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Abstract—Service migration between datacenters can reduce the network overhead within a cloud infrastructure; thereby, also

improving the quality of service for the clients. Most of the algorithms in the literature assume that the client access pattern remains

stable for a sufficiently long period so as to amortize such migrations. However, if such an assumption does not hold, these algorithms

can take arbitrarily poor migration decisions that can substantially degrade system performance. In this paper, we approach the issue

of performing service migrations for an unknown and dynamically changing client access pattern. We propose an online algorithm that

minimizes the inter-datacenter network, taking into account the network load of migrating a service between two datacenters, as well as

the fact that the client request pattern may change “quickly”, before such a migration is amortized. We provide a rigorous mathematical

proof showing that the algorithm is 3.8-competitive for a cloud network structured as a tree of multiple datacenters. We briefly discuss

how the algorithm can be modified to work on general graph networks with an OðlogjVjÞ probabilistic approximation of the optimal

algorithm. Finally, we present an experimental evaluation of the algorithm based on extensive simulations.

Index Terms—Cloud computing, online service migrations, online virtual machine migrations, online algorithms
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1 INTRODUCTION

ECONOMIES of scale, the pay-as-you-go model, and auto-
mated tools that facilitate the porting of legacy services

to cloud environments [1] have made clouds an attractive
solution for enterprises and organizations. The key technol-
ogy for enabling service portability as well as elastic opera-
tion is virtualization. On the one hand, legacy programs can
be executed on top of a virtual machine (VM) that can be
configured according to client requirements. On the other
hand, VMs (and the enterprise services that run on top of
them) can migrate between datacenters, at runtime, to pro-
vide better response times and achieve a more efficient
operation of the cloud environment with minimal disrup-
tions to the service clients.

In this paper, we focus on performing VM migrations to
minimize the network overhead within a given cloud infra-
structure. For the sake of generality we use the term service
migrations, rather than VM migrations, as one can imagine
each enterprise service or service bundle running in a sepa-
rate VM or a span of VMs. Even though we don’t consider
the case where the VMs of a service may split between data-
centers, such a case can be tackled by considering a compos-
ite aggregated VM as a candidate for migration. The

algorithm presented in the paper is also applicable for con-
tainers or dockers, somce it can be simply adjusted to run in
the context of an operating system or in the context of a
docker to migrate a container. The service placement is tack-
led in a coarse-grained fashion, with all of the VMs compris-
ing a service being migrated from one datacenter to another.
On the other extreme, the intra-datacenter VM placement
can be tackled as a fine-grained approach, which is comple-
mentary to our work and does not come in conflict with the
inter-datacenter service migration problem.

Most importantly, we tackle the problem in an online fash-
ion, assuming an unpredictable, dynamically changing cli-
ent access pattern, and considering the expected benefit of a
service migration while also taking into account the net-
work overhead for performing such an operation. The
difficulty of the problem resides in the fact that in the gener-
alized case, future client access patterns are unknown and
cannot be predicted based on the history [6]. Consequently,
poor decisions may be taken. Not only can one miss out on
the beneficial migrations that would lead to better perfor-
mance, but one may also decide on non-beneficial migra-
tions, which must be reverted in the subsequent decisions;
thereby, significantly degrading the system performance.
The proposed algorithm does not make any assumption
about the access patterns. The reason is that the parameters
are adjusted according to the theoretical analysis performed
in Section 6, since such goals are aligned with intra-datacen-
ter service migrations but not with inter-datacenter service
migrations.

Although the tackled problem is complex it is also generic
enough to tackle specific cases of interest. For instance a trans-
coding service that gets as input video streams, encodes them
in different bit rates and sends them to one or more delivery
servers, could benefit from the algorithm described in the
paper, since both video sources and destinations possibly
vary in time (e.g., video conferencing).
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The specific contributions of this paper are: (a) we formu-
late the service migration problem, and propose an online
algorithm that minimizes the inter-datacenter network over-
head; (b) we provide a competitive analysis which reveals a
3.8-competitive ratio, when the underlying network topol-
ogy is a tree; (c) we provide insights into how our algorithm
can be extended to work on generalized graph networks;
and (d) we present an experimental evaluation showing
that our algorithm achieves a network load reduction of up
to 80 percent, when compared with a static offline algorithm
and up to 30 percent, when compared with the best known
algorithm [4] pertaining to issue under discussion.

The remainder of this paper is organized as follows.
Section 2 describes the related work. In Section 3, we intro-
duce the system model and problem formulation. Sections 4
and 5 describe the algorithm. Section 6 provides a detailed
proof for the competitive ratio of the algorithm. In Section 7,
we describe the experimental evaluation. Finally, Section 8
concludes the paper.

2 RELATED WORK

A lot of works have studied the service or VM placement/
migration problem in an offline fashion, under various
objectives. Specifically, with “offline” we mean that the
application characteristics are static. Ref. [16] minimizes the
total network overhead by co-locating VMs that communi-
cate heavily with each other. Ref. [5] proposes VM consoli-
dation algorithms to reduce energy consumption. An
interference aware migration strategy for VMs is proposed
in [24]. This strategy tackles the problem of server consoli-
dation by considering co-located VMs that do not interfere
with each other regarding cpu utilization. An algorithm
that minimizes the total network overhead by co-locating
services with increased communication requirements is pro-
vided in [19]. A similar approach is described in [22] for
wireless sensor networks. The minimization of the commu-
nication delay between VMs was tackled in [2], with the
focus on reducing the interactions among various geograph-
ically distributed data centers.

Our work is closer to that of [2], [16], [19], and [22]. The
main difference being that: (a) we tackle the problem in an
online fashion and (b) we minimize the communications
due to the forwarding of client requests to the respective
services rather than due to any inter-dependencies between
different services.

Many efforts have also been done to tackle the service or
VM placements in an online fashion [23]. A distributed rate
allocation algorithm is discussed in [9]. The bandwidth
sharing problem is tackled in [10] and [11] as a Nash bar-
gaining game. The authors propose allocation principles by
defining a tunable base bandwidth for each VM. Ref. [3]
presents an algorithm for solving the problem of energy-
and performance-efficient VM consolidation. The VM con-
solidation problem is also tackled in [18] through online bin
packing. In [13] and [25], the authors solve the same prob-
lem by using Kalman filter and Nash equilibrium techni-
ques, respectively. An approach migrating agents in an
online fashion under WSNs is discussed in [21]. Comple-
mentary to our work are [7], [14], [20] that propose load and
power aware controllers. The target of [20] is to balance the
load and maximize quality of service, while [7] and [14] to

optimize power consumption. Ref. [17] studies the trade-off
between communication overhead and delay overhead in
the context of message aggregation in WSNs. The authors in
[12] proposed an online algorithm for the joint problem of
energy minimization and network congestion. Lastly, in [4],
the authors solve the problem of service placement in vir-
tual networks, with the objective of minimizing the total ser-
vice access delay experienced by the clients. The authors
prove that their proposed algorithm is O(mlogn)-competi-
tive, with m being the ratio between maximal and minimal
link capacity in the underlying network, and n being the
number of datacenters in the system.

Our work fundamentally differs from [3], [12], [13], [18],
and [25] in that such works are concerned with a different
objective function. Our work differs from [21] as: the pro-
posed algorithm in [21] is not scalable when the system
exhibits frequent changes in load because it keeps historical
information potentially for every access request. In contrast,
our approach keeps the changes in an aggregated way.
Ref. [17] is similar to our work in terms of its objective func-
tions; however, it assumes a different system model (mes-
sage aggregation). The work that is closest to ours is
reported in [4] as it adopts a similar model and objective
function. The pitfall of the algorithm presented in [4] is that
it divides time into epochs, and resets the information kept
about the traffic/load between services and datacenters at
the end of each epoch. To understand why the above is a
pitfall, we refer the reader to the proof of Theorem 1 in Sec-
tion 6 which shows that the competitive ratio crucially
depends on the time instance where such a reset takes place,
which advocates against an epoch-based approach.

3 SYSTEM MODEL AND PROBLEM DEFINITION

Let a cloud infrastructure be captured as a graph
G ¼ ðV; EÞ, where each vertex u 2 V represents a datacen-
ter nu and each edge e ¼ ðu; vÞ 2 E represents a communica-
tion link between nu and nv in the intra-cloud network.
From now on we will use interchangeably the intra-cloud
and inter-datacenter network.

