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Although age estimation is easily affected by smiling, race, gender, and other age-related attributes, most of
the researchers did not pay attention to the correlations among these attributes. Moreover, many researchers
perform age estimation from a wide range of age; however, conducting an age prediction over a narrow age
range may achieve better results. This article proposes a hierarchic approach referred to as EGroupNet for age
prediction. The method includes two main stages, i.e., feature enhancement via excavating the correlations
among age-related attributes and age estimation based on different age group schemes. First, we apply the
multi-task learning model to learn multiple face attributes simultaneously to obtain discriminative features
of different attributes. Second, we project the outputs of fully connected layers of several subnetworks into a
highly correlated matrix space via the correlation learning process. Third, we classify these enhanced features
into narrow age groups using two Extreme Learning Machine models. Finally, we make predictions based on
the results of the age groups mergence. We conduct a large number of experiments on MORPH-II, LAP-2016
dataset, and Adience benchmark. The mean absolute errors of the two different settings on MORPH-II are
2.48 and 2.13 years, respectively; the normal score (ϵ) on the LAP-2016 dataset is 0.3578; and the accuracy of
age prediction on Adience benchmark is 0.6978.
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1 INTRODUCTION

1.1 Motivation

In the past few years, a large number of researchers have paid a lot of attention to age prediction
because of its crucial applications in our daily lives [12, 30]. For example, electronic customer rela-
tionship management (ECRM) helps a company to find the interests of different age groups, which
can give much profit to the company. The system of age prediction generally includes two classes:
age feature extraction and age prediction. The quality of the extracted features greatly affect the
performance of age prediction [45], and the system can produce adequate results from these fea-
tures. A detailed survey on age prediction can be found in Reference [17]. Especially, implementing
using convolutional neural network (CNN) produces better results and good performance for age
prediction [10, 30, 33]. In our article, we fully utilize the different levels features of the CNN model
for age prediction as one of our contributions.

Concurrently, human age estimation can be influenced by many aspects, such as their lifestyles,
their environments, body posture, gender and race, and so on. Therefore, the more factors we
considered in prediction, the better performance we will obtain. Much research has been done to
reveal the correlations between these factors and age attributes, such as age estimation by com-
bining smile gestures [9], age estimation by fully considering gender and race attributes [10, 25],
and totally deploying the influence of facial expression to predict age [48]. Although these meth-
ods have achieved better performance, they have two weaknesses: (1) just utilizing one or two
related attributes to enhance the discriminative age feature representation but neglecting other
related factors, such as, hair, eyebrows, and so on; (2) adopting a unified correlation mechanism
to explore the useful information but ignoring the different influence degree of these attributes on
age estimation. In other words, when CNNs are used to extract different attribute features of the
same image, the lower layer features are mainly related to the spatial information of the image,
involving less semantic information, such as the outputs of the first two convolution layers. After
the third layer, there is more semantic information about the image, and the semantic information
of different attributes is different. A conventional deep-learning algorithm needs multiple CNN
models to extract different attribute features of the same image and each of the features is com-
pletely independent. These features have both correlation and negative relationships, and negative
relationships are difficult to eliminate, since this module is not an end-to-end learning. Therefore,
to solve that limit, our EGroupNet shares the previous two convolutional layers and splits these
features from the third layer to the last layer. Then a relation matrix fully exploits the positive
relationships among the features of different attributes.

Many researchers have tried for age prediction, most of them carried out their research with a
wide range of age groups. Typically, we can achieve better performance and more valuable results
with a specific range of age group; for example, the estimation can be done more efficiently if we
predict an age from the range of 20–25 rather than that of 0 to 100. Therefore, before the final
prediction, we first attempt to classify face image into a small age range. After that, the final age
group can be predicted by combining the two age groups. As shown in Figure 1, we classify an
image into two types of age groups and these groups have overlapping parts. As an example, first,
the human image is classified into two groups, and if the groups have common area such as (0–10)
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group and (5–15) group, then we merge this range as an another small group (5–10); otherwise,
misclassification will occur as in Figure 1. Tan et al. [60] successfully utilized age group strategy to
predict age. The method first applies Age Group-n Encoding method to classify images into n age
groups, and then employs Local Age Decoding method to achieve accurate age. This method makes
full use of relationships between age group labels, which results in better predictive performance.
It can be seen that the age group strategy proposed in this article is completely different from that
proposed in Reference [60]. As a result, one of the contributions of our article is getting better
performance using age group schemes.

