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Abstract— As data sets become larger and more complicated,
an extreme learning machine (ELM) that runs in a traditional
serial environment cannot realize its ability to be fast and
effective. Although a parallel ELM (PELM) based on MapReduce
to process large-scale data shows more efficient learning speed
than identical ELM algorithms in a serial environment, some
operations, such as intermediate results stored on disks and
multiple copies for each task, are indispensable, and these
operations create a large amount of extra overhead and degrade
the learning speed and efficiency of the PELMs. In this paper,
an efficient ELM based on the Spark framework (SELM),
which includes three parallel subalgorithms, is proposed for big
data classification. By partitioning the corresponding data sets
reasonably, the hidden layer output matrix calculation algorithm,
matrix Û decomposition algorithm, and matrix V decomposition
algorithm perform most of the computations locally. At the same
time, they retain the intermediate results in distributed memory
and cache the diagonal matrix as broadcast variables instead
of several copies for each task to reduce a large amount of the
costs, and these actions strengthen the learning ability of the
SELM. Finally, we implement our SELM algorithm to classify
large data sets. Extensive experiments have been conducted to
validate the effectiveness of the proposed algorithms. As shown,
our SELM achieves an 8.71× speedup on a cluster with ten nodes,
and reaches a 13.79× speedup with 15 nodes, an 18.74× speedup
with 20 nodes, a 23.79× speedup with 25 nodes, a 28.89× speedup
with 30 nodes, and a 33.81× speedup with 35 nodes.

Index Terms— Big data, classification, extreme learning
machine (ELM), matrix, parallel algorithms, Spark.
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I. INTRODUCTION

A. Motivation

DATA mining [1] has become a powerful technique for
valuable information discovery, and in data mining,

classification is one of the fundamental problems. Support
vector machine [2], Naive Bayes [3], and extreme learning
machine (ELM) [4] are three important classification
algorithms for big data at present. Huang et al. [4] proposed
the ELM for training single layer feedforward networks,
and this approach updates only the output weights while the
hidden neuron parameters are randomly assigned [5]. Because
of its properties of good generalization performance, fast
training speed, and little human intervention, ELM is not only
widely used for processing binary classification [6] but also
used for multiclassification [7]. By reducing the storage space,
ELM has been proved to be an efficient and fast classification
algorithm [8], [9]. However, as the training data becomes
larger and more complicated, due to the limitations of memory
in traditional serial environments and the intensive compu-
tation for the inverse of large matrices in ELM, traditional
ELM cannot give full play to its efficient classification ability.

To overcome the problems mentioned earlier, it is necessary
to scale up conventional extreme machine learning techniques
by using massively parallel frameworks (e.g., Hadoop, Spark,
and so on). During the process of computation of ELM, the
most expensive part of the calculation is the Moore–Penrose
generalized inverse matrix (M-PGIM), which is decomposable,
and thus, we can compute this matrix in parallel. In recent
work, several parallel ELM (PELM) algorithms have been
computed based on MapReduce, and they obtained good
performance. He et al. [10] proposed a PELM based on
MapReduce, which shows an efficient method for addressing
regression problems. Compared with the PELM algorithm,
the ELM* [11], [12] algorithm uses one MapReduce
stage instead of two, which reduces the transmission cost
and enhances the processing efficiency. Based on ELM*,
Xin et al. [11], [12] proposed the ELM*-Improved algorithm,
which outperforms the PELM and ELM* algorithms by
performing a local summation of elements in the matrix.
Although PELM algorithms based on MapReduce are used to
handle big data classification, there are many map and reduce
tasks during the stages. The intermediate results generated
during the map stages are written onto disks, while during
the reduce stages, they are read from disks into Hadoop
distributed file system (HDFS). There is no doubt that
the process seriously increases the communication cost and
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Fig. 1. Simple example for the RDD lineage graph.

I/O overhead and degrades the learning speed and efficiency of
the system. Furthermore, there are several copies for each task
within MapReduce, which increase the additional overhead
of the system. Last, MapReduce does not offer a good fault
tolerance mechanism. If one node hangs up, then the tasks
in that node will be assigned to other nodes, and reprocessed
again, which leads to more cost during the process.

Relative to Hadoop, Spark is designed to process data-
intensive applications with distributed memory-based archi-
tectures and provides similar scalability and fault tolerance
characteristics [13]. The key part in Spark is an abstrac-
tion called the resilient distributed data set (RDD), which
is regarded as a handle for a collection of individual data
partitions. All operations are based on RDDs, and RDDs can
be cached in memory across nodes, which can be reused
in multiple MapReduce-like parallel operations. Thus, when
we calculate the M-PGIM, the multiple occurrences of the
variables and intermediate variables can be cached in memory
instead of on disks, which reduces the communications costs
and I/O overhead. Through partitioning, Spark allows users
to control the layout of the key-value pairs, which ensures
that a set of keys that will be accessed together stay on the
same node. That operation not only minimizes the network
traffic but also provides significant speedup. For example,
based on a hash-partition operation, we might partition an
RDD into 50 partitions, such that the keys that have the
same hash value modulo 50 will appear on the same node.
By transformation operations, new RDDs arise, and Spark
monitors the set of dependencies between different RDDs,
called the lineage graph. Therefore, according to the lineage
characteristic, it can recompute any RDDs that are required.
Furthermore, that approach also provides good fault tolerance,
and if a partition is lost, the RDD can recover the lost partition
quickly. Fig. 1 shows a simple lineage graph example. Based
on the dependencies among the RDDs, the DAGScheduler in
Spark forms a directed acyclic graph (DAG) of stages for each
job, which is an important reason why Spark processes big
data faster.

B. Our Contributions

In this paper, we propose an improved PELM based
on Spark (SELM), which consists of three important
parallel subalgorithms: parallel hidden layer output matrix
calculation (H-PMC) algorithm, parallel Û matrix decompo-
sition (Û-PMD) algorithm, and parallel V matrix decomposi-
tion (V-PMD) algorithm. These algorithms adequately exploit
the strengths of the Spark framework to speed up the process
of calculating the M-PGIM. Therefore, that process accelerates

the process of ELM classifying big data. While maintaining
a competitive accuracy on the test data, our SELM achieves
a significant speedup compared with the baseline ELM algo-
rithm implemented on a single machine. More importantly,
our SELM algorithm outperforms other PELM algorithms
based on MapReduce by exhibiting a significant performance
improvement in terms of the learning speed and efficiency as
well as maintaining the training and testing accuracy.

The major contributions of this paper are summarized as
follows.

1) We propose an efficient parallel method called SELM
to process the multiclassification of big data based
on Spark. By partitioning the data set reasonably, our
SELM algorithm attempts to execute most of the com-
putations locally. More importantly, it retains in memory
the repeated variables and many intermediate results,
which accelerates the learning speed.

2) We develop three efficient parallel algorithms to speed
up the ELM’ training stage. More importantly, for the
Û-PMD algorithm, the matrix I/λ is a diagonal matrix,
which means that there is less memory utilized to
process the nonzero elements. Therefore, it is cached
as broadcast variables, which means that the I/λ matrix
is cached on each node, which reduces a large amount
of transmission cost during the computation process.
Afterward, we implement the parallel SELM algorithm
for big data classification.