Each communication link e is characterized by a possibly
different data transfer overhead weight we. The data trans-
fer overhead is computed by the average delay experienced
when transferring data over that link. The aggregated net-
work overhead for a path p between two datacenters nu and
nv is denoted by wp

uv ¼
P

8e2p we, and the minimum network
overhead over all such paths is denoted byWuv ¼ min8p wp

uv.
We assume that the network is direction-neutral
(Wuv ¼ Wvu) and that the network overhead of local data
transfers is zero (Wuu ¼ 0).

A datacenter can host several services; however, each
service is hosted on a single datacenter. Each client connects
to the cloud through an entry-point datacenter, e.g., the one
closest to its physical location. Client requests are for-
warded over the inter-datacenter network to the datacenter
hosting the respective services, and responses are sent back
to the clients in the same way. Without the loss of general-
ity, we assume that a reply follows the same path that was
used for the requests (in reverse direction). Client mobility
is captured implicitly, through the dynamically changing
client access pattern.
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Let sj be the jth service of the system, hosted on datacen-
ter nv. Moreover, let qu be the set of clients that connect to
the cloud through nu, and let st

uj denote the data volume of
the requests/replies sent/received by clients in qu through
nu for service sj at time t. Such traffic must be forwarded
between nu and nv (the host of sj). It is noteworth to mention
that no such forwarding is required if sj is hosted on nu.
Fig. 1 depicts an example of the three different sets of clients
qu, qm, and qv that connect to the cloud via datacenters nu,
nm, and nv, respectively. The clients interact with the service
sj hosted on nu with the respective client volume being st

uj,
st
mj$ and st

vj.
To deal with a dynamically changing client request/

reply volume, a service sj can be migrated from its current
host nu to another datacenter nv. Let MuvjðtÞ represent such
a migration being performed at time t. Moreover, let MCj be
the data transferred associated with sj. Finally, let h be a ser-
vice hosting scheme/function, where hðt; jÞ ¼ umeans that
sj is hosted on nu at time t. Due to service migrations, it
could be that hðt; jÞ 6¼ hðt0; jÞ. That is, a service may be
hosted on various datacenters at different points in time.
Let " be strictly less than the time needed to migrate any ser-
vice between any pair of nodes.

Based on the above, Eq. (1) captures the network over-
head due to the client-datacenter interactions at time t, as a
function of the service hosting function h. The extra network
overhead due to the service migrations that take place at
time t is given by Eq. (2). It must be noted that when
hðt; jÞ ¼ hðtþ "; jÞ, then sj has not been migrated during
½t; tþ "�. Given that a service (sj) migration started any time
before t0 and ended exactly at t0 þ ", then we demand " > 0
such that MCj data units are uniformly distributed within
½t0; t0 þ "�. Note that Eq. (2) seems counter-intuintive because
the service migration overhead is divided by time. How-
ever, the time is vanished when Eq. (2) is integrated as hap-
pens in Eq. (3). The total intra-cloud network overhead for a
given time interval [0, T] is equal to the sum of these two
components over that interval, see Eq. (3).

ct1 hð Þ ¼
X
8j

X
8u

st
uj �Wu;h t;jð Þ (1)

ct2 hð Þ ¼
X
8j

MCj

"
�Wh t;jð Þ;h tþ";jð Þ (2)

C hð Þ ¼
ZT

0

ct1 hð Þdtþ
ZT

0

ct2 hð Þdt (3)

The optimization problem that we are addressing in this
artile can be stated as follows: Given a network G ¼ ðV; EÞ,
the network communication overhead between each datacenter

pair Wuv, a set of services sj and a client traffic pattern st
uj over

the time interval [0, T], find a service hosting function/scheme h
for this interval such that Eq. (3) is minimized.

Note that if all links of the intra-cloud network have the
same data transfer overhead, then the network overhead of
path p between two datacenters can be replaced by its
length wp

uv ¼ lenðpÞ. In this case, Eq. (3) is equal to the total
network traffic for the interval [0, T], and by solving the
above problem one minimizes the intra-cloud network traf-
fic for that interval.

4 NETWORK OVERHEAD MINIMIZATION

ALGORITHM

In this section, we present an algorithm that decides, in an
online fashion, whether (or not) to migrate a given service
from its current host to another datacenter to minimize the
total network overhead as per Eq. (3). We refer to the algo-
rithm as the Network Overhead Minimization (NOM) algo-
rithm. It is noteworthy to mention that the NOM is
designed for tree-based networks. Because each datacenter
is responsible for the service migration it hosts, there is no
way of a conflict between service migrations.

A key parameter of NOM is the extent to which a data-
center knows the topology of the neighborhood, referred to
as network awareness radius R. Let RðnuÞ be the set of datacen-
ters that are at most R hops away from nu, including the
datacenter itself. For each locally hosted service sj and each
datacenter nm 2RðnuÞ, nu keeps a load variable rmj, which is
used to record the client traffic related with sj and nm, as fol-
lows: (a) if nm is less than R hops away from nu, then rmj

records the client traffic generated by all of the clients resid-
ing at nm; and (b) if nm is exactly R hops away from nu, then
rmj captures the aforementioned traffic as well as the traffic
related with the clients residing at datacenters using nm as a
router to reach sj. The datacenter also keeps a load variable
ruj for recording the client traffic for the local service sj
residing at nu.

Fig. 2 reports an example where datacenter nu hosts ser-
vice sj and where R is 2. For the purpose of illustration, let
us focus on the time instance t. The entry points for client
traffic that concerns service sj are datacenters nu, nk, nf and
np, with the respective traffic volume being st

uj ¼ 2, st
kj ¼ 1,

st
fj ¼ 3 and st

pj ¼ 4. Given that RðnuÞ ¼ fnk; nv; ns; ndg, nu
has five load variables for sj: rkj, rvj, rsj, rdj and ruj. Note that
only ruj ¼ 2, rkj ¼ 1, rvj ¼ 7 are greater than zero. Moreover,
rvj aggregates the client traffic coming from nf and np, which
is routed via nv, even though nv is not the entry point for
any clients of sj.

Based on the aforementioned load variables, nu computes
the benefit of sj being prospectively hosted on nm versus the

Fig. 1. An example with datacenters and clients. Fig. 2. An example of network awareness and load variables. The
dashed line marks the awareness circle of datacenter nu.
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current hosting of sj on nu, as per Eqs. (4) and (5). First, the
network overhead for the current placement of sj on nu, as
well as for the prospective case of sj being hosted on each of
the datacenters nm 2 RðnuÞ, is calculated using Eq. (4).
Thereafter, for each such datacenter nm, the benefit of
migrating sj from nu to nm is calculated using Eq. (5), as the
difference between the network overheads of the respective
placements. Finally, nu decides to migrate sj to the datacen-
ter that gives the largest benefit, provided this benefit is
greater than a threshold (which we discuss in the subse-
quent text).

costjx ¼
X

8v2RðnxÞ
rvjWxv (4)

Bumj ¼ costju � costjm (5)

Checking Eq. (5) for each datacenter nm 2R(nu) can be
time-consuming. To reduce the time-complexity of the algo-
rithm, we employ the following technique. Initially, the
algorithm calculates the benefit of migrating sj only to
1-hop neighbors of nu, as if R were equal to 1. As will be
shown in Section 6 (Theorem 2), at most one 1-hop neigh-
bor, say nm, can have a positive benefit Bumj. If Bumj is
greater than the migration threshold (see next), then the cal-
culation is repeated by considering only the datacenters
that are one hop further away from nm. The iteration stops
when: (a) no beneficial migration can be found for sj; or
(b) nm is R hops away from nu. The algorithm decides to
migrate sj to the last datacenter (if any) for which the benefit
was greater than the threshold. The pseudocode of the
NOM algorithm, is given in Fig. 3. Note that the NOM is
distributed, and runs periodically at every datacenter.

In addition to the aforementioned steps, NOM makes
two important checks or actions. The first check (line 13 of
the pseudocode) is to decide for a service migration only if
Eq. (6) holds (if the benefit is at least twice the network over-
head for actually performing the migration). The second
check (line 18 of the pseudocode) is to reset the load varia-
bles when Eq. (7) holds (when the aggregate reaches the so-
called reset threshold RTj).

Bumj � Wum � 2MCj (6)

X
nm2R nuð Þ

rmj � RTj (7)

The introduction of a migration threshold and the reset-
ting of the load variables play a crucial role for the competi-
tive ratio of the NOM, as we will discuss in Section 6. In
particular, if the migration threshold is chosen too small the
competitive ratio increases dramatically, which we capture
in Theorem 3.

5 ADAPTING THE NOM FOR GENERALIZED

NETWORK GRAPHS

As mentioned previously, NOM is designed to work on tree
networks. In this section, we detail an adaptation of the
NOM that can also work in on generalized network graph
structures.

