
Received: 15 December 2022 Revised: 17 January 2023 Accepted: 3 February 2023

DOI: 10.1002/cpe.7665

R E S E A R C H A R T I C L E

A container deployment strategy for server clusters with
different resource types

Mingxue Ouyang1 Jianqing Xi1 Weihua Bai2 Keqin Li3

1School of Software Engineering, South China

University of Technology, Guangzhou, China

2School of Computer Science, Zhaoqing

University, Zhaoqing, China

3Department of Computer Science, State

University of New York, Albany, New York, USA

Correspondence

Jianqing Xi, School of Software Engineering,

South China University of Technology

Technology, Guangzhou, China.

Email: jianqingxi@163.com

Weihua Bai, School of Computer Science,

Zhaoqing University, Zhaoqing, China.

Email: bandwerbai@gmail.com

Funding information

Science and Technology Plan Project of

Guangdong Province, China, Grant/Award

Numbers: 2014B010112007,

2016B010124010

Abstract

The method of deploying microservices based on container technology is widely used

in cloud environments. This method can realize the rapid deployment of microservices

and improve the resource utilization of cloud datacenters. However, resource alloca-

tion and deployment of container-based microservices are key issues. With the contin-

uous growth of computing- and storage-intensive services, it is necessary to consider

the deployment of microservices of different business types. This study establishes

a multi-objective optimization problem model with the similarity between containers

and servers, load balance of clusters, and reliability of microservice execution as the

optimization objectives. An improved artificial fish swarm algorithm is proposed for the

container deployment of computing- and storage-intensive microservices. The com-

prehensive experimental results show that, compared with the existing deployment

strategies, the matching degree between the container and server, cluster load balance

value, service execution reliability, and other performance parameters are improved

while shortening the running time of the algorithm. In addition, under the constraint of

load balancing, the resource utilization of the computing and storage server clusters is

improved.
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1 INTRODUCTION

Cloud computing is a commercial computing model. It provides users with on-demand computing power, storage space, and information services

by distributing computing tasks to a resource pool composed of a large number of computing servers.1 The resource pool is a self-managed and

maintainable virtual computing resource, that is, a large server cluster that includes computing servers, storage servers, and broadband resources.

These resources can meet the needs of users and increase application scale through the dynamic scaling of virtual machines (VMs) or containers.2

In particular, the wide use of containers provides strong environmental support for application deployment based on the microservice architecture

(MSN).3 In addition, the resource pool uses data multi-copy fault tolerance, computing nodes that are isomorphic and interchangeable, and other

measures to ensure high reliability of services.

Microservice architecture (MSN) is currently an important application development mode that divides the monolithic application into a group of

independent fine-grained and componentized services.4 A lightweight communication mode is adopted between services, and the service function

chain (SFC) is formed through the call relationship to form the application.5 Because of their high reusability, scalability, and flexibility, microser-

vices are usually deployed in multiple computing servers or cloud data centers (CDC) in the form of VMs and containers. However, as a resource

virtualization technology, virtual machine (VM) needs a separate operating system (OS) image, which will inevitably increase the cost of storage and
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computing resources,6 so that VM instances can extend the VM startup time on the one hand; On the other hand, it affects the portability of appli-

cations between CDC provided by different cloud providers. In contrast to VM, the OS level container technology is lightweight, with seconds of

startup time and less storage. The application service process in a container operates directly in the host OS kernel.7 These characteristics of the

container provide convenience for the flexible deployment and scalability of microservices, and are deeply concerned with cloud service providers

and researchers. Typical OS-level container technologies include Solaris Zones, Kubernets, Linux Container (LXC), and Docker containers. Docker

containers are a widely used container technology.8

However, resource allocation and deployment of container-based microservices are important issues;9 that is, while meeting the quality of

service (OoS) for user obligations, it can also maximize the use of various resources in the IaaS layer.10 Although there are many container-based

microservice deployment strategies, there are typically three methods implemented by Swarm, the native cluster scheduling tool in Docker con-

tainer: Binpack, Random, and Spread. However, these deployment strategies exhibit low performance and cannot meet the requirements of specific

business-type services. In this study, we consider an application scenario, to formulate the corresponding scheduling strategies for different types of

micro services in SFC (such as intensive computing and storage) to request different resource types. In other words, computing-intensive microser-

vices are deployed to computing server nodes, storage-intensive microservices are deployed to storage server nodes, and microservices without

special resource-type requests are scheduled to be executed in common server nodes. For example, in Docker’s native environment, Swarm, a con-

straint filter is used to deploy a container of a specific type to a server node of a specific type.11 On the one hand, according to the similarity between

microservices and servers, specific types of microservices are scheduled to corresponding types of server nodes to improve the resource utilization

of computing and storage servers; On the other hand, adjacent microservices of the same type in SFC should be deployed to the same node as much

as possible to save transmission costs. In addition, the reliability of microservice execution was also considered.

In the cloud environment, for the above-mentioned microservice deployment problem to meet different business types, which involves the

optimization of multiple objectives, it is difficult to obtain the optimal or suboptimal solution in effective time by applying an exhaustive search and

greedy algorithm.12 Deep-learning methods require training data, which are difficult to implement in random and dynamic deployment environ-

ments. However, the meta-heuristic algorithm has incomparable advantages for the multi-objective combinatorial optimization problem, which can

obtain the solution of the multi-objective optimization problem model with multiple constraints under a limited number of iterations. Therefore, we

used an improved artificial fish swarm optimization algorithm13,14 to optimize the matching degree between containers and servers, load balancing

of server clusters, and reliability of microservice execution.

The main contributions of this study are as follows:

1. We built a problem model for execution container deployment of service that includes the matching degree between containers and servers,

load balancing of server clusters, and service execution reliability.

2. Aiming at the proposed target model, a multi-objective optimization problem model for service execution container deployment was established.

The simultaneous optimization objectives of this model are matching degree between containers and servers, load balancing of server clusters,

and reliability of service execution. The resource demand of the execution container is adjusted based on the number of user requests, and the

service is deployed based on whether the total resources of the container and server match.

3. Based on the optimization problem model, we proposed an improved artificial fish swarm optimization algorithm to solve the service execution

container deployment problem. In the algorithm, the front-edge (Pareto) solution set is obtained by calculating the crowding distance,15 and

the global optimal solution is obtained from the front-edge solution set according to the evaluation function values of the three optimization

objectives.

The remainder of this paper is organized as follows. In Section 2, work related to microservice deployment and scheduling is introduced. Inspired

by relevant work, the problem description, system model, and proposed optimization problem model are described in Section 3. Section 4 details

the proposed deployment strategy for an artificial fish swarm, and the analysis and comparison of the experimental results and validation of the

proposed deployment strategy are discussed in Section 5. Section 6 provides a summary of this study and a discussion of future work.

2 RELATED WORK

In the cloud computing environment, resource management of server clusters in the CDC and container-based microservice scheduling and deploy-

ment are key issues, and their scheduling algorithms and deployment strategies affect the OoS of cloud users and the profits of cloud providers.16

In this section, we discuss relevant scheduling algorithms and deployment strategies.

