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An Ensemble CNN2ELM for Age Estimation

Mingxing Duan™, Kenli Li, Senior Member, IEEE, and Keqin Li, Fellow, IEEE

Abstract— Age estimation is a challenging task, because it
can be easily affected by gender, race, and other intrinsic and
extrinsic attributes. At the same time, performing age estimation
for a narrow age range may lead to better results. In this paper,
to achieve robust age estimation, an ensemble structure referred
to as CNN2ELM, which includes convolutional neural network
(CNN) and extreme learning machine (ELM), is proposed for age
estimation. The three-level system includes feature extraction and
fusion, age grouping via an ELM classifier, and age estimation
via an ELM regressor. Age-Net, Gender-Net, and Race-Net are
trained using different targets, such as age class, gender class,
and race class, respectively, and the three networks are used
to extract features corresponding to age, gender, and race from
the same image of a person during validation and test stages.
Features related to the age property are enhanced by fusing
these of race and gender properties. Then, to achieve a narrow
age range, the ELM classifies the fusion results into one of the
age groups. Afterward, an age decision is made using an ELM
regressor. Our network is pretrained on an ImageNet database
and then fine-tuned on the IMDB-WIKI database. The recently
released Adience benchmark, ChaLearn Looking at People 2016
(LAP-2016), and MORPH-II are used to verify the performance
of “Race-Net + Age-Net + Gender-Net + ELM classifier + ELM
regressor (RAGN).” RAGN outperforms the existing state-of-the-
art age estimation methods. The mean absolute error of the
age estimation of RAGN for MORPH-II is determined to be
2.61 years; the accuracy of the age estimation for the Adience
benchmark is 0.6649; and the normal score (¢) for the sequestered
test set of the LAP-2016 data set is 0.3679.

Index Terms— Age estimation, convolutional neural network,
ensemble, extreme learning machine.

I. INTRODUCTION
A. Motivation

N RECENT years, facial age estimation has drawn a large
amount of attention in computer vision due to its crucial
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applications in video surveillance, internet access control,
security, and demography [1]. For example, the Age Specific
Human Computer Interaction (ASHCI) system has helped to
control underage drinking and smoking and prevented children
from surfing harmful web pages.

However, human age estimation is a complicated process
that is easily affected by many factors, such as identity, gender,
race, and extrinsic factors, including lifestyle, environment,
body pose, and facial expression. Human facial image datasets
have different statistical characteristics [2], e.g., regarding two
people of the same age, one may be a female with a face that
appears young, while the other may be a male with a face that
appears old. Gender and race greatly influence age estimation.
For example, [3] performed a systematic and quantitative study
on the performance of age estimation across races and/or
genders. The mean absolute error (MAE) of age estimation
without crossing is 4.96 years, while that for crossing gender,
crossing race, and crossing gender and race combined is 7.41,
8.38, and 9.77 years, respectively. Therefore, age estimation
is closely related to gender and race.

All information, including race, gender, age, and other
intrinsic and extrinsic attributes, exists in the form of pixels
of input images, and methods used to extract wanted features
are based on the corresponding targets, such as race labels,
gender labels, and age labels. For example, during the process
of age estimation, when the target is age class, the extracted
features are closely related to the age attribute from the pixels
of the input image, while most gender, race, and other traits
that are not associated with the target are not extracted, even
though age estimation is easily affected by these attributes.
More importantly, before age estimation, a higher accuracy
result will be achieved when the input features have more
discriminative information. Few studies have fullly considered
race and gender traits for age estimation. Therefore, for an
image of human face, when we extract different kinds of
features related to race, gender, and age, and then fuse them,
a more robust feature set will be obtained. Of course, the
origin features are enhanced via the approach, and the fused
features are beneficial to age estimation. We believe that this
research can offer a general guide for age estimation using
large databases.

At the same time, a good age estimation method should pre-
dict age from a face image precisely, and age estimation meth-
ods have drawn the attention of researchers. Currently, many
estimation systems have been developed and can be divided
into two classes: age feature extraction and age estimation.
Obtaining a low MAE for age estimation has heavily relied on
the quality of the extracted features [4]. It not only demands
that the features have the most differentiable characteristics
among different classes but also that they retain unaltered
characteristics within the same class. A large amount of
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research on age estimation has achieved great success through
age feature extraction. For example, researchers have success-
fully used an anthropometric model [5], active appearance
model (AAM) [6], AGing pattern Subspace (AGES) [7], age
manifold [8], patch-based appearance model [9], local binary
patterns (LBP) [10], biologically inspired features (BIF) [11],
and deep neural networks [12]. In recent years, due to its
strong ability to learn robust and discriminative features, CNN
has been highlighted in machine learning and pattern recog-
nition fields. It has achieved a state-of-the-art performance
in image recognition and can automatically extract facial
features.

Additionally, the process of making an age decision makes
full use of features extracted from a facial dataset, so that a
high discrimination age prediction system can be built (i.e..,
age classifier or age regressor). By utilizing machine learning
approaches to train a model for extracting features, an age
estimation system can make an age prediction of queried
faces. In general, age estimation can be considered to be a
classification problem [13], [14], regression problem [8], [9],
or combination of both [15]. We can model age estimation
as a multi-classification and SVM is one of the most popular
approaches for this type of classification. Recently, a large
amount of researchers have studied age regression models,
such as support vector analysis (CCA) [16], partial least
squares (PLS) [17], support vector regression (SVR) [11],
among others. ELM has been proven to be an efficient and
fast classification algorithm because of its good generalization
performance, fast training speed, and need for little human
intervention [18]. Additionally, ELM and improved ELM,
including mixing with other methods, have been widely used
to process pattern recognition tasks to achieve a good perfor-
mance [19].

Decision fusing and age grouping are two successful age
estimation methods. Decision fusing is widely used to fuse
multiple decisions to achieve a more robust decision. With
more discriminative features and more powerful age estimation
models, higher recognition rate will be obtained. As we
know, a set of age estimation models with similar train-
ing facial datatsets will have different generalization perfor-
mances. In such cases, combining the outputs of different
models may lower the risk of an unsuitable selection of a
poorly performing estimation model [20]; for example, ask-
ing different doctors’ suggestions before performing a major
operation or considering users’ evaluations before purchasing a
product as we usually make decisions by combining different
opinions in our everyday lives. Our goal is to improve the
probability of making the right decision by weighing different
decisions and combining them to reach a final goal.

For age grouping, a large number of methods have been
proposed to conduct age estimation, and many of them make
age estimations over a very wide age range. In general, making
an age estimation from a narrow age range may lead to better
results. For example, we can estimate an age in the range of
30 to 35 more easily than in the range of 0 to 70. The goal of
age grouping is to classify a facial image into an age group,
and a final age decision is made based on the age groupings.
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B. Our Contributions

Therefore, age estimation should not only consider race and
gender as factors but also yield a novel structure in which
differentiable features can be extracted. Motivated by the
analysis above, we propose a novel age estimation architecture
called CNN2ELM, which is used to estimate age based on
face images. CNN2ELM includes three convolutional neural
network (CNN) structures and two extrame learning machine
(ELM) structures. Our proposed networks are pretrained on the
ImageNet dataset [21] and then fine-tuned on the IMDB-WIKI
dataset [22] before being fine-tuned on MORPH-II, Adi-
ence benchmark, and Chalearn Looking at People 2016
(LAP-2016) datasets. During the validation and test stages,
the three networks are used to extract features from the same
image, and a discriminative and robust feature set is achieved
by fusing these features. Based on the fusion features, ELM
classifies these features into one of the age groups. Then, our
ELM regressor makes a final decision. It not only sufficiently
exploits the CNN but also utilizes the outstanding classification
and regression properties of the ELM. The major contributions
of this paper are as follows:

o We propose an ensemble CNN2ELM approach for per-
forming age estimation. The structure combines the CNN
with the ELM to perform age estimation in a hierarchical
fashion, in which the CNN is used to extract features,
while the ELM predicts age based on the image of a
person age. The system full utilizes the advantages of the
CNN and ELM.

o The highlights of our CNN2ELM structure are feature
enhancement and age grouping. Our system comprises
three CNNs and two ELMs (i.e., Race-Net + Age-
Net 4+ Gender-Net + ELM classifier + ELM regressor
(RAGN)”). To enhance the features extracted using Age-
Net, RAGN fuses the features corresponding to the race
and gender characteristics for the same face images into
discriminative and robust features. For the age prediction
system, the ELM classifier classifies the face image into
one of the age groups to carry out an age estimation for
a narrow age range, while the ELM regressor performs
the final age estimation.