3) We conducted a performance evaluation according to
two aspects: medical big data classification and hand-
written digit recognition. For the first aspect, we tested
the performance of SELM with regard to four aspects:
the different dimensionalities of data sets; different num-
bers of hidden nodes; different numbers of records; and
different numbers of workers. For the second aspect, we
recognized handwritten digits using our SELM under
different numbers of hidden nodes and different numbers
of workers. These experiments revealed the performance
benefit of our SELM algorithm, which outperforms other
PELMs based on MapReduce by exhibiting a significant
performance improvement in terms of the learning speed
and efficiency, and it can fulfill the requirements of many
real-world applications.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III gives prelimi-
nary information. Section IV discusses the SELM performance
model analysis. Section V describes the proposed algorithms.
The experiments and results are illustrated in Section VI.
Finally, we present our conclusions in Section VII.

II. RELATED WORK

ELM was first proposed by Huang et al. [4] and is used to
process regression and classification based on single hidden
layer feedforward neural networks (SLFNs). Huang et al. [4],
[7], [14] noted the essence of ELM as the following:
1) the hidden layer of SLFNs with wide a type of hidden
neurons that need not be tuned and 2) the output weights
can be adjusted based on application-dependent optimization
constraints.
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1) Improved ELM Variants: Recently, to exploit the good
performance of the ELM, many improved ELM variants have
been developed. Feng et al. [15] proposed a dynamic adjust-
ment ELM mechanism, which could further tune the input
parameters of insignificant hidden nodes, and they proved that
it was an efficient method. Gastaldo et al. [16] proposed a
random projections (RP) ELM model that analyzed relation-
ships between the feature mapping structure and the paradigm
of RP in the ELM. The experimental results showed that
RP-ELM combined generalization performance and compu-
tational efficiency. Other improved methods based on ELM
have been proposed, such as error minimized ELM [17],
optimally pruned ELM [9], multilayer ELM [18], hierarchical
ELM [19], hierarchical local receptive fields ELM [20], and
so on. There is no doubt that the improved ELM variants
provide better performance and efficiency compared with
the basic ELM. However, these variants face two problems:
1) a high computational cost from taking the inverse of large
matrices and 2) an enormous runtime memory requirement.
To solve these problems, an effective method is to develop
efficient parallel algorithms.

2) Parallel Variants of ELM: He et al. [10] first proposed
the PELM for regression problems based on MapReduce.
The essential aspect of the method involves how to calcu-
late the generalized inverse matrix in parallel. In the PELM
method, two MapReduce stages are used to compute the
final results. As shown in our experiments, PELM achieves
a 7.23× speedup, a 10.51× speedup, a 15.01× speedup, an
18.91× speedup, a 22.01× speedup, and a 26.49× speedup
when the nodes are 10, 15, 20, 25, 30, and 35, respectively.
There is no doubt that there is a large amount of I/O spending
and communication cost during the two stages, which increase
the runtime of the ELM based on the MapReduce framework.
Compared with PELM, Xin et al. [11], [12] proposed ELM*
and ELM-Improved algorithms, which use one MapReduce
stage instead of two and reduce the transmission cost, thus
enhancing the processing efficiency. Experiments show that
ELM* gains a 7.77× speedup, an 11.38× speedup, a 16.03×
speedup, a 20.73× speedup, a 24.33× speedup, and a 28.01×
speedup, while ELM-Improved obtains an 8.09× speedup,
a 12.03× speedup, a 16.94× speedup, a 21.87× speedup,
a 25.61× speedup, and a 29.58× speedup when the nodes
are 10, 15, 20, 25, 30, and 35, respectively. Other PELM
variants that are based on MapReduce also accelerate the
training of the ELM and present an efficient process, such
as ELM-MapReduce [21], distributed kernelized ELM [22],
parallel online sequential ELM [23], and so on. However,
these algorithms require several copies for each task when
MapReduce works, and if one node cannot work, the tasks in
that node will be assigned to other nodes and reprocessed
again, which leads to more costs during the process.
Furthermore, many intermediate results should be written onto
disks during the map stage while the reduce stage reads them
from disks into the HDFS. There is no doubt that a large
amount of I/O overhead and communication costs are spent
in the map and reduce stages, which degrade the learning
speed and efficiency of the ELM. In our approach, we propose
the parallel SELM, which adequately exploits the strengths of

TABLE I

COMMONLY USED MAPPING FUNCTIONS IN ELM

the Spark framework to improve the learning efficiency of
the ELM.

III. PRELIMINARY INFORMATION

A. Short Review of the Extreme Learning Machine

Huang et al. [4], [24] first proposed ELM for SLFNs. Their
approach was extended to the generali zed SLFNS, and its
hidden layer is not required to be neuron-alike [19], [25]. ELM
first maps the input data from d-dimensional space into the
L-dimensional hidden layer random feature space (also called
ELM feature mapping), and then through ELM learning, the
system achieves the output results. ELM can achieve better
generalization performance than the other conventional learn-
ing algorithms at an extremely fast learning speed. Moreover,
ELM is less sensitive to user-specified parameters and can be
deployed faster and more conveniently [7], [26].

1) ELM Feature Mapping: The output function of the ELM
network structure for generalized SLFNs is the following:

f (x) =
L∑

i=1

βi hi (x) = h(x)β (1)

where β = [β1, · · ·, βL ]T denotes the output weights’ vector
between the hidden layer and the output layer with m ≥ 1
output nodes, while h(x) = [h1(x), · · ·, hL(x)] is the output
vector of the hidden layer, which is called ELM nonlinear
feature mapping. Different activation functions can be used in
different hidden neurons [14]. Especially in real applications,
hi (x) can be written as follows:

hi (x) = G(ai , bi , x), ai ∈ Rd , bi ∈ R (2)

where G(a, b, x) denotes a nonlinear piecewise continuous
function, and Table I shows the commonly used activation
functions. Here, (ai , bi ) expresses the j th hidden node weight
vectors and biases, respectively. ELM trains an SLFN that
includes two critical stages, and random feature mapping is the
first stage. In this stage, by randomly initializing the hidden
layer, h(x) maps the data from the d-dimensional input space
into the L-dimensional hidden layer random feature space
(which is also called the ELM feature space) [20]. Therefore,
h(x) denotes a random feature mapping in essence, which is
also called ELM feature mapping. ELM learning is the second
stage, which we will discuss next.

2) ELM Learning: In contrast to traditional feedforward
neural network learning algorithms, without needing to adjust
the hidden neural, the goal of ELM theory is not only to reach
the smallest training error but also to achieve the smallest norm
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of the output weights [7], [19], [27], [28]. That goal can be
written as follows:

Minimize: ||β||σ1
μ + λ||Hβ − T||σ2

ν (3)

where σ1 > 0, σ2 > 0, and μ, ν = 0, (1/2), 1, · · · ,+∞.
λ is a parameter that controls the tradeoff between these two
terms. H denotes the hidden layer output matrix, which can
be denoted as follows:

H =
⎡
⎢⎣

h(x1)
...

h(xN )

⎤
⎥⎦ =

⎡
⎢⎣

h(x1) . . . hL(x1)
...

. . .
...

h1(xN ) · · · hL(xN )

⎤
⎥⎦ (4)

and (5) expresses the training data target matrix

T =
⎡
⎢⎣

t1
T

...

tN
T

⎤
⎥⎦ =

⎡
⎢⎣

t11 · · · t1m
...