First, we define the metric for the problem of minimizing
the network overhead in general graphs as (V, r). Specifi-
cally, V is the set of datacenters, while rðnu; nvÞ is the mini-
mum network overhead for transferring one data unit
between nu and nv. We define the diameter of r as:
D ¼ max8nu;nv2G rðnu; nvÞ.

Next, we find a distribution DS over a family of tree met-
rics, TM, so as to a-probabilistically approximate our metric.
When we say that metric ðV; rÞ is a-probabilistically
approximated by ðDS; TMÞ, then for every datacenter pair
ðnu; nvÞ, Er02ðDS; TMÞ½r0ðnu; nvÞ � a� rðnu; nvÞ, must hold
true. Note that E½r0ðnu; nvÞ� is the expected value of
r0ðnu; nv) .According to [8], for any given metric ðV; rÞ, one
can find a ðDS0; TM 0Þ that is the OðlogjV jÞ approximation of
r. Therefore, we can generate a tree T according to
ðDS0; TM 0Þ, and solve the problem on T, using NOM. For
further information of how T can be generated, we refer the
reader to [8]. As the last step, we map the produced solution
onto the original graph.

In simple words, according to [8] a tree T is constructed
with each node belonging to G being a leaf in T. The upper
levels of T consist of clusters. For example, assume that n1

and n2 have parent the cluster c1, while n3 and n4 have par-
ent the cluster c2. Then, c1 and c2 are cluster nodes consisted
of n1; n2 and n3; n4, respectively. It must be noted that c1
and c2 belong to the second level of T. Assume now that c3
is a parent of c1 and c2 and belongs to the third level of T.
Therefore, c3 is a cluster consisting of c1 and c2, and thus
consisting of n1, n2, n3 and n4. The weight of an edge
between a node located at ith and a node located at (iþ 1)th
level equals 2i. Therefore, the distance between n1 and c2 is
r0ðn1; c2Þ ¼ 2þ 2i, while the distance between n1 and n4 is
r0ðn1; n4Þ ¼ 2ð2þ 2iÞ.

After constructing T we run NOM on that tree and get a
solution consisting of all of the service migrations. Then, the
next step is to map the solution based on T onto a solution
based on G. There are two cases: (a) a service migrates
(based on T) from a leaf node nu towards a leaf node nv; (b)
a service migrates (based on T) from a leaf node nu towards
a cluster node ck. We must note that there is no case of
migrating a service between two clusters. In (a) the migra-
tion is mapped onto G by migrating the respective service
from nu towards nv following the shortest path (based on G)

Fig. 3. Pseudocode of NOM for datacenter nu.
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between nu and nv. In (b) the migration is mapped onto G
by migrating the respective service(s) from nu towards a
node nm belonging in ck. Specifically, nm must satisfy the
following requirement: the amount of communication load
between the respective service(s) and the node nm is greater than
or equal to any datacenter belonging in ck.

As discussed previously, we can generate a tree topology
that OðlogjVjÞ probabilistically approximates a general-
structured network. Therefore, we can apply NOM on that
tree and result in a competitive ratio of 3.8 (see Theorem 1
below). The solution of NOM in T is modified such that any
service is assigned on a leaf node of T, at the expense of an
approximation ratio of two. The above ratio is justified by
the following: (i) T is structured as a tree, and (ii) when a
service is (virtually) hosted by a cluster ck, it is assigned on
the leaf with the highest communication load among leaves
belonging in ck. According to the above, the communication
load is strictly less than that of assigning the respective ser-
vice on ck. Therefore, the competitive ratio remains constant.
The above means that the resulted algorithm can OðlogjVjÞ
probabilistically approximate the optimal algorithm for
general structured networks.

6 COMPETITIVE ANALYSIS

Competitive analysis is a method used to compare the out-
put of an online algorithm (ALG) that is unaware of the
future with the output of the offline optimal algorithm
(OPT) that has the complete knowledge of the future. The
input is chosen by a cognizant adversary, such that the com-
petitive ratio between ALG and OPT is maximized. Given a
set of sequences, S ¼ ðs1; s2; . . .Þ, of requests, the competi-
tive ratio between ALG and OPT may be given as:

max
s2S

ALG sð Þ
OPT sð Þ (8)

An algorithm is competitive if and only if its competi-
tive ratio is bounded. Specifically, an algorithm is called
z-competitive if the following holds:

ALG sð Þ � z �OPT sð Þ; 8s 2 S (9)

Therefore, we must devise an online algorithm such that
z is as small as possible.

6.1 The Competitive Ratio of the NOM

In this section, we prove that NOM is 3.8-competitive when
the underlying network is structured as a tree. Because the
network overhead incurred between datacenters and clients
is specified by a constant, we can omit it from our proof.
Specifically, the aforementioned overhead is independent of
the decisions of OPT and NOM. For our analysis, we
assume that there is only one service (called sj) within the
cloud. Such an assumption is necessary to find the worst-
case bounds. Moreover, we also assume that rujðz; yÞ is the
same as ruj, with the difference being that the former cap-
tures the load for a specific time interval ½z; y�. Furthermore,
we use the notation Buvjðz; yÞ to capture the migration bene-
fit according to the time interval ½z; y�. To keep our analysis
tractable, we also assume that the awareness of the NOM is
equal to the diameter of the network.

Below we provide a sketch of our proofs. Particularly, in
Lemma 1 – Lemma 8, we assume that: (a) NOM and OPT are
allowed to perform atmost onemigration and (b) whenNOM
performs amigration, the destination is the same as that of the
OPT algorithm. Lemma 1 provides the intuition of whyEq. (7)
is important to improve the competitive ratio of the NOM. In
Lemma 2 – Lemma 6, we identify the competitive ratio, under
the assumptions that load variable resets are disallowed.
Lemma 7 and Lemma 8 identify the competitive ratio when
the load variable resets are allowed. In Lemma 8 and Lemma
9, we prove that the assumptions (a) and (b) as stated above
do not compromise the competitive ratio of NOM.

Lemma 1. The competitive ratio between NOM and OPT is
unbounded, provided that NOM does not apply Eq. (7).

Proof. It suffices to show that there is an s such that the
ratio between NOM and OPT tends to become infinity. To
proceed, we make the following assumptions:

� The life of our system ends at T time instance.
� The cloud consists of two datacenters (nu and nv,

with wuv ¼ 1), and initially, sj is located on nu.
� The OPT and NOM perform MuvjðzÞ and MuvjðyÞ

migrations, respectively.
Consequently, we have that OPT ðsÞ ¼ rvjð0; zÞ þ ruj

ðz; T Þ þMCj, and NOMðsÞ ¼ rvjð0; yÞ þ rujðy; T Þ þMCj.
Therefore, the following must also hold: (a) y > z, due to
optimality of OPT and (b) Buvjð0; yÞ ¼ rvjð0; yÞ � rujð0; yÞ
> 2MCj, due to the first action/check of the NOM. The
adversary can choose an s such that rvjð0; yÞ ¼ rujð0; yÞþ
2MCj þ ". We also demand that the chosen s meets the
following requirements: (a) rvjð0; zÞ and rujðz; T Þ equal
to zero, (b) rujð0; yÞ equals a sufficiently large number (or
with a slight abuse we can say that it tends to infinity)
such that the ratio between MCj and rujð0; yÞ tends to
zero, and (c) rujðy; T Þ equals to zero. Note that rujð0; yÞ is
not bounded by any number (there is no mechanism pre-
venting rujð0; yÞ from being as large as possible), while
OPT(s) is a constant. Because rujð0; yÞ is a component of
NOMðsÞ, it entails that the latter is not bounded. There-
fore, the competitive ratio is unbounded. tu
It is noteworthy to mention that by applying the second

check/action of the NOM, the load variables are reset to
zero when RTj is reached. Therefore, rujð0; yÞ is bounded
RTj, which in turn means that NOM(s) is also bounded
because all of its components are bounded. Subsequently,
we show the consequences of not applying the second
check/action of the NOM procedure. It is prudent to choose
the value of RTj to be greater than the double the network
overhead of migrating sj towards a 1-hop neighboring data-
center (RTj > 2MCj); otherwise, we compromise the per-
formance of the NOM, as the load variables will be reset
before being able to decide for a migration. We also must
note that when resetting the load variables there is a special
case of resetting a variable rvj, while some Buvjð0; yÞ is
greater than zero. Below we show whether the competitive
ratio is dependent on the above or otherwise.