« Finally, we present the process of integrating the synergy
of the hybrid structure in detail, including the design of
the layers in the CNN, feature extraction and fusion, and
age grouping. More importantly, extensive experiments
are conducted using the MORPH-II, Adience benchmark,
and LAP-2016.

The remainder of this paper is organized as follows. Section II
reviews the related work. Section III provides preliminary
information. Section IV discusses the architecture of the
CNN2ELM model. The experiments and results are illustrated
in Section V. Finally, we draw conclusions in Section VI.

II. RELATED WORK
A. Hybrid Neural Network System

CNN has been successfully applied to various fields, and
image recognition, in particular, is a hot area of research.
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However, few researchers have studied hybrid neural networks.
Lawrence et al. [23] presented a hybrid neural-network solu-
tion for face recognition that made full use of the advantages
of self-organizing map (SOM) neural networks and CNN. That
approach showed a higher accuracy compared with other meth-
ods of face recognition. In 2012, Niu and Suen [24] introduced
a hybrid classification system for objection recognition by inte-
grating the synergy of CNN and SVM, and their experimental
results showed that the method improved the classification
accuracy. Liu et al. [25] used CNN to extract features and
used a Conditional Random Field (CRF) to classify the deep
features. Through extensive experiments on different datasets,
such as the Weizmann horse, Graz-02, MSRC-21, Stanford
Background, and PASCAL VOC 2011, the hybrid structure
obtained a better segmentation performance compared with
other methods on the same datasets. Xie et al. [26] used
a hybrid representation method to process scene recogni-
tion and domain adaption. Convolutional parts were used to
extract features, and the mid-level local representation (MLR)
and convolutional Fisher vector (CFV) representation made
the most of local discriminative information in the input
images. Next, a SVM classifier was used to classify the
hybrid representation and achieved better accuracy. Recently,
Tang et al. [27] proposed a hybrid structure of a Deep
Neural Network (DNN) and ELM to detect ships on space-
borne images. DNN was used to process high-level feature
representation and classification, while ELM was used for
effective feature pooling and decision making. Furthermore,
extensive experiments were presented to demonstrate that
the hybrid structure required the least detection time and
achieved a higher detection accuracy compared with existing
relevant methods. Liu er al. [1] fused regression models and
classification models with a large-scale deep convolutional
neural network to perform an apparent age estimation and
the experimental results showed that this approach obtained
a state-of-the-art performance. Giirpinar et al. [28] combined
kernel ELM with CNN to estimate the age of a person based
on their face and achieved good results. Abdulnabi et al. [29]
used a multitask CNN model to extract features corresponding
to attributes in images and SVM models to perform attribute
prediction. The method was shown to be effective for two pop-
ular attribute datasets. Zhang et al. [30] proposed a novel task-
constrained deep model for face alignment, in which a deep
model is used to extract a high-level representation and both
landmark detection and attribution are learned using general-
ized linear models. A good performance was achieved com-
pared with existing face alignment methods. Han et al. [31]
presented a deep multitask learning (DMTL) method that can
be used to jointly estimate multiple heterogeneous attributes
from a single face image. First a face image is projected
onto a high-level representation via a deep network and then
refined by using shallow subnetworks for individual attribute
estimation tasks. Extensive experimental results conveyed the
superior performance of the DMTL method compared with
the state of the art. Hand and Chellappa [32] proposed a
multitask deep convolutional neural network (MCNN) with
an auxiliary network (AUX) for facial attribute classification
in which, AUX utilizes all attribute scores from a trained

MCNN to capture attribute relationships at the score level.
The approach reduces the number of parameters in the network
and reduces the training time. Based on the above results, we
decided to integrate CNN with other classifiers to improve
the classification accuracy. In Sections IV, we will present
the ensemble CNN2ELM in detail and show that it has better
performance compared with other methods for processing the
same tasks.

B. Fusion Methods

Fusion is a popular technology in biometrics, and it is most
commonly used to fuse decisions or features in a hierarchical
learning system. One of the most successful examples is
the ensemble system [20]. This system proves that several
classifiers with similar training characteristics have differ-
ent generalization performances, and fusing these classifiers
may or may not lead to a better performance than that of
the best classifier in this ensemble system while reducing
the global risk of making a poor decision. Recently, in the
field of computer vision, many researchers have begun to
study ensemble systems as these hybrid structures perform
well. Malli et al. [33] proposed an ensemble CNN struc-
ture, that combined the outputs of learning models and used
facial features to perform an apparent age estimation, they
obtained a 0.3668 error in the final ChalLearn LAP 2016
dataset [34]. Rothe et al. [35] designed Deep EXpectation
(DEX) of apparent age, which detected the facial images
first, and then extracted CNN predictions from an ensemble
network. The DEX won 1st place in the ChalLearn LAP
2015 challenge for apparent age estimation. Liu et al. [1],
2nd place, also proposed using ensemble CNNs that were
based on the GoogleNet architecture [36]. Liu ef al. [4] used
a grouping estimation fusion (GEF) system to perform human
age estimation. By fusing diverse decisions, GEF obtained
better results, which reduced the overall risk of making a poor
decision.

C. Age Grouping

In recent years, facial age grouping has been widely used
for age estimation and many methods have been proposed.
Kwon and da Vitoria Lobo [5] first introduced the age group-
ing method for age estimation, which starts by categorizing
images into three age groups: infants, youth, and seniors.
During the experiments, 47 images were used to verify the
performance of the proposed method, and the classification
accuracy for the infant group was below 68%. Horng et al. [37]
presented a multistage learning system (i.e., primary com-
ponents detection, feature extraction, and age classification)
for age estimation, and facial images were classified into
four age groups: infants, youth, middle-aged, and seniors.
Two-hundred-thirty facial images were used to test its perfor-
mance, and the accuracy of the classification rate was 81.58%.
By extracting geometric features from facial images and fusing
the results from five classifiers, Thukral er al. [38] obtained
an accuracy of 70.04% for their age groups (i.e.., 0-15, 15-30,
and 30+). Gunay and Nabiyev [39] presented an automatic age
estimation system based on local binary patterns (LBP) [10].
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Facial images were divided into small regions, and spatial LBP
histograms classified the regions into six age groups: 10 £ 5,
20 £ 5,30 £ 5,40 £ 5,50 £ 5, 60 &£ 5. At the same time,
nearest neighbor, minimum distance, and k-nearest neighbor
were used as the final classifiers and led to a classification
accuracy of 80%. Hajizadeh and Ebrahimnezhad [40] used a
probabilistic neural network (PNN) to classify images into one
of four age groups, and the classification rate was 87.25%.
Glirpinar er al. [28] proposed a kernel ELM with a CNN
structure for age estimation, and with the ELM classifier, facial
images were classified into 8 age groups. The age decision was
performed by an ELM regressor, and a 0.3740 normal score
was obtained for Chal.earn Looking at People 2016 - Apparent
Age Estimation challenge dataset.

D. Age Estimation

Recently, age and gender classification has received a large
amount of attention, because it provides a direct and quick
method for obtaining implicit and critical social informa-
tion [41]. Fu et al. [42] performed a detailed investigation
of age classification, and we can learn more about this subject
in [43]. Classifying age from human facial images was first
introduced by Kwon and da Vitoria Lobo [44], who presented
that calculating ratios and detecting the appearance of wrinkles
could classify facial features into different age categories.
After that study, the same method was used to model craniofa-
cial growth using both psychophysical evidences and anthro-
pometric evidence [45]. This approach demanded accurate
localization of facial features.

