
A Cost-Driven Top-K Queries Optimization
Approach on Federated RDF Systems

Ningchao Ge , Zheng Qin , Peng Peng ,Member, IEEE, Mingdao Li ,

Lei Zou ,Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—RDF (Resource Description Framework) is a model widely used to construct knowledge bases, while SPARQL (SPARQL

Protocol and RDF Query Language) is the standardized structured query language to manipulate RDF data. Recently, many data

providers have published their RDF datasets in their own autonomous sites and provided SPARQL query interfaces, called RDF

sources. In order to integrate multiple RDF sources, researchers put forward the federated RDF system to support the federated

SPARQL queries. However, existing studies can only support efficient basic queries but not top-k queries. Toward this end, we propose

a cost-driven top-k queries optimization approach in federated RDF systems, which can support both top-k queries for single variable

ordering and expression ordering. Firstly, we propose an optimized query decomposition method to decompose the federated query

into multiple subqueries. Secondly, while considering the top-k operator, we propose a cost model to evaluate the query cost and join

cost of subqueries. The optimal query plan can be obtained by the costed-based query plan generation algorithm. Finally, combined

with the characteristics of top-k queries, an incremental query plan execution strategy is developed to minimize the total query cost.

Experimental results show that the proposed method is effective, efficient and scalable.

Index Terms—Federated RDF systems, query optimization, SPARQL, top-k

Ç

1 INTRODUCTION

AS the standard organization model for Web of Linked
Data, RDF (Resource Description Framework) [9] has

been widely used in various fields. RDF represents data as
a triple in the form of < subject, predicate, object> or
< subject, attribute, value> . To manipulate RDF data, the
standardized structured query language, SPARQL (SPARQL
Protocol and RDF Query Language) [29], is released by W3C
(WorldWideWebConsortium). In recent years, an increasing
number of data providers have published their datasets using
the RDF model. These datasets are often maintained at their
own sites, which provide the SPARQL interfaces to support
users to submit SPARQL queries. An autonomous site with a
SPARQL interface is called anRDF source in this paper.

The federated RDF systems [8], [23], [33] are put forward
to integrate multiple RDF sources. Up to now, many feder-
ated RDF systems [4], [19], [24] have been developed and
implemented the federated queries. In a federated RDF sys-
tem, different RDF sources cannot communicate with each
other directly. Thus, it is desired to develop a control site to
manipulate these RDF autonomous sources. The famous

federal RDF systems include the biological information
federal RDF systems with 57 RDF sources issued by the
European Molecular Biology Laboratory.1

Since SPARQL is the query language designed for central-
ized RDF system, it cannot be directly executed on federated
RDF system. In a general method, for a federated SPARQL
query submitted by user, it is first decomposed into multiple
subqueries, which can be executed on the corresponding RDF
sources separately. Then, the results of subqueries are joined
together to obtain the final result. Now, many works have
been put forward to optimize the SPARQL processing in fed-
erated RDF systems, but most of themmainly focus on imple-
menting and optimizing the basic queries [13], [24], [32], [34]
in federated SPARQL systems. Few of them discuss how to
evaluate the top-k queries, which are queries returning k
answers with the highest rank order by utilizing a ranking
function. There are two common types of ranking functions,
namely, single variable and expression. For SPARQL, top-k
queries can be expressed by including the ORDER BY and
LIMIT clauses, as shown in Fig. 1 and Fig. 2.

Example 1.1. A top-k query example with single variable
ordering is shown in Fig. 1.

Example 1.2. A top-k query example with expression
ordering is shown in Fig. 2.

Compared with the basic query, top-k query can quickly
provide users with the most concerned information. Espe-
cially, in the federated RDF system with a large amount of
data, efficient top-k query is more important. There exist
a few previous work [13], [32] can support top-k feder-
ated SPARQL query, but they only support single variable

� Ningchao Ge, Zheng Qin, Peng Peng, and Mingdao Li are with the Col-
lege of Computer Science and Electronic Engineering, Hunan University,
Changsha 410082, China.
E-mail: {ningchaoge, zqin, hnu16pp, limingdao}@hnu.edu.cn.

� Lei Zou is with the Peking University, Beijing 100080, China.
E-mail: zoulei@pku.edu.cn.

� Keqin Li is with the Department of Computer Science, State University of
New York USA , NY 12561. E-mail: lik@newpaltz.edu.

Manuscript received 24 Dec. 2021; revised 22 Feb. 2022; accepted 1 Mar. 2022.
Date of publication 3 Mar. 2022; date of current version 14 Mar. 2023.
(Corresponding author: Zheng Qin.)
Recommended for acceptance by Y. Tong.
Digital Object Identifier no. 10.1109/TBDATA.2022.3156090 1. https://www.ebi.ac.uk/rdf/services/sparql

IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 2, MARCH/APRIL 2023 665

https://orcid.org/0000-0003-3770-1217
https://orcid.org/0000-0003-3770-1217
https://orcid.org/0000-0003-3770-1217
https://orcid.org/0000-0003-3770-1217
https://orcid.org/0000-0003-3770-1217
https://orcid.org/0000-0003-0877-3887
https://orcid.org/0000-0003-0877-3887
https://orcid.org/0000-0003-0877-3887
https://orcid.org/0000-0003-0877-3887
https://orcid.org/0000-0003-0877-3887
https://orcid.org/0000-0002-8095-8061
https://orcid.org/0000-0002-8095-8061
https://orcid.org/0000-0002-8095-8061
https://orcid.org/0000-0002-8095-8061
https://orcid.org/0000-0002-8095-8061
https://orcid.org/0000-0002-2282-5463
https://orcid.org/0000-0002-2282-5463
https://orcid.org/0000-0002-2282-5463
https://orcid.org/0000-0002-2282-5463
https://orcid.org/0000-0002-2282-5463
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:ningchaoge@hnu.edu.cn
mailto:zqin@hnu.edu.cn
mailto:hnu16pp@hnu.edu.cn
mailto:limingdao@hnu.edu.cn
mailto:zoulei@pku.edu.cn
mailto:lik@newpaltz.edu


ordering queries in a materialize-then-sort processing
scheme, which computes all the matching solutions (e.g.
thousands) even if only a limited number k (e.g. ten) are
requested. It leads to the huge query cost and network com-
munication overhead, especially for large federated RDF
systems.

To support efficient top-k SPARQL queries for the single
variable ordering on federated RDF systems, an effective
top-k query optimization scheme is developed in the confer-
ence version of this paper [12]. This paper extends our pre-
vious work, and adopts a new optimization method to
support both single variable ordering and expression order-
ing top-k SPARQL queries.

In summary, the proposed scheme has following mainly
contributions:

� We propose a query decomposition and source selec-
tion optimization strategy, which allow to merge
some triple patterns with the same multiple sources
into one subquery. It can improve query efficiency
by reducing the number of remote requests.

� We construct a cost model and design a cost-
driven optimal query plan generation algorithm
with dynamic programming, which can optimize
the join order by controlling the execution order
and execution strategy (serial and parallel) of top-
k queries.

