
Received 26 July 2022, accepted 8 August 2022, date of publication 16 August 2022, date of current version 24 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3198971

Band-Area Resource Management Platform and
Accelerated Particle Swarm Optimization
Algorithm for Container Deployment in
Internet-of-Things Cloud
MINGXUE OUYANG 1, JIANQING XI1, WEIHUA BAI 2, AND KEQIN LI 3, (Fellow, IEEE)
1School of Software Engineering, South China University of Technology, Guangzhou 510006, China
2School of Computer Science, Zhaoqing University, Zhaoqing 526061, China
3Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

Corresponding authors: Jianqing Xi (jianqingxi@163.com), Weihua Bai (bandwerbai@gmail.com), and Keqin Li (lik@newpaltz.edu)

This work was supported in part by the Science and Technology Plan Project of Guangdong Province, China, under Grant
2014B010112007 and Grant 2016B010124010; in part by the Guangdong Province Educational Science Planning Project under Grant
2019KTSCX199; in part by the Zhaoqing Science and Technology Special Fund Project under Grant 2020G1004; in part by the Zhaoqing
University Science and Technology Projects under Grant zlgc201933; and in part by the Teaching Reform Project of University Public
Computer Course of Guangdong Province under Grant 2021-GGJGJ-012.

ABSTRACT The method of building and deploying applications through the combination of container
virtualization technology and a microservices framework has been widely used in Internet-of-Things clouds.
However, there are gaps and a lack of coordination mechanisms between the Internet-of-Things and cloud
computing. This study constructs a resource management platform, which is based on application container
virtualization technology and combined with the microservices framework. The platform provide a support
environment for the construction and deployment of Internet-of-Things cloud applications. However, there
is no unified specification for the microservices templates. Therefore, a new service model called tool
service was designed. The invocation relationship between services is studied, and developers can combine
services through the invocation relationship between services to form a service function chain. However,
container-based service deployment remains an unresolved issue. The deployment method of a container
involves the quality of service of end users and the profit of cloud providers. To balance the profits of
both parties, it is necessary to minimize the service response time and improve the resource utilization
of the cloud data center. To address this problem, an accelerated particle swarm optimization strategy is
proposed to realize service deployment. Through the invocation relationship between services, the execution
containers are aggregated, so as to reduce the service transmission overhead and improve resource utilization.
Compared with the experimental results of existing deployment strategies, the proposed optimization
strategy has significantly improved performance parameters such as service transmission overhead, container
aggregation, and resource utilization.

INDEX TERMS Accelerated particle swarm optimization, cloud computing, container, Internet-of-things,
microservices, multi-objective optimization.

I. INTRODUCTION
Cloud computing is a distributed computing model with
two salient characteristics: virtualization [1] and on-demand

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei-Wen Hu .

self-service [2]. Virtualization is the abstraction of comput-
ing and software resources, and provides various services to
end users, such as hardware, networks, and application lev-
els. Computing resources usually provide users with various
computing services in the form of virtual machines (VMs)
or containers, whereas the application level is provided to

86844 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1205-4730
https://orcid.org/0000-0001-8333-7415
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0002-2418-4460

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

end users using specific application patterns or models, such
as Microsoft Azure. On-demand self-service refers to the
automatic and self-service use of computing resources (such
as network, CPU, and storage) and software for users with
immediate needs in a specific time period, without manual
interaction with service providers.

In recent years, the Internet-of-Things (IoT) cloud has
provided specific application services for many application
fields by integrating IoT and cloud computing technology,
which is widely used by researchers and enterprises. How-
ever, in the IoT cloud environment, with the rapid growth
of end users and exponential growth of IoT devices, the IoT
cloud has encountered unprecedented challenges [3]. The
integration of IoT applications with the existing enterprise
business system on the cloud architecture into a complete
enterprise application system is a problem that cloud service
providers must consider. However, there are gaps and a lack
of coordination mechanisms between the IoT and cloud, and
service providers usually complement and integrate IoT and
cloud by offering IoT cloud platforms [4].

Because microservices architecture and IoT cloud applica-
tion systems have similar architectural goals, the microser-
vice approach has been widely used in the construction
and deployment of IoT cloud application systems [5], [6],
[7]. In contrast to traditional monolithic applications, the
microservices approach develops monolithic applications
into a set of fine-grained services through strong decoupling,
which are usually distributed in a cloud data center (CDC) in
the form of VM and container deployments. A lightweight
communication mode is adopted between services, and an
application system is constructed using a combination of
services [8]. In the IoT cloud, it is an effective method
to integrate the existing enterprise management system and
IoT applications using a virtualization platform based on an
application container [5]; that is, the virtualization platform
can integrate the microservices method into the development
of IoT cloud systems and deploy microservices using appli-
cation container technology. Therefore, this study proposes
a resource management platform based on an application
container. The application container includes users, applica-
tion services (such as microservices), messages, documents,
and a set of operational rules [13]. End users can add the
required enterprise business systems and IoT applications to
the application container in a self-service manner, according
to their own business requirements. The application system
in the platform can interact through cooperation between
services, and then use the computing resources of the CDC
through the coordination of the application container.

The application container virtualization platform can pro-
vide a running support environment for enterprise applica-
tions built using microservices. However, the deployment
and resource allocation of microservice instances are key
issues [9]. At present, the microservices deployment method
based on OS-level containers, such as the Docker, Linux
Container (LXC), and Solaris Zones, is a trend. Compared
with VM, this virtualization method is lightweight, and the

computing resources of the system are packaged through
namespace, which requires less storage resources and startup
time. Service providers can easily deploy and expand
microservices [10]. However, designing an effective service
deployment and resource allocation algorithm must consider
the quality of service (QoS) for end users and the profits
of cloud providers, such as reducing the response time of
services and improving CDC resource utilization. Based on
this, we balance the interests of users and cloud providers
by optimizing the service transmission overhead and CDC
resource utilization. In the process of service deployment, the
influence of the invocation relationship between services on
service deployment is considered, and services are combined
through the invocation relationship between services to form
a service function chain (SFC) [11]. Aggregate the execution
containers of the services in the SFC to the same physical
node or the same data center as much as possible, the goal is
to reduce the data transmission overhead of the service and
improve CDC resource utilization.

In the IoT cloud, for the multi-objective optimization
problem of microservices deployment and CDC resource
allocation, it is difficult to obtain the optimal solution
using traditional optimization methods (such as linear pro-
gramming and convex optimization). Heuristic strategy has
been widely used in combinatorial optimization problems
in dynamic IoT clouds, which can reduce the complexity
of the solution. Heuristic strategies include particle swarm
optimization (PSO), artificial fish swarm (AF), ant colony
optimization (ACO), bee algorithm (BA), genetic algorithm
(GA), grey wolf algorithm (WA), and evolutionary game
strategy. An improved PSO is the accelerated particle swarm
optimization (APSO) strategy [12]. To make the algorithm
converge faster and reduce the randomness of the algorithm,
the APSO strategy adopts only the global optimal solution
of the swarm in the iterative process. Here, in order to reduce
the service transmission overhead and improve CDC resource
utilization, we propose a multi-objective model of execution
container deployment based on the invocation relationship
between services. An improved ASPO algorithm is used to
solve the multi-objective optimization problem.

The main contributions of this study are as follows:
-First, this study uses the application container virtual-

ization technology to establish a resource management plat-
form between IoT and cloud computing. The core module
of the platform is a Band-area application container (BAC)
[13]. BAC contains documents, fine-grained services(such
as microservices), users, messages, and a set of operational
rules. End users can add the required application services to
BAC according to business requirements to integrate enter-
prise business systems and IoT applications.

-Second, to adapt to the interface characteristics of BAC,
we propose a service model called ‘‘tool service’’ based on
a microservices framework. Three invocation relationship
models between services are studied: pipeline relationship
(PR), production-consumer relationship (PCR), and random
handshake relationship (RHR). Developers can combine

VOLUME 10, 2022 86845

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

tool services into service function chains (SFCs) through
the invocation relationship between services to build new
applications.

-Third, this study establishes a service container deploy-
ment model that including service transmission overhead,
execution container aggregation, and resource load balancing
of the CDC.

-Fourth, based on the problem model, a multi-objective
optimization model of execution container deployment was
built. The model optimizes multiple objectives, such as the
service transmission overhead, execution container aggre-
gation value and resource load balancing of the CDC, and
deploys services with the constraint that the demand of exe-
cution container is less than the total amount for the server
resources.

-Finally, an improved accelerated particle swarm
optimization algorithm is built to solve the multi-objective
optimization problem of the execution container deployment
of services. The algorithm adopts crowding distance to obtain
the Pareto solution set, and selects the global optimal solution
through the weighted sum function value of the three opti-
mization objectives.

The remainder of this study is orgnized as follows.
Section II describes related work. Section III presents
the Band-area resource management platform. Section IV
describes our system model. Section V discusses the deploy-
ment strategy of service execution containers in detail.
Section VI discusses the experiments conducted, the results
of which validate the effectiveness of the proposed deploy-
ment strategy. Finally, Section VII presents conclusions and
future work.

II. RELATED WORK
A. OVERVIEW OF IoT CLOUD PLATFORM
At present, IoT cloud platforms have been applied in various
fields such as government, enterprise, medical treatment,
shopping, smart homes, transportation, and agriculture, pro-
viding end users with services such as large-scale sensor
equipment, networks, application system construction and
deployment, computing and storage. The IoT Platform as a
Service has received extensive attention from various fields of
applications and researchers. It is meaningful to combine IoT
and the cloud into one framework to close the gap between
IoT and cloud computing [14]. According to different archi-
tectural methods, the IoT cloud platform includes frame-
works for application-based container virtualization and other
technical frameworks.

1) FRAMEWORKS FOR APPLICATION-BASED CONTAINER
VIRTUALIZATION
Typical application virtual containers are based on Microsoft
Azure and the Google App Engine (GAE). The technical
framework integrates the data generated by IoT application
systems and devices into a cloud platform through the inter-
face of the application container, and then uses the computing

resources provided by the infrastructure in the cloud. For
example, Microsoft’s Lab of Things platform [15], which is
mainly used for academic research, involves many fields such
as smart homes and medical care. The platform structure con-
sists of the client component HomeOS and Azure application
container. HomeOS is used to share data sent by IoT devices,
and the related application services are deployed in Azure.
Nimbits [16] platform is based on a limited embedded system
platform that mainly solves the problem of edge computing.
The important data of devices are pushed to servers in the
CDC through GAE, and some cloud application services are
deployed in the Google App Engine.