Geng et al. [46] proposed a subspace method called AGing
pattErn Subspace, which was used to estimate age automati-
cally, while an age manifold learning scheme was presented
in [47] to extract face aging features and a locally adjusted
robust regressor was designed to predict the age of humans.
Although these methods have many advantages, the require-
ment that input images are near-frontal and well-aligned is
their weakness. It is not difficult to see that the datasets in
the above experiments are constrained, so these approaches
are not suitable for many practical applications, including
unconstrained image tasks.

Last year, many methods were proposed to classify age
and gender. Chang and Chen [48] introduced a cost-sensitive
ordinal hyperplanes ranking method to estimate human age
from facial images, while a novel multistage learning system
called the “grouping estimation fusion” (DEF) was proposed
to classify human age. Li er al. [49] estimated age using a
novel feature selection method and showed the advantage of
the proposed algorithm through experiments. Although these
methods mentioned above have shown numerous advantages,
they still rely on constrained images datasets, such as FG-NET
[50], MORPH [51], and FACES [52].

All of these methods mentioned above have been verified
effectively for age classification while they do not take a full
consideration of gender and race factors for age prediction
and do not make full use of decision fusion and age grouping
methods. Our proposed method not only considers race and
gender as factors but also designs a hierarchical structure to
estimate age.
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III. PRELIMINARY INFORMATION
A. Deep Convolutional Neural Networks

Convolutional Neural Networks [53], which usually include
an input layer, multi-hidden layers, and an output layer, are
deep, supervised learning architectures and are often com-
posed of two parts: an automatic feature extractor and a
trainable classifier. CNNs have shown remarkable performance
on visual recognition [54]. When we use CNNs to process
visual tasks, they first extract local features from the input
images. To obtain higher order features, subsequent layers
of CNNs will combine these features. Next, these feature
maps are finally encoded into 1-D vectors, and a trainable
classifier valuates the vectors. Because of the need to consider
the size, slant, and position variations of images, feature
extraction is a key step during classification. Therefore, with
the purpose of ensuring some degree of shift, scale, and
distortion invariance, CNNs offer local receptive fields, shared
weights, and downsampling. The purpose of training CNNss is
to adjust all of the parameters of the system, i.e., the weights
and biases of the convolution kernel after which we will use
the the well-tuned CNNs to predict the classes, such as label,
age, and so on, from unknown input image datasets.

B. Short Review of the Extreme Learning Machine

Huang et al. [19] first proposed ELM for single hidden layer
feedforward neural networks (SLFNs). Their approach was
extended to the generalized SLFNS, and its hidden layer is not
requires to be neuron-alike [55]. ELM first maps the input data
from d-dimensional space into the L-dimensional hidden layer
random feature space (also called ELM feature mapping) and
then through ELM learning, the system achieves the output
results. ELM can achieve better generalization performance
than the other conventional learning algorithms at an extremely
fast learning speed. Moreover, ELM is less sensitive to user-
specified parameters and can be deployed faster and more
conveniently [56], [57].

1) ELM Feature Mapping: The output function of the ELM
network structure for generalized SLFNs is the following:

L
fx) =" pihi(x) = h(x)B, (1)
i=1

where f = [f1,---, ] denotes the output weights’ vector
between the hidden layer and the output layer with m > 1
output nodes, while h(x) = [h((X), -+, hr(X)] is the output
vector of the hidden layer, which is called ELM nonlinear
feature mapping. Different activation functions can be used in
different hidden neurons [58]. Especially in real applications
h;(x) can be written as follows:

hi(x) = G(a;, b, x), a; € R, b; € R, (2)

where G(a, b, x) denotes a nonlinear piecewise continuous
function, and Table I shows the commonly used activation
functions. Here, (a;, b;) expresses the jth hidden node weight
vectors and biases, respectively. ELM trains a SLFN that
includes two critical stages, and random feature mapping is the
first stage. In this stage, by randomly initializing the hidden
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TABLE I
COMMONLY USED MAPPING FUNCTIONS IN ELM
; ; — T
Sigmoid G(a,b,x) = TTop=@xit)

)
_ I—exp(=(a-x+b))
Gla,bx) = e —(mwit)
G(a,b,x) = exp(-b[[x — al])
G(a,b,x) = (|lx — al| +6%)"/2
)1, ifa-x+b<0
G(a,b,x) = 0, others
G(a,b,x) =cos(a-x+1b)

Hyperbolic tangent function

Gaussian function
Multiquadric function

Hard limit function

Cosine function/Fourier basis

layer, h(x) maps the data from the d-dimensional input space
into the L-dimensional hidden layer random feature space
(which is also called the ELM feature space) [59]. Therefore,
h(x) denotes a random feature mapping in essence, which is
also called ELM feature mapping. ELM learning is the second
stage which we will discuss next.

2) ELM Learning: In contrast to traditional feedforward
neural network learning algorithms, without needing to adjust
the hidden neural, the goal of ELM theory is not only to reach
the smallest training error but also to achieve the smallest norm
of the output weights [56], [55], [60], [61]. That goal can be
written as follows:

Minimize : [|A]|7' + Al[HB — TI[72, 3)

where 01 > 0, oo > 0, and u, v = 0, %, 1, -+, 4o00. 4
is a parameter that controls the trade-off between these two
terms. H denotes the hidden layer output matrix, which can
be denoted as follows:

h(xi) h(x1) hi(x1)
H=| = |=| + -~ L @&
h(xy) hi(xn) hp(xn)
and Equation (5) expresses the training data target matrix:

7 11 m

T

ty IN1 INm

There are many efficient methods for computing the output
weights f, such as orthogonal projection methods, singular
value decomposition (SVD), and iterative methods [59], while
according to [56], [57], the optimization solution for ELM is
01 = 0p = u = v = 2, which has been proven to be more
stable and have better generalization performance. Therefore,
f can be written as follows:

I
H' (= +HH")"'T, if N<L

p=11 € (6)
(E +H™H)'HTT, if N> L

Theorem 2.1: Universal approximation capability [19]: For
any nonconstant piecewise continuous function that is used as
the activation function, if the parameters of the hidden neurons
are tuned, then the function can make the SLFNs approx-
imate any target continuous function f(x). Then, accord-
ing to any continuous distribution probability, the function
sequence {h,-(x)}il‘:1 can be randomly generated, and it has
the universal approximation capability, which means that

limy s ooll ZiL=1 pihi(x) — f(x)|| = 0 holds with probability
of one with appropriate output weights £.

Theorem 2.2: Classification capability [56]: For any non-
constant piecewise continuous function that is used as the
activation function, if the parameters of the hidden neurons are
tuned, the function could make the SLFNs approximate any
target continuous function f(x), and then, with the random
hidden layer mapping h(x), SLFNs can separate arbitrary
disjoint regions of any shapes.

Therefore, ELM not only has universal approximation but
also possesses classification. From the description above, the
process of ELM can be described as follows. First, ELM
randomly assigns hidden neuron parameters (W;, b;). Then,
it calculates the hidden layer output matrix H. Finally, we can
calculate the output weight vector /.

