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a b s t r a c t 

Automatic age and gender classification has been widely used in a large amount of applications, particu- 

larly in human-computer interaction, biometrics, visual surveillance, electronic customer, and commercial 

applications. In this paper, we introduce a hybrid structure which includes Convolutional Neural Network 

(CNN) and Extreme Learning Machine (ELM), and integrates the synergy of two classifiers to deal with 

age and gender classification. The hybrid architecture makes the most of their advantages: CNN is used 

to extract the features from the input images while ELM classifies the intermediate results. We not only 

give the detailed deployment of our structure including design of parameters and layers, analysis of the 

hybrid architecture, and the derivation of back-propagation in this system during the iterations, but also 

adopt several measures to limit the risk of overfitting. After that, two popular datasets, such as, MORPH- 

II and Adience Benchmark, are used to verify our hybrid structure. Experimental results show that our 

hybrid architecture outperforms other studies on the same datasets by exhibiting significant performance 

improvement in terms of accuracy and efficiency. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

Age and gender classification play a very important role in our

ocial lives, by which we can find whether the persons we contact

re “sir” or “madam” and young or old. These behaviors are heav-

ly dependent on our ability to estimate these individual traits: age

nd gender, which are from facial appearances [1] . These attributes

re important in our lives while the ability to estimate them accu-

ately and reliably from facial appearance is still far from satisfying

he needs of commercial applications [2] . 

In order to enhance the ability to estimate or classify these at-

ributes from face images, many methods have been put forward in

he past years. Based on cranio-facial changes in feature-position

otation and on skin wrinkle analysis, these attributes have been

lassified from facial images [3] while a methodology is proposed

o classify age and gender automatically from facial images through

eature extraction including primary and secondary features [4] .
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owever, these approaches mentioned above have been designed

articularly for processing constrained age or gender tasks which

re not suitable for practical applications including unconstrained

mage classification tasks. 

The accuracy of age and gender classification depends on two

spects: feature extraction and classification, while feature extrac-

ion is a crucial factor for the success of classification. It not only

emands the features having the most differentiable characteris-

ics among different classes, but also retains unaltered characteris-

ics within the same class. In recent years, due to its good feature

xtraction ability, CNN has been highlighted in machine learning

nd pattern recognition fields. It has achieved state-of-the-art per-

ormance in image recognition and can automatically extract the

eatures. 

With full consideration of what mentioned above, CNN has

een introduced to classify unconstrained age and gender tasks

utomatically and significant performance has been obtained [2] .

ore importantly, the unconstrained images are without prior

anual filtering, which are as true as real-world applications. CNN

as shown great advantages in image recognition while it is the

rst time to use CNN to process these unconstrained tasks so that

e can further improve the accuracy of classification through the

ne tuning of its structure or its parameters. 

With more discriminative features and more powerful classi-

er, higher recognition rate will be obtained. In a plain CNN,

he full-connection layers are as same as a general single
–ELM for age and gender classification, Neurocomputing (2017), 
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hidden layer feedforward neural network (SLFN) and trained

through back-propagation (BP) algorithm. On the one hand, BP al-

gorithm is sensitive to local minima of training errors. On the other

hand, SLFN is likely to be over-trained leading to degradation of

its generalization performance when it performs BP algorithm [5] .

Therefore, the generalization performance of the fully connection

layers in the network is probably sub-optimal and they cannot

make full use of discriminative features extracted by convolutional

layers. 

In order to deal with the problems, it is urgent to find a new

classifier which owns the similar ability as the full-connection lay-

ers or softmax classifier, while it can make full use of the discrim-

inative features. Niu and Suen [6] proposed a hybrid model which

integrated the synergy of two superior classifiers including CNN

and Support Vector Machine (SVM), and got a better results com-

pared with a plain CNN. In general, the design of SVM is so com-

plicated that is important to find other classifiers with least need-

ing tuning parameters, good classification performance, and high

generalization ability to process the same tasks mentioned above.

To the best of our knowledge, SVM, Naive Bayes [7] , and Extreme

Learning Machine (ELM) [8] are three important classification al-

gorithms at present while ELM has been proved to be an efficient

and fast classification algorithm because of its good generaliza-

tion performance, fast training speed, and little human intervene

[9] . What’s more, ELM and improved ELM, including mixing with

other methods, have been widely used to process pattern recogni-

tion tasks and obtain a good performance [10] . 

1.2. Our contributions 

In order to make full use of the advantages of CNN and ELM, we

propose a hybrid recognition architecture, called CNN–ELM, which

is used to process age and gender classification tasks. It not only

sufficiently exploits the excellent feature extraction ability of CNN

and the outstanding classification property of ELM, but also is used

to classify the popular human facial image datasets. At the same

time, different effective approaches are adopted to reduce overfit-

ting. With lower time complexity, the hybrid architecture gets a

better performance compared with a plain CNN structure which

contains the identical convolutional layers. The major contributions

of this paper are summarized as follows: 

• We propose a new hybrid CNN–ELM method to process age and

gender classification aiming at image tasks. It combines Convo-

lutional Neural Networks and Extreme Learning Machine in a

hierarchical fashion which is sufficient in applying the advan-

tages of CNN and ELM. 

• We present the process of integrating the synergy of hybrid

structure in detail, including the design of the layers in CNN,

the selection of parameters in hybrid structure, the realization

of back-propagation process in this hybrid model, and so on. 

• Finally, two popular datasets, such as MORPH-II and Adience

Benchmark, are used to verify our hybrid structure. Experi-

ments show that our hybrid structure gets better performance

compared with other studies on the same image datasets and

also can fulfill the requirements of many real-world application.

The remainder of this paper is organized as follows.

Section 2 reviews the related work. Section 3 gives prelimi-

nary information. Section 4 discusses architecture of our hybrid

CNN–ELM model. Section 5 describes merits of hybrid CNN-ELM

model. We also analyze the time complexity of hybrid classifica-

tion in Section 6 . The experiments and results are illustrated in

Section 7 . Finally, we make a conclusion in Section 8 . 
Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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. Related work 

.1. Hybrid neural network system 

CNN has been successfully applied to various fields, and spe-

ially, image recognition is a hot research field. However, few re-

earchers have paid attention on hybrid neural network. Lawrence

t al. [11] presented a hybrid neural-network solution for face

ecognition which made full use of advantages of self-organizing

ap (SOM) neural network and CNN. That approach showed a

igher accuracy compared with other methods used for face recog-

ition at that time. In 2012, Niu and Suen [6] introduced a hy-

rid classification system for objection recognition by integrating

he synergy of CNN and SVM, and experimental results showed

hat the method improved the classification accuracy. Liu et al.