First, the meta-heuristic strategy is a search technique of swarm intelligence, which does not depend on the mathematical properties of

multi-objective and multi-constraint optimization problems and the structural characteristics of solving problems. This type of algorithm can

find the optimal or suboptimal solution from multiple feasible solutions in the target space through the continuous interaction between indi-

viduals and the environment, and has been applied by researchers to solve multi-objective optimization problems with multiple constraints in
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the cloud. For example, Guerrero et al.17 adopted NSGA-II to propose a container-based microservice deployment strategy that optimizes the

threshold distance between containers, network distance between containers, execution reliability of microservices, and load balance of com-

puting resources. Ullah et al.18 used the artificial bee colony algorithm (ABC) to balance the workload among server nodes in the cloud and

reduce energy consumption. Lin et al.19 designed an improved ant colony optimization (ACO) algorithm that realized the container deployment

of microservices by optimizing network transmission costs, load balancing of clusters, and average failure rate of microservices. Ma et al.20 built

a knowledge-driven evolutionary algorithm using the NSGA-II algorithm for reference points (i.e., NSGA-III) to solve the deployment and start-up

of microservices. The algorithm considers the actual idle rate of microservices, idle rate of computing and storage resources, and load balancing

of computing and storage resources. Muniswamy et al.21 established a container dynamic scalable task scheduling (DSTS) strategy, which real-

izes container-based task scheduling by combining the pigeon heuristic optimization (PIO) algorithm and a neural network (NN). Its goal is to

improve CPU resource utilization and reduce task execution costs. In a previous paper,5 we established an improved accelerated particle swarm

optimization (APSO) algorithm, which is based on the service function chain (SFC) to gather the execution containers of services to the same

physical node as much as possible to solve the deployment problem of microservices, considering the transmission overhead between services,

resource utilization rate of CDC clusters, and aggregation degree between containers as optimization objectives to improve the resource utilization

of the CDC.

Second, there are many placement strategies and scheduling algorithms have been proposed for microservice execution containers in the field

of cloud computing. For example, Zhang et al.22 designed an effective adaptive scheduler using integer linear programming to reduce overhead by

optimizing the energy consumption of docker container hosts, cost of container image pulling, and cost of workload network conversion between

container hosts. Liu et al.23 established a multi-objective docker container scheduling strategy that considered the utilization of CPU and memory

for physical nodes, container image transmission time, correlation between containers and physical nodes, and container aggregation. The same

author built a container scheduling algorithm for big data applications based on Kubernetes using particle swarm optimization (K-PSO) with the

goal of improving resource utilization.24 Xie et al.25 applied the NSGA-II algorithm to build an improved harmonious search algorithm. The algorithm

considers the mathematical expression of the docker model and the service optimization of microservice scheduling for a data platform as its

objectives. Fan et al.26 used particle swarm optimization (PSO) algorithm to build a container-based microservice deployment strategy for edge com-

puting. The optimization goals of this strategy are the network delay between microservices, load balance of clusters, and reliability of microservice

applications. Zhu et al.27 designed an adaptive task scheduling algorithm (ADATSA) using learning automata based on a container, which improves

resource utilization and QoS performance by optimizing resource imbalance, resource surplus, and task running state. Chen et al.28 established a

container-based microservice scheduling strategy (MOPPSO-CMS) using a parallel particle swarm optimization algorithm. The optimization objec-

tives of this strategy are network transmission cost, load balancing, optimization speed, and service reliability. Liu et al.29 proposed a multi-objective

container deployment strategy (MOCP-MFEA) based on a multi-factor evolutionary algorithm (MFEA) for the container deployment of microser-

vices. This strategy mainly aims at node loss, average network distance, resource cost, and load balancing to solve the container layout problem in a

heterogeneous cluster environment

Finally, as a meta-heuristic search strategy, the artificial fish (AF) swarm algorithm is an uncertain, probabilistic, and globally optimized intelli-

gent algorithm that has been applied to resource allocation and scheduling in cloud environments. For example, Gupta et al.30 applied an artificial fish

swarm optimization algorithm to select channels for mobile nodes in mobile ad hoc networks (MANET) to improve the network life of mobile nodes

and reduce energy consumption. Feng et al.31 proposed an improved artificial fish swarm algorithm to maximize network coverage and minimize

energy consumption by optimizing the wireless sensor network coverage. Ajitha et al.32 established a multi-objective artificial fish swarm resource

optimization task scheduling strategy based on bivariate correlation opposition (BCO-MAFSROTS) to improve task scheduling efficiency with mini-

mum completion time and resource utilization. The main optimization objectives are CPU time, bandwidth, memory, and energy. Albert et al.33 used

an artificial fish swarm algorithm to assign user tasks to clustered virtual machines in cloud computing to improve resource utilization and quality of

user experience. Li et al.34 established a computing scheduling algorithm based on an artificial fish swarm for offloading computing-intensive tasks

of mobile devices to edge servers for execution, with the goal of reducing the transmission time and execution energy consumption. Uma et al.35

proposed an improved fish swarm algorithm (FSA) to optimize the allocation of virtual resources in the cloud to meet the requirements of users to

execute tasks in a specific time period. Manikandan et al.36 built a fuzzy C-means drastic hybrid algorithm for task scheduling and resource allocation

in the cloud to reduce the cost, energy consumption, and resource utilization. We designed a task scheduling strategy based on multilayer con-

tainers using an artificial fish (AF) swarm optimization algorithm. This strategy optimizes task processing time, energy consumption, task execution

reliability, and other objectives.37

Based on the above work, to solve the problem that microservices of different business types are deployed to corresponding types of server

nodes, we take the matching degree between containers and server nodes, reliability of service execution, and resource load balancing between

server nodes as optimization objectives. A multi-objective optimization problem model of service execution container deployment is established,

and the Pareto solution of the optimization problem model is realized through an improved artificial fish swarm optimization (AFSO) algorithm.

In the service deployment process, relevant containers are clustered into one server node as much as possible according to the matching degree

between containers and server nodes and the adjacent relationship between services, to improve the resource utilization of different types of

server clusters.
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3 PROBLEM DESCRIPTION

In this section, we discuss the system model, optimization objectives, and methods proposed for solving the problem model. The relevant symbols

for the system model are listed in Table 1.

3.1 System model

The CDC model for container-based service deployment is illustrated in Figure 1. The BAC as a Service (BaaS) platform is a type of Internet of

Things (IoT) cloud platform proposed by us, which is composed of a group of band-area application containers (BACs).5 BAC is an aggregation of

tool services, documents, users, messages, and other objects, as well as relevant operation rules. Tool services are a fine-grained application service

model based on a microservice architecture.37 BAC can express organizations or individuals, map the business relationship between organizations

or individuals to the collaboration relationship between BACs, and integrate each business sub-system into a complex and complete application

system through the link and collaboration between BACs. In each BAC, the service function chain (SFC) required by the user is deployed. SFC is a

sub-application composed of a set of tool services through call relationships.

When a user sends a service request to an application in the BAC, the admission controller of the BAC engine sends a resource request to the

dispatcher according to the user permissions and type of service resource request. The container-based scheduling engine evaluates the resource

type and resource amount of the service request, and deploys the service to the appropriate type of server (physical node) for the CDC according

to the evaluation value. For example, computing-intensive services are deployed to computing servers, storage-intensive services are deployed to

storage servers, and microservices without specific resource-type requests are deployed to common nodes. To improve the resource utilization of

various servers and the reliability of service execution, the deployment solution of this study is to allocate the service execution container to the

TA B L E 1 Relevant symbols of the system model

Component Symbol Description

Application Apps A set of application

Appa ∈ Apps Application with identifier a

SFCa SFC for application Appa

Tool service TSs Tool service set

Edgs A set of edge between services

TSi ∈ TSs Tool service with identifier i

CPUi CPU consumed for service TSi

Storei Store consumed for service TSi

Thri Threshold value requested for service TSi

Tsreqi Number of requests for service TSi

Cinsi Number of execution container for service TSi

Typei Type for service TSi

User Users User set

Userv ∈ Users User with identifier v

Ureqv Number of user requests

CDC PMs A set of server node set

pmk ∈ PMs Server node with identifier k

CPUpm
k

CPU capacity for server node pmk

Storepm
k

Store capacity for server node pmk

Re CPUpm
k

Remaining CPU capacity for server node pmk

Re Storepm
k

Remaining store capacity for server node pmk

Typepm
k

Type for server node pmk
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F I G U R E 1 Container-based CDC

corresponding type of server with a low failure rate according to the service type of the application, and deploy adjacent services of the same type

in the SFC to the same server node or the same CDC as much as possible to reduce the transmission cost between services.