� We propose an incremental query plan execution
strategy to support efficient evaluation of top-k
queries. The strategy can effectively improve the
query efficiency by avoiding many unnecessary
results.

� We implement a federated RDF system, named
FedTopKPro, which can support both top-k queries
for single variable ordering and expression ordering.
The experimental results on FedTopKPro show that
our method is much better than previous works with
effectiveness and total run time.

2 RELATED WORK

Top-k Query Optimization. Top-k query optimization is a
practical research, which has been well studied in relational
databases. For SPARQL, it is expressed by ORDER BY and
LIMIT clauses. The existing research studies [6], [22], [26], [35]
mainly focus on top-k query optimization over centralized
RDF system. Bozzon et al. [6], [22] improved the efficiency of

top-k query on RDF graph by extending the SPARQL algebra
and SPARQL-RANK. Wang et al. [35] utilized the graph-
exploration to further improve the query efficiency instead of
the join method. The works of Wang et al. [37] and Yang et al.
[38] are aimed at specific query types (such as star query). Ihm
et al. [18] improved the query efficiency of top-k by building
partition index. Jiang et al. [20] quickly obtained query results
by adopting heuristic pruning and incremental algorithm.

SPARQL Query Evaluation in Federated RDF Systems.
According to the standard of W3C, SPARQL is only valid for
centralized RDF system. It can be running over federated
RDF system with some extra design. At present, there are
many federation RDF system [28], [30], [36] which can sup-
port SPARQL basic queries. Harth et al. [14] and Prasser et al.
[28] converted a SPARQL query into a minimum bounding
boxes connection by using an index similar to the R-Tree [7],
named QTree, and then the RDF sources of each triple in the
SPARQL query can be obtained. DARQ [30] obtained the rel-
evant RDF sources according to an index called service
description, which describes which triple patterns can be
answered. Different from DARQ [30], HiBISCuS [32] con-
structed the query graph into a directed labeled hypergraph
in the stage of determining RDF sources, which further
reduces the number of candidate RDF sources for each sub-
query. SPLENDID [13] built an inverted index based on the
VOID (vocabulary of interlinked datasets) of each RDF
source. FMQO [25] further discussed how to optimize multi-
ple queries evaluation by rewriting the set of input queries
into a smaller set of rewritten queries. FedX [34] transfered all
triples in the query statement to all RDF sources, and deter-
mine the relevant RDF sources through ASK in SPARQL
syntax.

These above methods were only efficient for basic
queries, but not for top-k queries. The conference version of
this paper, FedTopK [12], implemented a federated RDF
system to support efficient top-k SPARQL queries for the
single variable ordering, but it does not consider expression
ordering top-k SPARQL queries. In this paper, the optimiza-
tion and expansion are made to further improve the effi-
ciency of top-k query with single variable ordering based
on FedTopK. In addition, the incremental query scheme
proposed in this paper can also effectively support top-k
query with expression ordering.

3 BACKGROUND

In Section 1, we introduce the information of federated RDF
systems. The Web resources are expressed by unique identi-
fication IDs in RDF, which are called Internationalized
Resource Identifiers (IRIs). SPARQL is a standardized query

Fig. 1. A top-k query example with single variable ordering: find the top
three neighboring cities and its attributes with the largest population for
writers.

Fig. 2. A top-k query example with expression ordering: find the top three
places and the count of its news with the largest sum of land area and
sea area.

666 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 2, MARCH/APRIL 2023



language used to query RDF datasets. In the context of fed-
erated RDF system, we extend the idea of authoritative
source in [17]. In order to facilitate readers’ understanding
of the follow-up content, this section will give definitions of
related terms and research issues in this paper. The defini-
tions of related terms are similar as found in [5], [15], [16],
[24], [27].

Definition 3.1. (RDF Graph). An RDF dateset is a set of tri-
ples. Triple patterns are the description of subjects, predicates
and objects, can be expressed as: TP ¼ ðI [ N Þ � I � ðI [
N [ LÞ. Among that, I is the set of IRIs, N is the set of blank
elements and L the set of literals. An RDF graph is a graphical
description of triple patterns. In RDF graph, the vertexes are
transformed from subjects and objects of TP and predicates are
the label of edges.

Definition 3.2. (Federated RDF System) A federated RDF
system can be expressed as F ¼ ðS; g; dÞ, where (1) S is a set
of source sites that can be obtained by looking up IRIs in an
implementation of F ; (2) g : S ! 2TP is a mapping that associ-
ates each source with a subgraph of RDF graph TP; and (3) d :
I ! S is a partial, surjective mapping that models the fact that
looking up IRI of resource u matches in the retrieval of the
source represented by dðV Þ 2 S. dðV Þ is called the host source
of V , and is unique for a given URL of vertex V .

Example 3.1. Fig. 3 shows a federated RDF system as a
graph distributed among four different sources. Given a
resource with the IRI “dp:Ireland,” where “dp” is abbrevia-
tion of “DBpedia”. d(“dp:Ireland”) =DBpedia, this means
that “dp:Ireland” is dereferenced by the host DBpedia.

Definition 3.3. (Basic Graph Pattern) SPARQL is a struc-
tured query language to manage RDF dataset, and the basic
graph pattern (BGP) is its basic query block. We use V to
express the variables set of a SPARQL query, and those varia-
bles all bind to RDF triple patterns from I [ N [ L. triple
patterns are consisted with some triples ts 2 ðI [ N Þ � ðI [

N Þ � ðI [ N [ LÞ. For convenience of explanation, we neglect
the blank element of each triple pattern. Let TP be the set of all
triple patterns. Then, a basic graph pattern (BGP) is a set Q �
TP, and the set of queries isQ � 2TP .

In this paper, we support top-k queries in SPARQL with
an ORDER BY clause that can be formulated as a ranking
criterion on a variable.

Definition 3.4. (Top-k SPARQL Query). A top-k SPARQL
query can be expressed as: TSQ ¼< Q; f; k > , where Q is a
BGP pattern, f is the ranking function, including single vari-
able ordering and express ordering. And k is the maximum
number of results.

Fig. 1 shows the single variable ordering example top-k
SPARQL query, where f is the single variable ?population
and k is 3. Fig. 2 shows the express ordering example top-k
SPARQL query, where ð?areaLandþ ?areaWaterÞ is the
express f and k is 3. A match of BGP Q may involve differ-
ent RDF sources over a federated RDF system. Specifically,
a match distributed over a set of sources S0 � S is a function
m from variables in Q to RDF terms in

S
t2S0gðtÞ.

Definition 3.5. (Match of Top-k SPARQL Query over Fed-
erated RDF System) Firstly, we need to denote two functions.
The first function is m : V ! I [ N [ L. It is a mapping m

from V to I [ N [ L. For a triple pattern t of a SPARQL
query, we denote by mðtÞ the triple obtained by replacing the
variables in t according to m. Secondly, for a federated RDF
system F ¼ ðS; g; dÞ and a BGP Q. Given S0 � S, a mapping
m is said to be a match of Q if and only if mðtpÞ 2

S
t2S0gðtÞ

for each triple pattern e in Q. Finally, the match result of a top-
k SPARQL query TSQ ¼< Q; f; k > is a no-more-than-k-
sized list of matches of Q, with the highest rank order by the
ranking function f .

