
Received December 21, 2021, accepted February 1, 2022, date of publication February 9, 2022, date of current version February 15, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3150326

Band-Area Application Container and Artificial
Fish Swarm Algorithm for Multi-Objective
Optimization in Internet-of-Things Cloud
MINGXUE OUYANG 1, JIANQING XI1, WEIHUA BAI 2, AND KEQIN LI 3, (Fellow, IEEE)
1School of Software Engineering, South China University of Technology, Guangzhou 510006, China
2School of Computer Science, Zhaoqing University, Zhaoqing 526061, China
3Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

Corresponding authors: Jianqing Xi (jianqingxi@163.com), Weihua Bai (bandwerbai@gmail.com), and Keqin Li (lik@newpaltz.edu)

This work was supported in part by the Science and Technology Plan Project of Guangdong Province, China, under Grant
2014B010112007 and Grant 2016B010124010; in part by the Guangdong Province Educational Science Planning Project under Grant
2019KTSCX199; in part by the Zhaoqing Science and Technology Special Fund Project under Grant 2020G1004; and in part by the
Zhaoqing University Science and Technology Projects under Grant zlgc201933.

ABSTRACT Container virtualization methods based on application deployment levels have been
widely adopted in cloud-computing environments to implement application construction, deployment, and
migration. However, most application containers focus on the interface between the applications and hosts
and lack collaboration between application containers. This study proposes a new application container
model that contains users, application services, documents, and messages, called Band-area Application
Container. A salient feature of the Band-area is that it can express a variety of things in reality, such as
organizations or individuals. End users can build a complex and changeable application system through
cooperation between the Band-areas. However, the resource allocation of non Internet-of-Thing and Internet-
of-Thing tasks from the application container is an open issue. The resource allocation method of tasks
should not only improve the quality of the user experience, but also reduce energy consumption by
improving the resource utilization of the server. To solve this problem, an artificial fish swarm algorithm
is proposed to optimize container-based task scheduling. The algorithm considers not only the reliability,
processing time overhead, and energy consumption of the task, but also the resource utilization of the servers.
Experimental evaluation shows that, compared with the existing three algorithms, the algorithm obtains a
better improvement rate in task processing time overhead, energy consumption, reliability, and cluster load
balancing.

INDEX TERMS Application container, artificial fish swarm algorithm, Internet-of-Things, multi-objective
optimization, task scheduling.

I. INTRODUCTION
Cloud computing is a service-oriented computing paradigm
that provides users with three categories of services:
Infrastructure-as-a-Service (IaaS), Software-as-a-Service
(SaaS), and Platform-as-a-Service (PaaS) [1]. IaaS is the
virtualization hardware layer that consists of servers, storage,
and network devices in the cloud data center (CDC).
The various computing resources (e.g., CPU, memory,
network, etc.) of each server are packaged into VM or
container instances of different sizes and provide abstract

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

computing unit services for users and PaaS through APIs,
such as Amazon EC2. SaaS provides single or combined
services (applications) to the end users. Each application
is deployed in a specific PaaS container without managing
the infrastructure and platform for running the application,
such as Google Mail&Docs. PaaS provides users with a
platform for developing, testing, and deploying applications
including programming languages, databases, web servers,
and operating systems (OSs). It uses IaaS by requesting a
VM or container, such as the Google App Engine.

Although PaaS applications and microservices can be used
to create enterprise applications in SOA architecture, there are
drawbacks when building business systems [2], [3]. The PaaS

16408 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1205-4730
https://orcid.org/0000-0001-8333-7415
https://orcid.org/0000-0001-5224-4048

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

platform only provides coarse-grained modules, such as
Human Resources (HR), Office Automation (OA), Customer
Relationship Management (CRM) etc. While microservices
supports only fine-grained business goals. Neither of these
methods integrates diverse types of businesses into a
comprehensive enterprisemanagement system. The container
virtualization method based on the application deployment
level (i.e., the application container) is an efficient way to
solve these drawbacks [4]. For example, the Google App
Engine (GAE) can deploy diverse types of applications
into the execution container, provide a running environment
for applications, and apply the API interface between the
container and the host system to use the computing resources
of the IaaS layer [5].

However, most application containers focus on the inter-
face between the application and the host. In the Internet
of Things (IoT) cloud environment, with the rapid increase
in the number of people and IoT devices, and the close
integration of people and things, end users are also included
in the construction of business systems [6]. Based on this,
virtual resource management includes not only hardware and
software resources but also user resources and interaction
messages and between users and between users and things.
For this reason, an application container for coordinating and
managing these virtual resources is needed to improve the
collaboration between users and between users and things.
This study proposes an application container that considers
software, hardware, user resources, and interactive messages,
called Band-area Application Container (BAC). Users can
operate applications and microservices through various
operations (e.g., deploying, executing and deleting) provided
by BAC according to business requirements, and applications
and microservices use the computing resources provided by
the VM or container in the IaaS layer through the task sched-
uler between the application container and the host system.

Due to the VM instances consume too many resources and
require nearly a minute of deployment time, which reduces
the profits of cloud providers and quality of experience (QoE)
for users [7]. To compensate for the drawbacks of virtual
machine instances, a lightweight OS-based container tech-
nology is proposed, such as Linux container and docker.
They require less deployment time and computing resources.
However, the optimization of container resourcemanagement
is an NP-hard problem. However, related solutions and
implementations exist. For example, Kubernetes proposed a
two-phase strategy involving: Predicates and Priorities. The
Docker swarm proposes three scheduling strategies: Spread,
Random and Binpack. These strategies focus more on the
allocation of computing resources, and open issues remain
for the optimization of container resource management [8].
Strategies to optimize the processing time overhead, energy
consumption, and execution reliability for IoT and non-
IoT tasks have not yet been implemented. The container
allocation strategy shouldmeet the performance requirements
of both tasks and the CDC. To improve the processing time
overhead, energy consumption, execution reliability of IoT

and non-IoT tasks, andCDCperformance, further exploration
is required.

At present, there have been many scheduling strategies
are proposed which on the resources allocation of container,
and various meta-heuristic strategies have been adopted to
solve multi-objective optimization problems (MOPs). The
artificial fish swarm algorithm (AFSA) has been widely used
as a meta-heuristic strategy in MOPs [9]. AFSA is a global
optimization algorithm that does not depend on the math-
ematical properties of the optimization problem itself and
has characteristics such as uncertainty and probability [10].
In this study, we propose an artificial fish swarm algorithm
to solve the optimization of three objectives: reducing the
processing time overhead and energy consumption, and
improving the execution reliability of IoT and non-IoT
tasks. In addition, we consider the optimization for the load
balancing of physical nodes.

The contributions of this work are summarized as follows.
-Firstly, a new resource management model is estab-

lished, called Band-area Application Container (BAC), which
includes users, documents, fine-grained application services
(e.g., microservices), messages, and a set of related operation
rules. A BAC is a virtual resource unit that can express a
variety of things in reality (e.g., organizations or individuals).
End users can create BACs and objects in BACs, and build
complex and changeable application systems through links
between BACs. Furthermore, we describe the framework and
components of the BAC system.

-Secondly, we propose a container-based task scheduling
problem model that includes the processing time overhead,
energy consumption, and reliability models for the tasks. The
model of resource utilization for the execution container and
physical node was also considered.

-Thirdly, we established a multi-objective optimization
problem model for task deployment. The mode optimizes
the processing time overhead, energy consumption, and
failure rate for task execution and for each task to select an
appropriate container. According to the resource capacity of
the physical nodes as constraints, select an optimal physical
node to load the selected container for further execution.

-Finally, to solve the container-based task scheduling,
we propose an artificial fish swarm algorithm. The algorithm
adds a mutation operator to further search for a local optimal
solution.

The remainder of this paper is organized as follows.
Related work is introduced in Section II. Section III intro-
duces the band-area application container model and system
framework. The problem model is described in Section IV.
In Section V, an artificial fish swarm algorithm is described in
detail. Section VI presents the results and comparison for the
experiment. Finally, we give the conclusions in Section VII.