Huang et al. [62] also proved that the resulting solution was
stable, and the system had better performance when a positive
value 1/4 was added to the diagonal of H' H or HH” in
the calculation of the output weights f based on the ridge
regression theory. When we use ELM to address large-scale
dataset, it is easy to find N > L. Therefore, we can easily
compute H' H, because its size is much smaller than that of
HH . The output weights / can be written as in Equation (7):

—1
B= G + HTH) H'T. (7

Then, we can obtain the ELM output function:
1

f(x) =hx)p = h(x)(% + HTH) H'T. (8)

We use U to denote H'H and V to express H”T, and thus,
Equation (8) can be described as Equation (9):

-1
FO0 = h(x)p = h(x)(% + U) v. ©

IV. ARCHITECTURE OF THE CNN2ELM MODEL

In this section, we present the design of our hybrid structure
in detail. Fig. 1 presents the architecture of the CNN2ELM.
As shown, our network includes three stages: feature fusion
and enhancement, age grouping, and age decision. For race
or gender grouping, the neural network mainly includes two
stages: feature extraction and race or gender classification. The
feature extraction stage contains a convolutional layer, contrast
normalization layer, and max pooling layer. We also provide
correlative parameters, such as the number of each filter type,
size of each feature map, kernel size of each filter, and stride
of each sliding window. For example, the first convolutional
layer consists of 96 filters, its feature map size is 56 x 56, its
kernel size is 7, and the stride of the sliding window is 4. For
age grouping and age determination, we present the design of
each part in the following sections.

A. The Design of Our Ensemble Structure

1) Convolutional Layer: In the convolutional layer, convo-
lutions that are performed between the previous layer and
a series of filters extract features from the input feature
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Fig. 1. Full schematic diagram of our network architecture. Race-Net, Age-Net, and Gender-Net are pretrained on the ImageNet dataset and then fine-tuned on
the IMDB-WIKI dataset before fine-tuning on the training MORPH-II, Adience benchmark, and LAP-2016 datasets. During the validation and test processes,
Race-Net, Age-Net, and Gender-Net are used to extract features from the same image. By fusing the features in the full connection layer, more discriminative
and robust features are obtained. These features are classified into one of eight age groups, based on which the other ELM regressor performs the final age

estimation.

maps [63], [64]. Next, the outputs of the convolutions add an
additive bias and an element-wise nonlinear activation function
is then applied to the front results. Without a loss of generality,
we use the ReLU function as the nonlinear function in our
experiment. In general, #:" denotes the value of a unit at
position (m, n) in the jth feature map in the ith layer, and it
can be expressed as Equation (10):

P—10;—1

pq  (m+p)(n+q)
it = b+ D 2 D whind ;
o p=0 ¢g=0

(10)

where b;; represents the bias of this feature map, and J indexes
over the set of the feature maps in the (i — 1)th layer, which are
connected to this convolutional layer. wlp% denotes the value
at the position (p, ¢) of the kernel, which is connected to the
kth feature map. The height and width of the filter kernel are
P; and Q;, respectively.

The convolutional layer offers nonlinear mapping from the
low-level representation of the images to a high-level semantic
understanding. For convenience, during the later computations,
Equation (10) can be simply denoted as follows:

nj=o (Z Wij ® '7(i—1)),

where Q) expresses the convolutional operation and w;;, which
is randomly initialized at first and then trained with a BP
neural network [65], denotes the value of the ith layer in the
Jjth feature map. 7;_1) is the outputs of the (i — 1) layer,
and #; is defined as the outputs of the jth feature map in
the convolutional layer. Different sizes of input feature maps
have various effects on the accuracy of the classification.
A large of a feature map size indicates good features that
are learned by the convolutional operations with the high cost
of the computations, and a small size reduces the computation
cost while degrading the accuracy of the classification. By a
comprehensively considering the factors mentioned above and
after many experiments, we set the size of the input feature
map as 227 x 227, which is showed in Fig. 1.

(1)

2) Contrast Normalization Layer: The goal of the local
contrast normalization layer is not only to enhance local
competitions between one neuron and its neighbors but also to
force the features of different feature maps in the same spatial
location to be computed, which is motivated by computational
neuroscience [65], [66]. To achieve the target, two normaliza-
tion operations, i.e., subtractive and divisive, are performed.
Nmnk denotes the value of an unit at position (m, n) in the kth
feature map. We have

Pi—1

2
Imnk = Nmnk — Z
pP=—

0;—1

Z i Qi1
Pi—1 0;-1
P ==

Ji
Z EpqM(m+p)(n+q)j»
j=1

(12)

where ¢, is a normalized Gaussian filter with the size of 7 x 7
at the first stage and 5 x 5 at the second stage. z;,,x not only
represents the input of the divisive normalization operations
but also denotes the output of the subtractive normalization
operations. Equation (13) expresses the operator of the divisive
normalization:

Mk = ax (]\Zn]’ll;(m, n))’ (13)
where
Pt gt i
M(m, n) = Zpi_? Zq:_% Zlgl’q”%mw)(qu)j’
j=
(14)
and

M= (Zj,,l:] Znil Mm, n)) Js1xs2).  (15)

During the contrast normalization operations above, the
Gaussian filter ¢,, is calculated with zero-padded edges,
meaning that the size of the output of the contrast normal-
ization operations is the same as its input.
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TABLE 11
THE DATASET SELECTED FROM MORPH-II FOR OUR EXPERIMENT

Female Male Female and Male
Black 5,757 36,809 42,560
White 2,601 7,999 10,600
White and Black | 8,358 | 44,802 53,160

3) Max Pooling Layer: Generally speaking, the purpose of
the pooling strategy is to transform the joint feature represen-
tation into a novel, more useful representation that maintains
crucial information while discarding irrelevant details. Each
feature map in the subsampling layer is achieved by max
pooling operations that are carried out on the corresponding
feature map in convolutional layers. Equation (16) is the value
of a unit at position (m, n) in the jth feature map in the ith
layer or subsampling layer after the max pooling operation:

(m+1)(n+1) (m+P) (n+01)
Ni—nj oo M) )

The max pooling operation generates position invariance
over large local regions and downsamples the input feature
maps. The number of feature maps in the subsampling layer
is 96, the size of the filter is 3, and the stride of the sliding
window is 2. The aim of the max pooling action is to detect
the maximum response of the generated feature maps while
reducing the resolution of the feature map. Moreover, the
pooling operation also offers built-in invariance to small shifts
and distortions. The procedures of the other convolutional
layers and subsampling layers are the same as those of the
layers mentioned above, except with different kernel sizes and
strides.

7’/?}’1 = max{nf';fl)j, (16)

B. Implementation Details

For the experiments, Race-Net, Age-Net, and Gender-Net
are initialized with the weights obtained from training on the
ImageNet dataset. Then they are further pretrained on the
IMDB-WIKI dataset. These processes are the same as in [22].
Finally, the three models are fine-tuned using the MORPH-II,
Adience benchmark, and LAP-2016 datasets. Because the fine-
tuning processes using the latter three datasets are nearly the
same, we present only the fine-tuning process of Race-Net,
Age-Net, and Gender-Net on MORPH-II.

1) Fine-Tuning of CNN2ELM: Race-Net is fine-tuned using
MORPH-II [51] with the race issue. MORPH-II has approx-
imately 55,000 face images, of which approximately 77% of
the images are Black faces, 19% are White faces, and the rest
are faces of mainly Hispanics, Asians, and Indians [3]. Due to
the unbalanced distribution of race and because a small-scale
image dataset may bias the results, we utilize only the images
of Black and White in our work. Table II presents the details
of the dataset selected for our experiment.

We use the selected image dataset to train Race-Net. Race-
Net models race estimation as an end-to-end deep classifica-
tion problem, and Fig. 2 shows the process of Race-Net. The
selected dataset is divided into 4:1:1, which means that 35,440
images are selected randomly as the training samples, 8,860
as the validation samples, and 8,860 as the testing samples.

Image Cl

- - (=)
o &
C3 C5

Fig. 2. The process of Race-Net. The color indicates the output of
convolutional layers.

N =
C5

Image Cl

Fig. 3. The process of Gender-Net. The color indicates the output of
convolutional layers.

For Race-Net, we set the base_Ir as 0.01, gamma as 0.1, and
momentum as 0.9. The weight_decay is set as 0.0005. The
batch size is set as 50, and the total iterations is SOK. Training
Race-Net requires nearly ten hours, while classifying a single
image into a race takes approximately 600ms.