...
...

tN1 · · · tNm

⎤
⎥⎦. (5)

There are many efficient methods for computing the output
weights β, such as orthogonal projection methods, singular
value decomposition, and iterative methods [20], while accord-
ing to [7] and [26], the optimization solution for ELM is
σ1 = σ2 = μ = ν = 2, which has been proved to be more
stable and has better generalization performance. Therefore,
β can be written as follows:

β =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HT

(
I
C
+HHT

)−1

T, if N ≤ L

(
I
C
+HT H

)−1

HT T, if N > L .

(6)

Theorem 1: Universal approximation capability [24], [25],
[29], [30]: For any nonconstant piecewise continuous function
that is used as the activation function, if the parameters of
the hidden neurons are tuned, then the function can make
the SLFNs approximate any target continuous function f (x).
Then, according to any continuous distribution probability, the
function sequence {hi (x)}L

i=1 can be randomly generated, and
it has the universal approximation capability, which means that
limL→∞||∑L

i=1 βi hi (x)− f (x)|| = 0 holds with probability
of one with appropriate output weights β.

Theorem 2: Classification capability [7]: For any non-
constant piecewise continuous function that is used as the
activation function, if the parameters of the hidden neurons are
tuned, then the function could make the SLFNs approximate
any target continuous function f (x), and then, with the random
hidden layer mapping h(x), SLFNs can separate arbitrary
disjoint regions of any shapes.

Therefore, ELM not only has universal approximation but
also possesses classification. From the description mentioned
earlier, the process of ELM can be described as follows. First,
ELM randomly assigns hidden neuron parameters (wi , bi ), and
then, it calculates the hidden layer output matrix H. Finally,
we can calculate the output weight vector β.

Huang et al. [7] also proved that the resulting solution was
stable, and the system had better performance when a positive
value 1/λ was added to the diagonal of HT H or HHT in
the calculation of the output weights β based on the ridge
regression theory. When we use ELM to address large-scale

data set, it is easy to find N � L. Therefore, we can easily
compute HT H, because its size is much smaller than that
of HHT . The output weights β can be written as in

β =
(

I
λ
+HT H

)−1

HT T. (7)

Then, we can obtain the ELM output function

f (x) = h(x)β = h(x)
(

I
λ
+HT H

)−1

HT T. (8)

We use U to denote HT H and V to express HT T, and thus,
(8) can be described as

f (x) = h(x)β = h(x)
(

I
λ
+ U

)−1

V. (9)

B. Broadcast Variable

When we use Spark to process big data applications, to
process small data sets fast, we expect that those data sets are
cached on each node, and thus, each task can copy the data
from local nodes instead of obtaining it through the remote
transmission during the computational process. Broadcast vari-
ables are shared variables, and they allow programmers to
keep read-only variables cached on each machine rather than
shipping a copy of them with the tasks. They can be used, for
example, to give every node a copy of a large input data set
in an efficient manner. Spark attempts to distribute broadcast
variables using efficient broadcast algorithms to reduce the
communication costs. It only caches the nonzero element,
and a massive diagonal matrix I ∈ Rn×n can be seen as a
small nonzero element data set, such as I = {i1, i2, . . . , in},
for which we can cache the matrix as broadcast variables.
When we calculate (I/λ + HT H), I/λ is a diagonal matrix,
and we keep it in distributed memory as broadcast variables.
Therefore, we can cache it on each machine rather than
shipping a copy of it with the tasks, which can reduce the
communication costs.

C. Resilient Distributed Data Set

RDD [31], the basic abstraction in Spark, represents an
immutable, partitioned collection of elements that can be
operated in parallel. Each RDD is characterized by five main
properties: 1) lists of partitions, as an abstraction in Spark;
RDD contains a list of partitions, which are distributed across
clusters; 2) a function for computing each split; 3) a list
of dependencies on other RDDs, a so-called lineage, and
according to it, the DAGScheduler forms a DAG of stages
for each job; 4) optionally, a partitioner for key-value RDDs
(e.g., to say that the RDD is hash-partitioned); and 5) option-
ally, a list of preferred locations to compute each split
(e.g., the block locations for an HDFS file).

As a read-only data set, RDD can be created by numbers
of operations [e.g., sc.textFile (“hdfs://.../data.txt”)] based on
data in stable storage or other transformation operations in
Spark (e.g., map, join, and so on). There are two types of
primary operations in Spark: transformations and actions.
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No actual operations are carried out in the process of transfor-
mation until action operations occur. During the process of the
transformation operation, RDD transforms into other different
forms of RDDs, and this process does not need to be executed
until it meets the action operation. That means that there
are no actual operations during the process of transformation
while each RDD remembers their parents and their children,
their so-called lineage. Fig. 1 shows a simple lineage graph
example. That provides good fault tolerance without requiring
replication, by tracking how to recompute lost partitions that
start from the base data on disk. That process reduces a
substantial amount of the cost such as storage, recomputation,
communications, and so on. When we use Spark to process
ELM based on RDDs, this method enhances the learning
ability and learns massive amounts of data efficiently.

The reason why Spark addresses big data faster is that it
builds a DAG graph, which reduces a large amount of overhead
during the process. DAGScheduler makes the whole process
form a DAG according to the dependencies between the RDDs,
which makes the Spark framework work efficiently. When we
use ELM to process big data classification on Spark, ELM can
learn quickly and efficiently based on the DAG graph.

In addition, persistence and partitioning are two other
important parts of RDDs that can be controlled by users. Based
on the characteristic of persistence, the users can choose a
relevant storage strategy for RDDs. In our SELM algorithm,
we choose an in-memory strategy to cache the intermediate
results and the repeated variables, which accelerates the whole
calculation process. Partitioning the data set reasonably not
only minimizes the network traffic but also provides significant
speedups.

IV. ANALYSIS OF SELM PERFORMANCE:
MODEL ANALYSIS

A. Analysis of Data Set Partitioning

The data sets in MapReduce are divided into many subdata
sets, and the number of subdata sets depend on the size of
the map tasks that are running in parallel. Compared with
MapReduce, the data set in Spark forms an RDD, which
represents a read-only collection of data partitions. Because
the correlation calculations of the matrix are decomposable,
they can be computed in parallel. The data sets in our work
are in the form of matrixes, and thus, we try our best to design
an effective algorithm to process them in parallel. As we
discussed earlier, the number of partitions for RDD can be
controlled by the programmers, and different partitions will
cause different results. Therefore, we try our best to make
more computations performed locally by partitioning the data
sets reasonably.

As two important data sets, the training data set and the
randomly generated hidden neurons parameters data set are
transformed into RDDs in the initial stage. We assume the
RDDs are called Rx and Ry . The results of the hidden layer
nodes are the outputs from Rz , because all of the computations
of Rx are based on the rows, while Ry and Rz are based on
the columns. We partition Rx according to the rows, while
Ry and Rz are based on the columns. Hence, according to
our analysis for partitioning the RDDs, when we calculate

the output of the hidden layer, we obtain the corresponding
output of the hidden nodes from the different partitions, which
reduces a large amount of the cost.

We use χ = {(xi , ti )|xi ∈ Rn , ti ∈ Rm , i = 1, 2, . . . , N} as
our training data set, and the randomly generated hidden neu-
ron parameters data set can be written as {(w j , b j ) | w j ∈ Rn,
b j ∈ R, j = 1, 2, . . . , L}. Therefore, we can obtain the j th
hidden node output as follows:

hi j = xi1w1 j + xi2w2 j + · · · + xinwnj + b j . (10)

Based on the analysis mentioned earlier, we should make
each hidden layer node an independent partition, which can
reduce the communication cost and the I/O overheads, and
make more operations executed locally. Based on the analysis
mentioned earlier, we divide the randomly generated hidden
node parameters data set into L partitions according to the
sizes of the hidden layer nodes.