II. RELATED WORK
A. CONTAINER-BASED VIRTUALIZATION
In recent years, the Container-as-a-Service (CaaS) method
has been widely concerned and applied [11]. According to

VOLUME 10, 2022 16409

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

different application purposes, containers as a lightweight vir-
tualization technology can be divided into two
types:

1) OS-BASED CONTAINER TECHNOLOGY
The Linux-based implementations include the Linux Con-
tainer (LXC), Linux Vserver, FreeVPS, OpenVZ, and
Docker. Non-Linux implementations include BSD jails,
Solaris Zones, etc. The OS-based container virtualization
method allows multiple independent container instances
to share the host OS. Through the computing resource
isolation mechanism with the container as the granularity
unit, multitenancy can share the computing resources of
the same host OS. For example, the Linux container [12]
does not simulate an underlying hardware layer. Instead,
it provides users with a virtual environment with CPU,
memory, network space, and block I/O using native Linux
functions such as cgoup, namespace, and chroot. LXC can
be regarded as dividing the Linux kernel system into smaller
units, and each unit has its own computing resources and
a network stack for host applications. Docker [13] used
a kernel and an application-level API to extend LXC.
Docker further implements image layering so that supporting
libraries can be shared. This feature makes the Docker
containers lightweight, fast, and scalable. In addition, Docker
used the layered file system AuFS to facilitate container
migration.

2) APPLICATION-BASED CONTAINER TECHNOLOGY
The container technologies include Azure [14], EAC [15],
CloudSNAP [16], VAPP [17], Google App Engine [5], which
are deployment modes for implementing applications in a
cloud computing infrastructure, mainly focusing on rapid
and flexible deployment and rapid migration of applications.
In other words, the application container deploys applications
into the container and provides a running environment.
Applications in containers are independent of the host
OS and use the interfaces between the container and
host to use computing resources. However, application
containers are independent individuals, and there is a
lack of communication mechanisms between application
containers.

The two container-based technologies are mentioned
above based on the more refined and flexible use of
computing resources in the cloud computing infrastructure.
At the application container layer, application services can be
deployed quickly and flexibly, which is a type of computing-
resource management model. The model is not aimed at
business processing and cannot express things in reality, such
as the expressions of virtual organizations or individuals.
Therefore, it cannot meet the requirements of business
collaborative computing between organizations or individ-
uals. Based on this, we propose a Band-area Application
Container (BAC) model that can express a variety of things
in reality and complete business collaborative computing
through the links of BACs.

B. RELATED SCHEDULING STATEGIES
In the IoT cloud environment, resource management and
scheduling methods are key issues. This is because it affects
the consumption of computing resources and QoE of users.
This subject is a research hotspot. The related scheduling
strategies are summarized in the following three aspects.

First, various multi-objective optimization problems
(MOPs) exist in multiple fields, that require multi-objectives
to be optimized at the same time. However, these optimization
objectives often conflict with and influence each other.
Therefore, researchers have adopted various multi-objective
optimization strategies to obtain the optimal solution (i.e.,
Pareto solution) in a cloud environment. For example,
Garg et al. [18] aimed to improve resource utilization
and profit of VMs in the CDC, based on the prediction
model of the artificial neural network (ANN) in which a
multi-objective scheduling algorithm is built. The algorithm
satisfies the specified QoS requirements for users in the
SLA. Guerrero et al. [19] used the non-dominated sorting
genetic algorithm II (NSGA-II) for the resource management
optimization of containers in the cloud architecture; and
proposed a container allocation strategy that aims to balance
container workload, improve application reliability and
reduce network communication overhead. Adhikari et al. [20]
established a resource allocation and task scheduling strategy
using the bat algorithm (BA) and K-means for the VM
of the IaaS layer, aiming to minimize the completion time
and execution cost of tasks. Kaur et al. [21] aiming at the
impact of VM migration on the applications performance,
a multi-objective optimization model is designed based on
Fuzzy Particle Swarm Optimization (FPSO), which aims to
minimize transmission time and power consumption, max-
imize resource utilization of VM. Lin et al. [22] presented
a container-based scheduling strategy for microservices.
A multi-objective optimization model is established based
on ant colony optimization (ACO), which aims to reduce the
application failure rate and network transmission overhead,
and balance the workload of the nodes.

Second, because containers have the advantage of less
deployment time and resources to perform tasks, various
container-based scheduling strategies have been studied in
the IoT cloud. For example, Kaur et al. [23] modeled a new
architecture for the container selection and scheduling of
tasks at the network edge. The architecture adopts cooperative
game theory to maximize the task completion time and
reduce the NDC energy consumption. Yin et al. [24] aimed
at the service requirements of limited resources and low
latency in fog computing and proposed a container based
scheduling strategy. The main goal is to deploy most tasks
to the fog node to improve the number of concurrent tasks
and reduce delay of task. Adhikari et al. [25] formulated
a container-based energy-efficient scheduling strategy using
accelerated particle swarm optimization (APSO) technology
in an IoT cloud environment, aiming to minimize the
computational time and energy consumption of the task and
improve the resource utilization of the CDC. In addition,

16410 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

CO2 emissions and temperature emissions were also
considered.

Third, as a heuristic global optimization evolutionary
method, the artificial fish swarm algorithm (AFSA) has the
characteristics of distributed computing, independent of the
optimization problem itself and heuristic domain search,
and has been applied to cloud environments. For example,
Ying et al. [26] presented an AFSA that adds a new behavior
strategy and applies the algorithm to virtual machine alloca-
tion in the CDC, aiming to balance the load of clusters by
reducing the number of virtual machine migrations to achieve
energy conservation and environmental protection. The same
authors [27] established a new AFSA to solve container-
based scheduling problems in clouds, aiming to improve the
resource utilization and performance of clusters by adjusting
the mapping between the physical nodes and containers.
Qin et al. [28] proposed an improved AFSA combined
with tabu search for task scheduling in Hadoop, which can
improve system performance and reduce task running time.
Zhang et al. [29] designed an improved adaptive AFSA to
solve task scheduling with the aim of reducing the total
execution time of a task. Luo [30] developed an artificial fish
swarm algorithm to solve the cooperation between distributed
nodes in a cloud environment. The strategy can not only
ensure QoS and reliability but also effectively reduce the
number of VM migrations. Albert et al. [31] used AFSA
to assign tasks to clustering VMs in the cloud, aiming to
improve the resource utilization of VMs and the QoE of users.

Deffer from the abovementioned study, this paper con-
siders the processing time overhead, energy consumption
and execution reliability of the task as the optimization
objectives. To solve the task scheduling problem, an artificial
fish swarm algorithm was adopted. The algorithm selects
a container suitable for task execution based on the fitness
values of processing time overhead, energy consumption, and
failure rate of the task and allocates the selected container
to the server with the optimal standard deviation of resource
utilization of physical nodes.

III. BAND-AREA APPLICATION CONTAINER
We have developed a new resource management model based
on application container technology to provide the users with
a favorable user-defined virtual operation area [32], which is
equivalent to a ‘‘virtual space,’’ called Band-area Application
Container (BAC). The BAC includes users, documents,
application services, messages, and related operation rules.

Unlike the application-based container introduced in
Section II, BAC has two salient features:

(1) Abstraction: BAC is a kind of aggregation that can
express a variety of things, and users can use BAC to express
specific things according to actual application scenarios. For
example, BAC can be expressed as institutions, departments,
and individuals, as well as engineering projects.

(2) For end users, on the one hand, the end user can
control the life cycle of BAC and its contained object set after
verifying the authorization. On the other hand, users can build

FIGURE 1. The BAC model.

different business application systems through links between
BACs according to their own business requirements.

A. BAC MODEL
The BAC model is shown in Figure 1.

- Users refer to the operators of computer software, includ-
ing IoT users, non-IoT users, developers, and administrators.

- Documents refer to various data files that can be
processed using computer software.

- Application services are fine-grained application services
(e.g. microservices) or IoT devices application, which can
be deployed on any server in the entire server cluster like
‘‘tools.’’ We call this ‘‘tool services.’’

- Messages refer to the data transmitted between two
objects for communication purpose. Messages are conducive
to communication and collaboration between users and
between users and application services.

- Operating rules are user activity rules in the BAC that
restrict the implementation of the business. Examples include
authorization and sharing.

BAC is a functional module that provides the Link-URL
interface and RunBandArea functional interface, where the
interfaces can be called by applications and developers.
In addition, the provided user operation interface is used
to connect, configure, and operate the object elements in
the BAC. There are two main advantages of this design:
first, the user builds the business sub-system by forming
a small-grained application flow through the combination
of application services in the BAC; and second, BAC can
represent organizations (e.g., institutions, departments, etc.)
or individuals, that is, virtual organizations and virtual
users. Through the links between BACs to achieve business
collaboration between organizations and form a larger-
grained workflow to build the entire business system.

Owing to the formal method can describe a system model
strictly and accurately. Here, we use the basic knowledge of
category theory [33] to formally define BAC.
Definition 1: Band-area Application Container (BAC) -A

BAC can be represented by a nine-tuple, which is denoted as
BAC =< BID,BName,Users,TSs,Docs,Msgs,P,Bin,
Bout >, where:

(1) BID is the unique identifier of the BAC;
(2) BName represents the name of the BAC;

VOLUME 10, 2022 16411

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

FIGURE 2. The structure of BAC-based supply chain.