12] used CNN to extract features while Conditional Random Rield

CRF) was used to classify the deep features. With extensive ex-

eriments on different datasets, such as Weizmann horse, Graz-

2, MSRC-21, Stanford Background, and PASCAL VOC 2011, the hy-

rid structure got better segmentation performance compared with

ther methods on the same datasets. In [13] , Xie et al. used a hy-

rid representation method to process scene recognition and do-

ain adaption. In that method, CNN was used to extract the fea-

ures meanwhile mid-level local representation (MLR) and con-

olutional Fisher vector representation (CFV) made the most of

ocal discriminative information in the input images. After that,

VM classifier was used to classify the hybrid representation and

chieved better accuracy. Recently, Tang et al. [14] put forward a

ybrid structure including Deep Neural Network (DNN) and ELM to

etect ship on spaceborne images. In this time, DNN was used to

rocess high-level feature representation and classification while

LM was worked as effective feature pooling and decision making.

hat is more, extensive experiments were presented to demon-

trate that the hybrid structure required least detection time and

chieved highter detection accuracy compared with existing rel-

vant methods. Based on the analysis above, we can integrate

NN with other classifiers to improve the classification accuracy.

n Sections 4 –6 , we will present our hybrid CNN-ELM in detail and

how its better performance compared with other methods to pro-

ess the same tasks. 

.2. Age classification 

Recently, age and gender classification has received huge atten-

ion, which provides direct and quickest way for obtaining implicit

nd critical social information [15] . Fu et al. [16] made a detailed

nvestigation of age classification and we can learn more informa-

ion about recent situation from Ref. [2] . Classifying age from the

uman facial images was first introduced by Kwon et al. [3] and it

as presented that calculating ratios and detecting the appearance

f wrinkles could classify facial features into different age catego-

ization. After that, the same method was used to model cranio-

acial growth with a view to both psychophysical evidences and

nthropometric evidences [17] while this approach demanded ac-

urate localization of facial features. 

Geng et al. [18] proposed a subspace method called AGing pat-

Ern Subspace which was used to estimate age automatically while

ge manifold learning scheme was presented in [19] to extract face

ging features and a locally adjusted robust regressor was designed

o predict human ages. Although these methods have shown many

dvantages, the requirement that input images need to be near-

rontal and well-aligned is their weakness. It is not difficult to

nd that the datasets in their experiments are constrained, so that

hese approaches are not suited for many practical applications in-

luding unconstrained image tasks. 
–ELM for age and gender classification, Neurocomputing (2017), 
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Last year, many methods have been proposed to classify age

nd gender. Chang and Chen [20] introduced a cost-sensitive or-

inal hyperplanes ranking method to estimate human age from

acial images while a novel multistage learning system which is

alled grouping estimation fusion (DEF) was proposed to classify

uman age. Li et al. [21] estimated age using a novel feature se-

ection method and shown advantage of the proposed algorithm

rom the experiments. Although these method mentioned above

ave shown lots of advantages, they are still relied on constrained

mages datasets, such as FG-NET [22] , MORPH [23] , FACES [24] . 

All of these methods mentioned above have been verified ef-

ectively on constrained datasets for age classification which are

ot suitable for unconstrain images in practical applications. Our

roposed method not only automatically classifies age and gender

rom face images, but also deals with the unconstrain face image

asks effectively. 

.3. Gender classification 

Although more and more researchers have found that gender

lassification has played an important role in our daily life, few

earning-based machine vision approaches have been put forward.

akinen and Raisamo [25] made a detailed investigation of gender

lassification while we can learn more about its recent trend from

ef. [2] . In the following, we briefly review and summarize relevant

ethods. 

Golomb et al. [26] were some of the early researchers who

sed a neural network which was trained on a small set of near-

rontal facial image dataset to classify gender. Moghaddam and

ang [27] used SVM to classify gender from facial images while

aluja and Rowley [28] adopted AdaBoost to identify human gen-

er from facial images. After that, Toews and Arbel [29] presented

 viewpoint-invariant appearance model of local scale-invariant

eatures to classify age and gender. 

Recently, Yu et al. [30] put forward a study and analysis of gen-

er classification based on human gait while revisiting linear dis-

riminant techniques was used to classify gender [31] . In [1] , Ei-

inger et al. not only presented new and extensive dataset and

enchmarks to study age and gender classification, but also de-

igned a classification pipeline to make full use of what little data

as available. In [9] , a semantic pyramid for gender and action

ecognition was proposed by Khan et al. and the method is fully

utomatic while it does not demand any annotations for a per-

on upper body and face. Chen et al. [32] used first names as fa-

ial attributes and modeled the relationship between first names

nd faces. They used the relationship to classify gender and got

igher accuracy compared with other methods. Last year, Han et al.

33] used a generic structure to estimate age, gender, and race. 

Although most of the approaches mentioned above make lots of

rogress for age classification, they are aimed at either constrain

maging condition or non-automated classification methods. Our

ybrid CNN–ELM structure is not only suitable to process uncon-
Fig. 1. Structure of CNN fo

Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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train face images, but also able to automatically classify age and

ender tasks based on facial images. 

. Preliminary information 

.1. Deep Convolutional Neural Networks 

Convolutional Neural Network [34] , which usually includes in-

ut layer, multi-hidden layers, and output layer, is a deep super-

ised learning architecture and often made up of two parts: an au-

omatic feature extractor and a trainable classifier. CNN has shown

emarkable performance on visual recognition [35] . When we use

NNs to process visual tasks, they first extract local features from

he input images. In order to obtain higher order features, the sub-

equent layers of CNNs will then combine these features. After

hat, these feature maps are finally encoded into 1-D vectors and a

rainable classifier will deal with these vectors. Because of consid-

ring size, slant, and position variations for images, feature extrac-

ion is a key step during classification of images. Therefore, with

he purpose of ensuring some degree of shift, scale, and distortion

nvariance, CNNs offer local receptive fields, shared weights, and

ownsampling. Fig. 1 is a basic architecture of CNNs. 