1.2 Our Contributions

In this article, a hierarchical age prediction structure named EGroupNet is proposed to estimate
facial images. EGroupNet includes three main processes: extracting discriminative features, exca-
vating the correlations and differences among these age-related attributes, and obtaining a narrow
age range of an image to make a final prediction. This article just concerns the age-related facial
attributes, such as smiling, gender, race, and so on. The first two processes realize the end-to-end
learning, and cross-loss functions are used to update the network and the output weights of concat
features. We pretrain the network on ImageNet [37] and IMDB-WIKI [56]. As shown in Figure 1,
during each iteration, each subnetwork updates its own parameters according to corresponding
loss. At the same time, the feature vectors of the second fully connected layer of each subnetwork
is merged into a feature matrix and the output weight matrix is updated with age-related cross-
loss function. The fine-tuned network can make a prediction and this prediction can be used as a
baseline, which is utilized to determine whether the results of age grouping for the same image is
within the appropriate age range. After that, the features extracted by fine-tuned neural network
are used to train the three Extreme Learning Machine (ELM) models. Finally, the testing image is
classified into several age groups. Simultaneously, based on the baseline, the system will determine
whether these groups are within reasonable ranges or not and the two selected age groups with
the common range are merged into new one with a specific range. After that, final age prediction
is determined. The major contributions of this article are summarized as follows:

• We propose a hierarchical EGroupNet to perform age prediction. The system includes two
stages: feature correlations and differences excavation, and performing prediction via dif-
ferent age group schemes, which are adequate to explore the advantages of CNN and ELM.

• End-to-end learning method is used to extract distinct features and excavate the correlations
among age-related face attributes in the first stage. At the same time, we map the outputs
of the fully connected layers of several subnetworks into a highly correlated matrix space
via correlation matrix. The correlation matrix is learned by the stochastic gradient method
and in this process, we just update the parameters of correlation matrix.

• To achieve a narrow interval age group, we design different kinds of age group schemes for
Morph-II, LAP-2016, and Adience. The image is first classified into two different narrow age
groups, and then a narrower age group is obtained by merging the first two age groups. To
allow the model to identify these narrow age groups, we tag the three datasets with these
age groups based on the original labels and then train the model with the new labels. The
detailed labeling and training processes are presented in Section 3.

• Finally, we conduct many experiments on the MORPH-II, Adience benchmark, and LAP-
2016 to verify the performance of our EGroupNet.

The rest of this article is organized as follows. Section 2 illustrated the related work. Section 3
presents our proposed method. The experimental results are analyzed in Section 4. Finally, we
make conclusions in Section 5.
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2 RELATED WORK

2.1 Deep Neural Network for Age Prediction

Recently, CNN has shown preferable performance in image recognition and achieved better
performance by hybrid neural networks in a large number of applications. Lawrence et al. [40]
used a deep neural-network method that combined two different deep networks to recognize
faces. That method presented a better performance than other methods on the same applications.
By fully utilizing the advantages of CNN and support vector machine (SVM), Niu et al. [51] em-
ployed a novel structure for age prediction and a more accurate result was achieved. Liu et al. [44]
combined the CNN with the Conditional Random Field (CRF) to handle face recognition. Through
many experiments on different datasets, the hybrid structure achieved the best results than other
methods on the same datasets. Xie et al. [67] proposed a hybrid approach to handle scene recog-
nition and domain adaption. The network fully utilized the local discriminative information from
the input images. Next, a SVM structure was applied to classifying the features, which obtained a
better performance. Tang et al. [62] combined deep neural network (DNN) and ELM to detect ships
of images. DNN was used to extract the features, while ELM made the final prediction. Extensive
experiments have been conducted to demonstrate that the system cost least detection time to make
a prediction and obtained a better results. Malli et al. [49] utilized an ensemble CNN structure to
make an apparent age prediction on ChaLearn LAP 2016 dataset [15], which finally achieved a
0.3668 error. Rothe et al. [55] introduced a Deep EXpectation (DEX) for apparent age prediction
and it won 1st place in the ChaLearn LAP 2015 challenge. Liu et al. [46] proposed ensemble CNNs
for age estimation and it won 2st place in the ChaLearn LAP 2015 challenge place. A grouping
estimation fusion (GEF) system was proposed by Liu et al. [45] to predict human age. GEF achieved
better results via fusing several decisions. Liu et al. [47] proposed a hybrid structure to estimate an
apparent age and the prediction results proved its effectiveness. Gl̇źrpinar et al. [28] utilized kernel
ELM with CNN to predict human age and a better result is achieved. Wan et al. [65] proposed
five cascaded structure frameworks for age estimation and achieved superior performance on the
Morph-II and CACD datasets. By learning global, local, and global-local features of facial images,
Tan et al. [61] adopted a Deep Hybrid-Aligned Architecture to predict facial age and achieved a
better performance on different datasets. Li et al. [43] utilized a BridgeNet to estimate age via
excavating the continuous relation between age labels and extensive experiments demonstrates its
efficiency. Zhang et al. [68] proposed an extremely Compact yet efficient Cascade Context-based
Age Estimation model for small-scale images and obtained competitive performance. In this article,
we attempt to combine CNN with ELM models to enhance the performance of age prediction.