On the PaaS (Platform as a Service) layer, suppose A application Apps = {Appa |1 ≤ a ≤ A} are deployed in the BAC of the BaaS platform. SFCa

= < TSsa, Edgsa > is the service function chain of application Appa, where TSsa is the tool service set in SFCa and Edgsa is the edge set. SFCa is essen-

tially a directed graph composed of a group of services and the call relationship between the services. Here, tool services can be defined as TSi

= < Typei, Tsreqi, CPUi, Storei, Thri >, where Typei represents the service business type, including computing intensive services, storage intensive

services, and common services; Tsreqi is the number of calls/requests for service TSi; CPUi and Storei are the amount of computing and storage

resources required for the unit request service TSi, respectively; Thri represents the threshold value of the requests. When the request thresh-

old is exceeded, the execution container must be expanded. Users are consumers of tool service sequences, and the user set is formalized as

Users = {Userv |1 ≤ v ≤ V}, the user can describe as Userv = < Ureqv , Platv >, Ureqv and Platv are the number of user requests and the platform

used, respectively.

In the IaaS (Infrastructure as a Service) layer, different types of server clusters are connected via an internal high-speed network with M server

nodes formally defined as PMs = {pmk |1 ≤ k ≤ M}. The server node is described as pmk = < Typepm
k

, CPUpm
k

, Storepm
k

>, where Typepm
k

represents the

server type, including computing, storage, and common type servers; CPUpm
k

and Storepm
k

are computing and storage resources, respectively.

In the tool service deployment process, the tool service is packaged and encapsulated in the execution container, and the form is defined as

alloc (TSi) ≡ conc and c ≥ 1. When a new container instance must be started, the container image is pulled to the server node. Considering that the

number of service requests exceeds the request threshold, that is, RRqi = (Ureqa × Tsreqi) > Thri, the number of container instances to be expanded

is Cinsi = ⌈RRqi∕Thri⌉. To improve the resource utilization of the server node, each server can deploy multiple container instances that are recorded

as alloc (conc) ≡ pmk . Then, a matrix can be used to describe the deployment relationship between the tool services and server nodes. The formal

definitions are as follows:
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Alloc(TSs,PMs) = [xik]N×M (1)

xik =
⎧
⎪
⎨
⎪
⎩

1, if alloc(TSi) ≡ pmk;

0, otherwise;

i ∈ {N} ∧ k ∈ {M}. (2)

where xik = 1 indicates that the container instance of service TSi is deployed in the server node pmk .

3.2 Optimization objectives

The optimization objectives of this study are the similarity between containers and server nodes, load balancing between server nodes, and service

execution reliability. Through objective optimization, deploy specific types of services in SFC to corresponding types of server nodes with low failure

rates for execution to improve resource utilization and service execution reliability of computing and storage server nodes. The objective functions

are as follows:

3.2.1 Similarity between containers and server nodes

In the service deployment process, the similarity between the container and server nodes must be considered to improve the resource utilization

of computing and storage servers.23 Here, we measure the similarity by the matching degree between the container and server node, including two

aspects:

First, the feature correlation between the container and server node: Only when the service type matches the node type and the resource

capacity is met that the service execution container deployed to the node. Here, we use the method proposed by Liu to calculate the correlation

between containers and nodes.23 Assume that the feature set of server node pmk is FTpm
k
= {ftpm

z |1 ≤ z ≤ Z}, where Z is the number of features for the

server node. When creating a container instance conl for TSi, that is, alloc (TSi)≡ conl, its features be FTcon
l
= {ftcon

z |1 ≤ c ≤ C}, where C is the number

of container features. The feature intersection between the container conl and node pmk is given by Equation (3):

FT′ = FTcon
l ∩ FTpm

k
(3)

For example, let con2 be the container instance of service TS3, its features be FTcon
2
= {Typecon

2
=’1’, CPUcon

2
= 23.1, Storecon

2
= 2.3, Edgs3 = (TS3, TS5),

… }, and the feature set of the server node pm12 be FTpm
12
= {Typepm

12
=’1’, CPUpm

12
= 800, Storepm

12
= 400, … }. At this time, the type feature values of the

container con2 and node pm12 are the same, that is, Typecon
2
= Typepm

12
=’1’, CPUcon

2
≤ CPUpm

12
∧ Storecon

2
≤ Storepm

12
, which means that the container con2

can be deployed to the node pm12.

Second, feature correlation between containers and containers deployed in server nodes: Considering the interaction cost between services,

two adjacent services of the same type in the same SFC should be deployed to the same node as far as possible to reduce the transmission cost.3

Suppose the node pmk has deployed L containers, and its feature set is:

FTscon
k =

L⋃

i=1

FTcon
i (4)

Then, the feature intersection between the container and deployed container in the server node can be calculated using Equation (5):

FT′′ = FTcon
l ∩ FTscon

k (5)

For example, con5 is a container instance of service TS5, and its feature collection is FTcon
5
= {Typecon

5
=’1’, CPUcon

5
= 25, Storecon

5
= 3.2, Edgs3 =

(TS3, TS5), … }, where Edgs3 = (TS3, TS5) indicates that the services corresponding to containers con5 and con2 are on the same edge, and Typecon
5
=

Typecon
2
=’1’, which means that con5 can also be deployed in node pm12 and has an aggregation with con2.

Synthesizing Equations (3), (4), and (5), we use the matching degree of the container and server nodes to measure their similarity. The matching

degree between the container conl and node pmk is given by Equation (6):

Mdl,k =
|FT′ ∪ FT′′|

|FTpm
k
∪ FTscon

k
|
=

|(FTcon
l
∩ FTpm

k
) ∪ (FTcon

l
∩ FTscon

k
)|

|FTpm
k
∪ FTscon

k
|

(6)



OUYANG ET AL. 7 of 21

In CDC, we use the reciprocal of the matching degree value (1/Md) as the similarity between containers and nodes. This is formalized

in Equation (7):

MD(X) =
M∑

k=1

N∑

i=1

xik

Cinsi∑

l=1∧alloc(TSi)≡conl

1
Mdl,k

=
M∑

k=1

N∑

i=1

xik

Cinsi∑

l=1∧alloc(TSi)≡conl

|(FTcon
l
∩ FTpm

k
) ∪ (FTcon

l
∩ FTscon

k
)|

|FTpm
k
∪ FTscon

k
|

(7)

3.2.2 Load balancing between server nodes

In CDC, it is necessary to consider load balancing while improving resource utilization. The load balancing of the server clusters should include

two aspects. First, in a single-server node, the consumption of resources (such as CPU and storage) in all dimensions should be balanced

as far as possible to avoid resource fragmentation. Second, the load between the server nodes should be balanced to deal with low-load

and high-load problems. To balance the load of the CPU and the storage resources in the CDC, the load must be evenly distributed to each

server node.

The CPU and storage resource utilization of the server node pmk is the ratio of resources used to total resources. The calculation Equations are

as follows:

URCPU
k =

∑N
i=1xik

RRqi

Cinsi
CPUi

CPUpm
k

(8)

URStore
k =

∑N
i=1xik

RRqi

Cinsi
Storei

Storepm
k

(9)

We take the standard deviation of the CPU and storage resource utilization of the server node as the coefficient of the corresponding resources

and measure the load balance value of the server node with the highest resource load pressure.37 This is defined as Equation (10):

CLB(X) = 1
stdCPU + stdStore

max
1≤k≤M

max(stdCPU × URCPU
k , stdStore × URStore

k ) (10)

where stdCPU and stdStore represent the deviation degree between the CPU and storage resource utilization rate, respectively; that is, the standard

deviation of the resource utilization rate. The first max() function is used to balance the CPU and storage resources in a single server node, and the

max
1≤k≤M

() function is used to balance the load between the server nodes.