B. Analysis of the Matrix Computation on Spark

We have analyzed the division for the matrix, and next,
we discuss the advantage of Spark for matrix computing.
According to the analysis mentioned earlier for basic ELM,
the most expensive computation is calculating M-PGIM,
while the matrix multiplication operator is an important
part of M-PGIM. As is known, the matrix multiplication
operator is decomposable, and we can calculate it in parallel.
Although all of the partitions are distributed across different
nodes, in-memory computing, the scheduling mechanism, and
the high fault tolerance property make all of the partitions
of RDDs calculate quickly and efficiently in parallel. Each
operation for the matrix is computed in memory (e.g., matrix-
vector multiplication, matrix addition, subtraction, and so on).
We cache the repeated variables, and the intermediate results in
memory, in such a way that the computation process should not
reprocess them again or reread from the disks, which reduces
a large amount of the computation costs and I/O spending.

When all of the partitions of the RDDs are executed
while one partition is lost, the lost part will be reconstructed
quickly according to the lineage. While on the MapReduce
framework, the tasks of the bad nodes should be reassigned
to new nodes and be recomputed; this process takes a large
amount of overhead. The efficient fault tolerance makes the
SELM process big data classification more stable, fast, and
efficient.

V. PROPOSED ALGORITHMS

A. Parallel Extreme Learning Machine on Spark

1) H-PMC Algorithm: Based on the analysis of part A in
Section IV, training data sets and randomly generated hidden
neuron parameter data sets are obtained from HDFS form
RDDs in Spark, and we assume them to be Rx and Ry , respec-
tively. To make most of the computations computed locally,
Rx and Ry are divided into L partitions. They are collections
of the data sets, and all of the data will be preprocessed.
Afterward, they will be in the form of 〈key, value〉 pairs. For
example, hi j denotes the i th row and the j th column element,
and thus, 〈i, j〉 is equivalent to a key. When we calculate
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Algorithm 1 H-PMC Algorithm
Require:

Training samples χ = {(xi , ti ) | xi ∈ Rn , ti ∈ Rm ,
i = 1, 2, . . . , N};
Randomly generated hidden neurons parameters dataset
{(w j , b j )| w j ∈ Rn , b j ∈ R, j = 1, 2, . . . , L}.

Ensure:
The hidden layer output matrix.

1: Parse the training samples and hidden node dataset;
2: Partition the training samples into L partitions according

to the rows of the samples;
3: Partition hidden nodes dataset into L partitions according

to the columns;
4: value ← ∅;
5: key ← ∅;
6: M ← ∅;
7: for each partition of Rx and Ry in parallel do
8: for z ← 1 to N do

9: value ← value ∪ {
n∑

i=1
(x[z][i ] × w[i ])+ b[ j ]}

( j denotes the corresponding partitions of Ry);
10: key ← key ∪ {< z, j >};
11: M ← M ∪ {< key, value >};
12: end for
13: end for
14: Cache M in distributed memory;
15: Return hidden layer output matrix.

Fig. 2. Hidden layer output matrix.

the j th hidden node output matrix, its size is 1× N , and the
intermediate key is the i th output result of the j th hidden node.
The intermediate value is the output results. The intermediate
key and the value will be kept in collection M , and M will be
cached in memory, which aims to accelerate the processing of
the later calculations. Algorithm 1 gives pseudocode for the
hidden layer output matrix on Spark.

Algorithm 1 has two parts. In the first part (Lines 1–6),
there are many operations, such as the following: parsing the
data sets, partitioning the data sets, and variable initialization.
The second part is also an important part, which is used to
calculate the hidden layer output matrix. It can be learn from
Algorithm 1 that the whole computation is surrounded by Ry ,
and we give a simple example to explain the detailed steps of
Algorithm 1 in Fig. 2.

As shown in Fig. 2, the hidden node data set matrix is
divided into L parts, and all of the parameters of each hidden

node will be maintained in one partition. Because the hidden
node data set will form Ry , the partitions will be Py1, . . . , Py L .
In other words, Ry has L partitions, and each partition caches
all of the parameters of the corresponding hidden nodes. To
perform the computations more conveniently, the training data
set is also divided into L parts. Rx denotes the training data set,
and the partitions will be Px1, . . . , Px L . All of the partitions
of Rx and Ry are distributed over different nodes, and we
compute the hidden layer output matrix in parallel. Afterward,
we can obtain the hidden layer output matrix H, and it is
cached in the following form in memory:

H =
⎡

⎢⎣
{〈1, 1〉, value11} · · · {〈1, L〉, value1L}

...
. . .

...
{〈N, 1〉, valueN1} · · · {〈N, L〉, valueN L }

⎤

⎥⎦. (11)

2) Û-PMD Algorithm: According to (5), hi j = g(w j ×
xi + b j ), we can find that

ui j =
N∑

z=1

hT
iz hzj =

N∑

z=1

hzi hzj

=
N∑

z=1

g(wi · xz + bi )g(w j · xz + b j ) (12)

vi j =
N∑

z=1

hT
iz tz j =

N∑

z=1

hzi tz j =
N∑

z=1

g(wi · xz + bi)tz j . (13)

We have calculated the hidden layer output matrix H, and
according to the the matrix H, (12) and (13) can be written
as follows:

ui j =
N∑

z=1

valuezi valuez j (14)

vi j =
N∑

z=1

valuezi tz j . (15)

According to (14), ui j can be expressed by the summation
of valuezi multiplied by valuez j , in which valuezi denotes the
zth element in the i th column of H, while valuez j expresses
the zth element in the j th column H. We can also find that
vi j is the summation of valuezi multiplied by tz j , which is the
zth element in the j th column of t.

According to many of the experiments for generalized
ELM, we find that the whole calculation process uses most of
its time in processing the matrix Moore–Penrose generalized
inverse operator in output weight vector calculation. As an
efficient parallel computation framework, we use Spark
to compute the matrix Moore–Penrose generalized inverse
operator. According to (7), we use Û to denote (I/λ + HT H).

In Algorithm 1, we have calculated the hidden layer output
matrix H, and it is cached in memory in L partitions. The
intermediate key and value will be kept in collection Q, and
Q will be kept in memory. Each partition expresses the output
of the corresponding hidden node, and each partition expresses
an N ×1 dimension matrix. For example, the i th hidden node
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Algorithm 2 Û-PMD Algorithm
Require:

Hidden layer output matrix H;
The L × L dimension diagonal matrix I/ λ.

Ensure:
The output weight vector matrix.

1: Broadcast variables ← diagonal matrix I/ λ;
2: outvalue ← ∅;
3: endkey ← ∅;
4: Q ← ∅;
5: for each partition of two RDDs in parallel do

6: outvalue ← outvalue ∪ {
N∑

z=1
(value[z][i ] ×

value[z][ j ])}
(i , j denote the corresponding partitions of two RDDs);

7: endkey ← endkey ∪ {< i, j >};
8: if i equals to j
9: outvaluei j ← 1/λ;

10: end if
11: Q ← Q ∪ {< endkey, outvalue >};
12: end for
13: Cache Q in distributed memory;
14: Return output weight vector matrix.