Lemma 2. The competitive ratio between NOM and OPT is at
least three, provided that NOM performs all of its checks/
actions.
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Proof. Assume that we have a network with at least two
datacenters (nu and nv), with sj being initially located on
nu. If OPT decides to perform a migration, MuvjðzÞ, then
the best case for OPT is burdened with the migration
overhead equaling wuv �MCj. On the other hand, the
adversary will choose an s such that the NOM is bur-
dened by at least wuv � 2MCj þ wuv �MCj. The first fac-
tor concerns the load that must be generated to satisfy the
first check/action of NOM. The second factor represents
the network overhead of migrating sj from nu to nv.
Therefore, the ratio between NOM and OPT is three. tu

Lemma 3. The competitive ratio between NOM and OPT
becomes one, under the requirement that both do not perform
any migration.

Proof. Because of the requirement that neither the NOM
nor OPT perform migrations, it means that they are bur-
dened with the same network overhead. Therefore, the
competitive ratio is one. tu

Lemma 4. The competitive ratio between NOM and OPT is 2-e,
provided that (a) OPT performs one migration but NOM does
not perform, (b) RTj > 2MCj, and (c) the load variables are
not reset.

Proof. We assume that the life of our system is T, and the
OPT performs MuvjðzÞ. The ideal case for the OPT is that
only nu generates load before time instance z, while only
nv generates load after z. In that way the OPT will pay
only the network ovherhead of performing MuvjðzÞ.
The adversary will choose an s such that nv generates
2MCj � 1 during [z, T]. Note that for the case that only nv

generates load, nv cannot generate more load than
2MCj � 1. The above is because in that case NOM would
migrate sj at nv, which comes in contradiction due to the
precondition that NOM is not allowed to perform migra-
tions. Therefore,NOM is burdenedwithwuv � ð2MCj � 1Þ.

Previously, we showed that OPT is not burdened
with the load generated by nv during ½z; T �, while NOM
is burdened with wuv for each unit of load. Conse-
quently, the adversary will find an s such that nv gener-
ates as much load as possible, provided that the ratio
between NOM and OPT increases, while the precondi-
tions are not violated. Therefore, we have to investigate
the behavior of the ratio when additional datacenters
(other than nv) generate load, giving in that way the
ability of nv to generate load more than 2MCj � 1. We
proceed by assuming that nv generates load equaling
2MCj, and discern the cases where an additional data-
center nd generates load of one unit: (a) nd � nu, (b)
nd � nx, (c) nd � nk, (d) nd � nm, and (e) nd � nf .
The locations of the aforementioned datacenters are
given in Fig. 4.

We now discuss each of the above scenarios in detail.
For the case (a), when OPT is burdened with extra wuv

overhead, NOM is not burdened with extra overhead.
The above means that the ratio between NOM and OPT
will decrease. Therefore, the adversary will not choose
the above scenario. For the case (b), when OPT incurs
extra wuv þ wux overhead, NOM is burdened with extra
wux overhead. Because the ratio lessens, the adversary
will not choose such a scenario. It can be seen, that if case
(c) happens, then nk will satisfy Eq. (6). Therefore, NOM
will migrate sj at nk. The above comes in contradiction
with the fact that NOM is not allowed to perform migra-
tions. Case (d) matures if nm generates a load of one unit,
then nv will satisfy Eq. (6), which contradicts the precon-
dition (a) of Lemma 4. If case (e) does exist, then we have
a contradiction because nk will satisfy Eq. (6).

Therefore, the adversary will not choose any s that
satisfies the above scenarios. We must also note that the
adversary will also not choose any combination of them.
For example assume that case (b) is combined with case
(c), then the above scenario is feasible (no contradiction).
However, the adversary will not choose such a combina-
tion, as the ratio decreases. As a result, if the adversary
tries to push nv to generate a load more than 2MCj � 1,
then either we have a violation of precondition (a) of
Lemma 4 or the ratio decreases. Therefore, the ratio
between NOM and OPT becomes 2� " ð" ¼ 1=2MCjÞ.
We must note that we do not consider any case that the
load variables are reset due to the precondition (c) of
Lemma 4. tu

Lemma 5. The competitive ratio between NOM and OPT is
given by (5.7), provided that: (a) NOM performs all of its
checks/actions, (b) OPT and NOM perform Muvj(z) and
Muvj(y), respectively, (c) only nu and nv generate load within
the cloud, and (d) the load variables are not reset.

Proof. Because only nu and nv generate loadwithin the cloud,
we result in the Eq. (5.1) and Eq. (5.2). Note that because
OPT takes the optimal decision, it holds that y > z. In the
subsequent text, we discuss the values that aforementioned
load variables must take on, such that the ratio between the
NOMandOPT bemaximized.

OPT sð Þ ¼ wuvrvj 0; zð Þ þ wvuruj z; Tð Þ þ wuvMCj (5.1)

NOM sð Þ ¼ wuvrvj 0; yð Þ þ wvuruj y; Tð Þ þ wuvMCj (5.2)

First, the adversary will try to identify whether the
ratio (between NOM and OPT) increases when the load
variables of OPT are set to zero. We can see that the ratio
increases when either rvjð0; zÞ or rujðz; T Þ decreases.
Therefore, we have that rvjð0; zÞ ¼ rujðz; T Þ ¼ 0.

On the other hand, we also need to check the load var-
iables of the NOM. Because y > z, it holds that rujðy; T Þ
< rujðz; T Þ, which in turn means rujðy; T Þ ¼ 0. Now it
remains to be decided on the value of the last load vari-
able rvjð0; yÞ. On a first look we expect that the adversary
will choose rvjð0; yÞ to be as large as possible. However,
the variable rvjð0; yÞ needs more investigation. First of
all, because NOM will perform MuvjðyÞ, it must hold that
Buvjð0; yÞ � 2wuv �MCj. Note that Buvjð0; yÞ cannot be
much greater than 2wuv �MCj, because when NOM

Fig. 4. Location of additional datacenters.
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identifies that the above inequality is satisfied it will
migrate sj onto nv. According to the above, it holds that
there is an e such that Buvjð0; yÞ þ " ¼ 2wuv � MCj,
which in turn translates through Eqs. (4) and (5) into
Eq. (5.3). Note that because y > z, it holds that
rujð0; yÞ ¼ rujð0; zÞ þ rujðz; yÞ. The adversary will
choose rujðz; yÞ ¼ 0, because otherwise the OPT must be
burdened with the load measured in rujðz; yÞ. Therefore,
Eq. (5.3) can be rewritten as Eq. (5.4).

We observe that due to Eq. (5.4), rujð0; zÞ comes into
play. The adversary will demand that rujð0; zÞ be as large
as possible, because only NOM will be burdened with
the load measured in rujð0; zÞ. However, rujð0; zÞ cannot
be arbitrarily large, because the load variables are reset
when they reach RTj. Therefore, it holds that rvjð0; yÞþ
rujð0; zÞ � RTj. The adversary will choose the largest
value for the above load variables which means that the
above inequality becomes Eq. (5.5). We must note that
the adversary will choose Eq. (5.5) to be satisfied, pro-
vided that NOM first check for a possible migration and
then for resetting the load variables.

wuvrvj 0; yð Þ ¼ 2wuvMCj þ wvuruj 0; yð Þ þ " (5.3)

wuvrvj 0; yð Þ ¼ 2wuvMCj þ wvuruj 0; zð Þ þ " (5.4)

rvj 0; yð Þ þ ruj 0; zð Þ ¼ RTj (5.5)

wuvrvj 0; yð Þ ¼ 2wuvMCj þ wuvRTj þ "
� �

=2 (5.6)

By solving Eqs. (5.4) and (5.5), we obtain Eq. (5.6). By
substituting all of the above into Eqs. (5.1) and (5.2), we
obtain the following competitive ratio.

4MCj þRTj þ "=wuv

� �
=2MCj (5.7)

We define e as the network overhead incurred until
the NOM identifies that there is a beneficial migration
and successfully executes the migration. We expect that e
is much smaller thatMCj. tu

Lemma 6. The competitive ratio between NOM and OPT is
given by Eq. (5.7), provided that the preconditions are the same
with those of Lemma 5, with the difference that all datacenters
are able to generate load within the cloud.

Proof. It suffices to show that if datacenters other than nu
and nv generate load, then the ratio between NOM and
OPT lessens compared to that of Eq. (5.7). Notice that the
maximum load (associated with sj) that can be generated
within the cloud equals RTj, irrespective of how many
datacenters generate load within the cloud. In Eq. (5.7)
we assumed that the total load within the cloud is RTj.
The OPT is burdened with zero network overhead for the
above load. On the other hand, NOM is burdened with
zero network overhead for each unit of rujð0; zÞ, while
with wuv network overhead for each unit of rvjð0; yÞ.