3.2.3 Service execution reliability

When users request the execution of tool services through the platform, the stability of the service execution is related to the quality of

experience (QoE) for users. Therefore, this study considered the failure factors related to the service execution process as a service execu-

tion reliability measurement. The failure factors considered include the failure rate failpm of the server node where the service container is

deployed, failure rate failcon of the execution container, and failure rate failpl caused by the platform where the service is located and physical

environment.

SEF(X) =
M∑

k=1

N∑

i=1

xik

Cinsi∑

l=1∧alloc(TSi)≡conl

(failpm
k
+ failcon

l + failpl
i
) (11)

where failcon
l

is the average failure rate of the execution tool service in the CDC, and failpl
i

is the average failure rate when the tool service platform

starts execution. The formulas are shown in Equations (12) and (13):

failcon
l = failpm

k
× RRqi

Cinsi
(12)

failpl
i
= failTS

i × RRqi

Cinsi
(13)
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3.3 Problem model statement

To obtain the optimal target value for the optimization objectives MD(X), CLB(X), and SEF(X), X is the decision variable. We modeled the

multi-objective optimization problem as a nonlinear optimization model, and the formulas are defined as follows:

minimize MD(X) (14)

minimize CLB(X) (15)

minimize SEF(X) (16)

s.t CC1 =
RRqi

Cinsi
× CPUi ≤ Re CPUpm

k
,∀pmk, k ∈ {M} (17)

CC2 =
RRqi

Cinsi
× Storei ≤ Re Storepm

k
(18)

CC3 = RRqi ≤ Thri (19)

CC4 =
M∑

k=1

xik ≥ 1, i ∈ {N} (20)

CC5 =
N∑

i=1

xik = 1, k ∈ {M} (21)

Equations (14)–(16) are the optimization objectives: matching degree between containers and server nodes, load balancing between nodes,

and service execution reliability.

Equations (17)–(21) are the constraints of the optimization model. Among them, the constraints CC1 and CC2 specify that the total amount of

CPU and storage remaining resources for the server node should be greater than the amount of resources requested by the execution container

instance of the service. CC3 indicates that the actual number of requests for services should be less than the service request threshold. CC4 means

that each tool service has at least one execution container instance deployed in the CDC. CC5 stipulates that at most one execution container instance

of the same service can be deployed to the same server node to avoid multiple container instances of the same service competing for resources.

For the optimization model of the above problem, it is not advisable to use the exhaustive search method and greedy algorithm to obtain the

optimal solution of the problem. This is because it is highly complex and time-consuming to calculate. In addition, the optimization problem involves

multiple constraints, including service resource requests, server node resources, and deployment rules. Therefore, for this problem model, the opti-

mal or sub-optimal solution of the NP-complete optimization problem can be obtained within acceptable complexity and time, we considered a

meta-heuristic strategy to handle the deployment of each type of service. The artificial fish (AF) algorithm is a meta-heuristic intelligent optimiza-

tion strategy with good global convergence and robustness. For this reason, we have studied an improved artificial fish swarm algorithm, which uses

fitness value and crowding distance15 as a method to evaluate the solution to find the optimal or sub-optimal solution for the problem.

4 THE PROPOSED AF META-HEURISTIC

This section describes the proposed AF-CSDS strategy, evaluation function, algorithm implementation, and time-complexity analysis.

4.1 Overview of AF algorithm

The artificial fish (AF) swarm algorithm was first proposed in 2002 and has been widely used in multi-objective optimization problems,38 such as

resource allocation and scheduling. AF is a new bottom-up optimization mode that can obtain a sub-optimal or optimal solution to the problem in

the solution space by simulating the feeding activities of fish swarms.

During the foraging activities of artificial fish, the amount and concentration of food in the water are usually perceived by vision or taste, and

the simple behavior of individuals or groups tends toward food. The AF includes four behaviors: Prey, Follow, Swarm and random movement. Each

behavioral change of artificial fish depends on its own state and environment (partner) state, and affects the activities of its companions through

its own activities. In the optimization process of artificial fish, bulletin boards are used for identification to record the state of historically optimal

artificial fish (global optimal). Iteration is carried out by comparing the status of individuals and bulletin boards to make the fish swarm tend toward

the target.



OUYANG ET AL. 9 of 21

In an n-dimensional target search space, there are F artificial fish, which are expressed as AF = {AF1, AF2, … , AFF}. Let Xi = (x1
i

, x2
i

, … , xn
i

) be the

current state of the artificial fish AFi and fi be the objective value. Then, at any time/iteration t, the four behaviors of the artificial fish AFi can be

summarized as follows:

1. Random movement: X′
i

is randomly generated position within the field of vision by applying Equation (22):

X′
i = Xi + Visual × Rand() (22)

where Visual represents the field of vision for the artificial fish AFi and Rand() is used to generate a random number between 0 and 1. The artificial

fish Xi approaches the state X′
i

under the limit of the step size.

2. Prey: Randomly generated X′
i

within the field of vision. If f′
i
≤ fi, the artificial fish will move forward to position X′

i
; otherwise, X′

i
will be

regenerated until the retry number try num is exceeded, and the artificial fish will perform random behavior. The forward formula is given by

Equation (23):

Xi(t + 1) = Xi(t) +
Xi′ − Xi(t)

||Xi′ − Xi(t)||
× Step × Rand() (23)

where Step is the maximum moving step and di′ ,i = ||Xi′ − Xi(t)|| is the Euclidean distance between Xi′ and Xi.

3. Follow: Let Xmin be the partner with the best target position within the visual field of Xi, that is, di,min ≤ Visual. If fmin < fi and, the nearby area is

not too crowded, that is, fmin∕nf < 𝛿fi. Here, nf represents the number of neighbor partners within the field of vision and 𝛿 is the crowding degree

factor. Then, the fish moves to position Xmin based on Equation (23); otherwise, the fish will perform Prey behavior.

4. Swarm: Let Xc be the partner of the regional center near the artificial fish Xi. If fc < fi and the nearby area is not too crowded, that is, fc∕nf < 𝛿fi,

then the fish moves to position Xc based on Equation (23); otherwise, the fish will perform Follow behavior.

4.2 AF coding

In the artificial fish swarm algorithm, each fish in the swarm is the solution of the target space. To adapt to the solution of the optimization model

proposed in Section 3.3, the coding problem of artificial fish must be solved. An array was used to describe each artificial fish. The array corresponds

to the tool service set to be deployed, and the service identifier is used as the index. Because each service is deployed to different server nodes

according to the number of extensions of the container instance, the server-node ID list serves as the specific content of the service. Table 2 shows

the array structure of the artificial fish AFi (1 ≤ i ≤ F).

In Table 2, the artificial fish contains N services, and the execution container of each service TSj is deployed in Cinsj server nodes. For example,

the TS2 is deployed in four nodes and the location status code is XTS2
={3, 12, 13, 21}. Then, as the candidate solution of the optimization model, the

position state of AFi is Xi =(XTS1
, XTS2

, … , XTSN
) and the position length is K =

∑N
j=1Cinsj.

Based on the analysis of the above artificial fish structure, within the field of vision, the distance between two artificial fish was defined as the

sum of the number of different elements at the corresponding position. Let Xa = [xa
1
, xa

2
, … , xa

K
] and Xb = [xb

1
, xb

2
, … , xb

K
] be the position states of

artificial fish AFa and AFb, respectively. The distance between AFa and AFb can be expressed as:

dab =
K∑

k=1

sign(|xa
k − xb

k |) (24)

where sign is a symbolic function:

sign(x) =
⎧
⎪
⎨
⎪
⎩

0, x = 0;

1, x > 0.
(25)

TA B L E 2 Structure of artificial fish AFi

AFi Deployment node list

TS1 {5, 8, 31}

TS2 {3, 12, 13, 21}

… …

TSN {5, 21, 7, 3, 29}
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In the field of vision, the set of neighboring partners of the artificial fish AFa is Nbs = {Xb|dab ≤ Visual}, where nf = |Nbs| is the number of neigh-

boring partners. Let Xb = [xb
1
, xb

2
, … , xb

K
] (1 ≤ b ≤ nf ) be the position of the neighbor partner for artificial fish AFa; then, the status bit xc

i
(1 ≤ i ≤ K)

of the neighbor center position Xc takes the server node ID where the status bit xb
i

of all neighbor partners appears most.