(3) Users = {Useri|i > 0} indicates the user set;
(4) TSs = {TSj|j ≥ 0} donotes the application services

(i.e.tool services) deployed in the BAC;
(5) Docs = {dock |k ≥ 0} is the document data set;
(6) Msgs = {msgl |l ≥ 0} indicates that the message set;
(7) P is the operation rule, that is, operation permissions.

The authority of the user is ultimately manifested in the
operation control of the object. The end user operates each
object (e.g., tool service, document) according to their own
role permissions. The mapping relationship between roles
and objects can be expressed as P = {p|p ∈ (2R → O) ∪
(R → 2O)}, where R represents the set of roles, O =<
TSs,Docs,Msgs > is a set of objects.
(8) Bin denotes the input interface set of the BAC;
(9) Bout is output interface set of the BAC.
According to Definition 1, for example, suppose the

supply chain management system involves 5 organizations
or multiple individuals; these are represented by BACs,
including client BAC, online store BAC, online bank BAC,
store BAC, express BAC, and supplier BAC. The dotted line
connects individual BACs, such as supplier managers and
staff. The links between BACs are formed according to the
business chain relationship, and Figure 2 shows its structure.
Theorem 1: BAC Category (BC)- BAC category BC is

composed of BAC as the object and the arrow between BACs
as the morphism.

Proof: Let ObjBC = {Bi|i > 0, i ∈ Z} be a set of all
objects of category BC, and theBi is a BAC of the BAC-chain.
MorBC = {Bi→ Bj|i,j > 0; i,j ∈ Z} be a set of all morphisms
in category BC, and Bi→ Bj is the arrow between the BACs.
Let dom : MorBC→ ObjBC be a domain function, and cod :
MorBC → ObjBC be a co-domain function, ◦ : MorBC ×
ObjBC→ MorBC be a composition function. The following
proves that the system BC = (ObjBC,MorBC, dom, cod, ◦)
is a category.

(1) Let ∀A, B, C ∈ ObjBC, ∃f : A → B, g : B →
C ∈ MorBC, then g ◦ f : A → C ∈ MorBC, which
satisfies matching properties, i.e., dom(g ◦ f) = A = dom(f),
cod(g ◦ f) = C = cod(g).

(2) Let h : C → D ∈ MorBC, then h ◦ g : B → D ∈
MorBC, and (h ◦ g) ◦ f : A → D ∈ MorBC, h ◦ (g ◦ f) :
B → D ∈ MorBC, which satisfies composition properties,
i.e. (h ◦ g) ◦ f = h ◦ (g ◦ f).

(3) For ∀A ∈ ObjBC, ∃!idA ∈ MorBC, such that
dom(idA) = cod(idA) = A, the description ∃! indicates only

FIGURE 3. The pushout.

existence, idA is the identity of object A. For ∀f ∈ MorBC,
if dom(f) = A, then f ◦ idA = f. If cod(f) = A, then idA ◦ f = f,
which satisfies the identity properties.

According to the definition of category [33], the systemBC
is a category, i.e., the category BC is composed of BAC as the
object and the arrow between BACs as the morphism. �
BC morphism reflects a directed arc on the BC category

chart, depicting the interaction and combination between
BACs (i.e., organizations). BAC as the object, that is a node
in the category graph. In this way, BACs and BACmorphisms
are intertwined to form a large BAC (organizational structure)
network.
Definition 2: Pushout -In the BC category, the pushout of

a pair of morphisms f : A→ B and g : A→ C with the same
source is an object R and a pair of morphisms q’ : B → R
and q′′: C → R, so that the square (commutative chart)
shown in Figure 3 is exchangeable: q’ ◦ f = q′′ ◦g, and
satisfies the following conditions: for any objects R’ and any
of morphisms r’ : B→ R’ and r ′′: B→ R for which r’ ◦ f =
r ′′ ◦g there is a unique morphism r : R → R’, such that
r ◦ q’ = r’ and r◦ q′′=r ′′. The pushout process is illustrated
in Figure 3.

For example, new cooperation can be generated through
the pushout of BC. Each time customer A purchases goods in
online store B, A has to transport the goods by express C. R
as the first successful collaboration, if there is a problem with
the goods, A can be returned to store B by express C, and the
return business collaboration R’ can also be carried out.

B. BAC SYSTEM FRAMWORK
In the BAC-based system framework, according to the type
of the function node, including the BAC server, application
scheduling actuator, computing node, and data storage.
Figure 4 shows the logical structure of the BAC system
framework.

The interface service as the entrance for administrators
and end users to enter the BAC system and provides user
account login and BAC operation interface (i.e., user-visible
interfaces). After the user passes authentication, the interface
provides an application system map and operation services.
The BAC system supports multitenancy. End users use BAC
under virtual isolation from each other, and use operation
rules to manage object instances such as users, documents,
message boards (i.e., carriers of messages), application
services (tools), as if everyone has a separate ‘‘virtual space,’’

16412 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

FIGURE 4. Logical structure of the BAC system framework.

FIGURE 5. The life cycle of BAC.

but the data in the space is secure and is not affected by other
user activities.

1) BAC SERVER (BAS)
The BAC is the basic computing resource unit of a BAC
system. The BAC engine (BAE) is a key component of the
BAC server, and its main functionalities of the BAC engine
are as follows:

- Control lifecycle: The BAC engine supports the end
user to operate the BAC and the objects of the BAC and
controls their life cycle. After the user is authenticated
and authorized, the user can create a BAC. Then the user
can deploy application services, upload documents, create
a message board, and establish a user relationship group in
BAC. When the BAS receives the request to create a BAC,
it notifies the BAC engine to obtain the server resources
required by the BAC, and then instantiates a new BAC to
control its life cycle. As shown in Figure 5.

-Support end users inmanipulating objects in the BAC: The
users can use various operating rules (e.g., sharing) provided
by BAC to manipulate objects in BAC. For example, user A
shares application services or documents with user B through
a sharing operation.

-Support end users to establish relationships between
BACs: Users can map business contacts of the business
system to BAC relationships and integrate different types of
businesses into a comprehensive enterprise management sys-
tem through BAC relationships. For example, the hierarchical
relationship between enterprise and departments, the supply-
demand relationship in the supply chain, and the timing
relationship between project tasks.

-Monitoring computing nodes: After the application ser-
vice instances are deployed to the BAC, BAE monitors
computing capacity and collects the status information of the
computing node based on the heartbeat mechanism, such as
the resource usage of the CPU, memory, and network traffic.
According to the configuration information of the calling
relationship between the application services, it provides
decision support for the scheduling of the application task set.

2) APPLICATION SCHEDULING ACTUATOR
The executor is mainly responsible for receiving application
call requests, performing task scheduling, and forwarding
application execution results. When the end user executes the
application service request in BAC, the scheduling executor
receives the application scheduling request and then deploys
the application service instance to the selected computing
node for execution according to the current job/application
scheduling request information and load balancing strategy,
to distribute large-scale concurrent tasks to the computing
node. It monitors and maintains the execution of application
services in the computing node and is responsible for caching
or forwarding the application execution results, or allowing
the computing node to directly return the execution results
to the user. Note that we provide a container-based task
scheduling algorithm in the next section.

3) COMPUTING NODES(CLUSTER)
The scheduler of the computing node receives the application
or task request and deploys the application or task to the
execution container (e.g., the Docker container) for exe-
cution. Simultaneously, the scheduler collects the resource
usage status of the computing node and feeds it back to
the BAC server using the heartbeat mechanism. In addition,
it maintains the database connection pool, current status
information of the task set, and cache of application execution
results based on the requirements for the application-
scheduling actuator.

4) DATA STORAGE
The main responsibility of data storage is to provide database
storage services for application services, documents, and
messages in BACs, as well as to cache the execution results
of application services and store execution container images.

VOLUME 10, 2022 16413

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

TABLE 1. Summary of parameters and their description.

IV. PROBLEM DESCRIPTION
This section presents the problem statement, including the
system and optimization objective models. Table 1 lists the
main parameters and their descriptions.

A. SYSTEM MODEL
End users (IoT and non-IoT users) start tool services through
Band-area Application Containers (BAC). The tool ser-
vices include memory-intensive or CPU-intensive tasks and
request-based or event-driven tasks. Task request includes
two cases: First, for tasks from devices (e.g., PCs, laptops,
mobile devices, etc.) of the non-IoT, they are uploaded to
the CDC for processing. Second, for tasks from devices
(e.g., Smart Phone, Smart Things, Arduino, etc.) of the IoT,
becausemost IoT devices have certain computing capabilities
(such as microcontrollers, microprocessors, SOCs, FPGAs,
etc.) and storage, they can usually execute fine-grained
applications or small computing tasks, which are called
‘‘local computing;’’ otherwise, long tasks or coarse-grained
applications in IoT devices need to be uploaded to the CDC
for further processing, called ‘‘remote computing’’ [34].
Remote computing can save the energy of IoT devices, so as
to improve the service life of device batteries. To simplify
the research on this problem, only remote computing is
considered for IoT devices.