The problem to be studied in this paper is defined as
follows:

Fig. 3. Example RDF graph over federated RDF systems.

GE ETAL.: COST-DRIVEN TOP-K QUERIES OPTIMIZATION APPROACH ON FEDERATED RDF SYSTEMS 667



Given a federated RDF system F ¼ ðS; g; dÞ and a top-k
SPARQL query TSQ ¼< Q; f; k > , the problem to be researched
is to obtain the query result of TSQ.

4 FRAMEWORK

As shown in Fig. 4, the framework of top-k query processing
mainly consists of three parts: query decomposition and source
localization, cost-driven query plan generation and incremental
query plan execution. For a top-k SPARQL query submitted by
a user, we propose an auxiliary index to decompose the
query into subqueries according to its RDF sources (see Sec-
tion 5). Then, the optimal query plan can be obtained by a
cost-driven query plan generation algorithm with dynamic
programming (see Section 6). Finally, according to the query
plan, these decomposed subqueries are sequentially sent to
their corresponding RDF sources for execution in serial or
parallel. Among that, combined with the characteristics of
top-k query, an incremental query plan execution optimiza-
tions strategy is carried out. It can further reduce the cost of
subqueries execution to ensure that the overall cost and net-
work communication areminimized (see Section 7).

5 QUERY DECOMPOSITION AND SOURCE

LOCALIZATION

SPARQL is the query language designed for centralized
RDF system, and cannot be directly executed on federated
RDF system. In order to evaluate a SPARQL query over fed-
erated RDF systems, it needs to be decomposed into a series
of subqueries, which can be executed on single RDF source.
Basically, each triple pattern in the BGP of a SPARQL query
maps to a set of RDF sources based on the constant values

of subject, predicate and object. If a triple pattern is varia-
bles-only, it maps to all RDF sources in the federated RDF
system. For the top-k SPARQL query Example 1.1, the map-
ping between triple patterns and its relevant RDF sources is
shown in Fig. 5.

The basic query decomposition and source localization
methods combine the triple patterns with the same single
RDF source into one subquery. For the example query in
Fig. 1, it should be decomposed into seven subqueries, as
shown in Fig. 6. The subquery q1 is composed of the triple pat-
terns < ?role swc : heldBy ?writer > and < ?writer foaf :
based near ?geonameplace > , because they have the same
single RDF source fSwdfoodg. Note that, because the rel-
evant RDF sources of < ?place g : long ?longitude > and
< ?place g : lat ?latitude > are not single, they cannot
be merged into one subquery even if their RDF sources
are the same.

However, triple patterns < ?place g : long ?longitude >
and < ?place g : lat ?latitude > can be merged into one
subquery in reality, because they always appear in pairs
over each RDF source. The number of subqueries affects the
number of remote accesses, which will take up a lot of time
overhead in distributed environment. Thus, we propose an
index-based optimized query decomposition and source
localiztion optimization strategy to reduce the number of
subqueries, which allow to merge some triple patterns with
the same multi-sources into one subquery.

There are two stages during our optimized query decom-
position and source localization for a top-k SPARQL query.
In the first stage, all the predicates of each RDF source are
maintained as the meta data. Then an auxiliary index can be
built by utilizing meta data. The auxiliary index can be used
to determine whether triple patterns with the same multi-
sources can be merged into one subquery. In the second
stage, for each triple pattern of a top-k SPARQL query: if its
predicate is a constant, its RDF sources can be located by
meta data. Otherwise, all the RDF sources of federated RDF
system are its RDF sources. Furthermore, if the subject or
object of the triple pattern is a constant, we can use ASK
query of SPARQL to prune irrelevant RDF sources. For tri-
ple patterns with the same multi-sources, it needs to judge
whether they can be merged into one subquery by auxiliary
index. For other triple patterns, it adopts the basic query
decomposition method.

As the core of the optimization method, the first stage can
also be called the auxiliary index building stage. We need to
get meta data at the control site as key-value pairs <
P; S > first, where S is the RDF sources set of a constant
predicate P . The time complexity of generating the meta
data is OðjEjÞ, which E represent the set of edges in the

Fig. 4. The scheme of top-k query processing in federated RDF systems.

Fig. 5. Relevant RDF sources for each triple pattern in top-k query
Example 1.1.

Fig. 6. Basic query decomposition and source localization result for
Example 1.1.

668 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 2, MARCH/APRIL 2023



federated RDF system. Then, the auxiliary index is built by
utilizing the meta data, as shown in Algorithm 1.

Algorithm 1. Auxiliary Index Generation

Input: The meta dataMap ¼ f< P; S > g
Output: Auxiliary indexMul merge

1 for i ¼ 1 to jMapj do
2 if jSij ¼¼ 1 then
3 Map:removeðPi; SiÞ;
4 Initialize an empty query result mapMap R;
5 for i ¼ 1 to jMapj � 1 do
6 getResultðPi;Map RÞ;
7 for j ¼ iþ 1 to jMapj do
8 if Si ¼¼ Sj then
9 getResultðPj;Map RÞ;
10 Rtmp ¼ queryðPi � PjÞ;
11 if Ri ffl Rj ¼¼ Rtmp then
12 Mul merge:putðPi � Pj; trueÞ;
13 else
14 Mul merge:putðPi � Pj; falseÞ;
15 Returnmul merge

The key-value pairs with single RDF source are removed
from meta data (Lines 1-3 in Algorithm 1). Generally, the
order of magnitude of remaining key-value pairs with
multi-sources is in the hundred, and the number of predi-
cates pairs < Pi; Pj > with same multi-sources is not
much, donated as M. For a predicate pair < Pi; Pj > with
the same multi-sources, we obtain the query results of Pi, Pj

and Pi � Pj respectively (Lines 4-10 in Algorithm 1). Finally,
the auxiliary index is obtained by comparing the join results
of Pi and Pj with query result of Pi � Pj (Lines 11-14 in Algo-
rithm 1). Among them, we utilize the strategy of space for
time to reduce the time cost caused by multiple queries on
the same predicate, as shown in Algorithm 2. Let C and J
express the execution times of function queryðÞ and joining
operation respectively, the time complexity of Algorithm 1
is OðM � ð2C þ JÞÞ.

Algorithm 2. Function getResultðP;Map RÞ
1 ifMap R:getKeySetðÞ:containðP Þ then
2 R ¼ Map R:getðP Þ;
3 else
4 R ¼ queryðP Þ;
5 Map R:putðP;RÞ;
6 Return R

Generally, the federated RDF system consists of pub-
lished RDF datasets. A version of RDF dataset will not
change unless the version is updated. When a new version
of an RDF dataset is released, rigorous organizations usu-
ally publish data update logs. In this case, we can update
the auxiliary index incrementally by analyzing the data
update log. In the worst case, if the index needs to be recon-
structed when the update log cannot be obtained. Because
the index construction is completed in the offline stage
before the system is used. this is acceptable in the process of
federated RDF system upgrade.