2) OTHER TECHNICAL FRAMEWORKS
The technical framework is an IoT cloud platform devel-
oped for specific application fields. For example, the Oracle
IoT [17] platform is applied to the processing of big data
generated by sensor devices, including four components:
Open, Insight, Secure, and Oracle. Open is responsible for the
network connection of the sensing device, Insight calculates
the business value of the device data, Secure is responsible for
the security of the device, data, and network connection, and
Big Data are predicted, analyzed, and integrated by Oracle.

In contrast to the above technical framework, the resource
management platform based on the Band-area application
container proposed in this study focuses on cooperation
between application containers and aims at business. Through
the interaction between tool services, cooperation between
services and Band-area application containers, and coordi-
nation between application containers, IoT applications and
existing enterprise applications are finally integrated into a
complete enterprise application system.

B. RELEVANT DEPLOYMENT STRATEGIES
Microservice instance deployment and CDC resource utiliza-
tion are important issues for IoT clouds, which are related
to balancing profits between end users and cloud providers.
Resource management optimization in the CDC has been the
focus of researchers. The relevant service deployment strate-
gies and scheduling methods are summarized as follows.

First, in a cloud environment, researchers tend to apply
meta-heuristic strategies to obtain optimal solutions (i.e.,
Pareto solutions) for multi-objective optimization problems.
The main reason is that the meta-heuristic strategy is a ran-
dom algorithm, which is characterized by uncertainty and is
not constrained by the mathematical properties of the opti-
mization problem itself. In addition, individuals in the pop-
ulation can better adapt to and interact with the environment
through cooperation, and have more opportunities to obtain
the global optimal solution. For example, Na et al. [18] con-
structed an evolutionary game method to optimize service
composition and deployment in the IoT cloud, the purpose
is to reduce device energy consumption and increase device
lifetime. Zhou et al. [19] proposed a multi-swarm parallel
adaptive differential artificial bee colony (MPsaDABC) algo-
rithm based on a bee foraging algorithm and an evolutionary

86846 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

strategy for cloud manufacturing service composition and
deployment problems. Guerrero et al. [20] constructed
an improved non-dominated sorting genetic algorithm
(GA-NSGA-II) for the cloud. This strategy mainly solves
the deployment problems of microservices containers and
considers the producer-consumer relationship between ser-
vices in the deployment process. The optimization objec-
tives are the threshold distance between microservices and
containers, load balancing of computing resources, relia-
bility of microservices and network distance between exe-
cution containers for microservices. Lin et al. [21] aimed
at the problem of microservices deployment and resource
management in the cloud. According to the dependency
between services, an ant colony optimization (ACO) strat-
egy for microservices deployment based on containers was
designed. The goals are the network transmission overhead
between services, resource utilization between nodes, and
failure rate of microservices requests. Bouzary et al. [22]
aimed to optimize the composition and deployment of cloud
manufacturing services, and a hybrid grey wolf optimiza-
tion algorithm was constructed based on the grey wolf opti-
mization algorithm and evolutionary operators (crossover
and mutation). Ma et al. [23] applied NSGA-III to design
a knowledge-driven evolutionary algorithm for the deploy-
ment and start-up of microservice instances in the CDC.
The resource utilization rate of the CDC is improved by
optimizing five objectives: the average idle rate of comput-
ing and storage resources, balance rate of computing and
storage resource loads, and actual idle rate of microservices.
Mousa et al. [24] proposed an offloading strategy based on
unmanned aerial vehicles (UAVs) in order to offload the
tasks of IoT devices to the edge network server of UAV for
execution, and ant colony optimization algorithm (ACO) is
used to optimize the shortest path between IoT device clusters
through which the UAV traverses, so as to reduce task delay
and UAV energy consumption.

Second, container-based microservices deployment and
scheduling strategies are widely used in IoT cloud envi-
ronment. For example, Filip et al. [25] built an efficient
real-time and dynamic microservice deployment strategy
in a heterogeneous cloud edge environment. The purpose
is to improve device utilization and reduce costs by opti-
mizing the microservice allocation to meet different user
requests. Liu et al. [26] established a multi-objective con-
tainer scheduling strategy based on optimization problems
such as Docker container resource utilization and task
response time in the cloud. The strategy considers multiple
objectives, such as CPU and memory utilization of phys-
ical nodes, container image transmission time, correlation
between containers and physical nodes, and container aggre-
gation. Tian et al. [27] modeled the problem of deploying
microservices for mobile edge computing (MEC) environ-
ments in an IoT cloud as a Markov decision process (MDP).
A distributed collaborative microservice deployment scheme
(MIDA) was built based on deep reinforcement learning
(DRL), and the main goal is to reduce the response delay

of the service to improve the quality of service (QoS).
Alwis et al. [28] used microservices to solve the problem of
integrating enterprise business systems with the Industrial
IoT cloud (IIoT), and adopted the k-Means clustering algo-
rithm to optimize container deployment.

Third, owing to the effectiveness of particle swarm
optimization (PSO) algorithm in multi-objective optimiza-
tion problems, researchers have applied PSO as an opti-
mization strategy in cloud environments. For example,
Ramezani et al. [29] proposed a fuzzy particle swarm opti-
mization strategy for the impact of VMmigration in the CDC
on application services. The main goal is to reduce the trans-
mission time and power consumption and improve resource
utilization. Kumar et al. [30] modeled an energy-saving
scheduling strategy based on particle swarm optimization
(PSO) technology to reduce the energy consumption of the
CDC, task execution time, and cost in a cloud environ-
ment. Adhikari et al. [31] constructed a high-efficiency and
energy-saving task scheduling strategy based on accelerated
particle swarm optimization (APSO) for the deployment
of execution containers in an IoT cloud environment. The
optimization objectives of the strategy were task computing
time, energy consumption, and CDC resource utilization.
Mainak et al. [32] used accelerated particle swarm optimiza-
tion (APSO) to establish an application service upload opti-
mization strategy, which uploads resource-intensive tasks to
a cloud data center (CDC) for processing in a fog cloud
environment, aiming to overcome the resource constraints
of fog devices. Huang et al. [33] built a task schedul-
ing strategy based on particle swarm optimization (PSO)
algorithm in a cloud environment. The purpose was to
reduce the task completion time and resource cost and
improve resource utilization. Wang et al. [34] formulated
an improved competitive particle swarm optimization algo-
rithm to improve the scheduling efficiency of cloud comput-
ing resources in the cloud. The optimization goals are the
completion time of the tasks, power consumption, and load
balance. Mousa et al. [35] constructed a graphics processing
unit (GPU)-based [36] particle swarm optimization (PSO)
parallel strategy. The optimization goal is to minimize the
flight distance of UAV between IoT device clusters, so as to
reduce the flight time and energy consumption of UAV.

Unlike the previous work, our optimization objectives are
the service transmission overhead, execution container aggre-
gation and resource load balancing of the CDC, and we use
accelerated particle swarm optimization (APSO) to solve the
deployment problem of the execution container for service.
The deployment strategy proposed aggregates the execution
containers of services in the service function chain (SFC)
through the invocation relationship between services, aiming
to reduce the service transmission overhead and improve the
resource utilization of CDC.

III. BAND-AREA RESOURCE MANAGEMENT PLATFORM
To integrate enterprise applications, IoT applications and
users in the IoT cloud, we constructed a virtual resource

VOLUME 10, 2022 86847

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

FIGURE 1. The structure of the band-area resource management platform.

management platform based on Band-area application con-
tainer (BAC) as a Service (BaaS) called ‘‘wetoband’’ [37].
BAC is a virtual operation area that can be customized by
end users and is an aggregate composed of users, documents,
tool services, messages, and relevant operation rules. BAC
can be used to express a variety of things in reality, such as
organizations, individuals, and projects [13]. The wetoband
platform uses BAC as the core module and has two remark-
able characteristics.

(1) For application system integration, users can deploy
enterprise applications and IoT applications to BAC through
various operations provided by BAC (such as add, delete,
share, and co-share), and provide a running support environ-
ment for these application systems.

(2) For business collaboration, users can create BACs
suitable for various business types according to their business
requirements. On the one hand, in BAC, services are com-
bined into a service function chain (SFC) through the invo-
cation relationship between services to build an autonomous
business sub-application system. On the other hand, because
BACs can express organizations or individuals, the busi-
ness relationship between organizations or individuals can
be mapped to the collaborative relationship between BACs.
Subsequently, various business sub-application systems are
integrated into a complex and complete application system
through the link and cooperation between BACs.

A. BaaS PLATFORM STRUCTURE
The structure of the Band-area resource management
platform is illustrated in Figure 1. The platform can realize

FIGURE 2. The structure of tool service model.

enterprise business logic based on tool services under the
microservice architecture, and then integrate enterprise appli-
cations and IoT applications into a complete application sys-
tem through the SFC of tool services in BAC. In addition,
the BAC in the platform is abstracted into an independent
‘‘virtual space’’ and provides an invocation interface for ser-
vice developers to facilitate business cooperation between
BACs through the interaction between BACs. All computing
and storage requests for tool services from SFCs in BAC are
forwarded to the container-based scheduling engine of the
IaaS layer through a BAC engine, and the scheduling engine
performs resource scheduling.

End users can build, deploy, and migrate applications
based on the operations provided by the BAC of the BaaS
platform. The BaaS platform responds to user requests by
managing the SFCs and allocating computing resources using
a container-based scheduling engine. Without changing the
existing enterprise application system, users can use the
‘‘virtual space’’ provided by BAC to add non-IoT and IoT
applications in a self-service manner according to their own
business requirements in the BaaS platform, which provides
favorable application services and an operating environment
for end users.

1) TOOL SERVICE MODEL
Microservices architecture is not invented but is derived from
good practice [5]. However currently, there is no unified and
standard definition model for microservices. To adapt to the
BAC interface characteristics of the BaaS platform in the IoT
cloud environment, we designed a fine-grained service model
that can be deployed in BAC, called ‘‘tool service.’’ The tool
service model is shown in Figure 2.

The main advantages of this design are as follows. First,
the tool service provides two types of ports: the URL link port
and RunTool function port. The URL link port is used for end
users to start the execution tool service on the BaaS platform,
and the RunTool functional port is the SDK function provided
by the tool service development platform,which is convenient

86848 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

for developers and other application services to call; Second,
force the UI (user interface) in the template so that the end
user can directly operate to use the functional services pro-
vided by the functional module; Third, in the IoT cloud, the
code of a tool service may be executed in different places,
which is beneficial to the deployment and integration of IoT
applications. For example, a user page that controls a video
switch may be executed on a remote web server, whereas the
control code is executed on the embedded video system.