Fig. 3. Computation process of matrix Û on Spark.

output matrix is the following:

hzi =
⎡

⎢⎣
{〈1, i〉, value1i }

...
{〈N, i〉, valueNi }

⎤

⎥⎦. (16)

Algorithm 2 has two parts. Part one (Lines 1–4) is
mainly initialization, and part two (Lines 5–13) calculates the
matrix Û. Fig. 3 shows the detailed process for Algorithm 2.

Based on the analysis mentioned earlier, the whole output
of each hidden layer node is in an independent partition, as
shown in Fig. 3. Rz denotes the hidden layer output, and its
partitions can be depicted as Pz1, Pz2, . . . , PzL . From (14),
we can learn that we only multiply all of the corresponding
elements of each column in two matrixes, and we obtain
HT H, for example, u11 = value11 × value11 + value21 ×
value21 + · · · + valueN1 × valueN1. At the same time, we
calculate the matrix Û. Therefore, the results of Û can be

Algorithm 3 V-PMD Algorithm
Require:

Hidden layer output matrix H;
The N ×m dimension sample training result matrix t.

Ensure:
The output weight vector matrix.

1: Partition training samples result matrix into m partitions
according to the columns;

2: endvalue ← ∅;
3: outkey ← ∅;
4: R ← ∅;
5: for each partition of Rz and Rd in parallel do

6: endvalue ← endvalue ∪ {
N∑

z=1
(value[z][i ] × t[z][ j ])}

(i , j denote the corresponding partitions of two RDDs);
7: outkey ← outkey ∪ {< i, j >};
8: R ← R ∪ {< outkey, endvalue >};
9: end for

10: Cache R in distributed memory;
11: Return output weight vector matrix.

written as follows:

∧
U =

⎡
⎢⎣
〈1, 1〉, outvalue11 · · · 〈1, L〉, outvalue1L

...
. . .

...
〈L, 1〉, outvalueL1 · · · 〈L, L〉, outvalueL L

⎤
⎥⎦.

(17)

3) V-PMD Algorithm: Equation (15) tells us that the output
matrix of all of the elements of each column in matrix HT

multiplied by the corresponding elements of each column
in t is matrix V. The intermediate key and value will be
kept in collection R, and R will be cached in memory.
The pseudocode for the matrix V computation on Spark is
described in Algorithm 3.

In Algorithm 3, we first parse the training samples result
matrix t, and we then partition the matrix. Afterward, we
calculate matrix V (Lines 5–10).

At this time, the process of computing matrix V is so similar
to Algorithm 1 that we simply display the output of matrix V.
Based on (15), we realize the calculation of matrix HT and
matrix t on Spark, and we obtain matrix V, for example,
v11 = value11 × t11 + value21 × t21 + · · · + valueN1 × tN1.
Afterward, matrix V can be depicted in

V =
⎡

⎢⎣
〈1, 1〉, endvalue11 · · · 〈1,m〉, endvalue1m

...
. . .

...
〈L, 1〉, endvalueL1 · · · 〈L,m〉, endvalueLm

⎤

⎥⎦.

(18)

4) SELM for Classification: We have mentioned that the
most expensive computational part of ELM is the computation
of the matrix, and the above-mentioned parts have calculated
M-PGIM, matrix H†. At that time, all of the parameters for
the SELM algorithm are confirmed, and then, we implement
the SELM algorithm to classify the testing data sets. At the
same time, we use the testing results to verify whether the
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Algorithm 4 SELM Algorithm
Require:

The testing dataset matrix χ = {(xi , ti )|xi ∈ Rn, ti ∈
Rm, i = 1, 2, . . . ,M};
The output weight matrix βz = {βz1, βz2, . . . , βzm, z =
1, 2, . . . , L}.

Ensure:
The testing results of SELM.

1: The testing dataset
Algorithm1−−−−−−−→ the hidden layer output

matrix H;
2: Parse the output weight matrix β;
3: Partition the matrix H into L partitions according to the

columns;
4: Partition the matrix β into L partitions according to the

rows;
5: value′ ← ∅;
6: key ′ ← ∅;
7: ψ ← ∅;
8: for each partition of RDDs in parallel do

9: value′ ← value′ ∪ {
L∑

z=1
value[i ][z] × β[z][ j ]}

(i , j denote the corresponding partitions of two RDDs)
10: key ′ ← key ′ ∪ {< i, j >};
11: end for
12: ψ ← ψ ∪ {< key ′, value′ >};
13: Return testing results of SELM ψ .

performance is good or not. As is known, the ELM output
is f (x) = H(x)β = o, and thus, we use the Spark framework
to calculate the matrix H(x) and β. At this time, matrix x
denotes the testing data sets not the training data sets, while
the method that is used to compute H(x) is the same as in
Algorithm 1. We use the method to compute the H(x) matrix.
How to divide matrix β is a key problem. We assume that the
size of the testing data set is M × n, and the output of H(x)
is depicted in

H =
⎡

⎢⎣
{〈1, 1〉, value11

′} · · · {〈1, L〉, value1L
′}

...
. . .

...
{〈M, 1〉, valueM1

′} · · · {〈M, L〉, valueM L
′}

⎤

⎥⎦

(19)

while matrix β is written as follows:

β =
⎡

⎢⎣
{〈1, 1〉, β11} · · · {〈1,m〉, β1m}

...
. . .

...
{〈L, 1〉, βL1} · · · {〈L,m〉, βLm }

⎤

⎥⎦. (20)

The output of H(x) is divided into L partitions. To be
convenient for the next computation, matrix β will be divided
into L partitions according to the columns, and these partitions
are distributed over the node randomly.

Based on the analysis mentioned earlier, the pseudocode for
the SELM algorithm is described in Algorithm 4.

Algorithm 4 describes the major mechanism of the SELM
algorithm, which mainly contains two parts. The main work
of part one (Lines 1–7) is initializing the testing data set

Fig. 4. SELM for big data classification on Spark.

and matrix β and calculating matrix H. The second part is
also important (Lines 8–12), and it classifies the testing data.
Afterward, we give a simple example to explain the detailed
steps for the whole process in Fig. 4.

We summarize the implementation of the SELM algorithm,
which mainly includes two phases, as follows. In the first
phase (computing the output weight matrix using the H-PMC
algorithm, Û-PMD algorithm, and V-PMD algorithm), the
H-PMC algorithm is used to calculate the hidden layer output
matrix, while the Û-PMD algorithm and V-PMD algorithm
compute matrix M-PGIM. The steps of the three mentioned
algorithms are similar, and the general process is as follows.

1) Parse the data sets, and divide them into corresponding
partition sizes to reduce the communications costs and
I/O overhead.

2) Calculate the corresponding output matrix.
In the second phase (classifying the testing data sets using

the SELM algorithm), the SELM algorithm uses the para-
meters that are generated by the H-PMC algorithm, Û-PMD
algorithm, and V-PMD algorithm to classify the testing data
sets.

1) Compute the hidden layer output matrix of the testing
data set H according to Algorithm 1.

2) Parse the data set, and divide them into corresponding
partitions.

3) Classify the testing data set, and based on the results,
analyze the performance of our proposed SELM.