4.3 Fitness evaluation function

Here, we used the AF optimization strategy to deploy each type of service to the corresponding type of server node. In the service deployment

process, the state Xi of each artificial fish AFi is a solution to the problem model. The fitness of state Xi must be evaluated to determine the optimal

or sub-optimal solution. The evaluation method aggregates the three optimization objective functions in Section 3 into one evaluation function39

and normalizes each objective function using the normalization method. The evaluation function was as follows:

Eav(X) = 𝛽1
MD(X) − MDmin

MDmax − MDmin
+ 𝛽2

CLB(X) − CLBmin

CLBmax − CLBmin
+ 𝛽3

SEF(X) − SEFmin

SEFmax − SEFmin
(26)

where ∀𝛽i ∈ [0,1],
∑3

i=1𝛽i = 1, and the weight value 𝛽i can be adjusted according to actual business needs. The minimum and maximum values of

each objective were used to eliminate the amplitude. The minimum values are MDmin, CLBmin, SEFmin; The maximum values are MDmax , CLBmax , SEFmax .

X is the candidate solution.

In each iteration of AF optimization, first, non-dominated or non-inferior individuals are selected through the dominance relationship among

individuals, and the non-dominated individuals are gathered into the archive or Pareto sets. Second, the crowding distance is used to calculate the

distance between non-dominated individuals and the optimal solution in the search space. Finally, the individuals in the Pareto set and with the

minimum crowding distance and evaluation value are selected as bulletin boards, and the updating of bulletin boards can promote the artificial fish

swarm to approach the optimal solution continuously.

4.4 Service deployment process

To host the execution container of each type for service to the appropriate type of server node, in each iteration of the AF optimization strategy, the

individual must constantly change the position state and approach the optimal solution. The service deployment process using the AF optimization

strategy is as follows:

1. Artificial fish swarm initialization: Set the relevant parameters F, 𝛿, step, Visual, try num, and max iter. Based on the constraints of the problem

model, the artificial fish swarm AFs = {AF1,AF2, … ,AFF} and initial position {Xi|i ≤ F} are generated;

2. Iteration steps:

a Calculate the function value Eva(Xi) of each artificial fish AFi using Equation (26). The archive set Arc was selected based on the dominance

relationship, and the artificial fish with the optimal position state was used as the bulletin board;

b Evaluate each artificial fish and select the behaviors to be performed, including Prey, Follow, Swarm and Random movement behavior;

c Perform behavior: In the process of executing each behavior, judge whether the resource type requested and resource quantity required of

the execution container for each service in the artificial fish AFi match the selected server node based on the constraint rules. If it matches,

then deploy the container to this node; otherwise, look for the next server node. Here, the deployment criterion is that each service must be

deployed Cinsj times and deployed to different nodes each time to guide all execution containers of each service to complete the deployment;

d Update the position status Xi of each artificial fish AFi and repeat step a;

3. Algorithm completion: When the number of iterations is greater than the maximum number of iterations max iter, the algorithm operation is

terminated and the deployment of the service execution container is completed. The algorithm outputs the position state Bulletin.X of the bulletin

board, that is, the mapping set between the service and the server node.

4.5 Algorithm implementation

The pseudocode of the container-based service deployment strategy for the artificial fish (AF) swarm optimization algorithm (AF-CSDS) proposed

in this paper is shown in Algorithms 1 and 2.

In Algorithm 1 of the AF CSDS strategy, when performing behaviors such as Prey, Follow, Swarm, and Random movement behavior, Algorithm 2

is called according to each behavior rule in order to find the appropriate type of server node for each service according to the constraints. Its

pseudocode is shown in Algorithm 2.
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Algorithm 1. Find an appropriate server node for the execution container

Input:

TSs={TSi|1 ≤ i ≤ N}; PMs={pmk|1 ≤ k ≤ M};

Edgs={(TSi, TSj)|TSi, TSj ∈ TSs};

F, Step, Visual, 𝛿, try_num, max_iter;

Output: TS_PMs={(TSi, pmk)|TSi ∈ TSs ∧ pmk ∈ PMs};

1: t ← 1;

2: AFs ← InitializationAF(F);

3: Evas ← Evaluate(AFs);

4: Arc ←Cal_CrowdDistance(AFs);

5: while (t ≤ max_iter) do

6: Bulletin ←UpdateBulletin(Arc, Evas);

7: for each AFl do

8: [XO, EvaO, isMat] = Execute_Swarm(AFl, Visual, 𝛿);

9: if (not isMat) then

10: [XO, EvaO, isMat] = Execute_Follow(AFl, Visual, 𝛿);

11: if (not isMat) then

12: [XO, EvaO, isMat] = Execute_Prey(AFl, Visual, 𝛿, try_num );

13: if (not isMat) then

14: [XO, EvaO, isMat] = Execute_RandomMove(AFl, Visual, 𝛿);

15: end if

16: end if

17: end if

18: if (AFl.Eva ≤ EvaO) then

19: AFl.X ← XO;

20: end if

21: end for

22: Evas ← Evaluate(AFs);

23: Arc ←Cal_CrowdDistance(AFs);

24: end while

25: TS_PMs ← Bulletin.X;

26: Return TS_PMs;

Algorithm 2. Server node selection for service

Input: TMSs, PMs;

Output: TS_PMs;

1: for each TSi ∈ TSs do

2: while (l ≤ Cinsi) do

3: Randomly generate server node ID k;

4: if (TSi.Type = PMk.Type) then

5: if (CPUi<Re_CPUk ∧ Storei<Re_Storek) then

6: TS_PMs ← (i, k);
7: Break;

8: end if

9: end if

10: end while

11: end for
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4.6 Algorithm complexity analysis

The time complexity of the AF-CSDS deployment strategy comprises Algorithms 1 and 2. Here, let F be the scale of the artificial fish, N be the num-

ber of tool services, and M server nodes exist in the CDC. In Algorithm 1, from Steps 7 to 21, the number of operations performed by the external

loop is O(F). When traversing the artificial fish swarm, the number of operations performed from Steps 8 to 20 are: the number of Prey operations

is O(try num), the number of Follow operations is O(nf ), and the number of Swarm operations is O(nf). In Algorithm 2, because the execution con-

tainer of each service needs to deploy Cins times, it must perform O(N × Cins) times from Steps 1 to 11. Because Algorithm 2 needs to be called

by each behavior, the number of Prey operations is O(try num × N × Cins), the number of Follow operations is O(nf × N × Cins), and the number of

Swarm operations is O(nf × N × Cins). It can be seen from Algorithm 1 that the execution behavior is selective. Ideally, only Swarm behavior needs

to be performed, and the number of Swarm operations is O(F × nf × N × Cins). The worst-case is to execute all the behaviors, and the number of

operations is O(F × (2nf + try num) × N × Cins). Considering the number of iterations max iter, the total time complexity of the AF-CSDS algorithm

is O(max iter × F × nf × N × Cins) (the best) and O(max iter × F × (2nf + try num) × N × Cins) (the worst).

5 EXPERIMENT AND RESULT EVALUATION

This study used the tracking V2018 real dataset40 provided by Alibaba Cloud to evaluate the performance of the proposed AF-CSDS strategy. Based

on the analysis of tracking the V2018 dataset, in an application, the service function chain (SFC) is formed by the call relationship between 18

services, and the experiment is carried out considering the different number of user requests for the application. In the experiment, based on the

proposed QoS parameters, the proposed algorithm is compared with the existing deployment algorithm to verify the effectiveness of the proposed

algorithm.

