions on Sustainable Computing. He was the recipient of several best paper awards.

Ningchao Ge received the BS degree in 2016 from Hunan University, where he is currently working toward the PhD degree in computer science and technology, advised by Dr. Zheng Qin and Dr. Peng Peng. His research interests include federated RDF systems and knowledge graphs.

Zheng Qin received the PhD degree in computer software and theory from Chongqing University, China, in 2001. He has rich experience in products development and application services, such as financial, medical, military, and education sectors. He is currently a professor of computer science and technology and has rich experience in products development and application services, such as financial, medical, military, and education sectors. He is currently a professor of computer science and technology, advised by Dr. Zheng Qin and Dr. Peng Peng. His research interests include graph database and distributed RDF systems.