In the subsequent text, we examine the behavior of the
ratio between NOM and OPT when another datacenter
(other than nv and nu) generates load. We discern the
cases where the aforementioned datacenter (hereafter
called nd) is in the same location as: (a) nx in Fig. 4, (b) nk

in Fig. 4, (c) nf in Fig. 4, and (d) nm in Fig. 4.

In terms of (a), for each unit of load of nx, NOM is bur-
dened with wux extra network overhead, while OPT with
wux þ wvu extra network overhead. We observe that the
ratio decreases against that of Eq. (5.7).

Regarding (b), we need to adjust Eqs. (5.1) and (5.2)
according to load generated by a datacenter nd that has
the same location as nk in Fig. 4. Therefore, wud �
rdjð0; zÞ þ wvd � rdjðz; T Þ will be added into Eq. (5.1),
while wud � rdjð0; yÞ þ wvd � rdjðy; T Þ into Eq. (5.2). If nd

is closer to nv compared to nu, then the adversary will
choose nd to generate load after time instance z (i.e.,
rdjð0; zÞ ¼ 0), so that the ratio between NOM and OPT is
maximized. On the other extreme, if nd is closer to nu,
then the adversary will choose rdjðz; T Þ ¼ 0. If nd is in
the half of the distance between nu and nd, then by choos-
ing any of the above is equivalent for the competitive
ratio. We must note that the adversary will choose
rdjðy; T Þ ¼ 0, irrespective of the location of nd. The
above is attributed to the fact that rdjðy; T Þ < rdjðz; T Þ.
Note also that due to the aforementioned facts, it holds
that rdjðz; T Þ ¼ rdjðz; yÞ.

First, we assume that nd is closer to nv compared to nu.
According to the above, nd can generate load during
[z, y]. Consequently, the adversary will choose
rdjð0; zÞ ¼ 0, and rdjðy; T Þ ¼ 0. Therefore, Eqs. (5.1),
(5.2), (5.4), and (5.5) become,

OPT sð Þ ¼ wvdrdj z; yð Þ þ wuvMCj (5.1)

NOM sð Þ ¼ wuvrvj 0; yð Þ þ wudrdj z; yð Þ þ wuvMCj (5.2)

wuvrvj 0; yð Þ ¼ 2wuvMCj þ wvuruj 0; zð Þ
þ wvdrdj z; yð Þ � wudrdj z; yð Þ þ "

(5.4’)

rvj 0; yð Þ þ ruj 0; zð Þ þ rdj y; zð Þ ¼ RTj (5.5’)

By combining Eqs. (5.4’) and (5.5’), and solving as per
rvjð0; yÞ, we get the equation Eq. (5.6’). To result in the pre-
vious equation we use also the fact that wuv ¼ wud þ wvd.
By substituting Eqs. (5.6’) into (5.2’) and taking the ratio
between NOM and OPT, we result in Eq. (5.7’). However,
we can see that Eq. (5.7’) is smaller than Eq. (5.7), provided
that rdjðz; yÞ > 0. Note that when rdjðz; yÞ ¼ 0, then
Eqs. (5.7) and (5.7’) become equal.

rvj 0; yð Þ ¼ 2wuvMCj þ wuvRTj � 2wudrdj y; zð Þ þ "

2wuv
(5.6’)

4MCj þRTj þ "=wuv

2 wvd=wuvð Þrdj z; yð Þ þ 2MCj
(5.7’)

By choosing nd being closer to nu against nv, the only
change is that instead of having 2ðwvd=wuvÞrdjðz; yÞ in
the denominator of Eq. (5.7’), we have 2ðwud=wuvÞ
rdjð0; zÞ. Consequently, the resulting ratio is also
strictly smaller than that of Eq. (5.7), provided that
rdjðz; yÞ > 0 (otherwise they are equal). On the other
hand, by choosing nd being located in the half of the
distance between nu and nv, then the ratio is equivalent
with Eq. (5.7’). In conclusion, the ratio between NOM
and OPT lessens if we demand from a datacenter like
nd to generate load.
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Regarding case (c), we follow the same reasoning with
case (b) and obtain Eqs. (5.1’), (5.2’), (5.4’) and (5.5’). First,
we assume that nd is closer to nv against nu. By combining
Eqs. (5.4’) and (5.5’), and solving as per rvjð0; yÞ, we do
not result in Eqs. (5.6’) but in (5.6’’). The above is attrib-
uted to the fact that the equation wuv ¼ wud þ wvd does
not hold in case (c) because of the location of nd � nf

(see Fig. 4). Specifically it holds that wud � wuv < wvd.
Therefore, by incorporating Eqs. (5.6’’) into (5.2’), the
ratio between NOM and OPT is given by Eq. (5.7’’). Con-
sequently, the ratio of Eq. (5.7’’) is strictly smaller than
that of Eq. (5.7), provided that rdjðz; yÞ > 0 (otherwise
they become equal).

rvj 0; yð Þ ¼ 2wuvMCj þ wuvRTj�
wuv þ wud � wvdð Þrdj y; zð Þ þ "

� �
=2wuv (5.6”)

4MCj þ rdj z; yð Þ wud � wuv þ wvdð Þ=wuv þRTj þ "
wuv

2 wvd=wuvð Þrdj z; yð Þ þ 2MCj
(5.7”)

By choosing nd being closer to nu against nv, the only
change is that instead of having 2ðwvd=wuvÞrdjðz; yÞ in the
denominator of Eq. (5.7’’), we have 2ðwud=wuvÞrdjð0; zÞ.
However, due to the location of nd � nf (see Fig. 4), it
holds always that wvd � wuv < wud. As a consequence,
the resulting ratio is also strictly smaller than that of
Eq. (5.7), provided that provided that rdjðz; yÞ > 0. On
the other hand, by choosing nd being located in the half
of the distance between nu and nv, then the ratio is equiv-
alent with Eq. (5.7’’). Therefore, the ratio between NOM
and OPT lessens if the adversary demands from a data-
center like nd � nf to generate load.

Regarding case (d), we observe that nd is closer to nv
than nu. Due to the above, the adversary will demand
from nd to generate load after time instance z. By apply-
ing the same reasoning as previously, we result in
Eqs. (5.1’), (5.2’), (5.4’), and (5.5’). By combining
Eqs. (5.4’) and (5.5’), and solving as per rvjð0; yÞ, we get
the equation Eq. (5.6’’’). To result in the previous equa-
tion we use the fact that wud ¼ wuv þ wvd (see Fig. 4 for
nd � nm). By plugging Eqs. (5.6’’’) into (5.2’), we result
in the ratio between NOM and OPT, described by
Eq. (5.7’’’). We observe that Eq. (5.7’’’) is smaller than
Eq. (5.6), under the premise that rdjðz; yÞ > 0.

rvj 0; yð Þ ¼ 2wuvMCj þ wuvRTj � 2wuvrdj y; zð Þ þ "

2wuv
(5.7”’)

4MCj þ 2rdj z; yð Þwvd=wuv þRTj þ "=wuv

2 wvd=wuvð Þrdj z; yð Þ þ 2MCj
(5.7”’)

We showed in the preceding text, that when data-
centers (other than nu and nv) generate load towards
sj, then the ratio between NOM and OPT becomes
smaller compared to Eq. (5.7). Therefore, the adver-
sary will demand from datacenters (other than nu and
nv) not to generate load. According to the above, the
competitive ratio between NOM and OPT is captured
by Eq. (5.7). tu

Lemma 7. The competitive ratio between NOM and OPT is
given by either Eqs. (5.7) or (7.8), provided that: (a) the NOM

performs all of the checks/actions; (b) the OPT and NOM per-
form each at most one migration, respectively; (c) If NOM per-
forms a migration, then it chooses the same destination with
OPT; (d) The load variables are infinitely reset; and (e) RTj is
greater than 2MCj.