B. Performance Analysis for SELM

1) Accuracy Analysis for SELM: In this paper,
accuracytraining denotes the training accuracy rate, and
accuracytest ing expresses the testing accuracy rate. In our
experiments, we find that the missing classification rate is
smaller than the accuracy rate, and thus, we use the missing
classification rate to calculate the accuracy rate. We use
misstraining and misstest ing to, respectively, denote the
training and testing missing numbers in the classification.
N denotes the number of training samples, and M expresses
the number of testing records. Therefore, the training accuracy
rate can be written as in

accuracytraining = 1− misstraining

N
(21)
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and the testing accuracy rate can be written in

accuracytesting = 1− misstesting

M
. (22)

The purpose of our SELM algorithm is to accelerate the
learning process and improve the efficiency of the whole
process while maintaining or improving the testing accuracy.
Zhou et al. [32] mentioned that the accuracy increases when
increasing the number of hidden layer nodes. The equations
that are used to calculate the output weight matrix β in our
SELM algorithm are substantially the same as in the naive
ELM. Our SELM algorithm calculates matrix H, matrix Û,
and matrix V based on Spark, which enhances the learning
speeding effectively compared with naive ELM. More specifi-
cally, all of the parameters (e.g., w j , b j , I, xi , and so on) and
all of the equations [e.g., (7), (8), and so on] are the same
as in the naive ELM, while our algorithms make the ELM
classify big data fast and effectively, which mean misstraining

and misstest ing of ELM and SELM are almost the same
under the same conditions. Therefore, by classifying the same
input data set with identical parameters, accuracytraining and
accuracytest ing of the naive ELM and SELM are completely
identical, and we verify this claim by several experiments.

2) Runtime Analysis for SELM: In this section, we analyze
the performance benefit of the SELM algorithm. Because the
PELM algorithms based on MapReduce are basically similar,
we use TPELM to denote the runtime of the PELM algorithms
based on MapReduce. In particular, a speedup of a system on
h servers can be depicted as follows:

speedup = computing time on 1 computer

computing time on h computers
. (23)

The runtime of stand-alone ELM consists of two parts, i.e.,
the computation of matrix β and the classification for the test-
ing data set. We assume that the time of computing N training
samples is t1 N and that the time of calculating M testing
samples is t2 M . Therefore, the runtime of the traditional ELM
is the following:

TELM = t1 N + t2 M. (24)

Equation (24) can roughly estimate the runtime, and to
better analyze the performance benefit of our SELM algorithm
over PELM based on MapReduce, we make a more detailed
analysis on the runtime. According to the discussion men-
tioned earlier, we know that ELM spends most of its time on
calculating the matrixes, including H, Û, and V while matrix Û
and matrix V need more time to be processed than matrix H.
The size of the input data sets is directly proportional to the
runtime of matrix H, which we use T1(N, n) to denote, where
N denotes the number of samples, and n is the dimensionality
of each sample. T1 stands for a positive function, which means
that when the value of N or n is increased, the value of
T1(N, n) increases. The runtime of Û and V is, respectively,
T2(N, L) and T3(N, L,m), where L is the size of the hidden
layer nodes, and m denotes the output layer nodes. Relative to
the runtime of the training data set, the runtime of the testing
data set is also an important part of the whole process time,
and we use T4(M, n, L,m) to denote it, where M stands for

the size of the testing data sets. Hence, the runtime of PELM
on one server can be written as

TELM = T1(N, n) + T2(N, L) + T3(N, L,m)

+ T4(M, n, L,m) (25)

while the calculation time of SELM on one server can be
depicted in

T ′ELM = T1
′(N, n) + T2

′(N, L) + T3
′(N, L,m)

+ T4
′(M, n, L,m). (26)

When we use PELM based on MapReduce to process the
same training data sets and testing data sets as expressed
earlier, the PELM based on MapReduce also consists of the
computation of matrix β and the classification for the testing
data set. To make a fair comparison with SELM, we assume
that there are η instances that work in parallel. In the training
phase, there are η workers who participate in parallel, and the
training data sets are distributed among the workers. Hence,
the runtime of this phase is t ′1 [N/η]. During the testing
phase, η workers participate in parallel, and therefore, the
runtime of this phase is t ′2 [M/η]. During the two phases, the
communication time of each mapper or node is t3. We should
know that there is a high probability that one or several nodes
cannot work and that the system should reallocate the tasks
and recompute them. We use P to denote the probability, and
the recalculation time is t4. Therefore, the total time of the
PELM based on MapReduce can be written as follows:

TPELM = t ′1
N

η
+ t ′2

M

η
+ t3 + Pt4. (27)

According to the analysis of (25), the parallel process-
ing runtime of matrix H, matrix Û, and matrix V on
MapReduce is, respectively, T1(N/η, n), T2(N/η, L/η), and
T3(N/η, L/η,m/η). The runtime of processing the testing
data set is T4(M/η, n, L/η,m/η). Therefore, (27) can be
depicted in

TPELM

= T1(N/η, n)+ T2(N/η, L/η)+ T3(N/η, L/η, m/η)

+ T4(M/η, n, L/η, m/η) + t3 + Pt4. (28)

Our SELM also calculates matrix β and classifies the testing
data set. During the process of the computation, we can
imagine that there are η nodes that take part in the computation
in parallel. Due to the lineage characteristic, the lost RDDs
or partitions can be recomputed in subseconds, and we use t ′4
to denote this time. P ′ denotes the corresponding probability.
We use t ′3 to represent the communication time, and the total
time of the SELM is depicted in

TSELM = t1
′′ N
η
+ t2

′′M
η
+ t3

′ + P ′t4′. (29)

Without loss of generality, (29) can be written as (30) based
on the analysis mentioned earlier

TSELM

= T1
′(N/η, n)+ T2

′(N/η, L/η)+ T3
′(N/η, L/η, m/η)

+ T4
′(M/η, n, L/η, m/η)+ t3

′ + P ′t4′. (30)
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TABLE II

DETAILED INFORMATION OF DATA SETS

Therefore, we can approximate ϕ1 as follows:
ϕ1 = T1(N, n)+T2(N, L)+T3(N, L,m)+T4(M, n, L,m)(

T1
( N
η , n

)+ T2
( N
η ,

L
η

)+ T3
( N
η ,

L
η ,

m
η

)

+T4
( N
η , n, L

η ,
m
η

)+ t3 + Pt4

) .

(31)

In addition, ϕ2 can be written as follows:
ϕ2

= T1
′(N, n) + T2

′(N, L) + T3
′(N, L,m)+T4

′(M, n, L,m)(
T1
′( N
η , n

)+ T2
′( N
η ,

L
η

)+ T3
′( N
η ,

L
η ,

m
η

)

+T4
′( N
η , n, L

η ,
m
η

)+ t3′ + P ′t4′

) .

(32)

From (31) and (32), we observe that as N , L, or m increases,
the speedup becomes larger and finally converges to a certain
value. For small data sets, the effect of the communication,
reading, and writing costs are obvious, and they have a great
impact on the speedup. If we increase the size of the samples,
the size of the dimensionality, or the size of the hidden layer
nodes, the speedup is small. When the data sets become
larger, the runtime is so dominant that the effect of the
communication, reading, and writing cost on the speedup is
nearly invisible. At that time, when we increase the size of the
data sets or the size of the hidden layer nodes, the speedup
becomes greater and converges to a certain value.

As we have described, our SELM algorithm partitions the
data sets reasonably, based on which additional computations
are performed locally. At the same time, we cache the diagonal
matrix I/λ as broadcast variables, which means that it is
cached on each node, in such a way that each task can
copy the data from a local node instead of obtaining data
through remote transmission during the computation process.
Similar to the broadcast variables, we can keep the repeated
data and intermediate results in distributed memory instead
of recomputing them or rereading them from disks while
in the MapReduce framework, and the intermediate values
should be written into HDFS, which heavily increases the
communication and I/O costs. In the MapReduce framework,
when one or several nodes cannot work, the tasks in that
node will be reallocated to other active nodes and recomputed,
which requires a large amount of time, whereas Spark will
compute the lost partitions or RDDs according to the lineage
in subseconds. Therefore, we can find that relative to t3 and
Pt4, t ′3 and P ′t ′4 occupy a small proportion of the total runtime.