For the top-k SPARQL query Example 1.1, five subqu-
eries can be obtained by utilizing the proposed method, as
shown in Fig. 7. We useQ to express the set of subqueries.

6 COST-DRIVEN QUERY PLAN GENERATION

There are huge differences of query overhead between dif-
ferent subqueries execution orders. A subqueries execution
order is called a query plan. In order to evaluate the query
cost of a query plan, we designed a cost model. The query
cost and join cost of each subquery can be evaluated by this
model.

6.1 Cost Model Design

According to the definition of distributed database system
books [11], the total execution time for a database query can
be expressed as follows:

Total time ¼ TCPU �#instsþ TI=O �#I=Os

þ TMSG �#msgsþ TTR �#bytes (1Þ

The first two terms of the Equation (1) express the query
execution times of server. They depend on the performance
of the server. The data transmission time is determined by
the two last terms. In the distributed database system, the
data communication often occupies a large amount of over-
head and it is the goal that needs to be optimized. In order
to evaluate and optimize that communication overhead,
this paper designs a cost model.

For a federated RDF systemwithm RDF sources, the set of
RDF sources can be represented as S ¼ fs1; s2; s3; . . .; smg.
For each RDF source si ofS, the set of its predicates is denoted
asPi ¼ fPi1; Pi2; Pi3; . . .Ping, wheren is the number of distinct
predicates. In RDF source si, the number of triple patterns
containing the predicatePij can be expressed as follows:

SumðPijÞ ¼ cardðsP¼PijðsiÞÞ (2)

where s represents the selection operation of database, and
cardðÞ is a counting function. Among that, the number of
distinct subjects and objects of triple patterns containing the
predicate Pij is denoted as follows:

SubjectðPijÞ ¼ cardðdom½pSðsP¼PijðsiÞÞ	Þ (3)

ObjectðPijÞ ¼ cardðdom½pOðsP¼PijðsiÞÞ	Þ (4)

where p represents the projection operation of database,
and domðÞ is a deduplication function. On this basic, we
define the front join factor and rear join factor for the predi-
cate Pij, donated as bSðPijÞ and bOðPijÞ. They can be calcu-
lated as follows:

bSðPijÞ ¼
SumðPijÞ

SubjectðPijÞ
(5)

Fig. 7. Optimized query decomposition and source localization result for
Example 1.1.

GE ETAL.: COST-DRIVEN TOP-K QUERIES OPTIMIZATION APPROACH ON FEDERATED RDF SYSTEMS 669



bOðPijÞ ¼
SumðPijÞ
ObjectðPijÞ

(6)

The above five parameters will be calculated statistically
in the offline stage to form the meta data of the cost model.
They need to calculate only once until the RDF data is
updated. For a subquery with two triple patterns, their pred-
icates are P1 and P2 respectively, if they have no common
vertex, then the query cost of the subquery is as follows:

costðqÞ ¼ SumðP1Þ � SumðP2Þ (7)

Otherwise, there are three types of connection: subject�
subject, subject� object and object� object between the two
triple patterns. Here we assume that the connection type is
subject� subject, the query cost of the subquery can be cal-
culated as follows:

costðqÞ ¼ bSðP1Þ � bSðP2Þ �Min
SumðP1Þ
bSðP1Þ

;
SumðP2Þ
bSðP2Þ

� �
(8)

For other connection types, it is only necessary to change
bSðP Þ in the Equation (8) into bOðP Þ. All the query costs of
subquery collection Q will be calculated by Equation (7)
and (8).

For two subqueries q1 and q2, the query cost of them are
costðq1Þ and costðq2Þ respectively. If there is no common col-
umn between the query result of them, the join cost of their
query result is as follows:

costðq1 ffl q2Þ ¼ costðq1Þ � costðq2Þ (9)

Otherwise, their execution order determines the join cost of
their query result. Because SPARQL has a common charac-
teristic, which allows adding VALUES clause after the cur-
rent query to narrow the matching range of subgraph. The
content of VALUES clause is the results of the previous
query. We assume that the q1 is executed first, and the com-
mon column between the query result of them is the subject
of a triple pattern P in q2. The join cost of their query result
is as follows:

costðq1 ffl q2Þ ¼ costðq1Þ � bSðP Þ (10)

If the common column between the query result of them is
the object of the triple pattern P , it needs to change bSðP Þ in
the Equation (10) into bOðP Þ. Similarly, if the q2 is executed
first, and the common column between the query result of
them is the subject of a triple pattern P in q1. The join cost of
their query result is as follows:

costðq2 ffl q1Þ ¼ costðq2Þ � bSðP Þ (11)

6.2 Optimal Query Plan Generation

A query plan represents an execution order and execution
mode (serial or parallel) of subqueriesQ. There are huge dif-
ferences in query efficiency between different query plans.
Given a subquery set Q, how to find the optimal query plan
which can minimize the query cost. This problem has been
solved well in relational database [11], and it is a typical
dynamic programming problem.

Therefore, based on the cost model in Subsection 6.1, we
design an optimal query plan generation algorithm with
dynamic programming as shown in Algorithm 3. If the cost
of optimal query plan with i subqueries is expressed by
C½dp½i		, and its recurrence is as follows:

C½dp½i		 ¼ MinfC½dp½i� 2	 ffl ðql ffl qiÞ	;
C½ðqi ffl qrÞ ffl dp½i� 2		g (12Þ

Algorithm 3.Cost-Driven Optimal Query Plan Generation
Algorithm

Input: A set of subqueries Q
Output: A query plan QP , which owning the min total cost
1 Initialize an empty hash map dp;
2 Initialize an empty set QP and TCðtotal costÞ =
Double.MAX_VALUES;
3 for i ¼ 1 to jQj do
4 Q0 ¼ Q � fqig, S ¼ fqig;
5 whileQ0 6¼ ? do
6 Qj = Select(Q0, S);//See Algorithm 4
7 while Qj exists do
8 S ¼ S

S
fQjg,Q0 ¼ Q� fQjg;

9 if !dp:keysetðÞ:containsðSÞ then
10 SC = cost(S), dp:putðS; SC);
11 if SC > TC then
12 Go to the next repetition of the foor-loop;
13 Qj = Select(Q0, S);
14 if dp:getðSÞ < TC then
15 TC ¼ SC; QP ¼ S;
16 Return QP

where ql and qr are subqueries in dp½i� 1	, which can be
left joint and right joint with qi, respectively. Among that,
C½dp½1		 ¼ costðq1Þ, C½dp½2		 ¼ minfcostðq1 ffl q2Þ; costðq2 ffl
q1Þg. The time complexity of Algorithm 3 is Oðn3Þ, where n
is the size of the subqueries setQ.