5.1 Experimental data and parameter settings

Based on the analysis of tracking V2018 dataset, Table 3 shows the tool service stack of an application, with 18 tool services distributed across three

SFCs. Each row described the basic characteristics for a service. SFC represents the service function chain of the service. Type represents the service

type: 1-computing intensive services; 2-storage intensive services; and 3-common services. CPU and Store represent the amount of computing and

storage resources required by the service in the unit request (×1.0), respectively. Where Tsreq is the number of calls to a service; Thr is the threshold

for calls/requests; and Cins = ⌈
Tsreq
Thr

⌉ is the number of execution containers to be expanded when a service is requested per unit (×1.0). Adj TS is the

successor of the service.

In CDC, we used the CloudSim platform to build two server cluster environments of different sizes, including 120/240 server nodes. Three

types of heterogeneous server clusters are considered:1-computing servers, 2-storage servers, and 3-common servers, which are divided by 1:1:1.

The relevant CDC parameters are listed in Table 4.

The simulation parameter configurations of the AF-CSDS algorithm are presented in Table 5.

The hardware environment of this experiment is as follows: processor: AMD A6-6310 APU with Radeon R4 Graphics 1.80GHz, 8G RAM..

According to the above experimental data and parameter configuration, the random function based on the MathLab tool generated the code for

testing the AF-CSDS algorithm. Six different user requests were implemented in two server cluster environments with different numbers for testing

to obtain more valid data to verify the performance of the AF-CSDS algorithm, as shown in Table 6. Repeat 10 runs for each user request, and each

run iteration is 100 iterations. The experimental data are averaged based on each proposed QoS parameter after statistics, and the experimental

data are recorded in detail for statistical analysis and comparison. In addition, to better compare the efficiency of existing deployment strategies,

that is, the running time, each user request of different cluster sizes is run 40 times separately, which is based on the fact that the meta-heuristic

strategy generally stops searching after approximately 40 iterations.

5.2 Comparison of deployment strategies

Here, we evaluate the proposed AF-CSDS deployment strategy based on the above experimental data and the simulation running environment. In

the experiment, it was compared with existing deployment strategies such as APSO-TSDS,5 MSG-NSGA-III,20 ACO-MCMS,19 GA-NSGA-II,17 and

the Spread algorithm implemented in Docker Swarm.8

1. The APSO-TSDS strategy is a service deployment strategy based on an accelerated particle swarm optimization algorithm. This strategy opti-

mizes the transmission cost between services, aggregation correlation between containers, and resource load balancing of the CDC to realize

the deployment of service execution containers.
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TA B L E 3 Service stack in an application

TSID SFC Typei CPUi Storei Treqi Thri Cinsi Adj MS

TS1 SFCa 1 36 3.1 6 3 2 {TS2, TS7}

TS2 SFCa, SFCc 2 2.4 27.3 8 5 2 {TS3, TS7, TS10, TS11}

TS3 SFCa, SFCb 3 10.4 8.2 20 4 5 {TS4, TS11}

TS4 SFCb 1 20.6 5.1 4 2 4 {TS5}

TS5 SFCb 1 26.2 7.2 8 4 2 {TS6, TS8}

TS6 SFCb 2 4.1 30.6 6 2 3 {TS9}

TS7 SFCa, SFCb 2 7.1 32 5 1.3 4 {}

TS8 SFCb 1 30 12.5 6 2 3 {}

TS9 SFCb 2 6.8 26 4 2 2 {}

TS10 SFCc 3 6.2 5.2 25 15 2 {TS12}

TS11 SFCa, SFCb 1 22 6.5 4 2 2 {TS3}

TS12 SFCc 3 14.6 11.3 18 6 3 {TS13, TS14}

TS13 SFCc 1 34.0 6.9 6 3 2 {TS17}

TS14 SFCc 2 7.6 40.5 4 2 2 {TS15}

TS15 SFCc 2 12.4 33.6 4 2.4 2 {TS16}

TS16 SFCc 2 4.2 46 3 1.1 3 {}

TS17 SFCc 1 30.3 6.4 5 1.2 5 {TS18}

TS18 SFCc 1 2.4 4.6 6 4 3 {}

TA B L E 4 CDC parameter setting

Parameter Description Value

|CDC| CDC Scale [120, 240]

CPUk Server CPU Capacity 200∼ 800

Storek Server Store Capacity 200∼ 800

Typek Server Type 1, 2, 3

failk Server Failure Rate 0.001∼ 0.03

TA B L E 5 Parameter configuration for AF-CSDS algorithm

Parameter Description Value

F Artificial fish scale 80

max iter Maximum number of iterations 100

Step Maximum step 0.5

𝛿 Crowdedness factor 0.3

Visual Visual range ≤ K

try num Try number 10

TA B L E 6 Two experimental clusters

Test type M User requests Running time

Lab. A 120 {×1.0, ×2.0, ×3.0, ×4.0, ×5.0, ×6.0} 10

Lab. B 240 {×1.0, ×2.0, ×3.0, ×4.0, ×5.0, ×6.0} 10
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2. The MSG-NSGA-III strategy is an NSGA-III algorithm based on reference points (i.e., NSGA-III), which is used for starting and deploying microser-

vices. The algorithm considers the actual idle rate of microservices, idle rate of computing and storage resources, and load balancing of computing

and storage resources.

3. The ACO-MCMS strategy uses the Ant Colony Optimization (ACO) algorithm to solve the deployment of microservices. It realizes the container

deployment of microservices by optimizing the network transmission cost, maximum negative resource utilization of the cluster, and average

failure rate of microservices.

4. The GA-NSGA-II strategy is a microservice deployment strategy based on a non-dominated sorting genetic algorithm (NSGA-II). The optimiza-

tion objectives of this strategy are the threshold distance between containers, network distance between containers, execution reliability of

microservices, and load balancing of computing resources.

5. The Spread algorithm is a classic deployment strategy implemented by Docker Swarm. This strategy mainly deploys microservices on physical

nodes with the least number of containers and evenly distributes service containers on each physical node. The goal is to improve the resource

utilization.

5.3 Analysis and comparison

The size of the server cluster and the number of user requests in this experiment are: M=[120, 240], sizeof(Ureq) = 6. This section evaluates the

Pareto solution set of the AF-CSDS deployment strategy according to the proposed optimization objectives and Equation (26). Here, set 𝛽i = 1∕3.

The comparison parameters are the matching degree (MD) between the containers and server nodes, load balancing of clusters (CLB), service exe-

cution failure(SEF), and resource utilization of computing and storage clusters. In addition, the running time of each deployment strategy was also

considered.

In the test result dataset, the result data in bold black font are superior to the other results. Because the running time of the spread algorithm is

less than that of the meta-heuristic strategies (AF-CSDS, APSO-TSDS, MSG-NSGA-III, ACO-MCMS, and GA-NSGA-II), its running time is not listed.

5.3.1 Experiment A

The average experimental results of Experiment A are listed in Table 7. This test implemented six different user requests in a cluster comprising

M = 120 server nodes. The user request scope is Ureqi ∈ [1.0,6.0] and 1 ≤ i ≤ 6, that is, the user request IDs are from Ureq1 to Ureq6.

For the matching degree (MD) between the container and server node, the smaller the value, the better the compatibility between the con-

tainer and server node. It can be seen from Table 7 that the AF-CSDS strategy performs best, and its MD value ranges from 0.0339 to 0.1962.

This is because our strategy considers type matching between the containers and server nodes, as well as aggregation between containers.

The Spread strategy exhibited the worst performance. Its MD value ranged from 0.1001 to 0.6505. The main reason is that the strategy con-

siders that containers are evenly distributed among server nodes and did not consider the type-matching relationship between the containers

and server nodes.