More importantly, we can approximate TPELM > TSELM under
the same condition based on the analysis mentioned earlier.
Hence, under the same condition, ϕ2 > ϕ1, and ϕ2 can quickly
converge to a certain value. We will use several experiments
to verify our analysis in Section VI.

VI. EXPERIMENTS

In this section, we depict the experimental setup first.
Then, we compare the performance of our SELM with
the PELM [33] algorithm, ELM* [11] algorithm, and
ELM*-Improved [11] algorithm for different tasks.

A. Experimental Setup

1) Experiment for Medical Big Data: All of the parallel
algorithms, such as PELM, ELM*, ELM*-Improved, and
our SELM, are run on a cluster, while ELM runs on an
independent server. Because we have been told that PELM has
the same accuracy as naive ELM with the same data set and
parameters, we verify that theory. Each server has a 2T disk,
2.5-GHz core, and 16-GB memory. In this cluster, one
computer is used as the master node, and the others are
used as slave nodes. The independent server has 2T disk,
2.5-GHz core, and 32-GB memory. All of the servers have
the Ubuntu 12.04 Operation System, and we implement
Hadoop 2.4.0, scala 2.10.4, Java Development Kit 1.8.0–25,
and Spark 2.0.0 on this cluster while MATLAB R2011b is
deployed on the independent server. In our experiments, the
origin data sets are taken from our medical data mining
project [34], and then, we compute a large amount of process-
ing. In our finished work [34], we have presented these data
sets in detail. All of the inputs (attributes) have been normal-
ized to the range [−1, 1], while the class labels have been
normalized to [0, 1]. Afterward, we obtained our synthetic
data sets, and they were used to evaluate the performance of
our SELM algorithm with several PELM algorithms based on
the platform described earlier. The data sets are Patient (S1),
Outpatient (S2), Medicine (S3), Breast Cancer (S4), Heart
Disease (S5), Chronic Kidney Disease (S6), Hepatitis (S7),
Gastritis (S8), and Hypertension (S9).

In our experiments, each experiment has been performed
more than ten times, and then, we obtain their correspond-
ing averages, including training accuracy, testing accuracy,
and performance speedup. All of the synthetic data sets are
shown in Table II, and the different numbers of hidden nodes
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TABLE III

ACCURACY OF ELM FOR MULTICLASSIFICATION ON DIFFERENT PLATFORMS

are 20, 50, 100, 150, 200, 250, 300, 350, and 400. The
hidden layer node activation function used in our experiment
is the sigmoid function. In Table II, the File Size denotes
the size of data set, and the Dimensionality stands for the
features. The Sample Size denotes the number of samples,
and the Training Sample Size expresses the number of training
samples, while the Testing Sample Size denotes the number
of testing samples. The brackets stand for the size of data sets.

2) Experiment for Pattern Recognition: Without loss of gen-
erality, we use SELM to process handwritten digit recognition
task and test its performance on the well-known MINIST data
set [35]. The data set consists of 70 000 images (including
60 000 training images and 10 000 test images), and each
image is 28 × 28 gray-scale pixels. Because more hidden
neurons can extract the discriminative features, we set the
hidden neurons to be 500, 1000, 1500, 2000, 2500, and 3000.
More importantly, we also test our SELM’ performance on
different numbers of workers, and the workers are set to be
10, 15, 20, 25, 30, and 35. Without loss of generality, each
experiment will be performed more than ten times; the average
training error rate and test error rate and the average training
time and test time will be presented.

B. Accuracy of the ELM for Multiclassification
on Different Platforms

In this section, we use the data sets to verify our theory
that the accuracy of ELM classification for the same data set
with the same parameters is identical in different platforms.
The experimental platform for ELM is MATLAB R2010b on
one server, while the PELM algorithm, ELM* algorithm, and
ELM*-Improved algorithm are Hadoop 2.4.0 with ten servers
in parallel. Our SELM algorithm is performed on a Spark
framework with ten servers in parallel. In those experiments,
the number of hidden layer nodes is 20. The averages of the
experimental results are illustrated in Table III.

From Table III, we find that the corresponding accuracy
rates of the same data set with the same parameters in different
platforms are almost the same. Although we use different
calculation frameworks to process the data sets, the essence
of the classification is that they use the same equations,
the same data sets, and the same hidden layer parameters.
Different platforms accelerate the learning speed and enhance
the learning efficiency, while their accuracies are almost the
same as the accuracy in the serial environment.

As shown in Table III, we also know that with an increase
in the data sets, the accuracy of the naive ELM declines. As is
known, all of the computations are calculated in memory,
and many smaller intermediate results will be cached in
memory. When there is not sufficient memory, some new
intermediate results will cover the front results, which causes
some important data to be lost or overflow. Compared with
naive ELM, big data sets are distributed across several servers
in our SELM algorithm, and during the computation, the
system has sufficient memory to process such data set. At the
same time, we can cache more intermediate data in memory,
and when some data are lost, Spark can recompute the lost data
according to the lineage. All of these characteristics make the
accuracy of SELM stable.

C. Performance of SELM Under Different Conditions

1) Results on Runtime: We use several experiments to
validate the performance of our SELM under different dimen-
sionalities of the data sets, different numbers of hidden nodes,
different numbers of records, and different numbers of work-
ers. For different dimensionality conditions, we used S1, S2,
S3, S4, and S5 to test the performance, and the number of
hidden layer nodes was 50 while the number of servers was 10.
For the different numbers of hidden nodes, the hidden nodes
were set to be 50, 100, 150, 200, 250, 300, 350, and 400,
and the data set was S1 with ten servers. For different
numbers of records, the samples were S1, S6, S7, S8, and S9,
and the hidden layer node was 50, while the size of the
cluster was 10. For different numbers of workers, the samples
were S1, and the hidden layer node was 400. Fig. 5(a)–(d)
shows our SELM algorithm compared with the PELM algo-
rithm, ELM* algorithm, and ELM*-Improved algorithm,
under different conditions.

Fig. 5(a)–(c) shows that with an increase in the dimension-
ality (n), the number of hidden layer nodes (L), the size of
the samples (N), the training time, and the testing time all
increase. When we increased the dimensionality, we had to
spend more time calculating the hidden layer output matrix H.
We know that the system should spend most of its time com-
puting M-PGIM, which includes computing the N × L matrix
and L × L matrix, and an increase in the dimensionality of
the data set does not have a large influence on the size of
M-PGIM. Therefore, the runtime for calculating the matrix H
increases with the increase in the dimensionality, while the
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Fig. 5. Runtime under different conditions. (a) Runtime under different dimensionality. (b) Runtime under different hidden nodes. (c) Runtime under different
size of samples. (d) Runtime under different workers.

Fig. 6. Speedup under different conditions. (a) Speedup under different dimensionality. (b) Speedup under different hidden nodes. (c) Speedup under different
size of samples. (d) Speedup under different workers.

whole runtime keeps growing slightly. For different numbers
of hidden layer nodes (L), when the value of L increases, the
time that is used to process Û and V increases in both cases. At
the same time, the communication cost and I/O overhead also
become larger. Therefore, the entire runtime increases under
this condition. When we increase the size of the samples (N),
the time used to process matrix H, matrix Û, and matrix V all
increase, while the communication, reading, and writing costs
become larger. Fig. 5(d) also shows that the runtime decreases
with an increase in the size of the workers, and more workers
can speed up the whole calculation process to a certain extent.