It can be seen from Fig. 1 that CNNs mainly include three parts:

onvolution layers, subsampling layers and classification layer. The

ain purpose of convolutional layers is to extract local patterns

nd the convolutional operations can enhance the original signal

nd lower the noise. Moreover, the weights of each filtering ker-

els in each feature maps are shared, which not only reduce the

ree parameters of networks, but also lower the complication of

elevant layers. The outputs of the convolutional operations con-

ain several feature maps and each neuron in entire feature maps

onnects the local region of the front layers. Subsampling is sim-

lar to a fuzzy filter which is primary to re-extract features from

he convolutional layers. With the local correlation principle, the

perations of subsampling not only eliminate non-maximal values

nd reduce computations for previous layer, but also improve the

bility of distortion tolerance of the networks and provide addi-

ional robustness to position. These features will be encoded into

 1-D vectors in the full connection layer. After that, these vec-

ors will be categorized by a trainable classifier. Finally, the whole

eural network will be trained by a standard error back propaga-

ion algorithm with stochastic gradient descent [36] . The purpose

f training CNNs is to adjust the entire parameters of the system,

.e., the weights and biases of the convolution kernel, and we will

se the fine-tuned CNNs to predict the classes, such as label, age,

nd so on, from an unknown input image datasets. 

.2. Extreme machine learning model 

ELM was first proposed by Huang et al. [8,10,37] which was

sed for the single-hidden-layer feedforward neural networks

SLFNs). The input weights and hidden layer biases are randomly

ssigned at first, and then the training datasets to determine the
r visual recognition. 

–ELM for age and gender classification, Neurocomputing (2017), 
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Fig. 2. A basic structure of ELM. 
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output weights of SLFNs are combined. Fig. 2 is a basic structure

of ELM. For N arbitrary distinct samples ( x i , t i ), i = 1, 2, ..., N , where

x i = [ x i 1 , x i 2 , . . . , x in ] 
T , t i = [ t i 1 , t i 2 , . . . , t im 

] T . Therefore, the ELM

model can be written as 

L ∑ 

j=1 

β j g j ( x i ) = 

L ∑ 

j=1 

β j g( w j · x i + b j ) = o i (i = 1 , 2 , . . . , N) , 

(1)

where β j = [ β j1 , β j2 , . . . , β jm 

] T expresses the j th hidden node

weight vector while the weight vector between the j th hid-

den node and the output layer can be described as w j =
[ w 1 j , w 2 j , . . . , w n j ] 

T . The threshold of the j th hidden node can be

written as b j and o i = [ o i 1 , o i 2 , . . . , o im 

] T denotes the i th output

vector of ELM. 

We can approximate the output of ELM if activation function

g ( x ) with zero error which means as Eq. (2) : 

N ∑ 

i =1 

|| o i − t i || = 0 . (2)

Therefore, Eq. (1) can be described as Eq. (3) : 

L ∑ 

j=1 

β j g j ( x i ) = 

L ∑ 

j=1 

β j g( w j · x i + b j ) = t i (i = 1 , 2 , . . . , N) . (3)

Finally, Eq. (3) can be simply expressed as Eq. (4) : 

H β = T , (4)

where H expresses the hidden layer output matrix, and H = H ( w 1 ,

w 2 , ..., w L , b 1 , b 2 , ..., b L , x 1 , x 2 , ..., x N ). Therefore, H , β , and T can

be written as follows: 

[ h i j ] = 

⎡ 

⎣ 

g( w 1 · x 1 + b 1 ) ... g( w L · x 1 + b L ) 
. . . 

. . . 
. . . 

g( w 1 · x N + b 1 ) ... g( w L · x N + b L ) 

⎤ 

⎦ , (5)

β = 

⎡ 

⎣ 

β11 β12 ... β1 m 

. . . 
. . . 

. . . 
. . . 

βL 1 βL 2 ... βLm 

⎤ 

⎦ , (6)

and 

T = 

⎡ 

⎣ 

t 11 t 12 ... t 1 m 

. . . 
. . . 

. . . 
. . . 

t N1 t N2 ... t Nm 

⎤ 

⎦ . (7)

After that, the smallest norm least-squares solution of Eq. (4) is

∧ 
β = H 

† T , (8)

where H 

† denotes the Moore–Penrose generalized the inverse of

matrix H . The output of ELM can be expressed as Eq. (9) : 

f (x ) = h (x ) β = h (x ) H 

† T . (9)
Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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From the description above, the process of ELM can be de-

cribed as follows. At the beginning, ELM was randomly assigned

he input weights and the hidden layer biases ( w i , b i ) . After

hat, we calculate the hidden layer output matrix H according to

q. (5) . Then, by using Eq. (8) , we can obtain the output weight

ector β . Finally, we can classify the new dataset according to the

bove training process. 

ELM is not only widely used to process binary classification

38–41] , but also used for multi-classification due to its good prop-

rties. As we have mentioned in part 3.1, CNNs show excellent

erformance on extracting feature from the input images, which

an reflect the important character attributes of the input images.

herefore, we can integrate the advantages of CNNs and ELM based

n the analysis above, which means CNNs extract features from the

nput images while ELM classify the input feature vectors. 

. Architecture of our hybrid CNN–ELM model 

In this section, we present the design of our hybrid structure

n detail. Fig. 3 is the architecture of our CNN–ELM. It can be

een from the figure that our network includes two stages, fea-

ure extraction and classification. The stage of feature extraction

ontains the convolutional layer, contrast normalization layer, and

ax pooling layer. We also detailedly give the correlative param-

ters, such as, the number of each filters, the size of each feature

aps, the kernel size of each filters, and the stride of each sliding

indows. For example, the first convolutional layer consists of 96

lters, and the size of its feature map is 56 × 56 while its kernel

ize is 7 and the stride of the sliding window is 4. A single convo-

ution layer is implemented after the two stages, and a full connec-

ion layer converts the feature maps into 1-D vectors which is ben-

ficial to the classification. Finally, we combine the ELM structure

ith our designed CNN model, and we will use this hybrid model

o classify the age and gender tasks. We will detailedly present the

esign of each part of hybrid structure in following sections. 

.1. Design of our hybrid structure 

.1.1. Convolutional layer 

In the convolutional layer, convolutions which are performed

etween the previous layer and a series of filters, extract features

rom the input feature maps [42,43] . After that, the outputs of the

onvolutions will add an additive bias and an element-wise non-

inear activation function is applied on the front results. We use

he ReLU function as the nonlinear function in our experiment. In

eneral, ηmn 
i j 

denotes the value of an unit at position ( m, n ) in the

 th feature map in the i th layer and it can be expressed as Eq. (10) :

mn 
i j = σ

( 

b i j + 

∑ 

δ

P i −1 ∑ 

p=0 

Q i −1 ∑ 

q =0 

w 

pq 

i j δ
η(m + p)(n + q ) 

(i −1) δ

) 

, (10)

here b ij represents the bias of this feature map while δ indexes

ver the set of the feature maps in the ( i − 1 )th layer which are

onnected to this convolutional layer. w 

pq 

i jδ
denotes the value at the

osition ( p, q ) of the kernel which is connected to the k th feature

ap and the height and width of the filter kernel are P i and Q i . 