Algorithm 4. Function SelectðQ; SÞ
1 Initialize an empty set R;
2 // Get result columns collection of subqueries S.
3 Column S ¼ getColumnsðSÞ;
4 for i ¼ 1 to jQj do
5 // Get result columns collection of subquery qi.
6 Column qi ¼ getColumnðqiÞ;
7 if Column qi:retainAllðColumn SÞ:sizeðÞ > 0 then
8 R:addðqiÞ;
9 Return R

Example 6.1. As shown in Fig. 7, the set of subqueries for
the input query, Q, contain five elements from q1 to q5.
The optimal query plan corresponds to S when i ¼ 2 in
line 3 of Algorithm 3. Firstly, Q0 ¼ Q� fq2g, S ¼ fq2g in
line 4. Then, the subquery fq1; q5g is selected as Qj in line
6, because the result columns of them can intersect with
result columns of S, as shown in Algorithm 4. The cost
SC for S ¼ ffq2g; fq1; q5gg can be calculated by the Equa-
tion (10) and (11), and put < S; SC > to the hash map
dp in line 10. If the cost of the current partial query plan
SC is bigger than the cost of an overall query plan gener-
ated before, it means that the current query plan is not

670 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 2, MARCH/APRIL 2023



optimal, and the loop should be out in line 12. Otherwise,
continue the above operations until Q0 ¼ ? in line 5.
Finally, the optimal query plan of the top-k query Exam-
ple 1.1 can be obtained as: QP ¼ ffq2g; fq1; q5g; fq3; q4gg.
It represents the execution order and execution model as
shown in Fig. 8.

7 INCREMENTAL QUERY PLAN EXECUTION

The query plan generated by Algorithm 3 can minimize the
query cost when querying all the results that satisfy the tri-
ple patterns condition. However, as we all know, for top-k
queries, an efficient query approach does not need to get all
the intermediate results that meet the triple patterns condi-
tion. Therefore, we put forward to an incremental query
plan execution optimization strategy to further improve the
query efficiency of a top-k query.

7.1 Execution for Single Variable Ordering
Top-K Query

For the query plan QP of single variable ordering example
top-3 query in Example 1.1, we assume that its query exe-
cution plan can be shown in Fig. 9. Before the final result is
selected, all the results of each subquery need to be que-
ried, even if only top three results need to be returned to
users.

In order to reduce the unnecessary intermediate results,
we adopt an incremental query plan execution method, and
the query plan execution process of this method is shown in
Fig. 10. Its idea is to execute the subquery with ordering var-
iable first under the same priority. The rank join will be
done for the current results, and then some pieces of data
are incrementally selected from the ordered results as the
VALUES clause of the subsequent subqueries. During the
incremental selection process, we assume that the data is
evenly distributed.

Algorithm 5 gives the detail incremental execution algo-
rithm of query plan. In the first stage, the query executor
executes one round for all subqueries according to the
query plan (lines 3 to 11). For the query plan QP in Exam-
ple 6.1, the subquery q2 is executed first. Then, subqueries
q1 and q5 is executed with a values clause that generated
from the result of q2 in parallel, and so on. Among them,
the subquery with ordering variable will be executed first
under the same priority. Then, the current query results
are sorted immediately (lines 6 to 10). For QP , the sub-
query with ordering variable, q3, is executed before q4. Let
SUM represent the number of query results after q3 is
executed (line 8), and let COUNT represent the number
of results after the first stage query (line 12). While
COUNT < k and M < SUM , it means that selecting M
pieces of the sorting results is not enough to generate the
final top-k results. Then, the query executor enter the sec-
ond stage for the loop query (lines 13 to 25) until the query
end condition is met.

7.2 Execution for Expression Ordering Top-K Query

The expressions are usually the addition and subtraction of
several variables in expression ordering top-k queries. To
deal with the problem of ordering the calculation results
after addition and subtraction, there is a classical threshold
accepting algorithm [10]. On this basic, we propose a TA-
based rank join method to deal the intermediate results that
generating by subqueries with variables in expression. For
an expression ordering top-k query, the expression usually
contains two or more variables. According to the distribu-
tion of variables, the basic execution process of query plan
can be divided into three categories: (1) The ordering varia-
bles are distributed in subqueries set with the same priority.
(2) The ordering variables are distributed in subqueries sets
with adjacent priorities. (3) The ordering variables are dis-
tributed in subqueries sets with nonadjacent priorities.

Algorithm 5. Incremental Execution Algorithm of Query
Plan

Input: A query plan QP
Output: The results R of the query plan QP

1 Initialize an empty result set R;
2 Initialize INDEX ¼ 0; COUNT ¼ 0;M ¼ 0; N ¼ 0; SUM ¼ 0;
3 for i ¼ 0to jQP j do
4 for j ¼ 0to jQPij do
5 Execute subquery QPij in parallel, update set R;
6 if QPij contains the ordering variable then
7 Backup current query status as T ;
8 SUM ¼ jRj; INDEX ¼ i; M ¼ K; N ¼ 1;
9 Remove QPij from QPi;
10 Sort and select the firstM results as the current result;
11 Set the values clause of the next subquery;
12 COUNT ¼ jRj;
13while COUNT < K and N � M < SUM do
14 Restore query status T ;
15 if COUNT > 0 then
16 N ¼ K=COUNT ;
17 else
18 N ¼ 2�N ;
19 M ¼ M �N ;
20 Select the firstM results as the current result;
21 for i = INDEX to jQP j do
22 for j ¼ 0 to jQPij do
23 Execute subquery QPij in parallel, update set R;
24 Set the values clause of the next subquery;
25 COUNT ¼ jRj;
26 Return R

Fig. 8. The view of query planQP .

Fig. 9. The basic execution process of query plan QP .

GE ETAL.: COST-DRIVEN TOP-K QUERIES OPTIMIZATION APPROACH ON FEDERATED RDF SYSTEMS 671



As shown in Fig. 11(a), the subqueries q3, q4 and q5 are at
the same execution priority set and the ordering variables
are distributed in subqueries q4 and q5. For this category, it
optimization strategy is shown in Fig. 11(b), the subqueries
with ordering variables q4 and q5 are executed together
firstly. Then, the TA-Based rank join will be used to order
the current query results. Finally, for the remaining subqu-
eries, the incremental execution method is adopted, just like
single variable ordering top-k query. Among that, if there
are other subqueries in the same priority subqueries set that
contain order variables. Those subqueries (here is q3) should
be executed between the current priority subqueries set (q4
and q5) and the next priority subqueries set (q6 and q7).

For the second category, as shown in Fig. 12(a), the subqu-
eries with ordering variables q2 and q5 are distributed in

subqueries sets with adjacent priorities. It optimization strat-
egy is shown in Fig. 12(b), the subquery q2 and the subquery
q3 with the same variables as q5 will be executed firstly. In
particular, if q2 and q5 have the same variables, the q3 will be
remove from the subqueries set fq2; q3g to fq4; q6g. Then, after
the execution of q5, the TA-Based rank join method will be
used to ordering the current query results. Finally, the
remaining subqueries in the two adjacent priority subqueries
sets are merged together, and the incremental execution
method is adopted until the remaining query plan execution
is completed. Among that, if the variable ?v3 is contained in
q4 but not q2 and q3, the q6 will be executed after q4.