It can be seen from Fig. 5 that the performance of our
SELM is better than that of the ELM*, ELM*-Improved,
and PELM. PELM has two MapReduce phases, and in
the first phase, with the increase in the dimensionality, it
has spent more time to compute the matrix H. At the
same time, two MapReduce phases mean more overhead,
including computation, communication, and I/O cost, which
cause PELM to cost the most time to realize the ELM.
Relative to the PELM algorithm, the ELM* algorithm, and
ELM*-Improved algorithm use one MapReduce phase to finish
the classification, which reduces a large amount of the cost.
On the other hand, the ELM*-Improved algorithm leverages
the local summation of the corresponding elements in the
matrix, in such a way that it reduces the transmitting time
and has better performance than the ELM*. Compared with
the PELM algorithms mentioned earlier, our SELM partitions
the data sets reasonably, which ensures that most of the
calculations are processed locally. During the computation
process, many intermediate results can be cached in distributed
memory instead of storing them on disks or HDFS, which
reduces substantially the transformation cost and accelerates
the whole computational process. At the same time, Spark
takes less time to recompute the lost data because of lin-
eage, while MapReduce must redistribute the lost node tasks
and recompute them, which heavily increases the overhead.
Therefore, we can conclude that TSELM < TPELM, TSELM <
TELM∗, and TSELM < TELM*-Improved.

2) Results on Speedup: To better analyze the performance
of SELM, we computed the corresponding speedups and
performed a comparison among the PELM algorithms based
on MapReduce under different conditions. In Fig. 6(a)–(d),
we found that with an increase in the dimensionality of the
data sets, numbers of hidden nodes, numbers of records, and
numbers of workers, the speedups of PELM, ELM*, ELM*-
Improved, and our SELM all increase. In theory, the speedup
should be equal to the number of parallel processors, but it is
less than that because of communication, I/O overhead, and so
on. For the increase in the dimensionality of the data set or the
size of the samples, when the data set is small, the calculation
costs are relatively small both in stand-alone and parallel plat-
forms, which means that the stand-alone algorithms can finish
the whole process at a fast speed and the parallel algorithms
cannot obtain high speedups. As the value of n or N increases,
the calculation cost of the correlation matrices increases, which
means that more memory and processing units are required,
to enable the parallel algorithms to gain a better speedup. For
different hidden nodes, the changing process for speedup is the
same as those for the different dimensionalities and samples
mentioned before. With the increase in the number of workers,
the systems can acquire obvious speedups.

At the same time, when the data sets become larger, the
computation costs are dominant, while the other costs are
nearly invisible. Therefore, the speedups increase and converge
to a certain value. Our SELM splits the data set reasonably,
which makes many computations to be performed locally as
possible and lowers the communication cost and I/O cost.
Because of the characteristic of lineage, our SELM has good
fault tolerance, in such a way that it processes lost data quickly.
As is known, in the MapReduce framework, during the shuffle
stage, the intermediate results should be kept in HDFS, and
they should be read from the HDFS during the reduce stage,
which heavily increases the additional overhead. Therefore,
we can conclude that ϕ2 > ϕ1, which means that our SELM
has the highest speedup compared with other PELMs based
on MapReduce.
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TABLE IV

EVALUATION RESULTS FOR MNIST DATABASE UNDER DIFFERENT NUMBERS OF HIDDEN NODES

TABLE V

EVALUATION RESULTS FOR MNIST DATABASE UNDER DIFFERENT NUMBERS OF WORKERS

D. Performance of SELM for Handwritten Digit Recognition
1) Evaluation Results for the MNIST Database Under

Different Numbers of Hidden Nodes: In this section, we
present the performance of our SELM for handwritten digit
recognition under different numbers of hidden nodes (500,
1000, 1500, 2000, 2500, and 3000). This time, we set the
number of workers in the cluster to be 10. Each experiment
will be tested ten times and we will obtain the average of
each experiment as the final results. We show the evaluation
results in Table IV.

From Table IV, we find that with an increase in the number
of hidden neurons, there is no doubt that the corresponding
training error rates and testing error rates for ELM, PELM,
ELM*, and ELM*-Improved descend, while their training time
and testing time increase. It can be seen that TSELM < TPELM,
TSELM < TELM∗, and TSELM < TELM∗−Improved under the
same number of hidden neurons, and the speedups for PELM,
ELM*, ELM*-Improved, and SELM approximate 7.2, 7.8, 8.1,
and 8.7, respectively. We also find that the training error rate
and the testing error rate under the same number of hidden
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neurons are nearly identical, which have nothing to do with
the different parallel platforms. Although we evaluate different
algorithms on different parallel platforms, the essence of the
whole calculation process is in using the same data sets, the
same equations, the same hidden layer parameters, and so on,
which means that the main contribution of parallel platforms
is in speeding up the computing processes. At the same time,
under the same hidden neurons, the training error rates and
testing error rates fluctuate and our SELM obtains a lower
training error rate and testing error rate due to its good cache
strategy, fault tolerance, and lineage, which are mentioned
earlier.

2) Evaluation Results for the MNIST Database Under
Different Numbers of Workers: We also present our SELM’
performance compared with different ELM algorithms for
handwritten digit recognition under different numbers of work-
ers (10, 15, 20, 25, 30, and 35). This time, we set the hidden
nodes to be 2000. Without loss of generality, each experiment
will be tested ten times and we calculate the average of
each experiment as the final result. Table V presents the final
average results.

It can be seen from Table V that with an increase in
the number of workers, the training time and the testing
time of each algorithm decrease, while the training error
rates and testing error rates of ELM on different parallel
platforms are approximately the same. There is no doubt
that the parallel platform can speed up the whole calculation.
We can learn from Table V that our SELM obtains the
highest speedup among the compared parallel algorithms.
That finding is mainly due to our well designed program,
which makes full use of the excellent characteristics of Spark.
At the same time, the reason why the error rates are almost
the same is that the essence of PELM, ELM*, ELM*-
Improved, and SELM is still the ELM structure and all of
the equations, the training data sets, hidden nodes, and so on,
which are the same, such that the error rates stay nearly the
same.

VII. CONCLUSION

In this paper, we proposed a novel SELM algorithm that is
based on the Spark parallel framework to speed up the whole
computing process of ELM for big data. First, we proposed
an SELM algorithm that consists of three subalgorithms: the
H-PMC algorithm, Û-PMD algorithm, and V-PMD algorithm,
which make full use of a series of Spark’s good characteristics,
including fault tolerance, persist/cache strategies, partitioning
controlled by users, and so on, to speed up the process
of decomposing the M-PGIM. Afterward, we implemented
the SELM algorithm to classify big data. We presented the
process of implementing the SELM algorithm for big data
classification in detail in this paper and made a performance
analysis for our SELM with the compared algorithms. Finally,
we conducted a large number of experiments to test the
performance of our SELM for medical big data classification
and handwritten digit recognition under different conditions.
The experimental results show that our SELM obtains
the highest speedup compared with PELM, ELM*, and
ELM*-Improved while guaranteeing the accuracy as being

the same as traditional ELM under the condition of the same
parameters.
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