The admission controller of the BAE determines whether
to receive a task by judging the execution authority of the
user and the resource availability of the computing node and
assigns the control right of the received task to the application
scheduling actuator for further processing.

Let B Band-area Application Containers exist, which are
formalized as BA = {BA1, BA2, . . ., B}. BA contains U users
and N tool services, represented as User = {User1, User2,
. . .,UserU } and TS = {TS1, TS2, . . ., TSN } respectively. There
are M IoT devices and V non-IoT devices. Each tool service
contains multiple tasks, so all tool services can be regarded
as a set of tasks T = {T1, T2, . . ., TK }, and the instruction size
of the task is measured by million instructions (MI).
For the CDC, we consider P heterogeneous physical nodes

(i.e., computing servers) connected by the same Intranet
High-speed Network, which is denoted as PM = {pm1,
pm2, . . ., pmP}. Each physical node can be formalized as
pmi =< CPUpmi , Mempmi , Storepmi , BWpm

i , failpmi >, i ∈ {P},
namely the CPU, memory, disk, bandwidth, and failure rate.
Capacity of the memory and CPU are in MB and Million
Instructions Per Second (MIPS) respectively. According
to the resource availability, physical nodes can host L
heterogeneous container instances, which are formalized as
CON = {con1, con2, . . ., conL}, and each container instance
can be represented as conl =< CPUcl , Mem

c
l , Store

c
l , BW

c
l ,

failcl >, l ∈ {L}.

B. OPTIMIZATION OBJECTIVE MODEL
The objective models include the processing time overhead,
energy consumptionmodel, and failure rate model of the task.
Resource utilization was also considered.

1) PROCESSING TIME OVERHEAD MODEL
In the case of no noise interference in the channel, the data
transmission overhead between the device of the end user
and CDC depends on the network distance, amount of data
transmission, and bandwidth. The transmission time includes
the data serialization and propagation time.
First, the required serialization time (STup) for uploading

task Tk data of user u to CDC j is defined as follows:

STup = BWuj ×
TSk
TRuj

(1)

where TSk = sizeof(Tk) represents the data size for task Tk ,
and the BWuj denotes the bandwidth between the user device
and CDC j, and TRuj indicates the transmission rate.

Second, the required serialization time (STdn) for down-
loading the task calculation result from CDC j to user u is
formulated as

STdn = BWju ×
TEk
TRju

(2)

here, TEk represents the calculation result and communica-
tion data of task Tk .

Third, the propagation time (PT) of the data on the network
is defined as the ratio between the network distance (Dist) and

16414 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

network bandwidth (BW), including the propagation time of
the uplink and the propagation time of the downlink:

PT = PTup + PTdn =
Distuj
BWuj

+
Distuj
BWju

(3)

where, in two-dimensional space (x, y), the network distance

is Distuj =
√
(Xu − Xj)2 + (Yu − Yj)2.

Therefore, by combining Equations (1), (2), and (3), the
total transmission time of task Tk between user u and CDC j
can be formulated as Equation (4):

Trankj = STdn + PTup + PTdn

=

(
BWuj ×

TSk
TRuj
+ BWju ×

TEk
TRju

)
+

(
Distuj
BWuj

+
Distuj
BWju

)
(4)

If the physical node pmj in the CDC does not have the
required image for the execution container conl , then the
image is pulled from the data storage to the local repository
of the physical node. The image transmission time of the
execution container is defined as

Itranslj = BWlj ×
Imagel
TRlj

(5)

where Imagel denotes the size of the image file for the
execution container conl .

The processing time overhead of a task depends on the date
transmission time of the task, image transmission time of the
container, and execution time of the task. This is expresszed
by Equation (6):

FTkl = Trankj + Itranslj + Execkl (6)

where Execkl is the execution time of task Tk in container
conl , i.e., Execkl =

TkMI
CPUlc

. Here, TkMI represents the size of
the task instructions measured by the MIs.

2) RESOURCE UTILIZATION
Resource utilization is a key decision parameter that deter-
mines task execution time and balance load. If the resource
utilization of an execution container is overloaded, the
container cannot respond to the request in time, and a low
load can waste resources. Here, we only consider CPU and
memory resources.

The workload of execution container conl at each time
interval(t’ to t ′′) is formulated as follows:

Loadcpul =

t ′′∑
t=t ′

CPU c
l (t)

Loadmeml =

t ′′∑
t=t ′

Memcl (t) (7)

Here, the available resource utilization of the execution
container conl is the ratio of resources used to total resources.

This is formalized in Equation (8):

ARcpul =
Loadcpul

total_Loadcpul

ARmeml =
Loadmeml

total_Loadmeml
(8)

where total_Loadl denotes the total resource capacity of
container. The container with the lowest AR value was
selected when selecting the execution container for the task.

The remaining capacity of the container was formalized
as Re_Loadl = (Re_Loadl − Loadl). If Re_Loadl meets
the resource requirements of task Tk , then the resource is
allocated to the task; otherwise, the task is in the queue
waiting for further execution.

Similar to the definitions of Equations (7) and (8), Load,
AR of physical nodes can be defined in Equations (9) and
(10):

Loadcpuj =

t ′′∑
t=t ′

CPU c
j (t)

Loadmemj =

t ′′∑
t=t ′

Memcj (t) (9)

ARcpuj =
Loadcpuj

total_Loadcpuj

ARmemj =
Loadmemj

total_Loadmemj
(10)

Note that we propose a strategy for selecting the physical
nodes for the execution container in the next section.

3) ENERGY CONSUMPTION MODEL
The energy consumed by IoT and non-IoT tasks depends on
the following two factors.

First, that Network Transmission Energy Consumption:
which includes the energy consumed for data transmission of
the task and image transmission of the execution container.
The energy consumption of network data transmission is
determined by the transmission time and transmission power.
Here, let PWt indicates that fixed transmission power is
consumed. The total transmission energy consumption of task
Tk is defined as follows:

TPCk = (Trankj + Itranslj)× PWt (11)

Second, that Task Execution Energy Consumption: that is,
the energy consumed by computing resources during task
execution, which depends on the workload of the execution
container. The energy consumed by the execution container
is related to the utilization of computing resources (e.g.,
network, memory, CPU) and the execution time of the task.
However, the contribution of the CPU to energy consumption
is dominant; in other words, energy consumption and CPU
utilization are linearly related, and CPU utilization is related

VOLUME 10, 2022 16415

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

to the workload [34]. To be compatible with the VM energy-
consumption model proposed in [37], we use the energy-
consumption model of the execution container as follows:

CPCl = PC idle
l + (PCbusy

l − PC idle
l)× ARcpul (12)

where PCbusyl and PCidlel represent the energy consumption of
the execution container conl when CPU utilization is 100%
and 0%, respectively. Therefore, the energy consumed by task
Tk is defined as follows:

TCPCk = CPCl + Execkl (13)

According to Equations (11) and (13), the total energy
consumption of task Tk is formulated as follows:

PCkl = TPCk + TCPCk
= (Trankj + Itranslj)× PWt

+CPCl × Execkl (14)

4) FAILURE RATE MODEL
Failure of the running environment (such as hardware or
software) where the application is located is inevitable, and
the failure rate of the application is reflected in the execution
of the tool services. When a tool service task fails, the tool
service fails. When all container copies fail, tool service or
task fails. The failure rate of a task is related to the failure
rate faill of a container and the failure rate failj of a physical
node. This is defined as follows:

TFkj = (faill + failj)× xkl (15)

where xkl is an decision variable, which is formulated as
follows:

x =

{
1, if Tk ∈ alloc(conl);
0, otherwise;

k ∈ {U ,V }, conl ∈ CON , (16)

where alloc(conl) represents the set of task allocated in a
container conl . xkl = 1 indicates that task Tk is allocated to
execution container conl .