Category theory [38] and process algebra [39] can rigor-
ously characterize system specification, design, correctness
proofs, etc. Based on this, we used basic knowledge to for-
mally describe tool services.
Definition 1: Tool Service (TS) -A TS can be formally

defined as TS =< TInfo, TIN, TOUT, FD, BEH, ψ,
FunM >, where:
(1) TInfo = {TID, TName,URL,BID} describes the basic

information of the tool service. TID is the unique identi-
fication of the service, TName is the service name, URL
represents the URL of the service package, BID is the BAC
ID where the service is located;

(2) TIN denotes the input interface set for the tool service;
(3) TOUT is the output interface set for the tool service;
(4) FD = {< Obj,Act,Pre,Aff >} is a set of functional

feature description information for the service.Obj represents
the object processed by the service, Act indicates the action to
be performed to realize the function, Pre is the precondition,
Aff indicates the effect after the action is executed;
(5) BEH represents the external behavior of the service,

which is formally described by process algebra;
(6) ψ : {α|α ∈ BEH} → {Op ∈ TIN ∪ TOUT} is the map-

ping relationship between the behavior and the interface. That
is, the corresponding relationship between actions in behavior
description and operations in the interface description;

(7) FunM = {UI,Mdu} denotes the code or function body
of the tool service, UI represents the user interface, andMdu
is the function module.

2) TOOL SERVICES RELATIONSHIP MODEL
In the practice of microservices, with extensive coopera-
tion between services, a complex interoperability relationship
appears, which is essentially a partnership, mainly reflected
in the invocation between services, and through the invoca-
tion relationship of services to build applications. Generally,
the more services and businesses involved in the application,
the more complex the relationship. Considering the invoca-
tion cooperation mechanism between services, the following
invocation relationship definitions exist.
Definition 2: According to the complexity of the interac-

tion relationship between services, the invocation relationship
between tool services can be divided into three categories.

(1) The pipeline relationship (PR) refers to the service
TSi calling service TSj and waiting for the execution result
value of service TSj as the input value of TSi, which can be
described as PR(TSi, TSj). In an application, a service can
call multiple services. For example, a goods-query service

can call a goods-price service and a goods-stock service
simultaneously to obtain the price and stock quantity of
goods.

(2) Production-consumer relationship (PCR) means that
service TSi frequently calls service TSj, in order to avoid
service TSj consuming the computing resources of the phys-
ical node and the network resources in CDC due to repeated
calculation and transmission, that the TSj saves the execution
result data to the cache and waits for service TSi to find the
result when needed. Here, TSj is the producer of data and TSi
is the consumer of data, which is formalized asPCR(TSi, TSj).
For example, a video-display service calls a video-capture
service to obtain video data.

(3) The random-handshake relationship (RHR) indicates
the simultaneous operation (i.e., concurrent execution) of
services TSi and TSj, after the operation of TSj is completed,
notify TSi through a coordination mechanism (e.g., message),
and TSi receives the notification and obtains the execution
result of TSj, which is expressed as RHR(TSi, TSj). For exam-
ple, in the process of confirming the receiving address in the
random purchase of goods, send a confirmation message on
the message board of BAC; after receiving the information,
the customer clicks confirm.

Here, the service that makes a service calls (i.e., request)
to the outside is ‘‘master service,’’ and the called service is
‘‘slave service.’’ The invocation relationship set between the
services is described as SR = {PR, PCR, RHR}. Developers
can convert their business flow into service function chain
(SFC) on the BaaS platform based on the three service invo-
cation relationships. We adopt the definition method in [40]
to define SFC.
Definition 3: Service Function Chain (SFC) -An SFC is an

application chain composed of n (n≥ 1) services according to
the invocation relationship between services. By definition,
service function chains are allowed to be combined recur-
sively. The SFC can be represented as SFC = <TSs, Edgs>,
where:

(1) TSs = {TSj | TSj ∈ setof (TSs, SFC), 1 ≤ j ≤ K or j =
s or j = e} represents the tool service set (i.e., ‘‘node set’’);

(2) Edgs = {(TSi, TSj) | TSi, TSj ∈ setof (TSs, SFC), 1 ≤ i,
j ≤ K or i= s or j= e, i 6= j}, Edgs ∈ Typeof (SR) is the edge
set that describes the master-slave relationship between two
services.

The benefits of an SFC defined based on the invocation
relationship between services are as follows: (1) Reusability:
the invocation relationship between services in the SFC can
be stored in an XMLfile to generate an SFC template, namely
the tool service suite, which can be reused in multiple organi-
zations or personal BACs; (2) For deployment, services in the
same SFC mean that they have close interaction. Deploying
the execution containers of services in an SFC to the same
physical node or CDC as much as possible can reduce the
communication time. Note that we apply SFC to execution
container deployment in the next section; (3) For composi-
tion: the SFC is deployed in BAC to form a sub-application
system, and then multiple SFCs are combined into larger

VOLUME 10, 2022 86849

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

FIGURE 3. The supply-chain system based on SFC-chain and BAC-chain.

and complex application systems through the cooperation
between BACs.

According to the above definition, for example, the
supply-chain management system includes 3 organizations,
and the corresponding BAC of each organization is the sup-
plier BAC, E-store BAC, and client BAC. The dashed arrow
connects the SFCs, in the E-store BAC, there is an SFC
formed by shopping, price, inventory, video-display, video-
collection, and purchase services. The supply-chain system
integrated by SFC-chain and BAC-chain is shown in Figure 3.
Theorem 1: Tool Service Category (TSC)- The tool service

category TSC is formed by considering the tool service in the
SFC as the object and the arrow between the services as the
morphism.

Proof: Suppose TSi is a tool service of the SFC-chain,
ObjTSC = {TSi|i>0, i ∈ Z} be all objects set in the category
TSC. TSi→ TSj is the arrow between the tool services in the
SFC-chain, and MorTSC = {TSi → TSj|i, j>0; i, j ∈ Z}
represents all morphisms set in the category TSC. Let the
domain function be dom : MorTSC → ObjTSC, co-domain
function be cod : MorTSC → ObjTSC, and composition
function be ◦ : MorBC × ObjBC → MorBC. The system
TSC = (ObjTSC, MorTSC, dom, cod, ◦) is a category that is
proven as follows:

(1) Suppose ∀TSi,TSj,TSk ∈ ObjTSC, ∃u : TSi→ TSj, v :
TSj → TSk ∈ MorTSC, then v ◦ u : TSi → TSk ∈ MorTSC,
hence dom(v ◦ u) = TSi = dom(u), cod(v ◦ u) = TSk =
cod(v), so that matching properties is satisfied.
(2) Let w : TSk → TSm ∈ MorTSC, then w ◦ v : TSj →

TSm ∈ MorTSC, and (w ◦ v) ◦u : TSi → TSm ∈ MorTSC,
thus (w ◦ v) ◦u = w◦ (v ◦ u), so that composition properties
is satisfied.

(3) For ∀TS ∈ ObjTSC, there is a unique identity 1TS ,
such that dom(1TS) = cod(1TS) = TS. For ∀u ∈ MorTSC,
if dom(u) = TS then u ◦ 1TS = u; If cod(u) = TS, then
1TS ◦ u = u, so that identity properties is satisfied.

From the definition of the category [38], it can be seen
that the service in the SFC-chain as the object, and the arrow
between services as the morphism, which forms the tool
service category, that is, the system TSC is a category. �

The tool service object is the node in the TSC category
diagram, and the tool service morphism is a directed arc
on the category diagram that reflects the composition and
execution sequence of services. Here, service morphism is
used to describe the invocation relationship between services,
∀u ∈ typeof(SR). Services and service morphisms are linked
to form an SFC. In the microservice architecture, applica-
tions are templates generated through the composition of
microservices. According to the workflow patterns, service
composition methods include sequential, parallel, selection,
and circulation [41]. Selection and circulation are based on
sequential and parallel methods. Only sequential and parallel
compositions are described below.
Definition 4: Sequential composition co-limits for tool ser-

vice -Given two tool services TS1 =< TInfo1, TIN1, TOUT1,
FD1, BEH1, ψ1, FunM1 > and TS2 =< TInfo2, TIN2,
TOUT2, FD2, BEH2, ψ2, FunM2 >. The sequence compo-
sition co-limits of TS1 and TS2 are given by the identification
TSc =< TInfo, TIN, TOUT, FD, BEH, ψ , FunM > and two
synthetic morphisms f : TS1 → TSc and g : TS2 → TSc,
where:

(1) Tinfo = {TID, TName, URL, BID} denotes the basic
information of the composite service. TID is the unique iden-
tifier of the composite service, TName is the name of the
composite service,URL represents the URL of the composite
service, and BID indicates the BAC identifier;
(2) TIN = TIN1;
(3) TOUT = TOUT1 ∪ TOUT2 − Inner(TOUT1, TOUT2)

is the external output interface of the composite service that
no longer includes internal ports;

(4) FD = FD1 ∪ FD2;
(5) BEH = BEH1 ‖ BEH2 \{ α|α ∈ Inner(BEH1, BEH2)},

where Inner(BEH1,BEH2) represents the internal behavior
event of the composite service;

(6) ψ = ψ1 ∪ ψ2;
(7) FunM = FunM1 ∪ FunM2.
Definition 5: Parallel composition co-limits for tool service

-Given two tool services TS1 =< TInfo1, TIN1, TOUT1,
FD1, BEH1, ψ1, FunM1 > and TS2 = < TInfo2, TIN2,
TOUT2, FD2, BEH2, ψ2, FunM2 >. The parallel composi-
tion co-limits of TS1 and TS2 are given by the identification
TSc =< TInfo, TIN, TOUT, FD, BEH, ψ , FunM > and two
synthetic morphisms f : TS1 → TSc and g : TS2 → TSc,
where:

(1) Tinfo = {TID, TName, URL, BID};
(2) TIN = TIN1 ∪ TIN2;
(3) TOUT = TOUT1 ∪ TOUT2;
(4) FD = FD1 ∪ FD2;
(5) BEH = BEH1 ‖ BEH2 \{ α|α ∈ Inner (BEH1, BEH2)};
(6) ψ = ψ1 ∪ ψ2;
(7) FunM = FunM1 ∪ FunM2.
The difference between Definitions 4 and 5 lies in items

(2) and (3). The input interface of the sequential composition
service TSc is the interface of the service TS1, and the output
interface is the output interface of the service TS2 except the
interface that interacts with the service TS1; The input/output

86850 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

FIGURE 4. The co-limits.

interface of the parallel composition service is the union of
the input/output interfaces of the two services. The co-limits
of the sequential and parallel compositions of tool services
are shown in Figure 4.