For Gender-Net, the selected dataset and settings of the
network and parameters are the same as for Race-Net.
Fig. 3 shows the process of Gender-Net. If face images
include e.g., much makeup, noise, obstructive lighting, and
ambiguity, which increase the difficulty of estimating race or
gender characteristics, subsystem (i.e., “Race-Net + Age-Net
+ ELM classifier + ELM regressor (RAN)” or “Gender-Net
+ Age-Net + ELM classifier + ELM regressor (GAN)”,) of
CNN2ELM is invoked.

The training process for Age-Net is the same as that for
Race-Net and Gender-Net when the target is human age.
According to [3], for age estimation, crossing race and gender
can cause a significant error. Thus, we first group the human
face images into different race or gender groups. The goal of
race grouping is to classify images into different race groups
according to each person’s race. Here, we select only the white
and black racial datasets to train our proposed models ( due
to the unbalanced racial distribution ) and train Race-Net via
random 6-fold cross-validation. During the validation and test
stages, Race-Net, Age-Net, and Gender-Net are used to extract
features from the same image. By fusing these features, a more
discriminative and enhanced feature set is achieved.

2) Face Attributes Classifier: We use the cross-entropy loss
function as the Race-Net, Age-Net, and Gender-Net classifier,
and the loss is:

LE©) = GFlog(ph) + (1 — yH(1 —log(p))).  (17)

where 6 is the parameter of the network and pf.‘ denotes the
probability of the k_th attribute produced by our proposed
network. We use yf‘ to denote the ground-truth of the k_th
attribute.

The learning target is as follows:

. Ny Ni k
mn Zi:l Zk:l L; ©).

where N; and N, denote the number of the attributes and
training examples, respectively.

(18)
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Fig. 4. 'The process of feature fusion. During the validation and test stage,
Race-Net, Age-Net, and Gender-Net are used to extract features from the
same image. By fusing these features, a more discriminative and enhanced
feature set is achieved.

3) Feature Vector Fusion: When input features have more
information, classifiers will achieve a better result. For exam-
ple, a doctor may make a better diagnosis if he/she knows more
information (such as body temperature, blood pressure, and
blood glucose ) about a patient. Therefore, we aggregate these
features according to the ensemble principle and find that the
new aggregated features are more discriminatory and robust,
being conducive to classification. In other words, the method
enhances the features and a better result may be achieved.

The purpose of our feature vector fusion is to obtain
an enhanced feature vector that is beneficial to the ELM
classifiers. Fig. 4 shows the process of feature fusion. Because
classifiers learn more correlative and useful information, they
can achieve a better generalization performance. We use the
well-tuned CNN models to extract features from the input
test dataset and fuse the feature vectors with the average
combination rules. At this time, the batch size is 124 and we
assume that the entire test batch set is 8. In each circulation,
let ¢(x) € R" denote the feature vectors of the F'8 layer and
@ (X)races P(X)gender> and ¢ (X)qg. denote the corresponding
feature vectors. x denotes the input features, and ¢ denotes a
series of operations, such as convolutions, ReL.U, subsampling,
or LRN. Fusion is often based on fixed combination rules such
as product and average [67]; average is adopted in our fusion
process. Algorithm 1 presents the feature fusion process.

4) ELM Classification: We use the ELM classifier and
regressor for age estimation because of its fast learning speed
and high accuracy. According to [28], the radial basis func-
tion (RBF) showed a superior performance over linear and
polynomial kernels; and thus, we use it to calculate § through
the original features. During the validation and test stage, the
extracted features are first fused into more discriminative and
robust set, after which ELM classifies these features into one
of the whole age groups. Afterward, the final age decision is
made by ELM regressors. MORPH-II divides the images into
7 groups: (10-19), (20-29), (30-39), (40-49), (50-59), (60-69),
(70-77). When the race or gender properties are not easily
grouped, our proposed substructure is used. For instance, if
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Algorithm 1 Feature Vector Fusion
Input:
The entire test batch set N;
Test feature vectors: ¢ (X),qce, @ (X)gender> and ¢ (X)qge.
Output:
Enhanced feature vectors.
1: Start with the empty feature vector set Puperage;
2: for i in len(RX)/124:
3 ¢ = average (¢ (X)race, ¢(X)gendera ¢(X)age);
4 QPaverage-append();
5
6
7

: end for

: Qbal)erage ={¢1, $2,..., ¢len(N)/124};
: Return the enhanced feature vectors.

the race characteristic of the dataset cannot be assessed due
to makeup, the gender property can be easy classified, so our
proposed subsystem “GAN” will be used.

For each age group, our ELM classifier learns the whole
binary classification models and S is calculated by a random
6-fold cross validation within the training set (race or gender
feature vectors). Through this process, we optimize the ELM
classifier model and obtain the final classifier.

5) ELM Regression: During the training stage of the ELM
classifier, its outputs are the input of the ELM regressor.
We also verify the regressor through the ELM classifier
validation results.

C. Process of Our CNN2ELM

Undoubtedly, our ensemble structure must tune the para-
meters of convolutional structures from the learning process
during the training stage before invoking the ELM. Race-Net,
Age-Net, and Gender-Net are pretrained on the large ImageNet
dataset and then fine-tuned using IMDB-WIKI. Afterward, we
further pretrain the three networks on the MORPH-II, Adience
benchmark, and LAP-2016 datasets. For every 1000 iterations,
we verify the accuracy of the structure; e.g., whether it has
tuned the parameters and extracted discriminative features. The
ELM classifier is invoked during the validation and testing
stages. At that time, we first fuse features and compute the
hidden layer weights of the ELM classifier. Afterward, the
output of the ELM classifier during the training stage is treated
as the input of the ELM regressor, and S is obtained. We use
the CNN2ELM to estimate human age during the testing stage.
The steps are summarized as follows:

Step 1: Race-Net, Age-Net, and Gender-Net are pretrained
on ImageNet and then fine-tuned on IMDB-WIKI. The three
networks are further pretrained on the MORPH-II, Adience
benchmark, and LAP-2016 datasets.

Step 2: Race-Net, Age-Net, and Gender-Net are used to
extract features from the same image during the validation
and test stages, and a more discriminative and robust set is
achieved via the fusion method.

Step 3: The hidden layer weight f matrixes of the ELM
classifier are calculated based on these fusion features during
the validation stage, and the ELM classifies test images into
one of the age groups.
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Step 4: The hidden layer weight f matrixes of the ELM
regression are calculated based on the output of the ELM
classifier, and the human face age is estimated.

During the experiments, although CNN2ELM generates bet-
ter results compared with other algorithms when evaluating the
same problems, we find that race and gender misclassifications
still exist. For the ELM classifier and regressor, we find that
our structure requires more memory because of caching the
hidden layer weights and calculating the Moore-Penrose gen-
eralized inverse matrix H'. Note that our ensemble structure
estimates human facial age by taking full consideration of race,
gender, and the age groups, which improves the accuracy of
age estimation. In general, improving the number of hidden
layer nodes of the ELM classifier or ELM regressor can
improve the classification accuracy, but if the number of these
exceed a specific scope (nearly 4,500 in our experiments),
then the accuracy will be degraded because of the higher
commutation cost, need for more memory, information losing,
and aggravated overfitting.

V. EXPERIMENTS

In this section, we use the MORPH-II, Adience benchmark,
and LAP-2016 datasets to verify the performance of RAGN.
Our proposed structure is implemented using the publicly
available cuda-convnet [12] and Caffe [68] codes. The entire
network in this paper is trained using an NVIDIA Tesla P100.
First, we resize the input image to 256 x 256 pixels, and
then, a 224 x 224 crop is selected from the center of the
image or the four corners from the entire processed image.
We also adopt different dropout measures to limit the risk
of overfitting. For ELM classification and ELM regression,
S is setas {1072, 1074, ..., 10% 103} and L is set as {1800,
2000, ...,4000}. To verify the advantage of CNN2ELM, an
unconstrained dataset is also used to test its performance. Each
experiment is conducted four times and we obtain the average
of the relevant results.