The convolutional layer offers a nonlinear mapping from the

ow level representation of the images to the high level seman-

ic understanding. In order to be convenient to later computations,

q. (10) can be simply denoted as follows: 

j = σ
(∑ 

w i j 

⊗ 

η(i −1) 

)
, (11)

here 
⊗ 

expresses the convolutional operation while w ij , which

ill be randomly initialized at first and then trained with BP neu-

al network [44,45] , denotes the value of the i th layer in the j th
–ELM for age and gender classification, Neurocomputing (2017), 
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Fig. 3. Full schematic diagram of our network architecture. 
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eature map. η(i −1) is the outputs of the (i − 1) layer and ηj is de-

ned as the outputs of the j th feature map in the convolutional

ayer. Different sizes of the input feature maps have various effects

n the accuracy of classification. Large size of a feature map means

ood features learned by the convolutional operations with the

igh cost of the computations while small size reduces the com-

utation cost degrading the accuracy of the classification. Making

 comprehensive consideration of the factors mentioned above and

y lots of experiments, we set the size of the input feature map as

27 × 227 which is showed in Fig. 3 . 

.1.2. Contrast normalization layer 

The goal of the local contrast normalization layer is not only to

nhance the local competitions between one neuron and its neigh-

ors, but also to force features of different feature maps in the

ame spatial location to be computed, which is motivated by the

omputational neuroscience [45,46] . In order to achieve the target,

wo normalization operations, i.e., subtractive and divisive, are per-

ormed. In this time, ηmnk denotes the value of an unit at position

 m, n ) in the k th feature map. We have 

 mnk = ηmnk −
P i −1 

2 ∑ 

p= − P i −1 

2 

Q i −1 

2 ∑ 

q = − Q i −1 

2 

J i ∑ 

j=1 

ε pq η(m + p)(n + q ) j , (12) 

here εpq is a normalized Gaussian filter with the size of 7 × 7 at

he first stage and 5 × 5 at the second stage. z mnk not only repre-

ents the input of the divisive normalization operations, but also

enotes the output of the subtractive normalization operations.

q. (13) expresses the operator of the divisive normalization: 

mnk = 

z mnk 

max ( M, M(m, n ) ) 
, (13) 

here 

(m, n ) = 

√ √ √ √ √ 

P i −1 

2 ∑ 

p= − P i −1 

2 

Q i −1 

2 ∑ 

q = − Q i −1 

2 

J i ∑ 

j=1 

ε pq η2 
(m + p)(n + q ) j , (14)

nd 

 = 

( 

s 1 ∑ 

m =1 

s 2 ∑ 

n =1 

M(m, n ) 

) 

/ (s 1 × s 2) . (15)

During the whole contrast normalization operations above, the

aussian filter εpq is calculated with the zero-padded edges, which
Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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eans that the size of the output of the contrast normalization

perations is as same as its input. 

.1.3. Max pooling layer 

Generally speaking, the purpose of pooling strategy is to trans-

orm the joint feature representation into a novel, more useful one

hich keeps crucial information while discards irrelevant details.

ach feature map in the subsampling layer is getting by max pool-

ng operations which are carried out on the corresponding feature

ap in convolutional layers. Eq. (16) is the value of a unit at posi-

ion ( m, n ) in the j th feature map in the i th layer or subsampling

ayer after max pooling operation: 

mn 
i j = max 

{
ηmn 

(i −1) j , η
(m +1)(n +1) 
(i −1) j 

, . . . , η(m + P i )(n + Q i ) 
(i −1) j 

}
. (16) 

The max pooling operation generates position invariance over

arger local regions and downsamples the input feature maps. In

his time, the numbers of feature maps in the subsampling layer

re 96 while the size of the filter is 3 and the stride of the slid-

ng window is 2. The aim of max pooling action is to detect the

aximum response of the generated feature maps while reduces

he resolution of the feature map. Moreover, the pooling opera-

ion also offers built-in invariance to small shifts and distortions.

he procedures of other convolutional layers and subsampling lay-

rs which we have not told are as same as the layers mentioned

bove, except with a different kernel size or stride. 

.1.4. ELM classification layer 

After the convolution and subsampling operations, ELM is used

o classify the 1-D vectors which are converted from feature maps.

s we have mentioned in part 3.2, it only updates the output

eights while input weights and hidden-layer biases are randomly

et, thus we will randomly generate the input parameters and cal-

ulate the output weights during the training stage. The whole

rocess without iteration operation improves the neural network

eneralization ability. From Fig. 3 , we can find that the output

containing 2048 × 1 dimensionality) of full-connection layer is the

nput of ELM while the numbers of hidden nodes are variables

hich will be shown in our experiments. 

The connection between ELM and convolutional network is also

 critical process and we can see from Fig. 3 that our input of ELM

s the output of the full connection layer whose preceding layer

s a convolutional layer. Forward-propagation and back-propagation

perations are the principal parts in our hybrid architecture and

e analyze them in detail in following sections. 
–ELM for age and gender classification, Neurocomputing (2017), 
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Fig. 4. The simple process of our hybrid structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

w

 

t  

p  

c

a  

d  

n  

h

4

 

e  

h  

b  

t  

a  

s  

m  

a  

r

A

 

 

 

 

2

2

2

2

4.2. Process of our CNN–ELM 

There is no double that our hybrid structure needs to tune the

parameters of CNN from the learning process during the training

stage at first while ELM has not been invoked. After that, for every

10 0 0 iterations, we will verify the accuracy of the structure, i.e.,

whether it has fine-tuned the parameters and extracted discrimi-

native features. If the accuracy nearly reaches 70%, the ELM layer

will be invoked. At that time, we will first compute the hidden

layer weights, and cache the intermediate β matrices, then the hy-

brid structure will be used to verify its accuracy. When the train-

ing accuracy of our hybrid structure gets nearly 100% or the whole

iterations exceed the setting max iterations, we stop the training

process and calculate the average of intermediate β matrices. Fi-

nally, our hybrid CNN–ELM will be used for classifying age and

gender tasks during test stage. The steps are summarized as fol-

lows: 

Step 1: Tune the parameters of CNN during the training stage

when the connection between convolutional layers and

output labels is full connection layers. 

Step 2: Compute the hidden layer weights and cache the interme-

diate β matrices, meanwhile verify the accuracy of fine-

tuned network. 

Step 3: Stop the training process and calculate the average of β. 

Step 4: Classify the unknown dataset using our hybrid structure. 