For the last category, as shown in Fig. 13(a), the subqu-
eries with ordering variables q2 and q6 are distributed in
subqueries sets with different and nonadjacent priorities.
As shown in Fig. 12(b), the subquery q4 will be selected and
executed from the subqueries set fq4; q5g. Because q4 has the
same variables with q6. Then, after the execution of q6, the
TA-Based rank join method will be used to ordering the cur-
rent query results. The rest of the execution process is the
same as the second category.

8 EXPERIMENTS

In this section, we evaluate our proposed federated top-k
queries evaluation method (denoted as FedTopKPro) over

Fig. 10. The incremental execution process of query plan QP .

Fig. 11. The ordering variables are distributed in subqueries set with the
same priority.

Fig. 12. The ordering variables are distributed in subqueries sets with
adjacent priorities.

672 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 2, MARCH/APRIL 2023



both synthetic and real RDF benchmarks, WatDiv and
LargeRDFBench. In the comparative experiment, we build
up four indicators from previous work [1], [2], [39]: #SST,
#QET, #NRA and #TRT. #SST is the time of source selection,
and #QET represent the time of query execution. The num-
ber of remote accesses is denoted as #NRA, and #TRT denote
the total run time from the beginning to the end of a query
evaluation, which contains resource initialization time,
source selection time, query execution time and resource
release time.

8.1 Setting

LargeRDFBench. LargeRDFBench [31] is a comprehensive
benchmark for evaluating and analyzing both the effective-
ness and performance of federated RDF systems. It contains
13 datasets, involving Life Sciences, Cross Domain and
Large Data. There are more than a billion triple patterns.

WatDiv. WatDiv [3] is a benchmark that enables diversi-
fied stress testing of RDF data management systems. In
WatDiv, instances of the same type can have the different
sets of attributes. We generate three datasets varying sizes
from 100 million to 300 million triples and divide the
schema graph of the collection into several connected sub-
graphs with METIS [21].

We conduct all experiments on a cluster of six machines
running Linux. Five machines are used as RDF sources, and

the other one is used as control site. There is 16 GB mem-
ory and 150 GB disk storage for each site, and each
machine has one CPU with four-cores of 3.06 GHz. Our
top-k query optimization method code implemented by
Java is deployed on the control site. To assess the perfor-
mance of our approach, we design ten top-k queries for
LargeRDFBench and WatDiv (F1 � F10 for LargeRDFBench
and W1 �W10 for WatDiv. Among that, F1; F3; F5; F7; F9

and W1; W3; W5; W7; W9 are top-k queries with single
variable and the others are top-k queries with expression),
respectively.

8.2 Evaluation of Proposed Optimization Strategies

In this experiment, we verify the effective of our proposed
optimization strategies.

8.2.1 Evaluation of Auxiliary Index Construction

we analyze the time complexity of the auxiliary index con-
struction Algorithm 1, which is a polynomial time. We do
some relevant experiments onWatDiv, and the experiments
show that with the increase of the dataset size, the construc-
tion time cost of the auxiliary index increases linearly. It is
worth noting that in time complexityM represents the num-
ber of same multi-source predicate combination. Therefore,
only C and J increase the time cost of auxiliary index con-
struction when the predicate is fixed and only the triples of
datasets increase, as shown in the Fig. 14. Therefore, the
auxiliary indexing algorithm is efficient.

8.2.2 Evaluation of Query Decomposition and Source

Localization

In this experiment, we evaluate the effect of our proposed
query decomposition and source localization using Large-
RDFBench. We use FedTopK_NoSS to denote the first base-
line method without the optimization of source localization
strategy in Section 5. The difference between FedTopKPro

and FedTopK_NoSS is the number of suqueries, so the per-
formance comparison between them can be evaluated by
#NRA and #TRT. As shown in Fig. 15, experimental results
show that the number of remote access of FedTopKPro are
reduced by 50% on average compared with FedTop-

K_NoSS, and the total runtime can be reduced by 20% on
average.

8.2.3 Evaluation of Cost-Based Query Plan Generation

Here, we also use LargeRDFBench to test the cost-based
query plan generation method. We propose a baseline

Fig. 13. The ordering variables are distributed in subqueries sets with dif-
ferent and nonadjacent priorities.

Fig. 14. Index construction times on different sizes of datasets.

GE ETAL.: COST-DRIVEN TOP-K QUERIES OPTIMIZATION APPROACH ON FEDERATED RDF SYSTEMS 673



named FedTopK_NoOQP to represent a baseline method
without optimal query plan generation strategy in Section 6.
It is the baseline method that does not adopt the cost-based
optimal query plan strategy. As shown in Fig. 16, the average
#NRA and #TRT of FedTopKPro is less 33% on average
than FedTopK_NoOQP. The reason for this result is that the
optimal query plan can preferentially execute other subqu-
eries with lower cost before executing subqueries containing
sorting variables, avoiding the unnecessary overhead in the
circular execution strategy.

8.2.4 Evaluation of Incremental Query Plan Execution

We design a baseline method FedTopK_NoQPEO, which
does not include this query execution optimization strategy
in Section 7, and also use LargeRDFBench to evaluate our
incremental query plan execution method. As shown in
Fig. 17, the average remote access times of FedTopKPro

increase slightly comparedwith FedTopK_NoQPEO, because
the query plan execution optimization strategy exists circular
execution process. However, the incremental execution
method can effectively reduce the range of subgraphsmatch-
ing of subqueries to improve the query efficiency of subqu-
eries. Therefore, the average #QET of FedTopKPro is less
50% on average than FedTopK_NoQPEO.

8.3 Comparison With Existing Methods

Previous researchers have implemented several federated
RDF systems, such as FedX, HiBISCuS, SPLENDID. By
comparing our proposed method with three previous meth-
ods, we can verify the efficiency of our proposed method.

Fig. 18 shows that the comparison results among FedX,
HiBISCuS, SPLENDID and FedTopKPro on four indicators

over LargeRDFBench. In Fig. 18(a), SPLENDID has the
highest average #SST because it does not optimize the
source selection. Both FedX and HiBISCuS regard source
selection as one of their main optimization objective, so the
results of these two methods on this indicator are excellent
and slightly better than our method. Our method outper-
forms the previous three methods on the other three perfor-
mance indicators in Fig. 18(b), Fig. 18(c) and Fig. 18(d). The
#QET of our method is 10 times faster than FedX and 18
times faster than SPLENDID on average. Because we build a
cost model and propose an algorithm to generate the opti-
mal query plan based on this model. Similarly, HiBISCuS
proposed a hypergraph-based source selection approach,
which reduced the number of RDF sources in the query pro-
cess, thus reducing its query time. It can be found that the
trend of performance comparison results of #NRA is
roughly the same as that of #QET. Therefore, we think that
the number of remote access is proportional to the query
execution time. At the beginning of FedTopKPro, we put
forward an optimization idea focusing on shortening com-
munication overhead of remote access, and this result can
verify the correctness of our idea. Finally, the #TRT of our
method is 10 times faster than FedX, 18 times faster than
HiBISCuS and 22 times faster than SPLENDID on average.
It is worth noting that the total query time of HiBISCuS is

Fig. 15. Effectiveness comparison between FedTopKPro and
FedTopK_NoSS.