C. MULTI-OBJECTIVE OPTIMIZATION MODEL
Based on the previous model, this study optimizes three
objectives: processing time overhead, energy consumption,
and failure rate for task. To achieve the best results,
we established a model for the multi-objective optimization
of task scheduling as follows:

minimize FTkl(X) (17)

minimizePCkl(X) (18)

minimize TFkj(X) (19)

s.t Loadl ≤ β (20)
t ′′∑
t=t ′

Loadl ∈ total_Loadj, l ∈ {L}, j ∈ {P} (21)

AUj ≤ 100 (22)

FIGURE 6. The AF model.

x =

{
1, if Tk ∈ alloc(conl);
0, otherwise;

k ∈ {U ,V }, conl ∈ CON . (23)
P∑
j=1

xkj = 1, j ∈ {P}, k ∈ {U ,V } (24)

Equations (17) - (19) denote the optimization of the three
objevctives: minimizing processing time overhead, mini-
mizing energy consumption, and minimizing the execution
failure rate of the task, respectively.

Equations (20) - (24) indicate that the load of the execution
container conl must satisfy the threshold limit and be less than
the maximum capacity of the physical node, respectively.
Equation (22) limits the utilization of physical node j.
Equations (23) - (24) are decision variable constraints, xkl
indicates whether task Tk is assigned to execution container
conl . And

∑P
j=1 xkj = 1 means that each task can only

be assigned to one physical node, and each physical node
can be assigned multiple containers to execute multiple tasks
simultaneously.

Owing to the effectiveness of the meta-heuristic method
in multi-objective optimization problems, it is often used to
solve such problems. The artificial fish swarm algorithm has
fast convergence speed and accuracy in the multi-objective
optimization process. Therefore, we propose an artificial fish
swarm algorithm to obtain an optimal or suboptimal solution
for the previous optimization objective model.

V. PROPOSED ARTIFICIAL FISH SWARM OPTIMIZATION
ALGORITHM
A. MODEL OF ARTIFICIAL FISH
The artificial fish swarm algorithm (AFSA) is a swarm
intelligence global optimization strategy that simulates the
foraging behavior of fish [9,10]. The AF model is illustrated
in Figure 6.

B. REPRESENTATION OF ARTIFICIAL FISH AND
NEIGHBORS
In AFSA, a suitable candidate solution representation method
is the key to solving this problem. Candidate solution X can
be represented based on the representation of strings [27].
Each solution was called an artificial fish (AF). Based on
the objective optimization mathematical model proposed in

16416 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

FIGURE 7. Generation of neighbor center position Xc .

Section 4, we define a 0-1 string to represent each execution
container. For example, if n containers are represented by 0-
1 code, the container code length ism = dlog2 ne. The integer
n is converted into a binary vector (x1, x2, . . ., xm), that is, the
candidate solution X is represented by the vector [X] =(x1,
x2, . . ., xm).
The visual range (visual) of a fish is the farthest ‘‘distance’’

that the fish can see, which is a predetermined value. For
artificial fish, A =(a1, a2, . . ., am) and B =(b1, b2, . . ., bm),
the distance between A and B is defined as follows:

dist(A,B) =
m∑
i=1

|ai − bi| (25)

where the neighbor set within the visual distance of fish A
is denoted as Near = {B|dist(A, B) ≤ vsiual}, nf =|Near|
denotes the number of elements for the neighbor set, that is,
the number of neighboring individuals for fish A.
Each status bit xci (1 ≤ i ≤ m) of neighbor center xc in

the neighbor set is 0 or 1, which appears most frequently in
the corresponding status bit of the neighboring individuals.
Let NearA = {X1, X2, X3} be the neighbor set of fish A, the
generation of the neighbor center xc is shown in Figure 7.

C. THE EVALUATION FUNCTION OF SOLUTION
When the artificial fish AFi traverses all execution containers,
the position state xci (1 ≤ i ≤ m) xi is a candidate solution
for the three optimization objectives. To obtain the optimal
or suboptimal solution in the optimization process, we use
the standardized values of the three objectives to evaluate
the candidate solutions. Here, we adopted the weighted
sum method [35] to linearly aggregate the three objective
functions into one objective function as follows:

fit(X) = λ1 ×
FTkl(X)− FTmin
FTmax − FTmin

λ2 ×
PCkl(X)− PCmin
PCmax − PCmin

λ3 ×
TFkj(X)− TFmin
TFmax − TFmin

(26)

where the weights λ1, λ2, λ3 ∈ [0, 1] can be set according to
the actual environment. Here let λ1 = λ2 = λ3 =

1
3 . That

the FTmin, PCmin, and TFmin are the minimum values for the
processing time overhead, energy consumption, and failure
rate, respectively, and the FTmax , PCmax , and TFmax denote
the maximum values for the corresponding objectives. X is
the candidate solution. The value of the fitness function fit(X)

reflects the deviation between candidate solution X and the
optimal solution.

D. EXECUTION CONTAINER SELECTION POLICY
According to the evaluation value of Equation (26), an exe-
cution container suitable for task execution is selected.
In the process of fish foraging, AF individuals follow
four behaviors: Swarm, Follow, Prey, and Randomly move.
To achieve a local search, we added a mutation operator. The
AFSA algorithm is summarized as follows:

(1) Initialization: population size Popsize, particle set of
the artificial fish {xi | i ≤ Popsize}, crowding factor δ, visual
range of the artificial fish visual, maximum step length of
artificial fish movement step, number of tries try_number.
(2) Swarm: xc is the neighbor center of the artificial fish

xi, if the fitness of xc is better (fit(xc) < fit(xi)) and there are
fewer neighbors (nf /Popsize < δ), the fish xi can move to xc;
otherwise, the fish execute following.

(3) Follow: xmin is the fish with the best fitness value near
xi, if the fitness of xmin is better (fit(xmin < fit(xi)) and there
are fewer neighbors (nf /Popsize < δ), the fish xi can move
to xc; otherwise, the fish execute preying.
(4) Prey: xj is a randomly selected fish, according to the

visual value of artificial fish xi. If the fitness of xj is worse
(fit(xj) > fit(xi)), then randomly select another xj and try
again; otherwise, fish xi can move to xj. when try_number
exceed that of the fish execute randomly moving.

(5) Randomly movement: The artificial fish xi can move to
another status xj with step restraints.

(6) Mutation: Randomly change the bit value of status xi
(such as 0 to 1, 1 to 0) to generate xj, if the fitness of xj is
better (fit(xj < fit(xi)), change the status of xi to xj.
(7) Termination: Once all the artificial fish are matched

with the task, it is regarded as an iterative process, and until
the maximum number of iterations, the algorithm terminates.

E. EXECUTION SERVER SELECTION POLICY
Here, we choose an optimal physical node with available
resources to deploy the selected execution container conl
(l ∈ {L}). The current load of each physical node depends on
the available utilization of the CPU and memory resources
proposed in Equations (9) and (10), respectively. We used
the maximum value of the resource utilization rate as the
load-balancing metric. Similar to paper [22], we calculate
the standard deviation of the CPU and memory resource
utilization rate for the physical nodes, and take it as the
coefficient value of the corresponding resource utilization
for each physical node. The maximum value of the resource
utilization rate of physical node pmj (j ∈ {P}) is calculated as
follows:

ARj = max(ARcpuj × σ1,AR
mem
j × σ2) (27)

where σ1 and σ2 are the standard deviations for CPU
utilization and memory utilization of the physical nodes in
a CDC, respectively. In this stage, the AR of the physical
nodes is sorted, and the physical node with the smallest AR

VOLUME 10, 2022 16417

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

Algorithm 1 Artificial Fish Swarm Optimization Algorithm
ofMulti-Layer Container-Based Task SchedulingAF-MLCS.
Execution Container Selection
Input:
PM = {pmj|j = 1, 2, . . . ,P};
CON = {conl |l = 1, 2, . . . ,L};
T = {Tk |k = 1, 2, . . . ,K };
FT = {FTl,k |l = 1, 2, . . . ,L; k = 1, 2, . . . ,K };
PC = {PCl,k |l = 1, 2, . . . ,L; k = 1, 2, . . . ,K };
PopSize,Nmax ,mutationProb, visual, δ;
try_number, step;

Output:
Mapping_list = {(k, l, j)|k ∈ T , l ∈ CON , j ∈ PM};
1: for each Tk do
2: n← 1;
3: Pop← initialize Population();
4: Calculate the fitness values fitness by Equation (26);
5: fronts← CalculateFronts(Pop, fitness);
6: while (n <= Nmax) do
7: for each Popi do
8: [Xt ,Yt ,flag]← Swarm();
9: if (flag = 0)
10: [Xt ,Yt ,flag]← Follow();
11: if (flag = 0)
12: [Xt ,Yt ,flag]← Prey();
13: if (flag = 0)
14: [Xt ,Yt]← RandomMove();
15: end if
16: end if
17: end if
18: if (Yt < Popi.fitness)
19: Popi.X ← Xt ;
20: end if
21: if (rand() < mutationProb)
22: [Xt ,Yt]← mutation(Popi.X);
23: if (Yt < Popi.fitness)
24: Popi.X ← Xt ;
25: end if
26: end if
27: end for
28: Poff ← Poff ∪ Pop;
29: Calculate the fitness values fitness by Equation (26);
30: fronts← CalcuteFronts(Poff ,fitness);
31: BestPop← fronts[1];
32: end while
33: l ← BestPop.X ;
34: pmj ← algorithm2(k, l);
35: Add(k, l, j) to Mapping_list and then return

Mapping_list;
36: end for

and sufficient available resources is selected as the optimal
server, i.e., opt_serverj = min{AR1, AR2, . . . ,ARP}.