Fig. 4 presents a simple process of our hybrid structure and E

denotes the Loss Function while ω expresses the whole regula-

tion iterations. During the training stage, enough experiments have

been carried out. We will have a test for our hybrid structure ev-

ery 10 0 0 iterations, and hidden node weight vectors of ELM will

be computed according to Eq. (8) at that time. Finally, the hidden
Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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ode weight vectors β will be the average of different hidden node

eight vectors during the test stage. 

In order to fine tune the network, we have trained our struc-

ure for more than 10K iterations. This process is main to tune the

arameters of CNN and makes it own the ability of extracting dis-

riminative features. During the training stage, we will obtain 

∧ 
β

ccording to Eq. (8) , which is prepared to classify the unknown

ataset. We will test our hybrid structure under different hidden

odes. In the following, we will present the implementation of our

ybrid CNN–ELM. 

.2.1. Training stage using hybrid structure 

Fig. 4 shows that the training stage not only tunes the param-

ters of convolutional layer, but also achieves the corresponding

idden layer weights of ELM. The feed-forward process of our hy-

rid structure is as same as a plain CNN while every 10 0 0 itera-

ions, ELM layers, instead of full connection layers, will be invoked

nd corresponding hidden layer weights will be calculated. At the

ame time, intermediate results β matrices will be stored in the

emory using for final average results. Algorithm 1 presents the

pproximate process in the training stage when the accuracy ar-

ives 70%. 

lgorithm 1 Feed-forward process. 

Input: 

Training samples χ = {( x i , t i ) | x i ∈ R 

n × R 

n , t i ∈ R 

m , i = 1, 2,

…, N}; 

Convolutional Net.layers = S; 

Maximum iterations: I; 

Maximum precision: ε; 

Numbers of iteration: ω. 

Output: 

Obtain the error e and LossFunction E. 

1: Parse the training samples; 

2: for l from 2 to S

3: if net.l ayer[ l ] equals to Con v olutation layer 

4: Randomly generate the weights W 

pq 
i j 

and bias b i j ; 

5: Extract features according to (Eq. 10) or (Eq. 11) ; 

6: Compute the outputs of contrast normalization layer ac-

cording to (Eq. 13) ; 

7: else if net.l ayer[ l ] equals to Max Pooling layer 

8: Compute the feature maps according to (Eq. 16) ; 

9: else if net.l ayer[ l ] equals to F ull Connnection layer 

10: Transform the 2-D feature maps of the last convolution

layer into 1-D vectors ( x l 
i 

∈ R 

n ′ , i = 1, 2, …, N); 

11: end if 

12: end for 

13: Randomly generate the input weights and bias of ELM; 

14: Compute the hidden layer output matrix H according to

(Eq. 1) ; 

15: Obtain the output weight vectors β according to (Eq. 8) ; 

16: Compute the output of hybrid CNN-ELM, y = H β; 

17: Cache β in the memory; 

18: Compute the error e = 1 
2 

m ∑ 

k =1 

( t i (k ) − o i (k ) ) 
2 
; 

19: Compute the LossFunction E= 1 
2 N 

N ∑ 

i =1 

m ∑ 

k =1 

( t i (k ) − o i (k )) 2 ; 

0: ω = ω + 1; 

21: if E < ε or ω > I

2: Compute the average of β; 

3: Wait for classification stage; 

24: else Call Algorithm 2 . 

5: end if 
–ELM for age and gender classification, Neurocomputing (2017), 
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As we have mentioned in part 4.2, when ELM classifier works

nd the whole iterations continue, the system will adopt stochas-

ic gradient descent to tune the relevant parameters of the entire

onvolutional networks. During process of back propagation, the

perations between convolutional layer and subsampling layer or

ubampling layer and convolutional layer are as same as a single

onvolution neural network. Note that ELM is just a feed forward

lgorithm, so we just transform the the error from ELM’ output

ayer to the convolutional layers while we do not tune the param-

ters of ELM during the process. How to calculate the gradients of

LM and transform them to convolutional part is a key step. 

Based on the analysis above, we can give a detail algebraic re-

ation for our hybrid CNN–ELM model. O o ( k ) expresses the output

f k th sample while its ideal output is T o ( k ). The weights between

he output layer and hidden layer can be written as βho and H ho ( k )

enotes the output of hidden layer. x i ( k ) is the input of k th sam-

le and w ih signifies the weight of input layer. H ih ( k ) denotes the

nput of k th sample in hidden layer and e is error. We use δl 
s (k ) to

enote the k th sample local gradient which is the s th feature map

n the l th layer. Therefore, we can obtain the equations as follows:

 = 

1 

2 

m ∑ 

o 

( T 0 (k ) − O o (k ) ) 
2 
. (17) 

According to Eq. (17) , we can know that e is a multivariate func-

ion which is about 

 o (k ) = 

L ∑ 

h 

H ho (k ) βho , (18) 

 ho (k ) = g( H ih (k )) , (19)

 ih (k ) = 

m ∑ 

i 

w ih x i (k ) + b h . (20)

herefore, according to BP theory, we can know: 

∂e 

∂ βho 

= 

∂ 1 
2 

∑ m 

o ( T o (k ) − O o (k )) 
2 

∂ βho 

= 

∂ 1 
2 

∑ m 

O ( T o (k ) −∑ L 
h H ho (k ) βho ) 

2 

∂ βho 

= ( T o (k ) − O o (k ) ) ( −H ho (k ) ) 

= δo (k )(−H ho (k )) , (21) 

hile 

∂e 

∂ w ih 

= 

∂e 

∂ H ho (k ) 

∂ H ho (k ) 

∂ H ih (k ) 

∂ H ih (k ) 

∂ w ih 

= 

∂ 1 
2 

∑ m 

O ( T o (k ) −∑ L 
h H ho (k ) βho ) 

2 

∂ H ho (k ) 

∂g( H ho (k )) 

∂ H ih (k ) 

× ∂ 
∑ m 

i ( w ih x i (h ) + b h ) 

∂ w ih 

= −
(

m ∑ 

o 

( T o (k ) − O o (k )) βho 

)
g ′ ( H ih (k )) x i (k ) 

= δh (k ) x i (k ) 

= −
(

m ∑ 

o 

δo βho 

)
g ′ ( H ih (k )) x i (k ) . (22) 

Therefore, we can obtain the relation between δh ( k ) and δo ( k )

s follows: 

h = −
(

m ∑ 

δo βho 

)
g ′ ( H ih (k )) . (23)
o s  

Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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Finally 

∂e 

∂ b h 
= 

∂e 

∂ H ho (k ) 

∂ H ho (k ) 

∂ H ih (k ) 

∂ H ih (k ) 

∂ b h 

= 

∂ 1 
2 

∑ m 

O ( T o (k ) −∑ L 
h H ho (k ) βho ) 

2 

∂ H ho (k ) 

∂g( H ho (k )) 

∂ H ih (k ) 

×∂ 
∑ m 

i ( w ih x i (h ) + b h ) 

∂ b h 

= −
(

m ∑ 

o 

( T o (k ) − O o (k )) βho 

)
g ′ ( H ih (k )) 

= −
(

m ∑ 

o 

( T o (k ) − O o (k )) βho 

)
g ′ ( H ih (k )) 

= δh (k ) 

= −
m ∑ 

o 

δo βho g 
′ ( H ih (k )) . (24) 

After that, we will compute the local gradient in the full con-

ection layer. Compared with a plain CNN, our hybrid architecture

lso transforms the feature maps into 1-D vectors in the process of

orward propagation, so we just need to transform the local gradi-

nt in the input layer of ELM to convolutional layer. Therefore, the

hole process of back propagation can be written as Algorithm 2 . 

lgorithm 2 Back-propagation algorithm. 