Proof. Consider that sj is initially located on nu. We discern
three cases: (a) NOM and OPT do not perform migra-
tions, (b) OPT performs MuvjðzÞ, while NOM does not
perform any migration, and (c) OPT performs MuvjðzÞ,
while NOM performs MuvjðyÞ. In terms of (a), the ratio
between the NOM and OPT is always one (see Lemma 3).
Therefore, case (a) does not depend on whether the load
variables are reset or not. Regarding the case (b), we have
two subcases: (b.i) the load variables are infinitely reset
before OPT performs MuvjðzÞ. Consequently, (b.i) reduces
to (a). The second subcase (b.ii) is that the load variables
are reset after OPT performs MuvjðzÞ. Concerning case (c),
we have three subcases to discuss: (c.i) The load variables
are infinitely reset before the OPT performs MuvjðzÞ. We
can see that (c.i) reduces to (a); (c.ii) The load variables
are infinitely reset after the OPT performs MuvjðzÞ and
before NOM performs MuvjðyÞ. We also can observe that
(c.ii) reduces to (b.ii); and (c.iii) The load variables are
reset after both OPT and NOM perform their migrations.
From the above we conclude that the ratio between NOM
and OPT is not identified for the cases (b.ii) � (c.ii) and
(c.iii).

Investigating (c.iii) further, we observe that after both
OPT and NOM perform their respective migrations, they
will be burdened with the same network overhead.
Therefore, the resets of the load variables can take place
by having nv to generate infinite load, without changing
the ratio between them. The above situation is fully
investigated by Lemma 5 and Lemma 6. Therefore, the
largest ratio of the above situation is captured by
Eq. (5.7). All that remains is to find the largest ratio for
the case (b.ii), with the procedure of finding such a ratio
being explained analytically in the below text. More-
over, in the subsequent text, we also will identify the
datacenters that will be selected by the adversary to
generate load such that the ratio between NOM and
OPT be maximized. Because OPT performs MuvjðzÞ, we
conclude that nv must generate load. We also need to
examine whether the adversary will choose another
datacenter (other than nv) to generate load. Conse-
quently, we assume that an extra datacenter (other than
nv) called nd generates load. All possible cases of nd are
described below and depicted in Fig. 4: (b.ii.1) nd � nv,
(b.ii.2) nd � nx, (b.ii.3) nd � nm, (b.ii.4) nd � nk, (b.ii.5)
nd � nf , and (b.ii.6) nd � nu.

If (b.ii.1) happens, then only nd can generate load to
reset the load variables. However, because RTj >
2MCj, it means that NOM will migrate sj onto nv. The
above contradicts the assumption that we took as (b) that
NOM must not perform migrations. When (b.ii.2) takes
place, then for each unit of load generated by nx,OPT is
burdened with wvx, while NOM is burdened with wux.
However, wvx is greater than wux (see Fig. 4). Therefore,
the ratio between NOM and OPT decreases when nx gen-
erates load.
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In terms of (b.ii.3), (b.ii.4), and (b.ii.5), we observe that
the extra datacenter is located in the direction that goes
from nu towards nv. Therefore, it must hold that rujðz; T Þ
> rvjðz; T Þ þ rdjðz; T Þ � 2MCj. Otherwise, NOM must
perform a migration towards that direction, which results
in a contradiction. Note that in the above cases, nu does not
generate load; therefore, it holds that rujðz; T Þ ¼ 0.
Because RTj > 2MCj (precondition (e)), the loads gener-
ated by nd and nv cannot be reset before the aggregate
exceeds 2MCj. According to Eq. (6), when both nv and nd

generate load equaling 2MCj, NOM will migrate sj
towards a datacenter across the path between nu and nv,
which results in a contradiction. Therefore, if we want to
reach the threshold we must demand from nu to generate
always load.

If (b.ii.6) happens, then OPTðsÞ ¼ wuvrvjð0; zÞþ
wvurujðz; T Þ þ wuvMCj, while NOMðsÞ ¼ wuvrvjð0; T Þ.
During [0, z] both OPT and NOM produce the same net-
work overhead. Therefore, the adversary will choose
rvjð0; zÞ ¼ 0. During [z, T], the adversary will choose
only nv to generate load (because OPT is not burdened
with this load). However, in the above case, NOM will
perform MuvjðyÞ, which results in a contradiction. There-
fore, during [z, T] both nu and nv generate load such that
the load variables be infinitely reset. According to the
aforementioned cases, the network overheads produced
by OPT(s) and NOM(s) are given below (with F denot-
ing the number of resets performed):

OPT sð Þ ¼ F � wvuruj z; Tð Þ þ wuvMCj (7.1)

NOM sð Þ ¼ F � wuvrvj z; Tð Þ (7.2)

Because NOM must not perform any migration, we
mandate that Buvjð0; yÞ < 2wuvMCj. Note that the ratio
between NOM and OPT increases as the load generated
by nv increases. As a result the ratio between NOM and
OPT ismaximizedwhenBuvjð0; yÞ � " ¼ 2wuvMCj, with
e tending to zero. Consequently, Buvjð0; yÞ	 2wuvMCj.
Combining the above with Eqs. (4) and (5), we obtain
Eq. (7.3). For resetting the load variables, wemandate that
Eq. (7.4) be satisfied. By combining Eqs. (7.3) and (7.4),
and solving as perwvurujðz; T Þ andwuvrvjðz; T Þ, we obtain
Eqs. (7.5) and (7.6), respectively.

wuvrvj z; Tð Þ 	 2wuvMCj þ wvuruj z; Tð Þ (7.3)

rvj z; Tð Þ þ ruj z; Tð Þ ¼ RTj (7.4)

wvuruj z; Tð Þ 	 wuvRTj=2� wuvMCj (7.5)

wuvrvj z; Tð Þ 	 wuvRTj=2þ wuvMCj (7.6)

By substituting Eqs. (7.6) in (7.1) and (7.6) in (7.2), and
eliminating the common factor wuv, we obtain the ratio
(between NOM and OPT) described, as given by
Eq. (7.7). The aforementioned ratio is maximized when
F tends to infinity, as given in Eq. (7.8).

F RTj þ 2MCj

� �
= F RTj � 2MCj

� �þ 2MCj

� �
(7.7)

RTj þ 2MCj

� �
= RTj � 2MCj

� �
(7.8)

Previously we examined the case where exactly two
datacenters generate load. We concluded that the aforme-
netioned datacenters are nu and nv. Next, we investigate
the casewhere extra datacenters (other than nu and nv) gen-
erate load. First of all, if the extra datacenters are located in
the opposite direction (from nu towards nv), then OPT is
burdened with more network overhead compared to that
of NOM for each unit of load that comes from those data-
centers. The above is because in case of NOM sj is placed
closer to the extra datacenters as compared to the case of
OPT. On the other hand, if the aforementioned datacenters
are located in the direction from nu towards nv, then it must
hold that rujðz; T Þ > rvjðz; T Þ þ rdjðz; T Þ � 2MCj. In
the above inequality, rdjðz; T Þ represents the load gener-
ated by the extra datacenters. Given that rujðz; T Þ þ rvj
ðz; T Þ þ rdjðz; T Þ ¼ RTj, the above inequality means that
the load generated by nv when only nu and nv generate
load, it must be shared among the extra datacenters. How-
ever, we notice that OPT is burdened with zero load
regarding the load generated by nv. Therefore, in case of
extra datacenters, OPTwill be burdenedwith the load gen-
erated by nd. The above means that the ratio between the
NOM and OPT decreases. Consequently, under the pre-
conditions of this lemma, the competitive ratio between
the NOM and OPT is given by either Eq. (7.8) as captured
in case (b.ii) or by Eq. (5.7) as described by case (c.iii). tu

Corollary 1. We assume the same preconditions of Lemma 7,
with the difference being that in precondition (d) the number of
resets are not infinite but finite. As a result of which, the com-
petitive ratio is given by either Eqs. (5.7) or (7.7), with the lat-
ter being strictly smaller than Eq. (7.8).

Lemma 8. NOM and OPT choose the same destination when
migrating a service.

Proof. Assume that OPT makes a decision to migrate sj onto
nv, and NOM takes the decision to migrate sj onto nd.
Therefore, according to Eq. (6), nd must generate more
load than nv. The above means that OPT did not take the
optimal solution, which results in a contradiction. tu

Lemma 9. The competitive ratio is given by either Eqs. (5.7) or
(7.8), and it does not depend on the number of migrations
performed.

Proof. According to the previous lemmas and Corollary 1,
we have that the competitive ratio of NOM is given by
either Eqs. (5.7) or (7.8). By incorporating a number of N
migrations into the above equations, we can see that both
the enumerators and denominators are multiplied by N.tu

Theorem 1. NOM is 3.8-competitive, provided that the underly-
ing network is structured as a tree and the reset threshold is
equal to that of 3.5MCj.