In addition to the composition of services, the BaaS plat-
form provides a series of services for building non-IoT and
IoT application systems including service design, service
development, service deployment, service registration, ser-
vice discovery, system monitoring, IoT device management,
and infrastructure design. Furthermore, the BaaS platform
supports the interface connection between the tool service
and BAC and monitors the business system through project
management (such as service development progress control,
service defect testing, QoS detection, and service publishing).
The BaaS platform considers the heterogeneity of other appli-
cation systems and provides interface support for collabora-
tion and integration with other application systems.

B. TOOL SERVICES VIRTUALIZATION
In the BaaS platform architecture, tool services must be vir-
tualized to realize the transformation from business logic to
an application system. The tool service virtualization system
shown in Figure 5 includes the following.

(1) The infrastructure layer uses IT infrastructure (e.g.,
CPU, storage, network) to provide computing services to
users in the form of VM or container (such as docker), and
non-IoT and IoT applications are distributed across physical
nodes in the CDC in the form of tool service execution
packages.

(2) The tool service scheduling layer is responsible for
monitoring and maintaining the operation of the physical
node, and deploying the execution container instance of
service to the appropriate computing node through the
scheduling engine and load balancing strategy according to
the application call request. Note that we propose an exe-
cution container deployment strategy for the tool services in
Section V.

(3) The tool service conversion layer is primarily responsi-
ble for converting the non-IoT and IoT business applications
of users into tool service templates.

(4) Tool service composition layer: Based on non-IoT and
IoT business requirements, the tool services are combined
into an SFC according to the invocation relationship between
services to build sub-application systems and provide them to
users.

FIGURE 5. The tool service virtualization system.

(5) BAC composition layer: According to the business col-
laboration between organizations or individuals, it is mapped
to the links betweenBACs, and a complete application system
is constructed through the links between BACs.

The BaaS platform provides developers with programming
interfaces, tool service template specifications and standards,
so that developers can develop new SFCs according to busi-
ness requirements and integrate them into existing business
application systems; and the tool service is deployed to the
computing node for execution through the container-based
scheduling engine.

IV. PROBLEM STATEMENT
The system model and objective function are established
in this section, and a multi-objective optimization model is
proposed to solve the problem model. The main parameters
and their descriptions are listed in Table 1.

A. SYSTEM MODEL
On the BaaS platform, users deploy their required non-IoT
and IoT applications to a Band-area application container
(BAC) through the operations provided by the BAC of the
platform. Applications in BAC send resource requests to
the scheduling engine through the BAC engine, and the
container-based scheduling engine finds a suitable server to
deploy the execution container of the service according to the
number of user requests received by the tool service and the
number of required resources. To reduce the response time of
the service and improve the resource utilization of the CDC to

VOLUME 10, 2022 86851

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

TABLE 1. Model parameters and description.

balance the interests between users and cloud providers, our
strategy is to aggregate the execution containers correspond-
ing to tool services in the same SFC to the same physical node
(computing server) or CDC as much as possible.

Suppose there are U users User = {User1, User2,
. . . , UserU }. The features of each user are formalized as
Useru=< Urequ,UPosu > and u ∈ {U}, where Urequ
represents the number of user requests for applications and
UPosu =< Ux , Uy > indicates the location of the user.
The user created B BACs BA = {BA1,BA2, . . . ,BAB}, and
deployed A applications App = {App1,App2, . . . ,AppA}
to the BACs, the features of each application are described
as Appa =< Ureqa, SFCa > and a ∈ {A}. Here,
SFCa =< TSsa,Edgsa > is the service function chain
of application Appa. TSsa = {TS1,TS2, . . . ,TSN }, the
features for each tool service are expressed as TSi =<
Tsreqi,Req_CPUi,Req_Memi,RThri >, i ∈ {N }. Tsreqi is
the number of calls to the tool service TSi; Req_CPUi and
Req_Memi are the amount of CPU and memory resources
required for one call to the tool service, respectively; RThri
is the request threshold for tool service, that is, the maximum
number of service requests.

At the IaaS layer, multiple cloud data centers (CDCs)
connected by an internal high-speed network are distributed

at different locations in two-dimensional space. Each CDC
contains multiple physical nodes, which are represented by a
set of PM = {pm1, pm2, . . ., pmP}. For each physical node,
is formalized as pmk =< pm_CPUk , pm_Memk , pm_Posk >,
k ∈ {P}. pm_CPUk and pm_Memk are the CPU and mem-
ory resources, respectively, pm_Posk is the physical node
location.

Tool service TSi is encapsulated and executed in the execu-
tion container conl , which is expressed as alloc(TSi) ≡ conl
(l ≥ 1). To effectively utilize resources and balance the
load, when the actual number of service requests RTRi =
Ureqa×Tsreqi exceeds the thresholdRThri, additional execu-
tion container instances must be started. The scaling number
of execution container instance is Consi = dRTRi/RThrie =
d(Ureqa × Tsreqi)/RThrie. However, starting each execution
container instance consumes a certain amount of resource.
Therefore, multiple execution containers must be deployed in
each physical node, which is expressed as alloc(conl) ≡ pmk .
Definition 6: Deployment strategy for the execution con-

tainer instance of tool service (TSDS) -For P heterogeneous
physical nodes PM in the CDC, N execution container
instances of tool services are deployed, which are defined as:

Stra(TS,PM) = [xik]N×P (1)

here, xik = [0, 1] indicates the state of the execution container
instance of the tool service TSi deployed on physical node
pmk , 1 ≤ i ≤ N and 1 ≤ k ≤ P. xik = 1 means allocated;
otherwise, it is not allocated.

B. OBJECTIVE FUNCTION
Here, we establish the following three objective functions:
service transmission overhead, resource load balancing of
CDC, and execution container aggregation.

1) SERVICE TRANSMISSION OVERHEAD
In CDC, because the server nodes use high-speed network
interconnections, the noise interference of the channel can be
ignored. Therefore, the data transmission overhead between
services depends on: the number of calls (requests) between
services, amount of data transmission between services, size
of the execution container image, and the network distance
between the physical nodes hosting the execution containers.

In an SFC, the interaction between themaster and slave ser-
vices through calls generates data traffic, that is, the amount
of data transmission TTij, 1 ≤ i, j ≤ N . In a two-dimensional
space (X, Y), the distanceDist between the execution contain-
ers of interacting services is the network distance between the
physical nodes hosting the execution containers. The formula
is given by Equation (2):

Distkq =

{√
(Xk − Xq)2 + (Yk − Yq)2, k 6= q;

0, otherwise;
k, q ∈ {P}. (2)

Considering that the execution containers of master-slave
services can be deployed in multiple physical nodes, we use

86852 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

the average transmission overhead of multiple container pairs
between master and slave services to calculate the transmis-
sion overhead between the two services, which is defined as:

f1(X) =
P∑
k=1

N∑
i=1

{
xik
Consi

∑
(TSi,TSj)∈SFCa

Consj∑
l=1∧alloc(conl)≡pmq

xjq
Consj

(Tsreqij × Distkq × TTij)+ Dist ikp × ITi

}
(3)

where Dist ikp (k 6= p) is the distance from server pmp where
the execution container image of tool service TSi is stored
to deployment node pmk , ITi is the size of the execution
container image for tool service TSi.

2) RESOURCE LOAD BALANCING OF CDC
In the CDC, the consumption of CPU and memory resources
of all physical nodes should be in a balanced state to avoid
high-load and low-load problems. The high load makes the
physical node unable to respond to the service request in time,
and a low load will causes a waste of resources. To balance
CDC load, the load must be evenly distributed among the
physical nodes.

Here, the CPU and memory resource utilization of the
physical node pmk is the ratio of used resources to total
resources, which is calculated using Equation (4):

RUCPU
k =

∑N
i=1 xik

Ureqa×Tsreqi
Consi

× Req_CPUi

pm_CPUk

RUMem
k =

∑N
i=1 xik

Ureqa×Tsreqi
Consi

× Req_Memi

pm_Memk
(4)

The load-balancing rate of the CPU and memory resources
between the physical nodes is defined as follows:

Bal_cpu =
P∑
k=1

(
RUCPU

k − RUCPU
)2

Bal_mem =
P∑
k=1

(
RUMem

k − RUMem
)2 (5)

where RUCPU and RUMem are the average values of the CPU
and memory resource utilization for the CDC, respectively:

RUCPU =

∑N
i=1 xik

Ureqa×Tsreqi
Consi

× Req_CPUi∑P
k=1 pm_CPUk

RUMem =

∑N
i=1 xik

Ureqa×Tsreqi
Consi

× Req_Memi∑P
k=1 pm_Memk

(6)

To balance the resource load rate of the CDC and improve
resource utilization, we select the physical node with the
greatest resource load pressure as the load balancingmeasure.
This is formulated in Equation (7):

f2(X) =
1

Bal_cpu+ Bal_mem
max
1≤k≤P

×max(RUCPU
k − RUCPU ,RUMem

k − RUMem) (7)

3) EXECUTION CONTAINER AGGREGATION
In the process of application running, on the one hand, there
is data interaction between the services of the service func-
tion chain (SFC), which may consume considerable a lot of
network resources. To reduce the data transmission overhead
between tool services and improve the response speed of the
application, the execution container of the service with the
invocation relationship should be deployed to the same physi-
cal node or sameCDC asmuch as possible. On the other hand,
in the case of sufficient CDC resources, the execution con-
tainers where computing tasks are located are concentrated
to some nodes to improve resource utilization, so that some
idle nodes can be shut down to save energy consumption.
Thus, an aggregation of execution containers was generated.
Here, we propose using the edge distance between services
as a metric to measure the similarity between execution
containers [26].

At each physical node, the execution containers of one or
more services in the SFC may be deployed. The aggregation
degree of containers is measured by calculating the edge
distance between services in the SFC. The larger the edge
distance, the more aggregated the containers, and the shorter
the data interaction time between containers. In SFC, the
edge weights between adjacent services (TSi, TSj) ∈ Edges
are used as edge distances, i.e., Edistij = |wij|, i, j ∈ {N }.
However, the edge weights between services are related to
the invocation relationship between services, that is, different
invocation relationships can set different edge weights.

For example, suppose there is an SFC in the physical node:
TS1 → TS2 → TS3, let SR(TS1,TS2) = PR, the edge weight
w12 = 2; SR(TS2,TS3) = PCR, w23 = 3; then EdistSFCa =
5. Therefore, in CDC, the edge distance is calculated using
Equation (8):

EdistCDC =
P∑
k=1

∑
xik=1∧xjk=1∧i6=j

SR(xik , xjk)× wij (8)

where, wij is the weight of the edge, SR(xik , xjk) is defined as:

SR(xik , xjk) =

{
xikxjk , if (TSi,TSj) ∈ Edgs;
0, otherwise.