A. Adience Benchmark

For the unconstrained dataset, we used the recently released
Adience benchmark [43], [69] to test CNN2ELM. To this
end, the benchmark of face photos is composed of images
created from smart-phone devices. Because these images were
uploaded to Flickr without prior manual filtering, they are
highly unconstrained, meaning that they are representative
of the challenges of real-world applications. Therefore, the
images include variations in appearance, noise, pose, lighting
and more, meaning that the photos are used without careful
preparation or posing. It consisits of 19,487 images, in which,
8,192 are male and the rest are female. We obtained the public
dataset from the Computer Vision Lab at the Open University
of Israel (OUI) [70].

B. LAP-2016 Dataset

The Chalearn Looking at People 2016 - Apparent Age
Estimation challenge dataset [34] consists of 7,591 images that
were labelled by several human annotators. The mean g and

the standard deviation ¢ are provided for each label sample.
The dataset is divided as follows: 4,113 images for training,
1,500 for validation, and 1978 for testing.

The structure extracts the features from the fixed size images
in the following way. First, the faces in the input images are
detected using a DPM detector [71]. Because the faces in the
LAP datasets are in unconstrained poses, we rotate the input
images in the interval of [—60°, 60°] by 5° as in [72], and by
—90°, 90° and 180°. The highest detection score and rotation
angle are achieved by the face box. Second, the face box size is
enlarged by 40% in both width and height, and the face image
is cropped. Finally, the image is reduced to 256 x 256 pixels,
and then either a 224 x 224 crop is selected from the centre
of the image or the four corners are selected from the entire
processed image.

C. Evaluation Criteria

1) Mean Absolute Error (MAE): Averaging the absolute
deviation of each sample’s label from its corresponding esti-
mated value is an effective way to measure the accuracy of
the ELM regressor. In general, the mean absolute error (MAE)
for a testing dataset can be described as follows:

N

1
MAE = Nglxi —yil,
1=

19)

where x; denotes the true label, y; is the predicted value, and
N expresses the number of testing samples. The cumulative
score (CS) is defined as:

CS(L) = (ne</N) x 100% (20)

where n.<; expresses the number of test images whose
absolute error e of the age estimation is not larger than L
years.

2) Normal Score (€): Because the LAP-2016 is labelled
by several annotators, the performance of an age estimation
system might be measured more accurately by considering
the variance of the annotations for each sample. Therefore,
by fitting a normal distribution with mean u and standard
deviation ¢ of the annotations for each sample, the e-score is
calculated as follows:

_a-w?
e=1—e 22

21

Therefore, the average e-score for a dataset can range
between O (best case) and 1(worst case).

D. Age Estimation

1) Age Estimation Based on the MORPH-II Database: In
this section, we use MORPH-II to verify the performance
of RAN, GAN, and RAGN and compare our structure with
CNN-ELM [28], which includes identical convolutional layers.
At the same time, to verify that race and gender characteristics
play an important role in age estimation, we present the results
of “Race-Net + ELM classifier + ELM regressor (RN)”,
“Gender-Net + ELM classifier + ELM regressor (GN)”, and
“Race-Net + Gender-Net + ELM classifier + ELM regressor
(RGN)”. We train our structure model using a mini-batch
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stochastic gradient descent of 0.7. During the fine-tuning of
parameters in our hybrid structure, the learning rate at the
beginning is set as 1073 and is decreased to 10™* after 20K
iterations. After 45K iterations, the rate is set as 107>,

Fig. 5 shows the different MAEs of age estimation under
different f and L values. As shown, the MAEs are affected
by these conditions, and we find that the CNN-ELM, RN,
GN, RAN, GAN, and RAGN seem to have convergence
characteristics similar to that of the ELM. The performance of
these structures tends to be quite stable under different hidden
nodes when f is prefixed. However, when f increases, the
MAESs decrease rapidly until converging at a better perfor-
mance. Age-Net plays an important role in RAN and GAN.
By fusing the features from Race-Net, Gender-Net, and Age-
Net, higher discrimination features are achieved, and better
results are obtained. The MAEs of RAN and GAN are much
better than those of RN and GN. At the same time, the race
and gender characteristics are nonnegligible factors in age
estimation. With these characteristics, RAGN obtains the best
performance. More importantly, in our experiments, we find
that when £ is in the range of {107, 10, 1073, 1072, 107!,
10°}, the MAEs quickly converge to better values, while they
decrease slightly when £ is in the range of {10!, 10%, 103}.

Although g and L have different influences on age esti-
mation performance, the MAEs are reduced as f and L
increase. At the same time, we can observe from these tables
that the MAEs decrease slightly as f increases and that the
performances of our proposed structures are better than those
of RN, GN, and the CNN-ELM. For the same f and L,
the MAEs of RAGN have the best performance, and RAN
performs better than GAN.

The robustness and effectiveness of our proposed ensemble
CNN2ELM structures are analysed in terms of the MAEs and
CSs, and we compare the performance of RAGN with that of

TABLE III

MAES OF DIFFERENT AGE ESTIMATION ALGORITHMS
FOR THE MORPH-II DATABASE

Method MAE
CSOHR [48] 3.82
DEX [22] 2.68
Best from [73] 2.78
Best from [74] 3.27
CNN+ELM [28] | 4.03
RAGN [ours] 2.61

CSOHR [48], DEX [22], Hu et al. [73], and Niu et al. [74].
According to Fig. 5, # and L ultimately reach 10% and 4000,
respectively.

Table III shows that the listed age estimation methods
acquired different MAEs and that our proposed RAGN
achieved the best results. Although CSOHR exploits relative-
order information among the age labels and aggregates a series
of binary classification results to obtain the age rank, it does
not consider the race and gender properties. DEX serves as
an effective method for age estimation, the results of which
may be attributed to the models it learns from large datasets,
e.g., from being pretrained on ImageNet and fine-tuned using
IMDB-WIKI and MORPH-II. The method proposed in [73]
achieves competitive results, as a novel learning scheme is
employed to take advantage of the weakly labelled dataset
obtained using the DCNN and a sufficient training dataset is
obtained. Reference [74] proposed an end-to-end deep learning
method that addresses the ordinal regression problem by
transforming the problem into a series of binary classification
subproblems. The method fully utilizes the correlation between
these tasks but does not exploit the information (e.g., gender
and race properties) of human face images. The method in [28]
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Fig. 6. The cumulative scores (CS) of age estimation.

fully utilizes the advantages of the CNN and ELM but does
not consider the gender and race properties of human face
images.

There are three main reasons for the satisfactory perfor-
mance of our age estimation model. First, our Gender-Net,
Age-Net and Race-Net are pretrained on ImageNet and fine-
tuned on the IMDB-WIKI dataset before being fine-tuned on
the MORPH-II dataset. Second, according to the above analy-
sis, age estimation is significantly affected by race and gender.
For different targets (race, gender, and age), different kinds of
features are extracted by Age-Net, Gender-Net, and Race-Net,
and more robust and discriminative features are achieved by
fusing these features. Third, as stated in our motivation, age
estimation based on a narrow age range may lead to better
results. Age grouping is done using the ELM classifier, and
our proposed structure makes the most of the enhancement
features by classifying them into one group before performing
age estimation. This process improves the performance of age
estimation and gives our proposed structure lower MAEs than
those of the compared algorithms.

CS is presented to show the performance of age estimation
in Fig. 6. It is apparent that our proposed RAN, GNA, and
RAGN methods outperform other state-of-the-art algorithms
by a significant margin. Furthermore, we observe Fig. 6 that
our proposed RGAN structure can reach a high accuracy,
verifying that using race and gender properties can obtain a
better result of age estimation.