F. ALGORITHM IMPLEMENTATION
In this study, an Artificial Fish Swarm Optimization
algorithm for Multi-layer Container-based Task Scheduling
(AF-MLCS) is proposed. Algorithm 1 is the pseudo-code for
executing container selection, and Algorithm 2 is the pseudo-
code for physical node selection.
Lemma 1: The best-case and worst-case time complexities

of the AF-MLCS algorithm are O(L × n × nf) and
O(L × n× (nf + try_number)).

TABLE 2. Experimental parameters.

Proof: The AF-MLCS algorithm involves the selection
of the execution containers and physical nodes. Let L be the
total number of execution containers. For each task k , in the
step 6 to 32 of the container selection phase (Algorithm 1),
the outer loop requires O(L × n) operations to be performed.
The algorithm requires internal operations, including Swarm
behavior requiresO(nf) operations, Follow behavior requires
O(nf) operations, and Prey behavior requires O(try_number)
operations. In the best case, the time complexity is O(nf)
operations that only perform the Swarm behavior. The worst
case is that all operations are performed, that requiresO(2nf+
try_number) operations. Therefore, the time complexity for
the executing container selection phase is O(L × n× nf) (for
the best-case) and O(L × n × (nf + try_number)) (for the
worst-case). Let N be the physical nodes scale in a CDC.
In the physical node selection phase (Algorithm 2), the time
complexity from step 1 to 17 is O(2N) (for the best-case)
and O(3N) (for the worst-case). Therefore, the total time
complexity for the AF-MLCS algorithm is O(L × n × nf +
2N) = O(L×n×nf) (for the best-case) and O(L×n× (nf +
try_number)+3N) = O(L×n× (nf + try_number)) (for the
worst-case), L � N . �

VI. PERFORMANCE EVALUATION
A. SIMULATION SETUP
Here, we designed experiments to evaluate the QoS parame-
ters and verify the performance for the proposed scheduling
strategy.We adopted the dataset cluster trace V2018 provided
by Alibaba [36]. The dataset was analyzed to setup the
parameter settings and dataset of the experiment, as follows:

1) PARAMETERS SETTING
Tables 2 and 3 list the experimental simulation parameters
used. In Table 2, we consider 2 CDCs, and a topology
composed of 12 heterogeneous physical nodes is built on
the CloudSim platform with sufficient CPU and storage
resources. The heterogeneous CDCs were as follows:

(1) Four types of CPU resource capacities for physical
nodes: CPUj = [100.0, 200.0, 400.0, 800.0];
(2) Four types of memory resource capacities for physical

nodes:Memj = [100.0, 200.0, 400.0, 800.0];

16418 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

(3) All physical nodes have the same failure rate:
failj = 0.025;
Considering 100 execution containers, and the relevant

parameters are as follows:
(1) The CPU resources of the execution container are

random integer between 1-32;
(2) The memory resource of the execution container is a

random number between 0.38-6.25;
(3) The failure rate faill of the execution container was a

random number between 0.001 and 0.04.
Users in the Band-area application container randomly

send multi-task requests to CDCs using non-IoT and IoT
devices. It is assumed that non-IoT and IoT devices are
connected to CDCs through a long term evolution (LTE)
wireless interface, and that CDCs use a WiFi interface to
connect IoT and non-IoT devices. Let the transmission rates
of the WiFi and LTE interfaces be randomly and evenly
distributed in [2.01, 4.01] Mbps and [4.85, 6.85] MBPS
respectively.

Table 3 lists the relevant parameters of the AF-MLCS
algorithm proposed in this study.

TABLE 3. Experimental parameters setting of AF-MLCS algorithm.

2) EXPERIMENT TEST DATA
The arrival time of user requests from non-IoT and IoT
devices to the CDC follows an exponential distribution; that
is, in each time slot t , the arrival process of the task flow
requested by the user is a Poisson process [36]. Here, the
priority between tasks and the task arrival time is considered
to be negligible.

The related configurations for the experimental computer
are as follows: 2×CPUs: Intel(R) Celeron(R) CPU 1000M
@1.80GHz 1.80GH; memory: 8G RAM.

In addition, based on the analysis of the task dataset
provided by Alibaba, and using the random function of the
MathLab tool, the synthetic datasets for testing are randomly
generated as follows:

(1) According to the execution container parameters set in
Table 2, 100 container instance datasets used to execute tasks
were randomly generated;

(2) Randomly generate 10 synthetic datasets with different
task numbers; the number of execution container instances is
100, and the number of tasks is: 100, 200, 300, 400, 500, 600,
700, 800, 900, and 1000. There are two types of dataset:

-Synthetic dataset for task processing time: The processing
time required for each task to be uploaded to each execution
container instance for execution.

-Synthetic dataset for task energy consumption: The
energy consumed by each task uploaded to each execution
container instance for execution.

To compare the performance of each algorithm in
this experiment, we recorded the average value of
1000 iterations.

Algorithm 2 AF-MLCS. Execution Server Selection
Input:
k ∈ T , l ∈ CON ;

Output:
j ∈ PM;

1: for each pmj do
2: Apply Equations (9) and (10) to calculate the CPU
and memory available utilization of the servers
respectively;
3: end for
4: Calculate the standard deviation:
σ1 ← std(ARcpu), σ2 ← std(ARmem);
5: for each pmj do
6: Calculate the available utilization ARj by
Equation (27);
7: Sort by ARj in ascending order;
8: end for
9: while do
10: j← min(ARj);
11: if (CPUc

l < Re_CPUj ∧Memcl < Re_Memj)
12: Deploy the execution container
to the server pmj;
13: Return j;
14: else
15: Find the next suitable physical node;
16: end if
17: end while

B. BASELINE ALGORITHMS
Based on the IoT cloud environment, we study task
scheduling between multilayer containers, which is different
from the task or job scheduling of VMs in the cloud
environment. In this experiment, we compared the AF-MLCS
algorithm with the GA-MOCS algorithm [19], APSO-EECS
algorithm [25], and Binpack algorithm implemented in
Docker Swarm to verify the effectiveness of the AF-MLCS
algorithm.

-The Binpack algorithm deploys a new container to phys-
ical node with high CPU and memory resource utilization
rates.

-The GA-MOCS strategy adopts NSGA-II to realize
container allocation. In the GA-MOCS algorithm, only
three optimization objectives related to this study are
considered: load balancing for computing resources between
physical nodes, reliability of application services, and data
transmission overhead of application services.

-The APSO-EECS algorithm adopts accelerated particle
swarm optimization (APSO) to solve a container-based
scheduling strategy. This strategy considers two optimization
objectives: task computational time and energy consumption.
In addition, it considers the resource utilization rate of the
computing nodes.

VOLUME 10, 2022 16419

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

FIGURE 8. Comparison result of task processing time overhead.

C. ANALYSIS FOR EXPERIMENTAL RESULT
Ten experiments were designed based on the task synthesis
dataset, and we measured the performance for the four
algorithms from four aspects: processing time overhead,
energy consumption, reliability, and load balancing of the
physical nodes in the CDCs.

1) PROCESSING TIME OVERHEAD
The comparison result of the task processing time overhead
of the four algorithms with different task numbers is shown
in Figure 8.

The Binpack algorithm deploys the execution container to
a centralized node as far as possible; that is, it is allocated
centrally in nodes with high utilization of the CPU and
memory resources of the server, which easily causes node
overload. Thus, the container cannot respond to requests in
time, which increases the response time of the tasks. The GA-
MOCS algorithm reduces the data transmission overhead of
the task by assigning the relevant container to the physical
node with a short network distance, thereby partially redu-
ceing the processing time overhead of the tasks. However,
the APSO-EECS algorithm ignored the image-transmission
overhead of the execution container. The processing time
overhead can be observed in Fig. 8. As the number of tasks
increased, because the Binpack algorithm did not consider
the optimization of the transmission time, its performance
was the worst. However, the GA-MOCS and APSO-EECS
algorithms both partially considered the transmission time,
which was better than that of the Binpack algorithm. The
AF-MLCS algorithm simultaneously optimized the execution
time of tasks in the container, the transmission time of the
task data, and the image-transmission time of the execution
container. Compared with the Binpack, GA-MOCS, and
APSO-EECS algorithms, the average improvement rates of
the AF-MLCS algorithm in the average processing time
overhead are 74.21%, 54.92%, and 17.29%, respectively. The
results show that the AF-MLCS algorithm is better than other
algorithms for synthetic datasets with different task numbers.