2.2 Age Grouping

Recently, facial age grouping has proved its advantages in age prediction and a large number
of approaches have presented their advantages. Kwon et al. [39] first utilized the age grouping
approach for age prediction, which categorized samples into infants, youth, and seniors. Horng
et al. [32] proposed a hierarchical system for age prediction, and they categorized images into
four age groups. It obtained 81.58% accuracy on 230 facial images. Thukral et al. [63] achieved
70.04% accuracy on different age groups (i.e.., 0–15, 15–30, and 30+). Gunay et al. [23] used local
binary patterns (LBP) method to estimate age prediction automatically [3]. The images were split
into several sectors, which are categorized into six age groups via spatial LBP histograms: 10 ±
5, 20 ± 5, 30 ± 5, 40 ± 5, 50 ± 5, 60 ± 5. Finally, k-nearest neighbor made the final classification
and the accuracy was 80%. Hajizadeh et al. [29] adopted a probabilistic neural network (PNN) to
categorize samples into several age groups, and the accuracy was 87.25%. Gl̇źrpinar et al. [28] used
a CNN and ELM models for age prediction, and ELM classified the images into 8 age groups. ELM

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 2, Article 42. Publication date: May 2020.



A Feature-enhanced Network for Age Estimation with Novel Age Group Schemes 42:5

regressor made the final prediction, and it has been reached to 0.3740 normal score on LAP-2016
dataset. Iqbal et al. [36] used a local face descriptor, Directional Age-Primitive Pattern (DAPP) to
predict age through characterizing discernible facial aging sign (e.g., craniofacial growth and skin
aging) from a detailed and more finer point of view and the proposed approach achieved the latest
methods by an acceptable margin.

2.3 Age Estimation

Age classification has got huge amount of attention, because it supports an efficient approach
for achieving implicit social information [16]. Fu et al. [17] conducted a detailed survey of age
prediction, and much useful information can be obtained in Reference [41]. Age prediction was
first proposed by Kwon et al. [38], who proved that detecting the appearance of wrinkles and
calculating ratios could categorize images into several age classes. And the approach was utilized
to model craniofacial growth using both psychophysical evidences and anthropometric evidence
[53]. The method needed detailed localization of facial features.

Geng et al. [22] used an AGing pattErn Subspace to conduct an automatic age prediction, while
an age manifold learning mechanism was introduced in Reference [24] to extract features and
a locally adjusted robust regressor was used to make final prediction. Although the approaches
have many advantages, the weakness is that the samples need to be near-frontal and well-aligned.
Chang et al. [4] proposed a cost-sensitive ordinal hyperplanes ranking approach to make predic-
tions from facial images, while a hierarchical system called the “grouping estimation fusion” (DEF)
was used to predict age. Li et al. [42] predicted age adopting feature choice approach and proved
the effectiveness of the method through experiments. Because estimating an accurate age or age
group of a facial image needed extensive face dataset attached with corresponding age labels, Hu
et al. [33] presented a novel learning method to make full use of these inadequate labeled data
through CNN and the method achieved the state-of-the-art performance. All of these approaches
mentioned above have exhibited the advantage in age prediction while they do not fully excavate
the correlations among age-related factors, which may benefit age prediction. Considering these
limitations, our method focused on exploring the correlation and differences among the related
factors.