2) Age Estimation Based on the Adience Benchmark: To
verify the performance of our proposed system, we use an
unconstrained dataset to test its performance. Because the
images do not have prior manual filtering, it is difficult to
distinguish their racial categories. Without a loss of generality,
we present our results for age classification while mixing our
structure with a dropout layer between the convolutional and
classification layers. It is clear that the dropout structure can
limit the risk of overfitting. We set the dropout ratio to 0.5
(50% probability to set the output value of a neural as 0). Each
experiment was performed more than ten times, after which
we obtained the corresponding averages. Table IV presents the
accuracy of RAGN on the Adience Benchmark under different
L or .

According to Table 1V, as L or f increase, the accuracy
increases. Moreover, the performance of RAGN is more
sensitive to S than to L. The accuracies increase rapidly
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Fig. 7. Age misclassification.

when £ changes in the range of {107, 107, ..., 10°}, while
the accuracies change slightly when g is 10!, 102, or 10°.
In Table V, we also compare the performance of our proposed
method with that of some of the latest methods when f
and L are 103 and 4000, respectively. Our proposed RAGN
obtains the highest accuracy among all compared methods.
The method in [43] was the first method able to predict
age based on the Adience benchmark using a simple CNN;
however, it ignores the gender and race properties in human
face images. According to our analysis, DEX serves as an
effective method for age estimation, the results of which may
be attributed to the models it learns from large datasets, but
it still does not consider the gender and race characteristics.
The method in [28] combines the CNN with the ELM to
estimate age but does not fully consider the gender and
race properties of human face images. Our CNN2ELM not
only fully utilizes the CNN and ELM but also exploits the
gender and race characteristics in human face images. These
experimental results show that age estimation is affected by
gender and that a better result is obtained if the gender or race
properties of testing images are known before performing age
estimation.

Undoubtedly, our proposed algorithm did result in some
cases of misclassification. Some misclassification results are
shown in Fig. 7. The subjects in the top row (who were
relatively older in age) were mistakenly classified as being
younger, while the opposite occurred for the subjects in
the bottom row. The unconstrain face images used in our
experiments are the main source of this misclassification, and
we can learn from Fig. 7 that most notable mistakes are caused
by blurring or low resolution and by the use of heavy makeup.

3) Age Estimation Based on the LAP-2016 Dataset: In
this section, we show the results of the RAGN system. Our
CNN2ELM is pretrained on ImageNet and then fine-tuned on
IMDB-WIKI and MORPH-II. In Table VI, we present the
classification accuracy and recall for the 8 overlapping age
groups. We show the performance of the entire system on the
validation set of the LAP-2016 dataset in the final row.

According to Table VI, the system achieves lower classifi-
cation accuracy for people in the age range of 20 to 40. During
the regression process, the younger age groups yield smaller
MAE:s, as the age group variance increases as age progresses,
which makes the apparent age estimation task harder. At the
same time, their e-scores behaved in an almost opposite
manner because younger subjects are usually annotated with
less variance.

Some validation sample estimation results are shown in
Figs. 8 and 9. Fig. 8 displays the invariance of CNN features to
common difficulties, such as pose, occlusions, and blur. Fig. 9
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TABLE IV
ACCURACY OF RAGN ON ADIENCE BENCHMARK UNDER DIFFERENT CONDITIONS. THE VALUES OF THE MEAN ACCURACY &+ STANDARD
ERROR OVER ALL AGE CATEGORIES ARE LISTED. THE BEST RESULTS ARE IN BOLD
1800 2000 2200 2400
B RAGN CNN-ELM RAGN CNN-ELM RAGN CNN-ELM RAGN CNN-ELM
1075 | 0.491640.0431 | 0.3379£0.0508 | 0.5043+0.0441 | 0.3491£0.0513 | 0.515740.0438 | 0.3597+0.0524 | 0.5289+0.0419 | 0.369040.0535
10~% | 0.504340.0397 | 0.3458+0.0513 | 0.5147+0.0437 | 0.3587£0.0521 | 0.5248+0.0441 | 0.3681£0.0527 | 0.5386£0.0424 | 0.378440.0527
103 | 0.51374£0.0415 | 0.3547£0.0497 | 0.5184+0.0408 | 0.3661£0.0499 | 0.530940.0429 | 0.3762+0.0532 | 0.546240.0415 | 0.387940.0531
1072 | 0.5211£0.0426 | 0.3629+0.0517 | 0.524340.0415 | 0.375240.0517 | 0.5399+0.0435 | 0.3845+0.0529 | 0.5541+£0.0427 | 0.3982+0.0523
10~T | 0.5284+0.0418 | 0.3719£0.0489 | 0.536340.0423 | 0.3839+0.0518 | 0.5481£0.0421 | 0.392940.0531 0.5624+0.0416 | 0.4067+0.0519
109 0.5367+0.0409 | 0.379240.0523 | 0.543440.0419 | 0.391540.0509 | 0.556240.0436 | 0.4037+0.0526 | 0.5694+0.0409 | 0.4158+0.0526
10T 0.5413+0.0411 | 0.3862+0.0527 | 0.550340.0435 | 0.40384+0.0524 | 0.560940.0436 | 0.40974+0.0519 | 0.5729+0.0421 | 0.42134+0.0511
102 0.5459+0.0424 | 0.3953£0.0513 | 0.558240.0427 | 0.408340.0493 | 0.565340.0427 | 0.41274+0.0534 | 0.5788+0.0413 | 0.4270+0.0536
103 0.5501£0.0421 | 0.4037£0.0522 | 0.563140.0413 | 0.41184+0.0506 | 0.572340.0432 | 0.4203+0.0528 | 0.583540.0428 0.4347+0.051
2600 2800 3000 3200
B8 RAGN CNN-ELM RAGN CNN-ELM RAGN CNN-ELM RAGN CNN-ELM
107° | 0.5385+0.0417 | 0.3789£0.0574 | 0.5496+0.0421 | 0.3881£0.0556 | 0.5586+0.0455 | 0.3975£0.0563 | 0.5664+£0.0473 | 0.4058+0.0587
10~% | 0.5461£0.0421 | 0.3867£0.0569 | 0.55794+0.0417 | 0.3975+£0.0564 | 0.5674+£0.0457 | 0.4089+0.0559 | 0.5762+0.0465 | 0.4171£0.0581
10=3 | 0.5547£0.0416 | 0.3959+0.0572 | 0.566440.0424 | 0.4058+0.0563 | 0.5769+0.0463 | 0.4202+0.0567 | 0.5854+£0.0464 | 0.4284+0.0573
10=2 | 0.5624+0.0413 | 0.4052£0.0577 | 0.574240.0413 | 0.4163£0.0557 | 0.5842+0.0451 | 0.4315£0.0565 | 0.5942-£0.0471 | 0.4397+0.0579
10T | 0.569940.0425 | 0.4149£0.0571 | 0.5803+0.0419 | 0.4247£0.0569 | 0.592440.0467 | 0.4427+0.0571 | 0.6031£0.0469 | 0.450630.0582
100 0.5773£0.0419 | 0.423140.0563 | 0.5879+0.0433 | 0.433940.0571 | 0.600940.0465 | 0.4537+0.0569 | 0.6119+0.0467 | 0.4615+0.0577
107 0.5823+0.0422 | 0.429640.0566 | 0.592740.0415 | 0.439740.0582 | 0.605740.0471 | 0.4582+0.0573 | 0.6172+0.0466 | 0.4658+0.0584
102 0.5872+0.0426 | 0.436140.0561 | 0.59614+0.0414 | 0.44514+0.0571 0.6097+0.0468 | 0.462740.0577 | 0.6203+ 0.0474 | 0.4701£0.0576
103 0.5911£0.0427 | 0.4428+0.0578 | 0.600740.0426 | 0.453940.0569 | 0.612440.0459 | 0.46731+0.0566 | 0.622940.0461 0.4751£0.0583
3400 3600 3800 4000
B RAGN CNN-ELM RAGN CNN-ELM RAGN CNN-ELM RAGN CNN-ELM
1075 | 0.5711£0.0467 | 0.4131£0.0581 | 0.578940.0481 | 0.419740.0592 | 0.5842+0.0497 | 0.4249+0.0611 | 0.5891+0.0515 | 0.4291+0.0624
10~% | 0.5799+0.0471 | 0.4249+0.0587 | 0.589240.0487 | 0.4301£0.0599 | 0.5962+0.0504 | 0.4379+0.0604 | 0.6002-£0.0517 | 0.4423+0.0619
10=3 | 0.5894+0.0488 | 0.4374£0.0573 | 0.598140.0492 | 0.4397£0.0601 0.6049+0.0503 | 0.4501£0.0609 | 0.6133£0.0509 | 0.4559+0.0622
1072 | 0.5994+0.0469 | 0.4487+0.0569 | 0.607240.0485 | 0.4489+0.0604 | 0.6157+£0.0491 | 0.4627£0.0607 | 0.6251£0.0519 | 0.4681+0.0625
10~T | 0.6089+0.0465 | 0.4603£0.0591 | 0.61594+0.0479 | 0.459240.0597 | 0.6271£0.0506 | 0.475340.0615 | 0.6361£0.0521 | 0.4813+0.0631
100 0.6189+0.0482 | 0.4721£0.0588 | 0.62634+0.0496 | 0.469140.0593 | 0.638640.0511 | 0.4881+0.0613 | 0.6492+0.0513 | 0.49454+0.0629
10T 0.6241£0.0477 | 0.4769+0.0579 | 0.63084+0.0488 | 0.477540.0595 | 0.642540.0509 | 0.4936+0.0599 | 0.6536+0.0511 | 0.501140.0624
102 | 0.6289+0.0484 | 0.4816+0.0582 | 0.63674+0.0491 | 0.48674+0.0604 | 0.6467£0.0513 | 0.498740.0606 | 0.6599+0.0523 | 0.5073+0.0633
103 0.6329+0.0481 | 0.487240.0589 | 0.640940.0483 | 0.4953 £0.0591 | 0.651840.0505 | 0.5048+0.0614 | 0.6649+0.0508 | 0.5127+0.0604
TABLE V