FIGURE 9. Comparison result of task energy consumption.

2) ENERGY CONSUMPTION
The energy consumed by a task is measured in two aspects:
the energy consumed by data transmission and the energy
consumed by the CPU resources of pysical node when
executing a task. The comparison results of the energy
consumed by the tasks are shown in Figure 9.

The experimental results show that the Binpack and
GA-MOCS algorithms show an approximately linear growth
and almost overlap, whereas the APSO-EECS algorithm
shows a slow growth with an increase in the number of tasks.
The main reason is that the Binpack algorithm and GA-
MOCS algorithm did not take into account the impact of
task execution time on execution energy consumption. The
APSO-EECS algorithm considered the energy consumption
of task execution and task data transmission, but did not
consider the impact of container image transmission on
energy consumption. The AF-MLCS algorithm simultane-
ously consideres the optimization of the energy consumption
of task data transmission, task execution, and container image
transmission. Compared with the Binpack, GA-MOCS and
APSO-EECS algorithms, the average improvement rates of
the AF-MLCS algorithm in the average execution energy
consumption were 73.1%, 69.98%, and 25.28%, respectively.
As shown in Figure 9, for synthetic datasets with different
task numbers, the performance of our algorithm is better than
that of the other algorithms.

3) EXECUTION RELIABILITY OF TASKS
The execution reliability of the tasks is measured by the
failure rate of the execution containers and physical nodes.
The comparison results of the execution failure rate of tasks
are shown in Figure 10.

As shown in Figure 10, the Binpack and APSO-EECS
algorithms almost overlap with the increase in the number of
tasks. The main reason is that the Binpack and APSO-EECS
algorithms did not take into account the execution failure rate
of the task. Although the failure rate of the container and node
are considered by the GA-MOCS algorithm, it focuses on

16420 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

FIGURE 10. Comparison results of average failure rate of task execution.

FIGURE 11. Comprehensive comparison of three objectives.

the balance between the workload of the container and the
computing resources of the node. The AF-MLCS algorithm
fully accounted for assigning tasks to execution containers
and physical nodes with a low failure rate during task
scheduling, thereby reducing the failure rate of tasks and
improving the execution reliability of the task. As shown
in Figure 10, compared with the Binpack, GA-MOCS,
and APSO-EECS algorithms, the average improvement
rates of the AF-MLCS algorithm for the average failure
rate were 43.66%, 24.19%, and 42.59%, respectively. The
results indicate that the AF-MLCS algorithm has a better
objective value for synthetic datasets with different task
numbers.

To facilitate comparison and analysis, Figure 11 shows
a comparison of performance indicators, such as average
processing time overhead, average execution energy con-
sumption, and average failure rate of different algorithms.
As shown in the figure, the AF-MLCS algorithm has a better
scheduling performance than the Binpack, GA-MOCS, and
APSO-EECS algorithms.

TABLE 4. STD for resource utilization of four algorithms.

FIGURE 12. Comparison results of CPU resource utilization.

FIGURE 13. Comparison results of memory resource utilization.

4) RESOURCE LOAD
We used the standard deviation of the CPU and memory
resource utilization to evaluate the load of the CDCs. The
method in paper [22] is adopted.

σCDC =

√
1
2
σ 2
1 +

1
2
σ 2
2

Figures 12, 13, and 14 show the experimental results.
To facilitate discussion and understanding, Table 4 lists the
value ranges of the standard deviation (STD) for the CPU and
memory resource utilization of the four algorithms.

As shown in Table 4, the GA-MOCS algorithm is better
than the other algorithms in terms of CPU resource load but
worse than the AF-MLCS algorithm for memory resources.

VOLUME 10, 2022 16421

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

FIGURE 14. Comparison results of two resource utilization.

The main reason for this is that the optimization for
CPU resource utilization is only considered in the GA-
MOCS algorithm, and ignoring the optimization of memory
resources. However, our algorithm considers the optimization
of CPU and memory resources at the same time. The Binpack
and APSO-EECS algorithms performed the worst in terms of
CPU resources and memory resource load. The reason is that
the Binpack algorithm only selects the node with the highest
resource utilization to deploy the container. The APSO-EECS
algorithm considers the node with the lowest weighted sum of
CPU resources and memory resources to deploy containers,
which could deploy containers to nodes with higher CPU or
memory resource utilization; increases the load of the CPU or
memory resources of the node, resulting in load unbalanced.
However, the AF-MLCS algorithm uses the resource with
the largest standard deviation of CPU and memory resource
utilization of the node as the worst-case load, and the node
with the lowest resource utilization is selected to deploy
the container, which can avoid excessive resource load and
balance the load of the CDCs. As shown in Figure 14, the
AF-MLCS algorithm performed the best.

VII. CONCLUSION
In this study, based on application container technology,
we established a new resource management model called
Band-area Application Container (BAC). BAC contains
users, application services, documents, messages, and related
operating rules. One salient feature of BAC is that it can
express a variety of things in reality, such as organizations
or individuals. This study applies the basic knowledge of
category theory to describe the BAC and the cooperation
between BACs, and the end users can build enterprise
application systems through BAC and cooperation between
BACs. In addition, a BAC system framework was introduced.
To solve the non-IoT and IoT tasks in BAC to select a suitable
execution container and physical node, three objective
models related to task execution were proposed: process-
ing time overhead, energy consumption, and reliability.
Through the weighted sum method, the three objective

models were unified into an optimization model, and an
artificial fish swarm algorithm was proposed to solve the
container-based task scheduling problem in the IoT cloud
environment. The proposed algorithm is verified through
simulation experiments. Through analysis and comparison,
this algorithm is obviously superior to other algorithms in
terms of task completion time overhead, execution energy
consumption, reliability, and balancing CDC load.

Our future work will involve deploying the proposed
task scheduling algorithm in a real IoT cloud environment.
Furthermore, we study the various QoS parameters of appli-
cation services under various dependencies through heuristic
algorithms and find a suitable container for application
services through scheduling.

REFERENCES
[1] M. Litoiu, M. Woodside, J. Wong, J. Ng, and G. Iszlai, ‘‘A business

driven cloud optimization architecture,’’ in Proc. ACM Symp. Appl.
Comput. (SAC), 2010, pp. 380–385.

[2] G. Lawton, ‘‘Developing software online with platform-as-a-service
technology,’’ Computer, vol. 41, no. 6, pp. 13–15, Jun. 2008.

[3] A. Razzaq, ‘‘A systematic review on software architectures for IoT systems
and future direction to the adoption of microservices architecture,’’ Social
Netw. Comput. Sci., vol. 1, no. 6, pp. 1–30, Oct. 2020.

[4] Q. Zhang, L. Cheng, and R. Boutaba, ‘‘Cloud computing: State-of-the-art
and research challenges,’’ J. Internet Services Appl., vol. 1, no. 1, pp. 7–18,
May 2010.

[5] C. Vecchiola, S. Pandey, and R. Buyya, ‘‘High-performance cloud
computing: A view of scientific applications,’’ in Proc. 10th Int. Symp.
Pervasive Syst., Algorithms, Netw., Taipei, Taiwan, 2009, pp. 4–16.

[6] J. A. Stankovic, ‘‘Research directions for the Internet of Things,’’ IEEE
Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014.

[7] M.Masdari, S. S. Nabavi, andV. Ahmadi, ‘‘An overview of virtual machine
placement schemes in cloud computing,’’ J. Netw. Comput. Appl., vol. 66,
pp. 106–127, May 2016.

[8] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, ‘‘Open
issues in scheduling microservices in the cloud,’’ IEEE Cloud Comput.,
vol. 3, no. 5, pp. 81–88, Sep./Oct. 2016.

[9] X. L. Li, F. Lu, G. H. Tian, and J. X. Qian, ‘‘Applications of artificial fish
school algorithm in combinatorial optimization problems,’’ J. Shandong
Univ. (Eng. Sci.), vol. 34, no. 5, pp. 64–67, Oct. 2004.

[10] X. L. Li and J. X. Qian, ‘‘Studies on artificial fish swarm optimization
algorithm based on decomposition and coordination techniques,’’ J.
Circuits Syst., vol. 2003, pp. 1–6, Feb. 2003.

[11] M. K. Hussein, M. H. Mousa, and M. A. Alqarni, ‘‘A placement
architecture for a container as a service (CaaS) in a cloud environment,’’ J.
Cloud Comput., vol. 8, no. 1, pp. 1–15, May 2019.