Proof. According to Lemma 9, the competitive ratio
between NOM and OPT is given by Eqs. (5.7) or (7.8).
Therefore, we must identify the domination between
them. We can observe that when RTj attains large values
of the order of 10MCj, it holds that Eq. (5.7) is greater
than Eq. (L7.8). On the other hand, when RTj tends to be
equal to that of 2MCj, it holds that Eq. (7.8) is greater
than Eq. (5.7). Therefore, we equate the above equations
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to find the value of RTj that simultaneously minimizes
them. Before equating them, we must make an assump-
tion about e. As explained in Lemma 5, we expect that e
will be much smaller than MCj (i.e., " < < MCj). We
solve the aforementioned equation by generously assum-
ing that "=wuv ¼ MCj=10. By equating Eqs. (7.8) and
(5.7), we find two roots of RTj, one positive and one nega-
tive. Because RTj cannot attain negative values, we
exclude the negative root from our investigation. Conse-
quently, Eqs. (7.8) and (5.7) become almost equal when
RTj 	 3:5MCj, with the competitive ratio becoming 3.8.

rmj > ruj þ
X

8nk2A nuð Þ¼1;nk 6¼nm

rkj; 8nm 2 A nuð Þ ¼ 1 (10)

tu
Theorem 2. Given that an 1-hop migration of sj is performed

from nu onto nm, with nm satisfying Eq. (10), then the network
overhead decreases.

Proof. In case sj migrates onto nm, then the network over-
head increases by an amount equaling the second part of
the above inequality. The above is justified by the fact
that after sj migrates onto nm, it distances itself from the
load associated with nu or datacenters using nu to commu-
nicate with nm. The aforementioned load equals the sec-
ond part of the above inequality. On the other hand, the
network overhead increases by rmj. The above is attrib-
uted to the fact that after sj migrates onto nm, sj comes
closer to the load associated with nm and datacenters
using nm to communicate with nu. The aforementioned
load equals rmj. Therefore, the total network overhead
decreases when sj migrates on nm. In case sj does not
migrate on nm, then the network overhead increases. tu

Theorem 3. The competitive ratio dramatically increases when
the migration threshold is quite small.

Proof. Consider the case of two datacenters nu and nv, with sj
being initially hosted on nu. Assume that the migration
threshold is one. Therefore, NOMmigrates sj onto nv, when
it holds that Buvj � 1. Consider also that we have the time
instances z1 < z2 . . . < zn. In case nv generates load of
one unit at z1, then NOM will perform Muvjðz1Þ. In the
sequel, if nu generates load of one unit at z2, thenNOMwill
performMvujðz2Þ. If the above pattern repeats itself n times,
then OPTðsÞ ¼ n, while NOMðsÞ ¼ n� 2MCj þ 2n.
Therefore, the ratio between NOM and OPT becomes
2MCj þ 2. It can be seen that by increasing the migration
threshold, the ratio between NOM and OPT decreases. The
aforementioned ratio is minimized when the migration
threshold is twice the network overhead of performing a
migration from nu onto nv. tu

7 EXPERIMENTAL EVALUATION

This section presents an evaluation of the NOM algorithm
based on simulations that performed using NS2 [26].

7.1 Setup

For the cloud infrastructure, 25 different (tree-structured)
datacenter networks were generated. The number of hosted

services was between 30 and 150 depending on the network
size. The initial service placement on datacenters was on
random. The number of client entry points to the cloud
infrastructure varied by 10, 20, 40, and 60 percent the num-
ber of datacenters, chosen randomly.

Clients were clustered in groups, depending on their
entry points. Unless otherwise stated, we assume that a client
has two service usage modes MH and ML, with the first one
generating ten times more request/reply traffic than the sec-
ond one. To reflect the dynamic changes in client traffic, we
let the clients alternate between the two modes periodically.
We consider four different types of traffic variability, ultra-
high (UH), high (H), low (L) and ultra-low (UL), where the
period during which the clients stay within the same mode
was randomly determined from a uniform distribution
[1, 10], [1, 100], [50, 500], and [100, 1000], respectively. Finally,
we differentiate between three client families F1, F2 and F3,
where at most 5, 10 and 20 percent of clients that use a spe-
cific service can be inMHmode at the same time.

As a yardstick for the quality of the solutions derived by
NOM, we used a static offline optimal algorithm (SOPT)
that had a priori knowledge of the total request/reply traffic
(see [15] assuming no dependencies between VMs). Note
that we could exhaustively solve the problem in an optimal
offline dynamic way; however, such an approach would
lead in an acceptable execution time. To illustrate the work-
ing of SOPT, we use the following example. Let client
groups q1 and q2 with entry points n1 and n2, respectively,
generate traffic towards service sj initially hosted on n1.
Datacenter n1 is one hop away from n2, and the the network
overhead of migrating sj between these two datacenters is
one. Moreover, assume that during the time interval [1,5],
the traffic for q1 and q2 is ten and 100 bytes, but then changes
to 40 and ten bytes, respectively, for the interval [6,10]. An
online optimal algorithm would decide to migrate sj from n1
to n2 at time unit one, and then back to n1 at time unit six,
resuting in a total network overhead of 22 bytes (including
the service migration network overhead). In the case of
SOPT, the total traffic of q1 and q2 for sj is 110 and 50 bytes,
respectively, and the optimal static placement for sj is to be
hosted on n2. Therefore, SOPT migrates sj from n1 to n2 at
time unit one that results in a total network ovherhead of
51 bytes (including the migration network overhead). SOPT
performs all service migrations in the first time slot, and the
placement remains unchanged for the entire duration of the
experiment.

In addition, we compared NOM with the MIG algorithm
presented in [4]. MIG divides time into epochs and makes
the following considerations for each service sj. In each
epoch, MIG monitors for each datacenter nu, the network
overhead of serving all requests from this epoch by placing
service sj on nu. This network overhead is kept in a variable
named Luj. MIG keeps the service sj at nu until Luj reaches b.
Thereafter, MIG migrates sj to nw chosen uniformly at ran-
dom among datacenters with the property Lwj < b. If such a
datacenter does not exist, MIG does not migrate sj. For the
next epoch, variables Luj are reset to zero. In our experi-
ments, bwas expressed as a migration threshold factor mul-
tiplied by the migration network overhead of the service.
The crucial difference between our NOM and MIG is that
the latter performs a hard reset of load variables after
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starting a new epoch, while NOM does this based on our
theoretical analysis.

7.2 Experiments

The experimental evaluation was split into three sections.
Specifically, the first section concerns how the parameters of
NOM and MIG affect their performance for various client
traffic patterns and a fixed client family (F2). The second
section investigates the behavior of NOMandMIG for differ-
ent client families and a fixed client traffic pattern (L). Last,
the third section compared NOM andMIG for both different
traffic patterns and client families. In all experiments, the
thresholds of NOM and MIG were set in a relative way,
expressed as a factor of the service migration overhead. As
defined previously, a migration/reset threshold equals the
migration/reset threshold factor multiplied by the network
overhead of migrating the respective service. From here
onwards, when referring to a migration/reset threshold, it
will mean themigration/reset threshold factor.

7.2.1 Varying the Client Traffic Patterns

In a first experiment we vary the reset threshold of NOM
with the migration threshold fixed at 0.1. The above choice
is justified by the fact that the smaller the value of the migra-
tion threshold the greatest the range of the eligible values
for the reset threshold. Note that the reset threshold was
always greater than the migration threshold because other-
wise the migrations were suppressed.

Each variant was denoted as NOM-Rx, with x being the
reset threshold. The experiment was conducted for all client
traffic patterns UH, H, L, UL. Fig. 5a shows the network
load reduction that was achieved vs. SOPT.

As it can be seen, the performance of NOM improved for
H, L, and UL as the reset threshold increased. The opposite
holds for UH. Recall that a smaller reset threshold made
NOM more reactive to traffic changes which in turn led to
more migrations. When traffic changes were very frequent,

it led into migrations that could not be amortized. On the
contrary, when traffic changes were not so frequent, migra-
tions were more likely to be amortized, while delaying the
migration decision (by having a higher threshold) did not
bring any advantages. Overall, the greatest improvement
versus SOPT was achieved for H and L. As expected, the
improvement was comparatively small for UL, while no
improvement was achieved for UH. The best variant was
R10 closely followed by R50.

Fig. 5b shows the number of migrations. The reported
values were normalized to the largest number of migra-
tions performed in each case. We applied a separate nor-
malization for each traffic pattern, as it was not
meaningful to compare the number of migrations for dif-
ferent traffic patterns. As discussed above, the number of
migrations decreased when increasing the reset threshold.
The rate of this decrease was higher for UH, which further
confirmed that in this case small reset thresholds made
NOM overly reactive.