(9)

Here, we use the reciprocal of the edge distance as the
similarity between the containers, as shown in Equation (10):

f3(X) =
1

EdistCDC
(10)

C. PROBLEM MODEL AND CONSTRAINTS
Aiming at the three objective functions proposed above and
in order for these objectives to be optimal simultaneously, the
execution container deployment model based on the service
function chain is described as a multi-objective optimization
problem, and the model is defined as follows:

minimize f (X) = (f1(X), f2(X), f3(X)) (11)

VOLUME 10, 2022 86853

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

s.t.
N∑
i=1

xikReq_CPUi ≤ pm_CPUk , ∀pmk (12)

N∑
i=1

xikReq_Memi ≤ pm_Memk , ∀pmk (13)

N∑
i=1

xikRTRi ≤ RThri (14)

N∑
i=1

xik = 1 (15)

P∑
i=1

xik ≥ 1, i ∈ {N }, k ∈ {P} (16)

where X = [xik]N×P (X ∈ �) is the decision variable of the
deployment model.

Equation (11) is the optimization objective, including the
service transmission overhead, resource load balancing for
the CDC, and execution container aggregation.

Equations (12) - (16) represent the 5 constraints of the
problem model. Equations (12) and (13) are the CPU and
memory resource constraints of the physical nodes, respec-
tively. Owing to the limited CPU and memory resources
of the physical nodes, the amount of CPU and memory
resources consumed by executing container instances should
be less than the total amount of corresponding resources.
Equation (14) is the request constraint of the service, that
is, the actual number of requests to the service should be
less than the service request threshold. Equation (15) is the
mutually exclusive constraint of services, which is mainly
used to prevent multiple container instances of the same
service from competing for resources, and only one execu-
tion container instance of the same service can be hosted
in the same physical node. Equation (16) is the integrity
constraint of the service, which ensures that at least one exe-
cution container instance of each tool service is hosted in the
CDC.

The above optimization problem is aimed at reducing
the service transmission overhead, balancing the resource
load of the CDC, and aggregating the execution containers
of services in the SFC, and considering the total amount
of resources, service request, service deployment as con-
straints. As can be seen from the problem model, this is
an NP-complete problem. It is difficult to find an optimal
solution using a polynomial strategy, and the meta-heuristic
method is a good method. Particle swarm optimization (PSO)
algorithm is a meta-heuristic approach. In particular, accel-
erated particle swarm optimization (APSO) improves the
calculation method of particle position and velocity, and real-
izes the rapid convergence of the global optimal solution by
reducing randomness [31]. Therefore, this study proposes an
improved accelerated particle swarm optimization (APSO)
strategy, which uses the crowding distance [42] and fitness
function value to evaluate the quality of the solution, and

finds the Pareto front throughmultiple iterations to effectively
obtain the optimal solution.

V. PROPOSED ACCELERATED PARTICLE SWARM
OPTIMIZATION ALGORITHM
In this section, we introduce the proposed APSO-TSDS
strategy, fitness function, and the algorithm design and
implementation.

A. OVERVIEW OF APSO
The accelerated particle swarm optimization (APSO) algo-
rithm is an improved version of the particle swarm opti-
mization (PSO) algorithm. The PSO was originally proposed
by Kennedy and Eberhart [43]. It is a swarm intelligence
optimization algorithm developed by simulating the forag-
ing behavior of birds. It has been applied to the field of
resource optimization and scheduling in cloud computing
environment.

During bird swarm foraging, individuals find food targets
in the search space by constantly adjusting their flight trajec-
tory. The factors that affect the flight trajectory of individuals
are their own experiences (i.e., personal best) and swarm
experiences (i.e., global best). The personal best (Pb) position
is the best position that an individual can find, and the global
best (Gb) position is the best position that all individuals in the
swarm can find. The entire bird swarm tends to move toward
the global best position. Through the continuous movement
of individual positions, that is, continuous iterations, the
swarm moves toward the target.

However, to improve the convergence speed of parti-
cle swarm optimization algorithm in global optimization,
researchers have constructed a variant of the accelerated
PSO, namely the accelerated particle swarm optimiza-
tion algorithm (APSO) [30], which uses only the global
optima for velocity updates. In an n-dimensional objec-
tive space, there are M particles are formalized as Pop =
{pop1, pop2, . . . , popM }. Let Xm = {x1m, x

2
m, . . . , x

n
m} and

Vm = {v1m, v
2
m, . . . , v

n
m} be the position and velocity vec-

tors of particle popm(m ∈ {M}), respectively. At any iter-
ation/time t, the velocity vector of each particle is updated
using Equation (17):

Vm(t + 1) = Vm(t)+ αε + β(Gb− Xm(t)) (17)

where ε ∈ [0, 1] denotes a random vector uniformly dis-
tributed between 0 and 1, α ∈ [0.1, 0.5]L, L is the variable
scale; β ∈ [0.1, 0.7]. The position vector is then updated
using Equation (18):

Xm(t + 1) = (1− β)Xm(t)+ Vm(t + 1) (18)

B. PARTICLE REPRESENTION
In the APSO, every particle in the swarm is a solution
of the problem. Based on the problem model proposed in
Section IV, we used a string to express the particles. Each par-
ticle is described as an array, which is the tool service set, and
the index is the identifier of the service. The content of each

86854 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

TABLE 2. The structure of particle popi .

tool service is the allocation list of execution containers, that
is, the list of physical nodes that deploy execution containers
according to the number of containers. To prevent multiple
containers of the same service from preempting resources on
the same physical node, in this agreement, the same physical
node ID can only appear once in the node list. For exam-
ple, there are K tool services, and the structure of particle
popi(i ∈ M) is shown in Table 2.
For the identifier of the physical node pmj(j ∈ {P}) where

the execution container instance of any service TSk (k ∈ {K })
in particle popi is located, we adopt a discrete binary vector
(i.e., 0-1 coding) to represent [41]. Assuming that there are
P = 120 physical nodes in the CDC, the encoding length of
the physical nodes is nVar = dlog2 Pe, and the conversion to a
binary vector is [1,1,1,1,0,0,0]. For example, the tool service
TS1 was deployed in three physical nodes. The deployment
list was {5, 3, 6}, which was converted into a binary array as
shown in Equation (19):

XTS1 =

 0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 1 1 0

 (19)

Then, the position of particle popi is expressed as Xi =
(XTS1 ,XTS2 , . . . ,XTSK), Xi is the candidate solution of the
problem model.

Because the state value of the particle position is limited
to 0 and 1 in the state space, we mapped a transition velocity
for each state value 0/1. The transition velocity between
position states 0 and 1 was calculated using a sigmoid
function [44]:

sigmoid(v) =
1

1+ exp(v)
(20)

x =

{
1, rand < sigmoid(v);
0, otherwise.

(21)

where v is the conversion velocity between position
states 0 and 1.

In APSO, changing the moving velocity and direction of
the particle popi and approaching the optimal solution in the
target space are key problems. Based on the previous analysis
of particle position representations, we refined the particle
position and velocity formulations.

At any iteration/time t, the updated formula of the
improved velocity for the particle is defined by Equation (22):

vm(t + 1) = vm(t)+ α(1, nVar)+ β(x∗m(t)− xm(t)) (22)

where m ∈ {nVar}, x∗m is the corresponding state position
of the optimal individual. The velocity update formula is
helpful for guiding particles to search for the global optimal
particle position to further improve convergence. The updated

formula for the improved position of the particle is given by
Equation (23):

xm(t + 1) =

{
1, rand < sigmoid(vm(t + 1));
0, otherwise.

(23)

C. THE FITNESS FUNCTION AND OPTIMAL SOLUTION
Here, we adopt APSO technology to solve the deployment
problem of the execution container for tool service, and
deploy multiple execution containers for each service to
appropriate physical nodes according to the objective opti-
mization model proposed in Section IV.C.

First, in the process of deploying the execution container
for the service, a normalization idea is adopted for each
objective function; that is, themaximum andminimum values
of each objective function of the particle popi are normalized.
The advantage of normalization is that it can eliminate the
influence of different amplitudes on the corresponding objec-
tive. The normalization function is as follows:

NFn(Xi) =
fn(Xi)− f minn

f maxn − f minn
(24)

where, 1 ≤ n ≤ 3, f minn and f maxn represent the maximum
and minimum values of the nth objective of the solution,
respectively.

Second, the weighted summethod proposed by Zadeh [45]
was used to aggregate each objective function into a fitness
function, which is formulated as follows:

fit(Xi) =
3∑

n=1

αnNFn(Xi) (25)

where, αn ∈ [0, 1] and
∑3

n=1 αn = 1. αn is the weight of each
objective function, which can be set according to the different
business objectives.

Here are several concepts related to objective optimization:
(1) The dominant relationship between individuals, let p and
q be any two different individuals in the particle swarm Pop,
if the each objective function value of individual p is better
than the value of individual q (fn(p) ≤ fn(q)), then individual
p dominates individual q (p ≺ q), that the individual p is
called non-dominated or non-inferior. Similarly, if the subset
of the objective function values of individual p′ is better than
the corresponding objective function values of individual q′,
and the values of other objective subsets are worse than the
values of individual q′, then individual p′ does not domi-
nate individual q′. (2) The Pareto optimal solution (front) is
an individual that is not dominated by other individuals at
any iteration/time t. In the Pareto optimal solution set, each
individual (solution) optimizes one or more objectives in the
objective space. (3) The crowding distance is the distance
between the non-dominated solution and Pareto optimal solu-
tion in the objective space [42].

We select the archive set through the dominant relationship
between individuals, that is, the Pareto set, and then the
global best individual with the smallest crowding distance

VOLUME 10, 2022 86855

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

and fitness function value is selected from the archive set.
The established fitness function helps evaluate the quality of
the solution (particles) during each iteration to find the Pareto
optimal solution as much as possible.

D. DEPLOYMENT STRATEGY FOR EXECUTION CONTAINER
The APSO algorithm realizes optimization by simulat-
ing the working principle of bird swarm foraging. Dur-
ing optimization, the particles move toward the optimal
objective by continuously adjusting their position and veloc-
ity. An overview of the deployment strategy of the execu-
tion container for tool services based on the APSO is as
follows:

1) PARTICLE SWARM INITIALIZATION
maximum and minimum flight velocity [−vmax, vmax],
velocity control factors α and β, coding length nVar, archive
set size nArch and iteration scale N_max. Then, the particle
swarm Pop = {popi|1 ≤ i ≤ M} is generated, whereM is the
size of the swarm.