Input: 

Real output O o (k ) , k = 1, 2, …, N, o = 1, 2, …, m ; 

Ideal output T o (k ) , k = 1, 2, …, N, o = 1, 2, …, m ; 

Convolutional Net.layers = S; 

Weights in different layers; 

Biases in different layers; 

Inputs y l 
i 
; 

Outputs y l o . 

Output: 

Updated weights and biases in each layers. 

1: Compute the error according to (Eq. 17) ; 

2: Compute the local gradient in the output layer according to

(Eq. 21) ; 

3: Compute the local gradient in the hidden layer according to

(Eq. 22) ; 

4: for l from S to 2 

5: if net.l ayer[ l ] equals to Max Pooling layer 

6: Compute the local gradient δ; 

7: Compute the modified weights coefficient 
w = ηδy (l−1) 
o ; 

8: Compute the modified biases coefficient 
b = ηδ; 

9: Update the whole weights in this layer w 

′ = w + 
w ; 

10: Update the whole biases in this layer b ′ = b + 
b; 

11: else if net.l ayer[ l ] equals to Con v olution layer 

12: Expand the size of matrix δ(l−1) to equal to the size of lth

feature maps; 

13: Compute the local gradient δ; 

14: Compute the modified weights coefficient 
w = ηδy (l−1) 
o ; 

15: Compute the modified biases coefficient 
b = ηδ; 

16: Update the whole weights in this layer w 

′ = w + 
w ; 

17: Update the whole biases in this layer b ′ = b + 
b. 

18: end if 

19: end for 

.2.2. Classification process 

When we have fine tuned our structure and verify its accu-

acy meeting our setting standard, we will classify the unknown

ubjects into different age or gender categories. The information is
–ELM for age and gender classification, Neurocomputing (2017), 
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Table 1 

The dataset using for age and gender classification. 

Total number of photos 26,580 

Total number of subjects 2284 

Number of age groups or labels 8 

Gender labels yes 

In the wild yes 

Subject labels yes 
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extracted from input dataset to hidden layers, and then classified

as corresponding output. The steps are as follows: 

Step 1: Extract the features with convolutional layers from the un-

known subjects. 

Step 2: Classify the features using our fine-tuning structure. 

During the experiments, although our structure gains higher

accuracy compared with other algorithms in terms of the same

problems, we find that misclassification is still existing mainly due

to the challengeable Adience Benchmark. Meanwhile, we find our

structure needs more memory because of caching the hidden layer

weights and calculating Moore–Penrose generalized inverse matrix

H 

† . Note that our hybrid classifier only updates the output weights

while the input weights and biases of hidden layer and weights are

randomly generated, which not only improves the learning speed,

but also limits the risk of overfitting. Based on our experimen-

tal results, improving the numbers of hidden layer nodes of our

structure can improve the classification accuracy, but if numbers of

these exceed a specific scope (nearly 4500 in our experments), the

accuracy will be degraded mainly due to more commutation cost,

more memory, information losing, and aggravating overfitting. In

all, our structure not only accelerates the learning speed, but also

improves the classification accuracy. 

5. Merits of our hybrid structure 

Our expectation is that our hybrid model will outperform other

individual classifier, which means that our structure can be able to

compensate the limit of the classification ability of CNN and make

full use of the advantage of ELM. During the training stage, we

mainly tune the convolutional networks and we have a test every

10 0 0 iterations. When the accuracy reaches 70%, the hybrid system

will adjust the parameters of ELM. In order to gain good general-

ization performance, we obtain the average hidden node weights

of ELM in our hybrid structure. This process not only exploits the

good ability of feature extraction in convolutional network, but

also makes the most of the advantage of our ELM structure includ-

ing good generalization performance, fast training speed, and lit-

tle human intervene, which accelerates the whole learning speed.

Meanwhile, several measures including data augmentation, differ-

ent dropouts, and so on, are used to reduce the risk of overfitting.

Experiments verify that our hybrid structure has realized the ex-

pectation. 

6. Time complexity of hybrid classifiers 

In this section, we analyze the complexity of our hybrid struc-

ture. The time complexity of all convolutional layers can be written

as follows: 

O 

( 

d ∑ 

l=1 

σl−1 · α2 
l · σl · β2 

l 

) 

, (25)

where l denotes the index of a convolutional layer while d is its

depth. σ l expresses the number of filters in the l th layer and the

spatial size of a filter can be written as αl . σl−1 is the number of

input channels in the l th layer while β l denotes the spatial size of

the output feature maps. 

As mentioned in [47] , the training stage has occupied most time

during the experiments while the process of fine-tuning of param-

eters in the convolutional layers costs most training time. We have

not considered the full connection layer and max pooling layers in

equation above, because these layers cost 10% computational time

approximately. Note that Eq. (25) is not the real running time, due

to the system sensitivity to experimental environment. After ten

times experiments, we find that the whole process costs less time
Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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omplexity of our hybrid structure is much lower compared with

ther algorithms. Furthermore, our hybrid structure can increase

he performance of face recognition and classification. 

. Experiments 

Our method is implemented using the publicly available code of

uda - convnet [48] and Caffe [49] . The whole networks in this paper

re trained on a single GeForce GTX 750. At first, we will reshape

he input image as 256 × 256 pixels, and then a 224 × 224 crop

ill be selected from the center or the four corners from the en-

ire processed image above. We also adopt different dropout mea-

ures to limit the risk of overfitting. Training each network needs

early ten hours while classifying a single image about age or gen-

er nearly costs 600ms. Each experiment has been conducted ten

imes and we achieve its corresponding average. 