In a second experiment, we showed the behavior of
NOM when varying the migration threshold while keeping
the reset threshold constant at 10 (R10 was the best overall
variant in the previous experiment). Note that the migration
threshold could not be bigger than the reset threshold since
this would suppress all migrations. As can be seen in
Fig. 6a, the trends were similar to those of the previous
experiment. However, for UH, the performance degraded
for migration thresholds beyond 5.

As previously, the (normalized) number of migrations
performed decreased as the migration threshold increased
(see Fig. 6b), but the rate of decrease was stronger in all
cases. The above was reasonable since the migration thresh-
old suppressed migrations in a direct way. In fact, the num-
ber of migrations reached almost zero when the reset
threshold was equal to the migration threshold.

As we can see in Fig. 7, considering the traffic patterns H,
L, and UL the performance of MIG deteriorated as we

Fig. 5. Performance of NOM when varying its reset threshold and keeping fixed the migration threshold at 0.1.

Fig. 6. Performance of NOM when varying its migration threshold and keeping fixed the reset threshold at 10.
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increased its migration threshold. Specifically, in case of H,
SOPT performed always better than MIG. On the other
hand, for the case of L and UL MIG degraded to a point
(MIG-10 for L and MIG-50 for UL) where from that point
onwards MIG became worse than SOPT. Concerning UH,
MIG was consistently outpaced by SOPT. Particularly, MIG
resulted in better outcomes when increasing the migration
threshold up to the point of MIG-M5. After that point, MIG
worsened. Considering all of the client families, it is seen
that MIG achieved best results when the migration thresh-
old equaled 5.

Last, in Fig. 8, it is shown that the number of migrations
lessened as the migrations threshold increased. It is remark-
able that the number of migrations approached to zero
when the migration threshold exceeds 50. The aforemen-
tioned is justified by the fact that when the migration
threshold equaled 50, it means that no migration could be
performed unless the total load collected was more than
50 multiplied by the size of the service.

7.2.2 Varying the Client Families

In this section, we conducted a series of experiments to
examine the behavior of NOM and MIG compared to SOPT
when varying the client families. Note that the traffic pat-
tern was fixed (L).

Particularly, in the first experiment we considered the
network load reduction of NOM when varying the client
families and the reset threshold. As we can see (Fig. 9),
NOM performance dropped when increasing the reset
threshold. As explained earlier, the above is reasonable. It is
also remarkable that when the reset threshold ranged from
0.2 to 10, the network load reduction achieved by NOM
against SOPT in F1 was greater than that of NOM in F2, and
by far better than that of NOM in F3. The reason of the
above is that it was more probable for NOM to result in ben-
eficial migrations when the number of clients changing their

traffic patterns decreased. The above did not hold when the
reset threshold ranged from 50 to 1000. The justification is
that when the reset threshold increased excessively, then
the load variables recorded huge amounts of network load.
However, when the above happens, it is intrinsically more
probable that some beneficial migrations be suppressed.
Therefore, services may be locked-in at their current hosts.
Unambiguously, NOM achieved best overall results in case
of NOM-R0.2, with NOM-R0.5 and NOM-R1 being slightly
worse.

As demonstrated in Fig. 10, the variants of NOM fol-
lowed the same trend as that of the previous experiment
(see Fig. 9). The main difference between Figs. 9 and 10 was
that when varying the migration threshold, NOM became
worse against varying its reset threshold. Another differ-
ence was that when increasing excessively the migration
threshold at 10, NOM was inferior against SOPT; on the
other hand, in case of setting the reset threshold to 1000,
NOM remained slightly superior to SOPT. Last, it is seen
that NOM in F1 became worse that that in F2 and equal to
that in F3. The above was due to the services locked-in at
their current hosts when a great amount of network load
accumulated on the load variables (see the explanation in
the previous paragraph).

Last in Fig. 11, we showed the behavior of MIG when
varying the migration threshold size and keeping the same
settings as previously. The trends remained the same as pre-
viously. It seems that services were locked-in at their cur-
rent hosting datacenters when the migration threshold
ranged from 10 to 1000.

7.2.3 Comparing the Best Variants of NOM and MIG

In this section, we conducted a series of experiments to eval-
uate the performance of best variants of NOM and MIG.

Fig. 7. Performance of MIG when varying its migration threshold.

Fig. 8. Normalized number of migrations performed when varying the
migration threshold of MIG.

Fig. 9. Performance of NOM when varying the reset threshold and keep-
ing fixed the migration threshold at 0.1.

Fig. 10. Performance of NOM when varying the migration threshold and
keeping fixed the reset threshold at 10.0.
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Specifically, in Fig. 12, we demonstrated the performance of
best variants of NOM and MIG against SOPT under varying
client families and traffic patterns. It must be noted that we
have chosen NOM-R10 and MIG-5 as best variants of NOM
and MIG, respectively. As shown, NOM achieved by far
superior results against MIG irrespective of the chosen traf-
fic pattern and client family. As observed NOM achieved
network load reduction up to 70 percent against SOPT,
while up to 30 percent against MIG.

In Fig. 13, we chose the best variant of NOM and MIG
for each traffic pattern. As it can be seen from Fig. 5a and
Fig. 6a, the best variant of NOM for the traffic pattern UH
was NOM-R1000, while for the traffic patterns H, L, and
UL was NOM-R0.2. On the other hand, it is observed in
Fig. 7 that MIG-0.5 achieved the best results in terms of H,
L, UL. Note that MIG-10 was superior against its counter-
parts regarding UH. In Fig. 13, the aforementioned variants
were called NOM-BEST and MIG-BEST. As depicted in
that figure, the NOM approached the performance of
SOPT when the chosen traffic pattern was UH. Specifically,
NOM achieved network load reduction of -4.5, -2.5, and
-0.9 percent against SOPT when the client family was F1,
F2, and F3, respectively. It is remarkable that when the
traffic pattern was H, L, and UL, NOM achieved network
load reduction from 7.8 up to 80 percent against SOPT. On
the other hand, MIG achieved network load reduction
from -17.5 up to -5.7 percent against SOPT under UH;
while for the rest traffic patterns its network load reduction
compared to SOPT ranged from -1.4 up to 69 percent. It
must also be noted that by delving into the data of Fig. 13
we found that NOM achieves a performance difference
against MIG of at least 10 percent (up to 36 percent) for F1,
at least 3 percent (up to 22 percent) for F2, and at least 6
percent (up to 15 percent) for F3.

Last in Fig. 14, we showed the (normalized) number of
migrations performed between NOM-BEST and MIG-BEST

variants. As depicted in the figure, NOM performed always
more migrations against MIG. Specifically, when delving
into the details of both Figs. 13 and 14, we observed the fol-
lowing fact. When the difference between the performance
of NOM and MIG increased, then we had also an increase
in the difference between the number of migrations per-
formed by NOM and MIG. The above meant that better per-
formance reflected to more migrations.

The reason that NOM outperforms MIG is that the latter
resets the load variables in a harsh way when an epoch
ends without considering the collected load. On the other
extreme, NOM resets the load variables in a sophisticated
way, which is based on the collected load. By reducing the
duration of an epoch it is likely to result in the following sit-
uation. Consider two services that the optimal algorithm
would decide to migrate them. Assume that the load related
with the first service increases quickly, while the load of the
second service increases slowly. If the epoch is reduced,
then MIG may migrate the first service in the same way as
that of our algorithm. On the other hand, MIG may never
migrate the second service, because the load variables may
never reach the migration threshold.

8 CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we introduced the problem of deciding at what
point in time a service must be migrated to reduce the net-
work overhead. We proposed the network overhead migra-
tion algorithm (called NOM) as solution to the above
problem. We gave an analytical proof about NOM is
3.8 competitive when the underlying network is structured
as a tree. We conducted experimental evaluation to compare
NOM and the best known online algorithm within the cur-
rent literature (called MIG) to a static offline optimal algo-
rithm (SOPT). We found that NOM outpaces MIG in all
scenarios, while it is defeated by SOPT only in case of traffic
patterns that change very frequently.

Fig. 11. Performance of MIG when varying the migration threshold.

Fig. 12. Performance of NOM-R10 and MIG-5 when varying both client
families and traffic patterns.

Fig. 13. Performance of best variants of NOM and MIG for each traffic
pattern.

Fig. 14. Performance of best variants of NOM and MIG for each traffic
pattern.
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In the future, we plan to (a) incorporate machine learning
techniques to predict the underlying system dynamics for
improved performance of our online algorithms. (b) Adapt
NOM to work on general graph networks according to the
intuition given in Section 4.
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