2) ITERATIVE PROCESS
(a) Calculate the objective function value f i = [f1, f2, f3] and
fitness value fix i of each particle popi; Then, the personal best
position is updated, and the archive set Arch is selected based
on the dominance relationship;

(b) Select the particle with the smallest crowding distance
and fitness value from the archive set Arch as the global
optimal individual Leader ;
(c) Update the velocity Vi of each particle;
(d) According to the constraints of the problem model,

determine whether the physical node where each tool service
TSk in the particle popi is located satisfies the allocation
of the execution container. If satisfied, then complete the
allocation; otherwise, find the next physical node. Because
the execution container of the service TSk selects different
nodes each time and allocates Consk times; Therefore, only
when all execution containers of service TSk are allocated to
different physical nodes, the node allocation of service TSk is
completed, and the allocation of the execution containers of
all services is completed according to the allocation principle;

(e) Update the position Xi of each particle and repeat
Step (a).

3) ALGORITHM TERMINATION
When all particles complete the node matching of all execu-
tion containers for all tool services, it is called an iterative
process, update the position and velocity of the particles
and enter the next iteration until the iteration scale N_max,
terminate the algorithm.

E. IMPLEMENTATION OF DEPLOYMENT STRATEGY
The pseudo code of APSO for the Deployment Strategy of the
Tool Service Execution Container (APSO-TSDS) proposed
in this study is presented in Algorithm 1.

APSO for Deployment Strategy of Tool Service Execution
Container.
APSO-TSDS Algorithm 1: Deployment strategy for execu-
tion container.

Input:
TS = {TS1,TS2, . . . ,TSN };
PM = {pm1, pm2, . . . , pmP};
TS_R = {(TSi,TSj,ER)|TSi,TSj ∈ TS ∧ ER ∈ SR};
N_max, nVar,M , vmax, nArch, α, β;

Output:
TS_PM = {(TSi,PMi)|PMi ⊆ PM};

1: t ← 1;
2: [Pop, f]← iniPopulation(M);
3: fit ← Calfitness(Pop);
4: Arch← DetermineDomination(Pop, f);
5: while (t ≤ N_max) do
6: leader ← SelectLeader(Arch, fit);
7: for each popi do
8: for each TSk do
9: while (c ≤ Consk) do
10: while (true) do
11: for m = 1 to nVar do
12: Update the velocity vcm by Equation
(22);
13: if (vcm < −vmax)
14: vcm←−vmax;
15: elseif (vcm > vmax)
16: vcm← vmax;
17: end if
18: Update the position vcm by Equation
(23);
19: end for
20: j← transform2to10(xc);
21: if (Req_CPUk ≤ Re_CPUj∧

Req_Memk ≤ Re_Memj)
22: Update (k , j) to TS_PM ;
23: break;
24: end if
25: end while
26: end while
27: end for
28: if Dominates(popi.f , popi.Best.f)
29: popi.Best.X ← popi.X ;
30: else
31: popi.X ← popi.Best.X ;
32: end if
33: end for
34: [f ,fit]← Calfitness(Pop);
35: Arch← DetermineDomination(Pop, f);
36: end while
37: Return TS_PM ;

F. ANALYSIS OF ALGORITHM COMPLEXITY
The complexity of the APSO-TSDS algorithm is primarily
reflected in the selection of servers for the execution container

86856 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

TABLE 3. The tool service stack of SFC-based application.

of each service. Let N be the number of tool services and P
be the number of servers. In steps 7 to 33 of the deployment
strategy for the execution container, the outer loop needs to
performO(M×N) operations. In steps 10 to 25 of the internal
loop, Consk container instances need to be allocated for each
service. When traversing the binary position, O(nVar) oper-
ations need to be performed, and when judging whether the
remaining resources of the execution server meet the service
resource request, the worst case needs to perform P opera-
tions, and the best case only needs to perform 1 operation.
Thus, the container instance selection server needs to perform
operationsO(

∑Consk
c=1 nVar) (the best case) andO(

∑Consk
c=1 P×

nVar) (the worst case). The total number of operations to be
performed by all the particles is O(M × N ×

∑Consk
c=1 nVar)

(the best case) and O(M × N × (
∑Consk

c=1 P × nVar)) (the
worst case). Considering the number of iterations N_max,
the total time complexity of the APSO-TSDS algorithm is
O(N_max× (M ×N × (

∑Consk
c=1 P× nVar))) (the worst case)

and O(N_max × (M × N × (
∑Consk

c=1 nVar))) (the best case).

VI. EXPERIMENTAL EVALUATION
In this section, the performance of the APSO-TSDS algo-
rithm proposed in this study is investigated by experimentally
evaluating various QoS parameters. The experimental dataset
was obtained from the Alibaba Tracker V2018 [46]. Based
on the analysis of the real dataset of tracking V2018, 18 tool
services were adopted and the service function chain (SFC) is
constructed according to the invocation relationship between
services to form a sub-application system. The effectiveness
of the APSO-TSDS algorithm is examined by implement-
ing different user requests for sub-applications in CDCs of
different scales.

A. EXPERIMENTAL ENVIRONMENT
1) EXPERIMENTAL DATA SETUP
Tables 3 and 4 summarize the experimental data for the
APSO-TSDS deployment strategy. Here, we consider an
application that includes three SFCs: SFCa, SFCb, and SFCc.

Table 3 lists the 18 tool service stacks included in the
application. Among these, Video-monitoring, Video-display
and Video-capturing are tool services developed for sensor
video devices. Each line describes the basic information
of the service, including the SFC in which the service
is located, required resources Req_CPU and Req_Mem,
invoked (requested) quantity of service Tsreq, invoked
(requested) threshold RThr, number of execution container
instances Cons, size of container image Consize, and image
transmission overhead IT. Where Cons = dTsreq/RThre.

Table 4 shows the invocation relationship information
between tool services in SFC when the application receives
a unit (×1.0 times) of user service requests, including edge
set Edges, edge relationship ER (i.e., invocation relationship),
edge weight Weight, number of calls (requests) between ser-
vices Tsreqij and the amount of data transmission between
services TTij. Where (TSi, TSj) represents the invocation
relationship between the tool services of the SFC, (0,TSi) is
the edge where the client starts the tool service TSi in BAC.
The edge relationship and edge weight mapping between the
tool services are (RHR, 1), (PR, 2), and (PCR, 3). Here, the
edge weight is set according to the amount of data trans-
mission between services. Because the producer-consumer
relationship (PCR) has a large amount of data transmission,
a larger weight is set; the pipeline relationship (PR) is sec-
ond, and the random-handshake relationship (RHR) has the
smallest weight.

2) EXPERIMENTAL PARAMETERS
Here, we designed a heterogeneous cloud data center (CDC)
and set the parameters for the APSO-TSDS algorithm.
To evaluate the performance and effectiveness of the APSO-
TSDS algorithm, two clusters with different numbers of phys-
ical nodes were set up in the CDC, and their topology was
constructed based on the CloudSim platform.

(1) Number of physical nodes of two types for CDC:
sizeof (CDC) = [120, 240];

(2) Physical nodes have three types of CPU resource capac-
ities: pm_CPUk =[200.0, 400.0, 800.0];

VOLUME 10, 2022 86857

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

TABLE 4. The invocation relationship information between services in the application.

TABLE 5. Parameter settings of APSO-TSDS algorithm.

(3) Physical nodes have three types of memory resource
capacity: pm_Memk =[200.0, 400.0, 800.0];
(4) The network distance between physical nodes

Dist(pmk , pmq)=[1.0, 4.0, 8.0]. Where Distkq = 1.0 rep-
resents the same physical node, Distkq = 4.0 indicates the
same CDC, and Distkq = 8.0 denotes different CDCs.
The relevant experimental parameters for the APSO-TSDS

algorithm are listed in Table 5.
Experimental environment: Processor: Intel (R) Celeron

(R) 4-core CPU 1000M @1.80GHz 1.80GH 1.80GHz
1.80GH, Memory: 8G RAM.

To obtain valid data from the experiments, we randomly
generated code for testing using the random function of the
MathLab tool. Six user requests were implemented for the
two CDCs, Ureq = {×1.0,×2.0,×3.0,×4.0,×5.0,×6.0}.
10 experiments were performed for each user request, each
experiment was iterated 100 times, and the experimental data
were counted and averaged. Finally, the experimental data
were statistically analyzed and compared.

B. BASELINE DEPLOYMENT STRATEGIES
This study discusses the deployment strategy of the execution
container for tool services in an IoT cloud environment.
To verify the performance of the APSO-TSDS strategy, the
GA-NSGA-II [20], ACO-MCMS [21], and MSG-NSGA-III
[23] strategies were selected as baseline deployment strate-
gies in the experiments. These baseline deployment strategies
were introduced in related works and compared with the
proposed APSO-TSDS strategy.

-The GA-NSGA-II strategy uses genetic algorithm for
non-dominated sorting (NSGA-II) to realize microservice
deployment and resource allocation. The algorithm considers
four optimization objectives: the threshold distance between

microservices and execution containers, load balancing of
computing resources in the CDC, reliability of microser-
vices, and network distance between execution containers of
microservices.

-The ACO-MCMS strategy is based on an ant colony
optimization algorithm to handle the container scheduling of
microservices. The optimization objectives include the data
transmission cost between microservices, resource utiliza-
tion balance between servers, and the average failure rate of
microservices.

-The MSG-NSGA-III strategy adopts reference point-
based multi-objective NSGA-II algorithm (NSGA-III) to
solve the deployment and startup of microservices, which
optimizes five objectives: idle rate of computing and storage
resources, microservices idle rate, and load balancing rate of
computing and storage resources.

C. ANALYSIS AND COMPARISON
In this experiment, we evaluated the proposed APSO-TSDS
strategy using six user requests and two CDCs of different
sizes. The parameters evaluated include the container aggre-
gation value, service transmission overhead, and CPU and
memory resources utilization in the CDC.

1) CONTAINER AGGREGATION VALUE
The container aggregation value is the reciprocal of the
sum of edge weights between services in the SFC, which
describes the degree of aggregation of execution containers
between tool services. The smaller the container clustering
value, the more clustered is the container. In this study, the
execution containers of services with invocation relationships
are deployed to the same physical node or CDC as much as
possible, with the purpose of reducing the data transmission
overhead by reducing the data transmission network distance
between services, so as to improve the quality of service
(QoS) of users. Furthermore, if resources allow clustering
similar containers into a certain part of the physical nodes in
a cloud data center, especially when resources are sufficient,
it may improve the resource utilization of physical nodes.

Figure 6 shows a comparison of the execution con-
tainer aggregation values for each strategy. We find that the
MSG-NSGA-III strategy performs the worst because it only
focuses on resource utilization and balance rate and does not

86858 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

FIGURE 6. Comparison results of aggregation value for execution container.