Fig. 16. Effectiveness comparison between FedTopKPro and
FedTopK_NoOQP.

Fig. 17. Effectiveness comparison between FedTopKPro and
FedTopK_NoQPEO.

Fig. 18. Efficiency comparison with existing methods.

674 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 2, MARCH/APRIL 2023



obviously abnormal. Its source selection time, remote access
times and query execution time are short, but the total query
time is long. The reason for this result is that the resource
initialization and resource release of this method occupy a
large overhead.

8.4 Evaluation of Scalability

In order to further explore the superiority of our method, we
compare the robustness of our approach with previous
methods on synthetic datasets, WatDiv, with different
scales. We generate three datasets varying sizes from 100
million to 300 million triples, and Fig. 19 shows the result.
We can find that with the larger of datasets’ scales, the total
runtime of four method all increases. However, the query
cost of our method is always better than other methods, and
the rate of increasing for our method is the smallest. There-
fore, we think ourmethod has strong robustness.

8.5 Evaluation ofK

In order to evaluate the query efficiency of optimization
schemes under different values of k, we have conducted
experiments on WatDiv. A total of 10 top-k queries are set
up in the experiment, among which 5 queries are single var-
iable top-k query with k values from 10 to 80. The other five
queries are expression top-k queries, and the values of k
also vary from 10 to 80. The 10 top-k queries are executed 10
times respectively, and the performances of different k val-
ues obtained by averaging them are shown in the Fig. 20.
The experimental results show that with the increase of k,
the query time can increases linearly.

9 CONCLUSION

In this paper, we have studied the optimization both for sin-
gle variable ordering and expression ordering top-k queries
over federated RDF systems. The proposed scheme mainly
involves query decomposition and source localization, the
construction of cost model, the cost-based optimal query
plan generation and the incremental query plan execution.
In order to evaluate the reliability of the proposed scheme,
we have done a lot of experiments. Firstly, through the hori-
zontally comparison experiment between the three base-
lines. The effectiveness of the various optimization strategies
have been verified. Secondly, compared with the previous
three typical query methods in the real datasets, the effi-
ciency of our proposed optimal method have been verified.
Finally, the robustness and scalability of proposed scheme
have been verified by comparing with the previous three
methods on synthetic datasets with different scales.

REFERENCES

[1] M.Acosta,M. Vidal, F. Fl€ock, S. Castillo, C. B. Aranda, andA.Harth,
“SHEPHERD: A. shipping-based query processor to enhance
SPARQL endpoint performance,” in Proc. Int. Semantic Web Conf.
(Posters Demos), 2014, pp. 453–456.

[2] M. Acosta, M. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus,
“ANAPSID: An adaptive query processing engine for SPARQL
endpoints,” in Proc. Int. Semantic Web Conf., 2011, pp. 18–34.

[3] G. Aluç, O. Hartig, M. T. €Ozsu, and K. Daudjee, “Diversified stress
testing of RDF data management systems,” in Proc. Int. Semantic
Web Conf., 2014, pp. 197–212.

[4] K. Anyanwu, “A vision for SPARQL multi-query optimization on
MapReduce,” in Proc. IEEE 29th Int. Conf. Data Eng. Workshops,
2013, pp. 25–26.

[5] C. B. Aranda, M. Arenas, �O. Corcho, and A. Polleres, “Federating
queries in SPARQL 1.1: Syntax, semantics and evaluation,” J. Web
Semantics, vol. 18, no. 1, pp. 1–17, 2013.

[6] A. Bozzon, E. Della Valle, and S. Magliacane, “Extending SPARQL
algebra to support efficient evaluation of top-k SPARQL queries,” in
Search Computing. Berlin,Heidelberg: Springer, 2012, pp. 143–156.

[7] M. Cai and P. Revesz, “Parametric R-tree: An index structure for
moving objects,” in Proc. COMAD, 2000, pp. 1–8.

[8] A. Charalambidis, A. Troumpoukis, and S. Konstantopoulos,
“SemaGrow: Optimizing federated SPARQL queries,” in Proc.
11th Int. Conf. Semantic Syst., 2015, pp. 121–128.

[9] B. Dan and R. V. Guha, “Resource Description Framework (RDF)
schema specification: Proposed recommendation,” W3C recom-
mendation, W3C, 1998. [Online]. Available: https://www.w3.
org/TR/1998/WD-rdf-schema-19981030/

[10] G. Dueck and T. Scheuer, “Threshold accepting: A general pur-
pose optimization algorithm appearing superior to simulated
annealing,” J. Comput. Phys., vol. 90, no. 1, pp. 161–175, 1990.

[11] H. G.Molina, J. D. Ullman, and J.Widom, “Database Systems: The Com-
plete Book, Upper Saddle River, NJ,USA: PrenticeHall Press, 2008.

[12] N. Ge, Z. Qin, P. Peng, and L. Zou, “FedTopK: Top-k queries opti-
mization over federated RDF systems,” in Proc. Int. Conf. Database
Syst. Adv. Appl., 2021, pp. 595–599.

[13] O. G€orlitz and S. Staab, “SPLENDID: SPARQL endpoint federa-
tion exploiting VOID descriptions,” in Proc. COLD, 2011, pp. 1–12.

[14] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J.
Umbrich, “Data summaries for on-demand queries over linked
data,” in Proc. 19th Int. Conf. World Wide Web, 2010, pp. 411–420.

[15] A. Harth and S. Speiser, “On completeness classes for query eval-
uation on linked data,” in Proc. AAAI Conf. Artif. Intell., 2012,
pp. 613–619.

[16] O. Hartig, “SPARQL for a web of linked data: Semantics and
computability,” in Proc. Extended SemanticWeb Conf., 2012, pp. 8–23.

[17] A. Hogan, A. Harth, and A. Polleres, “Scalable authoritative OWL
reasoning for the web,” Int. J. Semantic Web Inf. Syst., vol. 5, no. 2,
pp. 49–90, 2009.

[18] S.-Y. Ihm, K.-E. Lee, A. Nasridinov, J.-S. Heo, and Y.-H. Park,
“Approximate convex skyline: A partitioned layer-based index
for efficient processing top-k queries,” Knowl.-Based Syst., vol. 61,
pp. 13–28, 2014.

[19] Y. Izquierdo, M. A. Casanova, G. Garc�ıa, F. Dartayre, and C. H.
Levy, “Keyword search over federated RDF datasets,” in Proc. ER
Forum/Demos, 2017, pp. 86–99.

[20] T. Jiang, B. Zhang, D. Lin, Y. Gao, and Q. Li, “Incremental evalua-
tion of top-k combinatorial metric skyline query,” Knowl.-Based
Syst., vol. 74, pp. 89–105, 2015.

Fig. 19. Scalability comparison on different sizes of datasets.
Fig. 20. Efficiency on different values of k.