.1. Adience benchmark 

In this work, we use the recently released Adience benchmark

1,2] , which is designed for age and gender classification, to test

ur hybrid structure. To this end, the benchmark of face photos

s made of images and they are from smart-phone devices. Due

o these images uploaded to Flickr without prior manual filtering,

hese images are highly unconstrained, which are as true as the

hallenges of real-world applications. Therefore, the images include

ll variations in appearance, noise, pose, lighting and more, which

ean that the photos are taken without careful preparation or pos-

ng. The datasets are obtained from the Computer Vision Lab at the

pen University of Israel (OUI) [50] and showed in Table 1 . Mean-

hile, Table 2 shows the different age categories of the Adience

enchmark detailedly. 

.2. MORPH-II database 

MORPH-II [23] has approximately 55,0 0 0 facial images, in which

6,645 of the images are Male, 8487 are Female. The database is

sed to verify our CNN–ELM performance. 

.3. Age classification with adience benchmark 

.3.1. Error rate under different conditions 

We test our hybrid system on the Adience benchmark, and we

ompare our algorithm with a plain CNN which includes the iden-

ical convolutional layers. We train our hybrid CNN–ELM model

sing mini-batch stochastic gradient descent with 0.7. During the

ne-tuning of parameters in our hybrid structure, the learning rate

t beginning is designed as 10 −3 while it decreases to 10 −4 af-

er 10K iterations. When it arrives 12K iterations, the rate is set

s 10 −5 . Fig. 10 (a) shows the error rate during the training stage

hile the hidden nodes are 30 0 0. FC stage means that the output

ayer just uses full connection layers while ELM stage shows that

LM classifier works at that time. 

From Fig. 5 (a), we can find that the training error rates of

he two algorithms gets high at the beginning while they nearly

end to zero. They can fine tune parameters automatically through
–ELM for age and gender classification, Neurocomputing (2017), 
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Table 2 

The different age categories of the Adience benchmark. 

0–2 4–6 8–13 15–20 25–32 38–43 48–53 60– Total 

Male 745 928 934 734 2308 1294 392 442 8192 

Female 682 1234 1360 919 2589 1056 433 427 9411 

Both 1427 2162 2294 1653 4897 2350 825 869 19,487 

Fig. 5. Experimental results of age classification on Adience Benchmark. (a) Error rate under different training times; (b) error rate under different sizes of hidden nodes; 

(c) the accuracy of age classification under different hidden layer nodes. 
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Table 3 

The accuracy of age classification. 

Method Accuracy 

LBP [51] 40.7% ± 2.0% 

LBP + FPLBP [52] 44.1% ± 2.4% 

LBP + FPLBP + Dropout 0.5 [1] 44.9% ± 2.2% 

LBP + FPLBP + Dropout 0.8 [1] 45.2% ± 2.6% 

Best from [2] 50.7% ± 5.1% 

Proposed CNN-ELM + Dropout 0.5 51.4 % ± 5.2% 

Proposed CNN-ELM + Dropout 0.7 52.3% ± 5.7% 
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h  
earning process and get better results. At the same time, we also

nd that their speed of learning is faster during 10K iterations than

he speed in the end of training stage. When the error rate ap-

roaches to 30%, our ELM classifier will work. At that time, we find

hat the error rate rebounds at first, and then sharply approaches

o 0. Finally, the error rate increases because we use the average

f β matrix for the hidden layer weights of ELM classifier. At the

ame time, the training error rate of full connection (FC) layer has

 fluctuation due to the transformation of different classifiers. Dur-

ng the whole training stage, the error rates of FC stage are higher

han a plain CNN due to its output using a softmax classifier while

he error rate in ELM stage gets lower quickly compared with a

lain CNN because of ELM’ good learning ability and good classifi-

ation performance. Based on the analysis above, we can conclude

hat our ELM classifier has fast training speed and can get better

raining results. In all, our hybrid structure can not only quickly

une the parameters automatically, which makes sure that the con-

olutional layers extract the discriminative features in favour of

lassification, but also achieve better parameters for classifiers. 

We also show that the training error rate under different sizes

f hidden nodes in Fig. 5 (b) and the number of iterations is 12K.

t can be seen from the figure that with the increase of hidden

ayer nodes, the error rate declines significantly at the first while

t stays smoothly when the hidden nodes are between 2500 and

0 0 0. However, when the hidden nodes tend to 4500, the error

ate rises slowly. The reason for that is that continuously increasing
Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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he hidden nodes aggravates overfitting, which causes the degrada-

ion of the performance of classification. Therefore, we will set the

idden node as 3500 in the next experiments. 

.3.2. Accuracy of age classification 

We present our results for age classification while we also mix

ur structure with dropout layer between convolutional layer and

lassification layer. It is no doubt that the dropout structure can

imit the risk of overfitting. We set two different dropout ratios as

.5, 0.7, respectively (50% or 70% probability to set the output value

f a neural as 0). Each experiment has been done more than ten

imes, then we obtain their corresponding averages. Therefore, our

ccuracy includes mean accuracy ± standard deviations. 

From Table 3 , we find that our hybrid structure can get the

ighest accuracy among the compared algorithms. Note that the
–ELM for age and gender classification, Neurocomputing (2017), 
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Fig. 6. Age misclassification. 

Fig. 7. (a) MAEs of CNN–ELM on MORPH-II under different conditions; (b) the cumulative scores (CS) of age estimation using CNN–ELM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

MAEs of different age estimation algorithms for the 

MORPH-II database. 

Method MAE 

LBP [51] 7.05 

BIF [53] 5.09 

OHRank [54] 6.07 

KPLS [55] 4.04 

KCCA [56] 3.98 

RED–SVM [57] 6.49 

Rank-FFS [58] 4.42 

CSOHR [20] 3.82 

Plain CNN [2] 3.81 

CNN + ELM [ours] 3.44 
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accuracy of age and gender classification depends on two aspects:

feature extractor and classifier. CNN has shown good extraction

ability in our hybrid structure. What is more, compared with a

plain CNN, due to the same convolutional layers, the feature ex-

tractor plays the same role during the experiment, which means

the extractor of ELM improves the accuracy of age classification.

The phenomenon analysis above has proved that our hybrid struc-

ture can make full use of the advantages of CNN and ELM and gain

a better performance. 

We present the classification accuracy under different hidden

layer nodes of ELM classifier in Fig. 10 (c). It can be seen from figure

below that the classification accuracy ascends fast at the beginning

while when the hidden layer nodes are between 2500 and 40 0 0,

the system reaches the highest accuracy. Then its accuracy drops

sightly when the number of hidden nodes exceed 40 0 0. In general,

the accuracy grows with the increasing of hidden layer nodes and

then gets the highest accuracy while if the hidden nodes exceed

40 0 0, the error rate rises sightly because of heavy commutation

costs, complex computations, and so on. 