FIGURE 7. Comparison results of service transmission overhead.

TABLE 6. Range of container aggregation values of four strategies.

consider the invocation relationship between services. The
performance of the GA-NSGA-II and ACO-MCMS strate-
gies is second, because the GA-NSGA-II strategy con-
siders the network distance between services, whereas
the ACO-MCMS strategy considers the network distance
between services and the data transmission overhead. To a
certain extent, the execution container of services with an
invocation relationship may be aggregated to the same phys-
ical node or CDC. The APSO-TSDS strategy performs the
best because the proposed strategy considers the invocation
relationship between services.

Table 6 lists the aggregate value ranges of execution con-
tainer for the four strategies. It can be seen from the table

that the APSO-TSDS strategy proposed has good aggregation
value ranges.

2) SERVICE TRANSMISSION OVERHEAD
The service transmission overhead includes the data transmis-
sion overhead between services and the transmission over-
head of the execution container image, which depends on
the amount of data transmission and the network distance
between physical nodes. The comparison results of the ser-
vice transmission overheads of the four strategies are shown
in Figure 7.

In the process of deployment for service execution con-
tainers, the GA-NSGA-II strategy only considers the network
distance between services and ignores the amount of data
transmission between services, whereas the ACO-MCMS
strategy considers the data transmission overhead between
services and ignores the transmission overhead of the con-
tainer image, which may affect the optimization of the
entire transmission overhead of the service. However, the

VOLUME 10, 2022 86859

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

FIGURE 8. Comparison results of CPU resource utilization in CDC.

MSG-NSGA-III strategy does not consider service transmis-
sion overhead.

It can be observed from Figure 7 (a) and (b) that in CDCs
with different numbers of physical nodes, compared with
other deployment strategies, the proposed APSO-TSDS ser-
vice deployment strategy significantly reduces the service
transmission overhead. This is because we simultaneously
consider the data transmission overhead between services,
transmission overhead of executing container images, and
impact of performing container aggregation on service trans-
mission overhead optimization. TheMSG-NSGA-III strategy
performed the worst in the optimization of service transmis-
sion overhead, followed by the GA-NSGA-II strategy and
ACO-MCMS, and our proposed APSO-TSDS deployment
strategy performed the best. In the CDC with 120 phys-
ical nodes, the APSO-TSDS strategy was better than the
GA-NSGA-II, ACO-MCMS, and MSG-NSGA-III strategies
9.36, 8.32, and 17.11, respectively; whereas in the CDC with
240 physical nodes, there were 11.26, 9.93, and 14.91, respec-
tively. The experimental results under two different CDC con-
figurations show that the APSO-TSDS strategy outperforms
the other deployment strategies for different numbers of user
requests.

Table 7 lists the statistical analysis of four strategies in
the IoT cloud. This may prove the effectiveness of the
APSO-TSDS strategy in the optimization of service transmis-
sion overhead. In the table, we give the maximum, average
and minimum value of service transmission overhead for
each strategy in different CDCs, respectively. The compari-
son shows that the APSO-TSDS strategy is better than other
strategies.

3) CPU AND MEMORY RESOURCE UTILIZATION OF CDC
The resource utilization of physical nodes in the CDC is the
ratio of resources used to total resources. Resource utilization
is typically improved by deploying multiple parallel execu-
tion containers in one physical node. When CDC resources

TABLE 7. Statistical analysis of service transmission overhead.

are sufficient, energy consumption can be reduced by improv-
ing resource utilization and shutting down idle servers to
increase the profit of cloud providers. Figure 8 and 9 show the
comparison results of CPU and memory resource utilization
of the four strategies in CDCs of different sizes.

As show in Figures 8 and 9, as the number of user requests
increases, the ACO-MCMS strategy maintains low resource
utilization because it mainly focuses on balancing the utiliza-
tion of CPU and memory resources among physical nodes,
that is, keeping all physical nodes in a balanced state, which
may reduce the resource utilization of the entire CDC and
cause resource waste. However, the GA-NSGA-II and MSG-
NSGA-III strategies consider improving resource utilization
but ignore the factor of aggregation for execution containers,
which affects the resource utilization performance of the
CDC. APSO-TSDS strategy has a rapid growth rate in the
utilization of CPU and memory resources. The main reason
is that, under the constraint of load balancing, by aggregating
the execution containers of services in SFC, the number of
execution containers in the computing server may increase,
thus improving the utilization of the server.

To facilitate discussion and understanding, Table 8 lists the
CPU and memory resource utilization of the four strategies
for CDCs of different sizes. In the case of 120 physical
nodes, compared with the GA-NSGA-II, ACO-MCMS, and
MSG-NSGA-III strategies, the average CPU utilization of
the APSO-TSDS strategy increased by 6.74%, 12.03%, and
3.43%, respectively. Memory utilization increased by 6.26%,

86860 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

FIGURE 9. Comparison results of memory resource utilization in CDC.

FIGURE 10. Comparison results of resource utilization in CDC.

TABLE 8. CPU and memory utilization of four algorithms.

22.18%, and 8.3%, respectively. For 240 physical nodes, CPU
utilization increased by 9.69%, 15.63%, and 3.15%, respec-
tively. Memory utilization increased by 9.94%, 32.82%, and
14.06%, respectively. The results from the two experiments
show that our proposed APSO-TSDS strategy has better uti-
lization values than the other deployment strategies.

As shows in Figure 10 and Table 8, the APSO-TSDS strat-
egy performs the best in terms of overall resource utilization
with different user request numbers and CDC.

VII. CONCLUSION
This study develops a resource management platform based
on the Band-area Application Container (BAC) as a Service
(BaaS), which is used to build and deploy IoT applica-
tions and existing enterprise business systems, and integrates
these applications into a complete application system through
cooperation between BACs. In the microservice framework,
because there is no unified template and specification for
microservices, to adapt to the interface characteristics of
the BAC, we propose a fine-grained application service
model called tool service. Three types of invocation rela-
tionships between tool services were constructed: pipeline
relationships, producer-consumer relationships and random-
handshake relationships. In BAC, developers can combine
services into service function chains (SFCs) to build new
sub-application systems through the invocation relationship
between services. Furthermore, the BaaS platform struc-
ture and tool service virtualization are described. To solve
the deployment problem of the execution container for tool

VOLUME 10, 2022 86861

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

service in the BaaS platform, three optimization objec-
tive functions are built: service transmission overhead,
resource load balancing in the CDC, and execution container
aggregation. Based on the optimization objective function,
an accelerated particle swarm optimization (APSO) for the
deployment strategy of the tool service execution container
(APSO-TSDS) was established. The APSO-TSDS strategy
searches for Pareto solutions based on crowding distance
and fitness values. We conducted simulation experiments
under different CDC size and numbers of user requests.
A comparison with the experimental results of three existing
deployment strategies shows that the APSO-TSDS strat-
egy has significant improvements in the execution con-
tainer aggregation value, service transmission overhead, and
resource utilization of the CDC, outperforming existing
deployment strategies. The proposed strategy reduces service
transmission overhead and improves the resource utilization
of the CDC through the aggregation of execution containers
for tool services. In the IoT cloud, resource allocation is
a key technology. The deployment environment (optimiza-
tion objective) of application services may change, such as
the change of resource type. Developers can configure the
objective parameters of the APSO-TSDS strategy according
to actual business needs, and provide technical support for
multi-objective optimization problems.

In future research, the APSO-TSDS strategy will be
applied to an actual IoT cloud environment. In addition, it is
important to evaluate the performance of IoT cloud data
centers, which is also related to the interests of clients and
cloud providers. The follow-up work will use queuing theory
to optimize the performance parameters of heterogeneous
cloud data centers in the IoT cloud, such as average waiting
time, cloud throughput and average response time.

REFERENCES
[1] I. Foster, Y. Zhao, I. Raicu, and S. Lu, ‘‘Cloud computing and grid com-

puting 360-degree compared,’’ in Proc. Grid Comput. Environ. Workshop,
Austin, TX, USA, Nov. 2008, pp. 1–10.

[2] T. Dillon, C. Wu, and E. Chang, ‘‘Cloud computing: Issues and chal-
lenges,’’ in Proc. 24th IEEE Int. Conf. Adv. Inf. Netw. Appl., Perth, WA,
Australia, Apr. 2010, pp. 27–33.

[3] A. Razzaq, ‘‘A systematic review on software architectures for IoT systems
and future direction to the adoption of microservices architecture,’’ Social
Netw. Comput. Sci., vol. 1, no. 6, pp. 1–30, Oct. 2020.

[4] P. P. Ray, ‘‘A survey of IoT cloud platforms,’’ Future Comput. Inform. J.,
vol. 1, nos. 1–2, pp. 35–46, Dec. 2016.

[5] B. Butzin, F. Golatowski, and D. Timmermann, ‘‘Microservices approach
for the Internet of Things,’’ in Proc. IEEE 21st Int. Conf. Emerg. Technol.
Factory Autom. (ETFA), Berlin, Germany, Sep. 2016, pp. 1–6.

[6] S. K. Datta and C. Bonnet, ‘‘Next-generation, data centric and end-
to-end IoT architecture based on microservices,’’ in Proc. IEEE Int.
Conf. Consum. Electron.-Asia (ICCE-Asia), JeJu, South Korea, Jun. 2018,
pp. 206–212.

[7] P. Krivic, P. Skocir, M. Kusek, and G. Jezic, ‘‘Microservices as agents in
IoT systems,’’ in Proc. KES Int. Symp. Agent Multi-Agent Syst., Technol.
Appl., May 2017, pp. 22–31.

[8] F. Bob,Microservices, IoT, and Azure, vol. 1, 11th ed. NewYork, NY,USA:
Spring, 2015, pp. 1–183.

[9] J. Gundaniya and C. H. Lung, ‘‘Investigation of containerized-IoT imple-
mentation based on microservices,’’ in Proc. Int. Conf. Simulation Tools
Techn. Guiyang, China: Springer, Aug. 2020, pp. 104–115.

[10] X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, ‘‘Application deploy-
ment using microservice and Docker containers: Framework and optimiza-
tion,’’ J. Netw. Comput. Appl., vol. 119, pp. 97–109, Oct. 2018.

[11] D. Bhamare, M. Samaka, A. Erbad, R. Jain, and L. Gupta, ‘‘Exploring
micro-services for enhancing internet QoS,’’ J. Trans. Emerg. Telecommun.
Technol., vol. 29, no. 11, pp. 1–13, Jun. 2018.

[12] X. S. Yang, S. Deb, and S. Fong, ‘‘Accelerated particle swarm optimiza-
tion and support vector machine for business optimization and applica-
tions,’’ in Proc. Int. Conf. Netw. Digit. Technol. Berlin, Germany: Springer,
Mar. 2011, pp. 53–66.