[12] K. T. Seo, H. S. Hwang, I. Y. Moon, and O. Y. Kwon, ‘‘Performance
comparison analysis of linux container and virtual machine for building
cloud,’’ in Proc. Netw. Commun., May 2014, pp. 105–111.

[13] J. Stubbs, W. Moreira, and R. Dooley, ‘‘Distributed systems of microser-
vices using Docker and serfnode,’’ in Proc. 7th Int. Workshop Sci.
Gateways, Budapest, Hungary, Jun. 2015, pp. 34–39.

[14] C. Vecchiola, X. Chu, and R. Buyya, ‘‘Aneka: A software platform
for.NET-based cloud computing,’’ High Speed Large Scale Sci. Comput.,
vol. 18, no. 3, pp. 267–295, 2009.

[15] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, and R. Han, ‘‘Elastic applica-
tion container: A lightweight approach for cloud resource provisioning,’’
in Proc. IEEE 26th Int. Conf. Adv. Inf. Netw. Appl., Fukuoka, Japan,
Mar. 2012, pp. 15–22.

[16] R. Mondéjar, P. García-López, C. Pairot, and L. Pamies-Juarez, ‘‘Cloud-
SNAP: A transparent infrastructure for decentralized web deployment
using distributed interception,’’ Future Gener. Comput. Syst., vol. 29, no. 1,
pp. 370–380, Jan. 2013.

[17] T. Mirzoev and R. Alvarez, ‘‘Leveraging VMware vCloud director virtual
applications (vApps) for operational expense (OpEx) efficiency,’’ J. World
Comput. Sci. Inf. Technol. J. (WCSIT), vol. 3, no. 9, pp. 156–163,
Apr. 2014.

16422 VOLUME 10, 2022

M. Ouyang et al.: Band-Area Application Container and AFSA for Multi-Objective Optimization

[18] S. K. Garg, A. N. Toosi, S. K. Gopalaiyengar, and R. Buyya, ‘‘SLA-
based virtual machinemanagement for heterogeneousworkloads in a cloud
datacenter,’’ J. Netw. Comput. Appl., vol. 45, pp. 108–120, Oct. 2014.

[19] C. Guerrero, I. Lera, and C. Juiz, ‘‘Genetic algorithm for multi-objective
optimization of container allocation in cloud architecture,’’ J. Grid
Comput., vol. 16, no. 1, pp. 113–135, Mar. 2018.

[20] M. Adhikari, S. Nandy, and T. Amgoth, ‘‘Meta heuristic-based task
deployment mechanism for load balancing in IaaS cloud,’’ J. Netw.
Comput. Appl., vol. 128, pp. 64–77, Feb. 2019.

[21] M. Kaur and S. Kadam, ‘‘A novel multi-objective bacteria foraging
optimization algorithm (MOBFOA) for multi-objective scheduling,’’ Appl.
Soft Comput. J., vol. 66, pp. 183–195, May 2018.

[22] M. Lin, J. Xi, W. Bai, and J. Wu, ‘‘Ant colony algorithm for multi-objective
optimization of container-based microservice scheduling in cloud,’’ IEEE
Access, vol. 7, pp. 83088–83100, 2019.

[23] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, ‘‘Container-as-a-service at
the edge: Trade-off between energy efficiency and service availability at
fog nano data centers,’’ IEEEWireless Commun., vol. 24, no. 3, pp. 48–56,
Jun. 2017.

[24] L. Yin, J. Luo, and H. Luo, ‘‘Tasks scheduling and resource allocation in
fog computing based on containers for smart manufacturing,’’ IEEE Trans.
Ind. Informat., vol. 14, no. 10, pp. 4712–4721, Oct. 2018.

[25] M. Adhikari and S. N. Srirama, ‘‘Multi-objective accelerated particle
swarm optimization with a container-based scheduling for Internet-of-
Things in cloud environment,’’ J. Netw. Comput. Appl., vol. 137, pp. 35–61,
Jul. 2019.

[26] Y. Li, ‘‘Artificial fish swarm algorithm for virtual machine placement,’’
J. Comput. Eng. Appl., vol. 51, no. 4, pp. 323–327, Nov. 2015.

[27] Y. Li, J. Zhang, W. Zhang, and Q. Liu, ‘‘Cluster resource adjustment based
on an improved artificial fish swarm algorithm in mesos,’’ in Proc. IEEE
13th Int. Conf. Signal Process. (ICSP), Nov. 2016, pp. 6–10.

[28] J. Qin and Z. Zhao, ‘‘Research on composite service performance
optimization based on Hadoop mapreduce,’’ J. Comput. Technol. Develop.,
vol. 26, no. 5, pp. 61–65, May 2016.

[29] X. L. Zhang, ‘‘Application of improved artificial fish swarm algorithm in
cloud computing task schedule,’’ J. Electron. Design Eng., vol. 25, no. 6,
pp. 14–18, Jun. 2018.

[30] H. Luo, ‘‘A distributed management method based on the artificial fish-
swarmmodel in cloud computing environment,’’ Int. J. Wireless Inf. Netw.,
vol. 25, no. 3, pp. 289–295, Sep. 2018.

[31] P. Albert and M. Nanjappan, ‘‘An efficient kernel FCM and artificial
fish swarm optimization-based optimal resource allocation in cloud,’’
J. Circuits, Syst. Comput., vol. 29, no. 16, Dec. 2020, Art. no. 2050253.

[32] J. Q. Xi, ‘‘Virtual operating area supporting customized definition and
operating method and system architecture thereof,’’ U.S. Patent 9 971 597,
May 15, 2018.

[33] M. Barr and C. Wells, Category Theory for Computing Science, vol. 1,
13th ed. New York, NY, USA: Prentice-Hall, 1990, pp. 16–281.

[34] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[35] L. He and Q. H. Liu,Multi-Objective Optimization Theory and Continuous
Method. Beijing, China: Science Press, 2015, pp. 96–97.

[36] Alibaba Corp. Alibaba Cluster Trace V2018. Accessed: Sep. 26, 2021.
[Online]. Available: https://github.com/alibaba/clusterdata

[37] M. Blackburn. (2008). Five Ways to Reduce Data Center Server
Power Consumption. Green Grid, USA. [Online]. Available:
https://www.greenbiz.com/sites/default/files/document/White_
Paper_7_-_Five_Ways_to_Save_Power.pdf

MINGXUE OUYANG received the B.S. degree
from the National University of Defense Technol-
ogy, in 2004, and the M.S. degree from the School
of Software Engineering, South China University
of Technology, in 2010, where he is currently
pursuing the Ph.D. degree. His research interests
include cloud computing, parallel processing,
high-performance computing, formal theory of
software systems, and formal semantics.

JIANQING XI received the M.S. degree from
the National University of Defense Technology,
in 1988, and the Ph.D. degree, in 1992. He is
currently a Full Professor with the South China
University of Technology and the Head of the
Infrastructure Software and Application Con-
struction Technology Laboratory of Guangdong
Province. His research interests include cloud
computing platform, parallel scheduling, software
architecture, formal theory of software systems,
and formal semantics.

WEIHUA BAI received the M.E. degree from
the School of Computer Science, South China
Normal University, in 2006, and the Ph.D. degree
from the School of Computer Science and Engi-
neering, South China University of Technology,
Guangzhou, China, in 2017. He is currently an
Associate Professor with the School of Computer
Science, Zhaoqing University. His research inter-
ests include cloud computing, parallel scheduling,
and software architecture. He is a member of the
China Computer Federation.

KEQIN LI (Fellow, IEEE) is currently a SUNY
Distinguished Professor of computer science with
the State University of New York. He is also
a National Distinguished Professor with Hunan
University, China. He has authored or coauthored
over 810 journal articles, book chapters, and
refereed conference papers, and has received
several best paper awards. He holds over 60 patents
announced or authorized by the Chinese National
Intellectual Property Administration. He is among

the world’s top ten most influential scientists in parallel and distributed
computing based on a composite indicator of Scopus citation database.
His current research interests include cloud computing, fog computing and
mobile edge computing, energy-efficient computing and communication,
embedded systems and cyber-physical systems, heterogeneous computing
systems, big data computing, high-performance computing, CPU-GPU
hybrid and cooperative computing, computer architectures and systems,
computer networking, machine learning, and intelligent and soft computing.
He has chaired many international conferences. He is also an Associate
Editor of the ACM Computing Surveys and the CCF Transactions on
High Performance Computing. He has served on the Editorial Boards for
the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE
TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING,
the IEEE TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING.

VOLUME 10, 2022 16423