GE ETAL.: COST-DRIVEN TOP-K QUERIES OPTIMIZATION APPROACH ON FEDERATED RDF SYSTEMS 675

https://www.w3.org/TR/1998/WD-rdf-schema-19981030/
https://www.w3.org/TR/1998/WD-rdf-schema-19981030/


[21] G. Karypis and V. Kumar, “Multilevel graph partitioning schemes,”
inProc. Int. Conf. Parallel Process., 1995, pp. 113–122.

[22] S. Magliacane, A. Bozzon, and E. Della Valle, “Efficient execution
of top-k SPARQL queries,” in Proc. Int. Semantic Web Conf., 2012,
pp. 344–360.

[23] G. Montoya, H. Skaf-Molli, and K. Hose, “The odyssey approach
for optimizing federated SPARQL queries,” in Proc. Int. Semantic
Web Conf., 2017, pp. 471–489.

[24] P. Peng, Q. Ge, L. Zou,M. T. €Ozsu, Z. Xu, and D. Zhao, “Optimizing
multi-query evaluation in federated RDF systems,” IEEE Trans.
Knowl. Data Eng., vol. 33, no. 4, pp. 1692–1707, Apr. 2021.

[25] P. Peng, L. Zou, M. T. €Ozsu, and D. Zhao, “Multi-query optimiza-
tion in federated RDF systems,” in Proc. Int. Conf. Database Syst.
Adv. Appl., 2018, pp. 745–765.

[26] P. Peng, L. Zou, and Z. Qin, “Answering top-K query combined
keywords and structural queries on RDF graphs,” Inf. Syst.,
vol. 67, no. Jul., pp. 19–35, 2017.

[27] J. P�erez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
SPARQL,”ACMTrans. Database Syst., vol. 34 no. 3, pp. 1–45, 2009.

[28] F. Prasser, A. Kemper, and K. A. Kuhn, “Efficient distributed
query processing for autonomous RDF databases,” in Proc. 15th
Int. Conf. Extending Database Technol., 2012, pp. 372–383.

[29] E. Prud’Hommeaux, “SPARQL query language for RDF,” W3C
recommendation, W3C, 2008. [Online]. Available: http://www.
w3.org/ TR/2008/REC-rdf-sparql-query-20080115/

[30] B. Quilitz and U. Leser, “Querying distributed RDF data sources
with SPARQL,” inProc. Eur. SemanticWeb Conf., 2008, pp. 524–538.

[31] M. Saleem, A. Hasnain, and A. N. Ngomo, “LargeRDFBench: A
billion triples benchmark for SPARQL endpoint federation,”
J. Web Semantic, vol. 48, pp. 85–125, 2018.

[32] M. Saleem and A. N. Ngomo, “HiBISCuS: Hypergraph-based
source selection for SPARQL endpoint federation,” in Proc. Eur.
Semantic Web Conf., 2014, pp. 176–191.

[33] M. Schmidt, O. G€orlitz, P. Haase, G. Ladwig, A. Schwarte, and T.
Tran, “FedBench: A benchmark suite for federated semantic data
queryprocessing,” inProc. Int. SemanticWebConf., 2011, pp. 585–600.

[34] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt,
“FedX: Optimization techniques for federated query processing
on linked data,” in Proc. Int. Semantic Web Conf., 2011, pp. 601–616.

[35] D. Wang, L. Zou, and D. Zhao, “Top-k queries on RDF graphs,”
Inf. Sci., vol. 316, pp. 201–217, 2015.

[36] Q. Wang, P. Peng, T. Tong, Z. Tian, and Z. Qin, “Keyword search
over federated RDF systems,” in Proc. Int. Conf. Database Syst. Adv.
Appl., 2020, pp. 613–622.

[37] Y. Wang, X. Xu, Q. Hong, J. Jin, and T. Wu, “Top-k star queries on
knowledge graphs through semantic-aware bounding match
scores,” Knowl.-Based Syst., vol. 213, 2021, Art. no. 106655.

[38] Z. Yang, X. Zhou, K. Li, G. Xiao, Y. Gao, and K. Li, “Efficient proc-
essing of top k group skyline queries,” Knowl.-Based Syst., vol. 182,
2019, Art. no. 104795.

[39] L. Zou, M. T. €Ozsu, L. Chen, X. Shen, R. Huang, and D. Zhao,
“gStore: A graph-based SPARQL query engine,” VLDB J., vol. 23,
no. 4, pp. 565–590, 2014.

Ningchao Ge received the BS degree in 2016
from Hunan University, where he is currently
working toward the PhD degree in computer
science and technology, advised by Dr. Zheng
Qin and Dr. Peng Peng. His research interests
include federated RDF systems and knowledge
graphs.

Zheng Qin received the PhD degree in computer
software and theory from Chongqing University,
China, in 2001. He has rich experience in prod-
ucts development and application services, such
as financial, medical, military, and education sec-
tors. He is currently a professor of computer sci-
ence and technology with Hunan University,
China. His main research interests include com-
puter networks and information security, cloud
computing, Big Data processing, and software
engineering. He is a member of China Computer
Federation (CCF) and ACM.

Peng Peng (Member, IEEE) received the BS
degree in computer science from Beijing Normal
University in 2009, and the PhD degree in com-
puter science from Peking University in 2016. He
is currently an associate professor with Hunan
University. His research interests include graph
database and distributed RDF system.

Mingdao Li received the BS degree in 2017 from
Hunan University, where he is currently working
toward the PhD degree in computer science and
technology, advised by Dr. Peng Peng and Dr.
Zheng Qin. His research interests include graph
database and community search over large
graphs.

Lei Zou (Member, IEEE) received the BS and
PhD degrees in computer science from the Huaz-
hong University of Science and Technology in
2003 and 2009, respectively. He is currently a
professor with Peking University. His research
interests include graph database and semantic
data management.

Keqin Li (Fellow, IEEE) is currently a SUNYdistin-
guished professor of computer science with the
State University of New York. He is also a national
distinguished professor with Hunan University,
China. He has authored or coauthored more than
830 journal articles, book chapters, and refereed
conference papers. His current research interests
include cloud computing, fog computing andmo-
bile edge computing, energy-efficient computing
and communication, embedded systems and
cyber-physical systems, heterogeneous comput-

ing systems, Big Data computing, high-performance computing, CPU-
GPU hybrid and cooperative computing, computer architectures and sys-
tems, computer networking, machine learning, intelligent and soft com-
puting. He holds more than 60 patents announced or authorized by the 
Chinese National Intellectual Property Administration. He is among the 
world’s top five most influential scientists in parallel and distributed com-
puting based on a composite indicator of Scopus citation database. He 
has chaired many international conferences. He is currently an associate 
editor for the ACM Computing Surveys and CCF Transactions on High 
Performance Computing. He was served on the editorial boards of IEEE 
Transactions on Parallel and Distributed Systems, IEEE Transactions on 
Computers, IEEE Transactions on Cloud Computing, IEEE Transactions 
on Services Computing, and IEEE Transactions on Sustainable Comput-
ing. He was the recipient of several best paper awards.

676 IEEE TRANSACTIONS ON BIG DATA, VOL. 9, NO. 2, MARCH/APRIL 2023



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