[13] M. Ouyang, J. Xi, W. Bai, and K. Li, ‘‘Band-area application container and
artificial fish swarm algorithm for multi-objective optimization in Internet-
of-Things cloud,’’ IEEE Access, vol. 10, pp. 16408–16423, 2022.

[14] A. Bhawiyuga, D. P. Kartikasari, K. Amron, O. B. Pratama, and
M. W. Habibi, ‘‘Architectural design of IoT-cloud computing integration
platform,’’ J. Telkomnika, vol. 17, no. 3, pp. 1399–1408, Jun., 2019.

[15] A. Samuel, A. Brush, and R. Mahajan, ‘‘Lab of things,’’ J. ACM SIGMO-
BILE Mobile Comput. Commun. Rev., vol. 18, no. 4, pp. 37–40, Jan. 2015.

[16] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, ‘‘Contemporary Internet
of Things platforms,’’ J. Comput. Sci., vol. 89, pp. 5–16, Jan. 2015.

[17] R. Payal and A. P. Singh, ‘‘A study of various hardware and cloud based
Internet of Things platforms,’’ R. EasyChair, no. 4335, Oct. 2020.

[18] J. Na, K.-J. Lin, Z. Huang, and S. Zhou, ‘‘An evolutionary game approach
on IoT service selection for balancing device energy consumption,’’ in
Proc. IEEE 12th Int. Conf. e-Bus. Eng., Beijing, China, Oct. 2015,
pp. 331–338.

[19] J. Zhou and X. Yao, ‘‘Multi-population parallel self-adaptive differen-
tial artificial bee colony algorithm with application in large-scale ser-
vice composition for cloud manufacturing,’’ Appl. Soft Comput., vol. 56,
pp. 379–397, Jul. 2017.

[20] C. Guerrero, I. Lera, and C. Juiz, ‘‘Genetic algorithm for multi-objective
optimization of container allocation in cloud architecture,’’ J. Grid Com-
put., vol. 16, no. 1, pp. 113–135, Mar. 2018.

[21] M. Lin, J. Xi, W. Bai, and J. Wu, ‘‘Ant colony algorithm for multi-objective
optimization of container-based microservice scheduling in cloud,’’ IEEE
Access, vol. 7, pp. 83088–83100, 2019.

[22] H. Bouzary and F. F. Chen, ‘‘A hybrid grey wolf optimizer algorithm with
evolutionary operators for optimal QoS-aware service composition and
optimal selection in cloud manufacturing,’’ Int. J. Adv. Manuf. Technol.,
vol. 101, nos. 9–12, pp. 2771–2784, Apr. 2019.

[23] W. Ma, R. Wang, Y. Gu, Q. Meng, H. Huang, S. Deng, and Y. Wu,
‘‘Multi-objective microservice deployment optimization via a knowledge-
driven evolutionary algorithm,’’ Complex Intell. Syst., vol. 7, no. 3,
pp. 1153–1171, Jun. 2021.

[24] M. H. Mousa and M. K. Hussein, ‘‘Efficient UAV-based mobile edge com-
puting using differential evolution and ant colony optimization,’’ J. PeerJ
Comput. Sci., vol. 8, no. e870, pp. 1–24, Feb. 2022.

[25] I.-D. Filip, F. Pop, C. Serbanescu, and C. Choi, ‘‘Microservices scheduling
model over heterogeneous cloud-edge environments as support for IoT
applications,’’ IEEE Internet Things J., vol. 5, no. 4, pp. 2672–2681,
Aug. 2018.

[26] B. Liu, P. F. Li, W. W. Lin, N. Shu, Y. Li, and V. Chang, ‘‘A new
container scheduling algorithm based on multi-objective optimization,’’
Soft Comput., vol. 22, no. 23, pp. 7741–7752, Jul. 2018.

[27] H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M. Bilal, ‘‘DIMA:
Distributed cooperativemicroservice caching for Internet of Things in edge
computing by deep reinforcement learning,’’ World Wide Web, vol. 10,
no. 2, pp. 1–24, Aug. 2021.

[28] A. A. C. D. Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, ‘‘Microser-
vice remodularisation of monolithic enterprise systems for embedding in
industrial IoT networks,’’ in Proc. Int. Conf. Adv. Inf. Syst. Eng. Cham,
Switzerland: Springer, Jun., 2021, pp. 432–448.

[29] F. Ramezani, M. Naderpour, and J. Lu, ‘‘A multi-objective optimization
model for virtual machine mapping in cloud data centres,’’ in Proc. IEEE
Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Vancouver, BC, Canada, Jul. 2016,
pp. 1259–1265.

[30] M. Kumar and S. C. Sharma, ‘‘PSO-COGENT: Cost and energy efficient
scheduling in cloud environment with deadline constraint,’’ Sustain. Com-
put., Informat. Syst., vol. 19, pp. 147–164, Sep. 2018.

[31] M. Adhikari and S. N. Srirama, ‘‘Multi-objective accelerated particle
swarm optimization with a container-based scheduling for Internet-of-
Things in cloud environment,’’ J. Netw. Comput. Appl., vol. 137, pp. 35–61,
Jul. 2019.

86862 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Resource Management Platform and Accelerated PSO Algorithm

[32] M. Adhikari, S. N. Srirama, and T. Amgoth, ‘‘Application offloading
strategy for hierarchical fog environment through swarm optimization,’’
IEEE Internet Things J., vol. 7, no. 5, pp. 4317–4328, May 2019.

[33] X. Huang, C. Li, H. Chen, and D. An, ‘‘Task scheduling in cloud com-
puting using particle swarm optimization with time varying inertia weight
strategies,’’ Cluster Comput., vol. 23, no. 2, pp. 1137–1147, Jun. 2020.

[34] Z. Wang, Y. Zhang, and X. Shi, ‘‘Cloud computing resource scheduling
strategy based on competitive particle swarm algorithm,’’ J. Hunan Univ.,
vol. 48, no. 6, pp. 80–87, Mar. 2021.

[35] M. H. Mousa and M. K. Hussein, ‘‘Efficient UAV-based MEC using GPU-
based PSO and Voronoi diagrams,’’ J. Comput. Model. Eng. Sci., vol. 2022,
no. 2039, pp. 1–21, Mar. 2022.

[36] M. H. Mousa and M. K. Hussein, ‘‘Toward high-performance computation
of surface approximation using a GPU,’’ J. Comput. Electr. Eng., vol. 99,
no. 107761, pp. 1–12, Apr., 2022.

[37] Wetoband. [Online]. Available: https://www.wetoband.com/
[38] M. Barr and C. Wells, Category Theory for Computing Science, vol. 1,

13th ed. New York, NY, USA: Prentice-Hall, 1990, pp. 16–281.
[39] R. Milner, Communicating and Mobile Systems: The π -Calculus, vol. 1,

11th ed. London, U.K.: Cambridge Univ. Press, 1999, pp. 3–151.
[40] W. H. Bai, J. Q. Xi, S. W. Huang, and J. X. Zhu, ‘‘Multi-granular appli-

cation management platform and multi-core-aware parallel scheduling
model,’’ J. Metall. Mining Ind., vol. 9, pp. 829–842, Jan. 2015.

[41] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros, ‘‘Workflow patterns,’’ Distrib. Parallel Databases, vol. 14,
no. 1, pp. 5–51, 2003.

[42] J. H. Zheng and J. Zou, Multi-objective Evolutionary Optimization.
Beijing, China: Science Press, 2017, pp. 1–291.

[43] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw., Perth, WA, Australia, Nov. 1995, pp. 1942–1948.

[44] J. Kennedy and R. C. Eberhart, ‘‘A discrete binary version of the particle
swarm algorithm,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. Comput.
Cybern. Simulation, Orlando, FL, USA, Oct. 1997, pp. 4104–4108.

[45] L. Zadeh, ‘‘Optimality and non-scalar-valued performance criteria,’’ IEEE
Trans. Autom. Control, vol. AC-8, no. 1, pp. 59–60, Jan. 1963.

[46] Alibaba Corp. Alibaba Cluster Trace V2018. Accessed: Sep. 26, 2021.
[Online]. Available: https://github.com/alibaba/clusterdata

MINGXUE OUYANG received the B.S. degree
from the National University of Defense
Technology, in 2004, and the M.S. degree from
the School of Software Engineering, South China
University of Technology, in 2010, where he is
currently pursuing the Ph.D. degree. His research
interests include cloud computing, parallel pro-
cessing, high-performance computing, formal the-
ory of software systems, and formal semantics.

JIANQING XI received the M.S. degree from
the National University of Defense. Technol-
ogy, in 1988, and the Ph.D. degree, in 1992.
He is currently a Full Professor with the South
China University of Technology and the Head of
the Infrastructure Software and Application Con-
struction Technology Laboratory of Guangdong
Province. His research interests include cloud
computing platform, parallel scheduling, and soft-
ware architecture, formal theory of software
systems, and formal semantics.

WEIHUA BAI received the M.E. degree from the
School of Computer Science, South China Nor-
mal University, in 2006, and the Ph.D. degree
from the School of Computer Science and Engi-
neering, South China University of Technology,
Guangzhou, China, in 2017. He is currently an
Associate Professor with the School of Computer
Science, Zhaoqing University. His research inter-
ests include cloud computing, parallel scheduling,
and software architecture. He is a member of the

China Computer Federation.

KEQIN LI (Fellow, IEEE) is currently a SUNY
Distinguished Professor of computer science with
the State University of New York. He is also a
National Distinguished Professor with Hunan Uni-
versity, China. He has authored or coauthored over
850 journal articles, book chapters, and refereed
conference papers, and has received several best
paper awards. He holds over 70 patents announced
or authorized by the Chinese National Intellectual
Property Administration. He is among the world’s

top five most influential scientists in parallel and distributed computing
in terms of both single-year impact and career-long impact based on a
composite indicator of Scopus citation database. His current research inter-
ests include cloud computing, fog computing and mobile edge computing,
energy-efficient computing and communication, embedded systems and
cyber-physical systems, heterogeneous computing systems, big data comput-
ing, high-performance computing, CPU-GPU hybrid and cooperative com-
puting, computer architectures and systems, computer networking, machine
learning, and intelligent and soft computing. He is an AAIA Fellow. He is
also a member of the Academia Europaea (Academician of the Academy
of Europe). He has chaired many international conferences. He is also an
Associate Editor of the ACM Computing Surveys and the CCF Transactions
on High Performance Computing. He has served on the Editorial Boards
for the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE
TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING,
the IEEE TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING.

VOLUME 10, 2022 86863