CLASSIFICATION ACCURACY, RECALL AND REGRESSION PERFORMANCE

Average Accuracy

Best from [43]

0.5071 £ 0.051

CNN+ELM [28]

0.5127 £ 0.0497

DEX [22]

0.64 £ 0.042

RAGN [ours]

0.6649 £ 0.0508

TABLE VI

FOR VALIDATION SET WITH DIFFERENT AGE GROUPS

Method

CLASSIFICATION ACCURACY, RECALL AND REGRESSION PERFORMANCE
FOR VALIDATION SET WITH DIFFERENT AGE GROUPS. N DENOTES
THE NUMBER OF SAMPLES. LISTED ARE THE MEAN ACCURACY

+ STANDARD ERROR AND MAE 4+ STANDARD ERROR

Group N_tr | N_val Acc. Rec. € MAE
0-15 860 152 | 0.9613£0.0786 | 0.8018 | 0.4389 | 2.3940.0467
10-25 | 2366 | 436 | 0.86344+0.0669 | 0.6937 | 0.3015 | 2.81£0.0647
1530 | 3686 | 662 | 0.872240.0591 | 0.8981 | 0.3024 | 3.09£0.0571
20-35 | 4072 | 705 | 0.83074£0.0717 | 0.9143 | 0.3208 | 3.41£0.0347
30-40 1764 | 311 0.82734£0.0901 | 0.4115 | 0.3323 | 3.72+0.0463
35-50 1568 | 288 | 0.881440.0814 | 0.5071 | 0.3347 | 4.13£0.0293
45-60 976 184 | 0.9413£0.0902 | 0.5129 | 0.2914 | 3.764+0.0399
55-00 554 106 | 0.9713£0.0621 | 0.6275 | 0.2783 | 4.2340.0735
Overrall | 8032 | 1462 - - 0.3250 3.67

presents failed age estimations due to many possible reasons,
such as insufficient number of samples to model, alignment
errors, and face misdetection.

Aligned face

Apparent age
Predicted age

Fig. 8.

64
64.48

E. Ablation Study

22
21.65

20

19.24

26
27.16

Examples of satisfactory estimations from the validation set.

Our CNN2ELM model obtains 0.325 e-score in the devel-
opment phase and 0.3679 e-score in the test phase of the
challenge. Table VII shows the final results of the challenge.

1) Investigation on Feature Enhancement Schemes: As
shown in Fig. 1, the baseline deep model is the CNN, and three

CNNs with different targets (race, gender, and age) are used
in our structure. As discussed earlier, age estimation is easily

affected by race and gender characteristics, and Age-Net,
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Input image

Aligned face

Apparent age 19 57 3 5
Predicted age 24.16 66.73 6.38 12.69
Fig. 9. Examples of poor estimations from the validation set.

TABLE VII

CHALEARN LOOKING AT PEOPLE 2016 APPARENT AGE
ESTIMATION CHALLENGE FINAL RESULTS

Position Team Test error
1 OrangeLabs 0.2411
2 palm_seu 0.3214
3 cmp+ETH 0.3361
4 WYU_CVL 0.3405
5 ITU_SiMiT 0.3668
6 RAGN (Ours) 0.3679
7 Bogazici 0.3740
8 MIPAL_SNU 0.4569
9 DeepAge 0.4573

TABLE VIII

ABLATION STUDY FEATURE ENHANCEMENT SCHEMES ON DIFFERENT
DATASETS. LISTED ARE THE FINAL AVERAGE MAES FOR MORPH-II,
THE FINAL AVERAGE PREDICTION ACCURACY FOR THE ADIENCE
BENCHMARK, AND THE FINAL €-SCORE FOR
THE LAP-2016 DATASET

Datasets RAN GAN | RAGN | Age-Net(CNN-ELM)
MORPH-II 2.8 2.87 2.61 4.03
Adience Benchmark | 0.6138 | 0.6014 | 0.6649 0.5127
LAP-2016 Dataset | 0.4175 | 0.4391 | 0.3679 0.6143

Race-Net, and Gender-Net are used to extract different kinds of
features. By fusing these features, more discriminative feature
sets are achieved. The three networks are investigated in
Table VIII. We find that by fusing the features obtained using
Race-Net, Age-Net, and Gender-Net, our RAGN achieves the
best performance on the MORPH-II, Adience benchmark, and
LAP-2016 datasets. At the same time, RAN or GAN fuses
features from only Race-Net and Age-Net or Gender-Net and
Age-Net, achieving a better performance than that of the
CNN-ELM but failing short compared to that of RAGN.

2) Investigation on Baseline CNN and ELM Models:
Combining the CNN and ELM for age estimation is one key
technique employed in our work. The CNN is used to extract
features, and then the ELM classifies these into different age
groups. Age is estimated using the ELM regressor model. In
our extensive experiments, the age predicted using just the
CNN on MORPH-II was 4.47, while that of the CNN (with
an identical layer for feature extraction) + ELM (for age
estimation) was 4.03; the result of our RAGN was 2.61. At the
same time, the accuracy of the CNN used to estimate age on

the Adience Benchmark was 0.5037, while the accuracy of the
CNN-+ELM was 0.5127, and that of our RAGN was (0.5349.
We can conclude that the gain of the CNN for age estimation
is nearly more than 80%, while that of the ELM is nearly 20%.

VI. CONCLUSION AND FUTURE WORK

In this paper, an ensemble learning framework called
CNN2ELM is proposed for age estimation. The main inno-
vations are the features enhancement, age grouping, and
combination of a CNN with an ELM classifier and ELM
regressor. Extensive experiments conducted on MORPH-II, the
Adience benchmark, and the LAP-2016 dataset demonstrate
the effectiveness of our proposed system. The experimental
results show that age estimation is easily affected by gender
and race and that fusing the features extracted from Age-Net,
Race-Net, and Gender-Net before performing age estimation
improves the performance. In the future, we will improve the
ensemble systems and use them to process images that have
varied facial poses, such as turned or tilted faces.
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