7.3.3. Age misclassification 

From the experimental results, we find that the case of misclas-

sification has happened in our proposed algorithm and we show

parts of misclassification results in Fig. 6 . The subjects in the top

row express that the older are mistakenly classified as the younger

while the subjects in the bottom row denote that the younger are

mistakenly classified as the older. Unconstrain face images used for

our experiments is the main reason of misclassification and we can

learn from Fig. 6 that most notable mistakes are caused by blur or

low resolution and heavy makeup. 

7.4. Age estimation with MORPH-II 

In this section, we use the MORPH-II to verify the performance

of our CNN–ELM and compare our structure with plain CNN, which

includes identical convolutional layers. Fig. 7 presents age estima-

tion and cumulative scores. 
Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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As seen from Fig. 7 (a) above, we can observe that the MAEs de-

rease as hidden nodes increase and that the performance of pro-

osed structures are better than that of CNN. In the same hidden

odes, our CNN-ELM has the better performance and the MAE of

ge estimation for our CNN-ELM is 3.44. Fig. 7 (b) presents cumula-

ive score (CS) of age estimation. It is apparent that our proposed

NN–ELM outperform other state-of-the-art algorithms by a signif-

cant margin. 

As seen from Table 4 , the listed age estimation approaches ac-

uired different MAEs, while our proposed CNN–ELM achieved the

est results. We use the ELM model as the classification model,

ue to its efficient and fast classification ability, our CNN–ELM ob-

ains lower MAEs than compared algorithms. 

.5. Gender classification using adience benchmark 

.5.1. Error rate under different conditions 

In this time, we will show the error rate of gender classifica-

ion under different iterations in Fig. 8 (a). We compare our algo-

ithm with CNN owning the same convolutional layers. The learn-

ng rate is the same as applied in age classification. From Fig. 8 (a),

e can find that with the increase of iterations, the error rate

f the two algorithms changes from high to low and our hybrid
–ELM for age and gender classification, Neurocomputing (2017), 
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Fig. 8. Experimental results of gender classification on Adience Benchmark. (a) Error rate under different training times; (b) error rate under different sizes of hidden nodes; 

(c) error rate under different hidden layer nodes. 

Table 5 

The accuracy of gender classification. 

Method Accuracy 

LBP [51] 75.3% ± 0.9% 

FPLBP [52] 75.5% ± 0.8% 

LBP + FPLBP + Dropout 0.5 [1] 77.8% ± 1.3% 

Best from [2] 86.8% ± 1.4% 

Proposed CNN–ELM + Dropout 0.5 87.3% ± 1.0% 

Proposed CNN–ELM + Dropout 0.7 88.2% ± 1.7% 
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NN–ELM during the FC stage gets a higher error rate than a plain

NN while a lower error rate is obtained during the ELM stage.

eanwhile, during the beginning of ELM stage, the error rate has

 fluctuate due to the adjustment and adaptation process of hybrid

ystem and our ELM classifier learns faster and gets a lower error

ate compared with a plain CNN finally. 

Training error rates under different sizes of hidden nodes are

resented in Fig. 8 (b) and the number of iterations is 12K. With

he increase of hidden layer nodes, the error rate declines faster

ompared with the training process of age classification because

ender classification is just a binary task. After the hidden nodes

ncrease to 20 0 0, the error rate nearly tends to 0 and this process

asts until the nodes are 4500. Finally, the error rate begins to fluc-

uate due to the heavy overfitting. We will set the hidden node as

500 in the next experiments. 

.5.2. Accuracy of gender classification 

Now, we present the accuracy of gender classification with dif-

erent dropouts compared with algorithms mentioned in age clas-

ification experiments in Table 5 and our accuracy includes mean

ccuracy ± standard deviation. Because gender classification is a
Please cite this article as: M. Duan et al., A hybrid deep learning CNN
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inary classification task, the whole process includes training and

esting is faster compared with age classification. At the same time,

he accuracy of gender classification is higher than that of age clas-

ification under the same listed algorithms. More importantly, our

roposed algorithm gets the highest accuracy compared with other

lgorithms. There is no doubt that dropout structures reduce the

verfitting and improve the accuracy of proposed system [2] . 

We show the accuracy of our hybrid system under different

idden layer nodes in Fig. 8 (c). The changeable trend of the accu-

acy is the same as that presented in Fig. 10 (a) while the average

ccuracy of our gender classification is higher than that of age clas-

ification because gender estimation is just a binary classification

ask. 

.5.3. Gender misclassification 

We will present some examples of gender misclassification in

ig. 9 and it is noticeable to find that misclassifications frequently

appen when the estimation subject is a baby or blur or heavy

akeup image. In that case, the male (female) subjects mistakenly

lassified as a female (male). 

. Gender classification with MORPH-II 

In this section, our CNN-ELM is used to classify the gender of

uman facial images for MOORPH-II. Fig. 10 (a) shows the accuracy

f gender classification under different hidden nodes. It is can be

een that with the increase of hidden nodes, the classification ac-

uracy increases and our CNN-ELM obtains a better results than

lain CNN because of ELM’ efficient classification ability. Fig. 10 (b)

hows ROC curves, which demonstrates the contribution of various

omponents of our CNN–ELM. 
–ELM for age and gender classification, Neurocomputing (2017), 
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Fig. 9. Gender misclassification. 

Fig. 10. (a) Accuracy rate under different hidden nodes; (b) ROC curves for gender estimation results. 
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9. Conclusion 

Automatically classifying the unconstrained age and gender

tasks is a challenging research topic while few researchers have

paid attention on this issue. CNN has shown a perfect feature ex-

traction ability while ELM has been proved to be a powerful classi-

fier. In order to make full use of the advantages of this two struc-

tures, we propose a hybrid CNN–ELM structure to process the hu-

man facial image tasks. Firstly, we present the hybrid structure in

detail including design of parameters and layers, analysis of the

hybrid architecture, and the derivation of back-propagation in this

system during the iterations. Then we adopt several measures to

lower the risk of overfitting, for instance, ELM without tuning the

weights and biases owns the ability to overcome overfitting while

obtaining a stochastic crop 227 × 227 pixels from the input images

which contain 256 × 256 pixels also limits the risk of overfitting.

Meanwhile, different dropout measures are adopted to do the same

works. Finally, we use enough experiments to test the performance

of our hybrid CNN–ELM using Adience Benchmark and MORPH-II.

Experimental results show that our hybrid algorithm not only ac-

celerates the whole training process, but also improves the accu-

racy of classification. 
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