For the rate of the service execution failure (SEF), compared to APSO-TSDS, MSG-NSGA-III, ACO-MCMS, GA-NSGA-II, and Spread, AF-CSDS

improved by 17.75%, 18.23%, 13.09%, 18.33%, and 18.15%, respectively. The ACO-MCMS strategy takes second place in performance because it

considers the rate of the service execution failure on the server node, but did not consider the factor of the platform failure rate where the service

is located. Similarly, for load balancing of clusters (CLB), the AF-CSDS strategy performs best, and its CLB value ranges are 0.0130∼0.0798. The

ACO-MCMS performance takes second place, with a value range of 0.0131∼0.0887.

In terms of running time, a comparison of the whole running time in Experiment A is shown in Figure 2A.

As shown in Figure 2A, the AF-CSDS strategy was far superior to the APSO-TSDS, ACO-MCMS, and GA-NSGA-II strategies. However, the run-

ning time of the ACO-MCMS strategy was the longest at 610.30% higher than that of the AF-CSDS strategy. In addition, the running time of the

APSO-TSDS strategy occurs when the user requests Ureq=×5.0 exceeds ACO-MCMS strategy.

The experimental results show that the proposed AF-CSDS deployment strategy achieves better feasible solutions for the target values of MD,

SEF, and CLB and has the best performance compared with the other five deployment strategies. In addition, it is superior to other meta-heuristic

strategies in terms of running time.

5.3.2 Experiment B

To verify the effectiveness of the AF-CSDS deployment strategy further, we designed Experiment B, which implemented six different user requests

in a larger server cluster (M=240). The results of Experiment B are presented in Table 8.
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TA B L E 7 Statistical data for Experiment A

Obj. Strategies Ureq1 Ureq2 Ureq3 Ureq4 Ureq5 Ureq6

AF-CSDS 0.1962 0.1013 0.0675 0.0509 0.0405 0.0339

APSO-TSDS 0.6657 0.2793 0.1843 0.1378 0.1108 0.0911

MD MSG-NSGA-III 0.4857 0.3073 0.2182 0.1455 0.1181 0.0890

ACO-MCMS 0.5685 0.3184 0.1894 0.1271 0.1085 0.0926

GA-NSGA-II 0.5401 0.2856 0.1687 0.1415 0.1055 0.0905

Spread 0.0605 0.3228 0.2165 0.1636 0.1257 0.1001

AF-CSDS 3.4144 7.1105 10.7428 14.7622 18.6654 22.6684

APSO-TSDS 4.3531 8.5179 12.7287 16.9650 21.3938 25.2031

SEF MSG-NSGA-III 4.3205 8.5759 12.8555 17.0704 21.2381 25.2031

ACO-MCMS 3.9076 8.1873 12.2122 16.6590 20.7824 25.1931

GA-NSGA-II 4.3025 8.6494 12.8662 17.1328 21.1971 25.6106

Spread 4.3333 8.6080 12.7881 17.0281 21.2965 25.5016

AF-CSDS 0.0130 0.0260 0.0391 0.0530 0.0658 0.0798

APSO-TSDS 0.0179 0.0309 0.0462 0.0642 0.0789 0.0948

CLB MSG-NSGA-III 0.0144 0.0295 0.0481 0.0623 0.0786 0.0956

ACO-MCMS 0.0131 0.0270 0.0425 0.0579 0.0733 0.0887

GA-NSGA-II 0.0149 0.0303 0.0450 0.0618 0.0757 0.0948

Spread 0.0157 0.0316 0.0475 0.0633 0.0791 0.0949

AF-CSDS 2.3391 2.3855 3.2492 3.4341 4.2480 5.3101

APSO-TSDS 3.5218 6.4394 9.1172 12.0789 15.6691 18.7916

Time(s) MSG-NSGA-III 2.9574 3.5348 4.1683 4.7484 5.2269 5.8179

ACO-MCMS 20.5724 20.8911 21.1701 21.4388 21.8104 22.0795

GA-NSGA-II 4.0279 5.3678 6.7379 8.2532 9.7313 11.1732

F I G U R E 2 Comparison result of running time. (A) Experiment A. (B) Experiment B
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TA B L E 8 Statistical data for Experiment B

Obj. Strategies Ureq1 Ureq2 Ureq3 Ureq4 Ureq5 Ureq6

AF-CSDS 0.2029 0.1031 0.0705 0.0523 0.0415 0.0346

APSO-TSDS 0.5973 0.2965 0.1840 0.1404 0.1148 0.0903

MD MSG-NSGA-III 0.5261 0.2833 0.2148 0.1422 0.1126 0.1059

ACO-MCMS 0.6288 0.3095 0.1738 0.1399 0.1146 0.0908

GA-NSGA-II 0.6735 0.2614 0.1822 0.1426 0.1114 0.0965

Spread 0.6591 0.3302 0.2192 0.1669 0.1319 0.1090

AF-CSDS 3.3280 6.9471 10.7634 14.7458 18.5056 22.7884

APSO-TSDS 4.3622 8.8215 13.1181 17.7279 21.8413 26.2933

SEF MSG-NSGA-III 4.4305 8.8626 13.2024 17.6698 22.0589 26.2987

ACO-MCMS 4.1717 8.2909 12.8251 16.0234 20.4330 25.6380

GA-NSGA-II 4.6090 8.6748 13.1124 17.6785 22.0045 26.2545

Spread 4.4634 8.8533 13.1726 17.5634 21.9590 26.2877

AF-CSDS 0.0061 0.0129 0.0194 0.0258 0.0318 0.0388

APSO-TSDS 0.0075 0.0152 0.0229 0.0302 0.0392 0.0467

CLB MSG-NSGA-III 0.0069 0.0141 0.0227 0.0305 0.0387 0.0465

ACO-MCMS 0.0065 0.0135 0.0207 0.0281 0.0357 0.0431

GA-NSGA-II 0.0076 0.0156 0.0234 0.0302 0.0372 0.0466

Spread 0.0077 0.0155 0.0233 0.0311 0.0388 0.0465

AF-CSDS 1.8965 2.5988 3.2301 3.7543 4.7097 5.9164

APSO-TSDS 3.6492 6.4238 6.9855 12.6047 15.9167 18.9035

Time(s) MSG-NSGA-III 3.3883 3.8648 4.3937 4.9426 5.4496 6.0332

ACO-MCMS 43.7969 46.9315 49.8780 52.6925 55.6079 58.2428

GA-NSGA-II 3.7885 5.3427 6.7133 8.1833 9.7049 11.2135

It can be seen from Table 8 that for MD, AF-CSDS still has the best performance, with an MD value range of 0.03461∼0.2029, and The Spread

has the worst performance, with a value range of 0.10901∼0.6591.

For SEF, compared with APSO-TSDS, MSG-NSGA-III, ACO-MCMS, GA-NSGA-II and Spread strategies, AF-CSDS improved by 22.26%, 22.96%,

17.93%, 23.19%, and 22.84%, respectively. The performance of the ACO-MCMS was second. Similarly, for CLB, the AF-CSDS strategy has the best

performance, and its CLB range is 0.0061∼0.0388; the ACO-MCMS performance takes second place, and the value range is 0.0065∼0.0431.

For the running time, a comparison of the whole running time of Experiment B is shown in Figure 2B.

As shown in Figure 2B, the AF-CSDS strategy is much better than the APSO-TSDS and ACO-MCMS strategies, while the MSG-NSGA-III strategy

runs slightly longer than the AF-CSDS strategy. However, with the expansion of the server node scale, the whole running time of ACO-MCMS strat-

egy is up to 4298.4 min (71.64 h). That is, this strategy spends a lot of time searching for appropriate server nodes to deploy containers, and has little

application value in actual deployment. In addition, the running time of the APSO-TSDS strategy is significantly lower than that of the ACO-MCMS,

but the running time is still very long (14.03 h).

From the comparison results in Table 8 and Figure 2B, the proposed AF-CSDS strategy is superior to the other five strategies in terms of the

MD, SEF, CLB. Furthermore, it is superior to other meta-heuristic strategies in terms of running time.

5.3.3 Resource utilization of computing and storage nodes

Here, we only observed the resource utilization of computing and storage server clusters to verify the effectiveness of the proposed AF-CSDS

algorithm, while the resource utilization of common server clusters was not considered.
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To analyze the performance of the proposed AF-CSDS strategy and the other five strategies on resource utilization, we collected sample data on

the resource utilization of the computing and storage server clusters in 10 runs for Experiments A and B. The box graphs of the resource utilization

distributions of Experiments A and B are shown in Figures 3 and 4, respectively.

In Figure 3, the resource utilization of the computing and storage clusters for the AF-CSDS strategy and spread strategy are almost all dis-

tributed at one point; that is, the data distribution is concentrated in the upper and lower quartiles, indicating that the resource utilization has little

change, and the performance is stable. In Figure 3A, the data distribution of GA-NSGA-III strategy is relatively scattered, indicating that its perfor-

mance is relatively unstable and changes greatly; GA-NSGA-II strategy has the largest data distribution change and the worst performance stability;

Compared with GA-NSGA-III and GA-NSGA-II strategies, APSO-TSDS and ACO-MCMS strategy data are more centralized and stable. However, in

Figure 3B, the data distribution of GA-NSGA-II is relatively scattered and unstable, and the data distribution of the GA-NSGA-III strategy is the

worst.

In Figure 4, the resource utilization data of the AF-CSDS and spread strategies are still distributed in the upper and lower quartiles, indicat-

ing that their performance is stable. As shown In Figure 4A, when ureq= 1.0, the upper quartile data of the GA-NSGA-II strategy are almost at the

same level as that of the AF-CSDS strategy, but the median is significantly lower than that of the AF-CSDS strategy, indicating that the resource

rate of the GA-NSGA-II strategy is higher than that of the other strategies. However, GA-NSGA-II exhibits the worst performance stability as the

number of requests increases, and the data distribution becomes more dispersed. Similarly, compared to the GA-NSGA-III and GA-NSGA-II strate-

gies, the ACO-MCMS strategy data distribution is more centralized and stable. However, in Figure 4B, the data distribution of the GA-NSGA-III

strategy is relatively stable, its resource utilization is also higher than that of other strategies, and the data distribution of GA-NSGA-II is

still the worst.

F I G U R E 3 Comparison results of server cluster resource utilization in Experiment A. (A) Computing server cluster. (B) Storage server cluster

F I G U R E 4 Comparison results of server cluster resource utilization in Experiment B. (A) Computing server cluster. (B) Storage server cluster
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As shown in Figures 3 and 4, the resource utilization of the proposed AF-CSDS strategy is significantly higher than the median of the resource

utilization of the other strategies, the data distribution is stable, and the performance is optimal.

To facilitate discussion and understanding, the statistics of the average resource utilization of the computing and storage server nodes of the six

algorithms are presented in Table 9. In Experiment A, the resource utilization of the computing server node cluster: The AF-CSDS strategy is superior

to APSO-TSDS, MSG-NSGA-III, ACO-MCMS, GA-NSGA-II and Spread strategies by 50.41%, 36.61%, 37.98%, 33.16% and 41.68%, respectively; The

resource utilization of the storage cluster has increased by 44.32%, 40.37%, 49.85%, 42.98% and 42.54%, respectively.

In Experiment B, the resource utilization of the computing server cluster increased by 52.61%, 36.27%, 42.15%, 37.25%, 42.09%, respec-

tively; The resource utilization of the storage server cluster has increased by 44.76%, 38.51%, 53.59%, 44.01% and 42.71%, respectively. The

results of the two experiments show that AF-CSDS has the best resource utilization and the most stable performance under the load balancing

constraint.

5.3.4 Parameter analysis

In the process of solving practical multi-objective problems (MOPs), parameters have a significant impact on the performance of the algorithm, and

their settings and choices often depend on the experience of the researchers. The visual range of an artificial fish is the key factor in determining the

neighborhood and distance, and an appropriate visual range value can balance global and local searches. To verify the effectiveness and performance

of the parameters of the AF-CSDS strategy, we tested the visual sensitivity of artificial fish in the test environment of Experiment B without losing

generality.

As described in Section 4.2, the encoding length of each artificial fish is the position length K =
∑N

j=1Cinsj, where N is the number of services.

That is, the K value is related to the number of service execution container instances Cins. The Equation for calculating Cins is as follows:

TA B L E 9 Statistical analysis of the average resources utilization

Experiment A Experiment B

Strategies CPU utilization Store utilization CPU utilization Store utilization

AF-CSDS 61.80% 60.03% 30.91% 30.01%

APSO-TSDS 34.08% 34.14% 16.27% 17.05%

MSG-NSGA-III 37.29% 35.58% 18.56% 18.46%

ACO-MCMS 38.61% 30.72% 18.68% 14.62%

GA-NSGA-II 40.29% 33.77% 19.53% 16.70%

Spread 35.96% 34.44% 17.89% 17.21%

F I G U R E 5 Effect of different (A) visual and (B) F values on Experiment B
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Cins =
⌈

Ureq × Tsreq
Thr

⌉

(27)

To select an appropriate Visual value, we used K as the reference object and 1 as the step size to test the distribution value.

It can be observed from Figure 5A that with an increase in the Visual value, the running time of the AF-CSDS algorithm shows a downward

trend, reaching the lowest point when Visual = K − 7. However, when Visual > K − 7, its running time rises sharply in a linear manner, indicating that

parameter Visual has an important impact on the running time. The fundamental reason is that the search range of feasible solutions expands with an

increase in the visual range factor. For the evaluation value, the evaluation value is the normalized calculated value of the three objective functions.

When Visual = K − 5, the evaluation value reaches the peak value; When Visual = K − 1, the evaluation value is the minimum, which indicates that

with an increase in the Visual range, the performance of the AF-CSDS strategy on the three objective functions improves, but the running time

increases sharply. Weigh the runtime and performance, so we set Visual to K − 8.

Similarly, to test the effect of fish swarm size F, we set the value of parameter F from 50 to 90, and the experimental results are shown in

Figure 5B. As can be seen in Figure 5B, with an increase in F, the evaluation value shows a downward trend. When F = 90, the AF-CSDS strategy

has the best performance on the three objective functions; however, the runtime increases linearly. Considering the balance between performance

and runtime, we set parameter F to 80.

6 CONCLUSIONS

This study designs a deployment strategy for service execution containers to address computing- and storage-intensive microservice deployment

problems. Based on the similarity between the microservices of different business types and servers, three objective functions are proposed:

the matching degree (MD) between the containers and server nodes, load balancing of clusters (CLB), service execution failure(SEF). We used

an artificial fish swarm algorithm and crowding distance, to obtain the solution of the problem model by optimizing three objective functions

to deploy the execution containers of different types of microservices to the corresponding server nodes. Comprehensive experiments show

that, compared with other deployment strategies, this strategy achieved good improvement rates in MD, CLB, and SFC. Under the constraint

of load balancing, the resource utilization and service execution reliability of computing and storage server nodes are significantly improved. In

addition, this strategy significantly shortens the running time by optimizing the performance parameters and provides a competitive objective

function value.

Although the proposed AF-CSDS strategy shows great optimization potential in dealing with the deployment of microservices of different

business types, it is only for computing- and storage-intensive services. Future work will extend to other business types to adapt to more types of

microservice deployment problems. In addition, in a heterogeneous cluster environment, the optimization of the task scheduling performance of

microservices is related to the interests of providers and cloud users. We will adopt deep learning to solve this problem.
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