3 PROPOSED METHOD

3.1 Multi-task Learning Model

Because the different convolutional layers of a CNN model provide different level representations
of image, we attempt to make full use of these representations to achieve more robust and dis-
criminative features. It is well known that features in the earlier layers of CNN retain more spatial
resolution while higher semantic information is kept in high-level layers. Therefore, during the
process of multi-task learning, sharing the information in the low-level layer and splitting these
information in high-level layer can not only benefit the system learning the correlation and dif-
ference among age-related attributes but also reduce the whole parameters. At the same time,
achieving a good result for age prediction needs more discriminative features and these features
are more about semantic information. Consequently, we merge high-level features of different
attributes into new features, after which, the final prediction is made.

3.1.1 Feature Extraction Models. Based on the analysis above, our EGroupNet shares the in-
formation from the first convolutional layer till the third one and then the network is split into
several subnetworks. With different targets for the same image, the subnetworks extract the dif-
ferent feature representations. As shown in Figure 1, this process realizes an end-to-end learning.
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Fig. 1. Full schematic diagram of EGroupNet. The system includes two stages: feature extraction and pre-
diction. During the first stage, the subenetworks are trained with corresponding attribute labels, and the
outputs of the FC layers are used to learn the relation matrix (mapping matrix) via stochastic gradient algo-
rithm. Through the relation matrix, the EGroupNet maps the outputs into a highly correlated matrix. This
matrix is used to train the three ELM models. In this stage, the system can make a prediction, which will be
used as a baseline to judge whether the classifications of age groups of the same image are right or not. In
the second stage, two ELM models classify the image into two kinds of age groups, and we merge these age
groups into a narrower one, based on which, the final prediction is made.

There are two convolution operations in the shared layer and three of those are existed in each
subnetwork. Specifically, (C1, C3, . . . , C9) denote the corresponding convolutional layers, (S2, S4,
S6) represent pooling and normalization operations, N8 signifies only the normalization operation,
and (F10 and F11) express the fully connected layers. Local response normalization (LRN) is used
to enhance the generalization of the system following the ReLU operation and it can be expressed
as follows:

cnorm =
c

(1 + (β/n)
∑

i c
2
i )

γ , (1)

where c is a square local region and n is set to 5, β is 0.0001 and it expresses the scaling parameter,
γ is 0.75, and cnorm denotes the normalized region.

We use the cross-entropy loss function as the classifiers of these subnetworks, and the loss is

L = − 1

N

N∑
i=1

(yi lnpi + (1 − yi ) (ln (1 − pi ))), (2)

where pi expresses the probability of an attribute,yi denotes the ground-truth of the attribute, and
N signifies the number of training examples.

Our goal is to excavate the correlation between age-related facial attributes and age attribute
to enhance the valuable information of age features. Therefore, our system tries its best to learn
a relation matrix during the training process. The features in the F11 layer mainly retain more
semantic information and our approach attempts to explore correlation among those features. As
shown in Figure 2, during each iteration, the feature vectors of the F11 layer of the whole subnet-
works are merged into a feature matrix. Then a relation matrix is used to explore the correlation
between age-related facial attributes and age, and map these outputs into a highly correlated space.
At last, the output features with more robust and discriminative information are used to make final
prediction.
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Fig. 2. The learning process of relation matrix.

The Back Propagation method is utilized to update the relation matrix. Note that the loss is just
used to update the relation matrix and it is not propagated to the subnetworks. According to our
best knowledge, whether classification tasks or regression tasks, a large amount of features may
lead the tasks to overfitting. Reducing or punishing the unimportant weights of features are two
common approaches to alleviate the problems, while we do not know which weights of the features
are unimportant. Regularization is an effective way to solve the problem and L2 regularization is
used to calculate the loss. The total loss of the network can be denoted as

L(θ ) = − 1

N

N∑
i=1

(yi lnpi + (1 − yi ) (ln (1 − pi ))) +Totalweiдht_loss , (3)

where θ denotes the parameters,pi expresses the probability of an attribute,yi denotes the ground-
truth of the attribute, andN represents the number of training examples.Totalweiдht_loss expresses
the whole loss of relation matrix in each iteration.
Mi expresses the feature matrix of ith sample andWi expresses the corresponding relation ma-

trix. Therefore, we update the relation matrix as follows:

Wi+1 =Wi − ηΔWi , (4)

whereWi+1 denotes the weights of (i + 1)th sample and η is the learning rate. Due to that nonlinear
function is used during this process, ∂Li

∂Wi
is a constant and then the relation matrix can be updated

as follows:

Wi+1 =Wi − ηΔ
∂Li

∂Wi
. (5)

3.1.2 Back Propagation. Back Propagation is a critical process in the process of multi-task
learning and each subnetwork is updated with the corresponding loss. Transferring gradients of
each subnetwork to the shared part of our EGroupNet is an important part of the process of Back
Propagation. We adopt a joint gradient transfer approach to compute the gradients. We useW i

layer

and bi
layer

to designate the weights and biases of some convolutional layer, for example,W i
C3 and

bi
C3 denote the weights and biases of the C3 layer of ith sample. Li

дender
, Li

r ace , . . . ,L
i
aдe express

the corresponding loss of each subnetwork. We use X i
(subnetwork,layer )

(I ) to denote the input of

some layer of the subnetwork, for example, X i
(aдe,C5)

(I ) expresses the input of the C5 layer of the
Age-Net. The joint gradient transferred approach is like the following:

ΔW i
c3 =

∂Li
дender

∂W i
c3

+
∂Li

r ace

∂W i
c3

+ · · · +
∂Li

aдe

∂W i
c3

, (6)
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Δbi
c3 =

∂Li
дender

∂bi
c3

+
∂Li

r ace

∂bi
c3

+ · · · +
∂Li

aдe

∂bi
c3

. (7)

We apply the chain rule to compute the partial derivative as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Li
дender

∂W i
c3
=

∂Li
дender

∂X i
(дender , C9)

(I )

∂X i
(дender , C9)

(I )

∂X i
(дender C7)

(I )

∂X i
(дender , C7)

(I )

∂X i
(дender C5)

(I )

∂X i
(дender , C5)

(I )

∂W i
c3

∂Li
r ace

∂W i
c3
=

∂Li
r ace

∂X i
(r ace, C9)

(I )

∂X i
(r ace, C9)

(I )

∂X i
(r ace, C7)

(I )

∂X i
(r ace, C7)

(I )

∂X i
(r ace, C5)

(I )

∂X i
(r ace, C5)

(I )

∂W i
c3

·
·
·

∂Li
aдe

∂W i
c3
=

∂Li
aдe

∂X i
(aдe, C9)

(I )

∂X i
(aдe, C9)

(I )

∂X i
(aдe, C7)

(I )

∂X i
(aдe, C7)

(I )

∂X i
(aдe, C5)

(I )

∂X i
(aдe, C5)

(I )

∂W i
c3

, (8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Li
дender

∂bi
c3
=

∂Li
дender

∂X i
(дender , C9)

(I )

∂X i
(дender , C9)

(I )

∂X i
(дender C7)

(I )

∂X i
(дender , C7)

(I )

∂X i
(дender C5)

(I )

∂X i
(дender , C5)

(I )

∂bi
c3

∂Li
r ace

∂bi
c3
=

∂Li
r ace

∂X i
(r ace, C9)

(I )

∂X i
(r ace, C9)

(I )

∂X i
(r ace, C7)

(I )

∂X i
(r ace, C7)

(I )

∂X i
(r ace, C5)

(I )

∂X i
(r ace, C5)

(I )

∂bi
c3

·
·
·

∂Li
aдe

∂bi
c3
=

∂Li
aдe

∂X i
(aдe, C9)

(I )

∂X i
(aдe, C9)

(I )

∂X i
(aдe, C7)

(I )

∂X i
(aдe, C7)

(I )

∂X i
(aдe, C5)

(I )

∂X i
(aдe, C5)

(I )

∂bi
c3

. (9)

We use the definition of ReLU function, max (0, x ), and then f ′(x ) =
{

1 x > 0
0 x ≤ 0 , where x =∑

i WX i
C

(I ) + b. According to Equations (8) and (9), we can learn that the solution of partial deriva-
tive of each subnetwork is nearly the same, and we just present the detailed process for Gender-Net.
Therefore, we obtained as

∂Li
дender

∂X i
(дender, C9)

(I )
=

⎧⎪⎪⎨⎪⎪⎩
1
N

N∑
i=1

W i
C9

pi−y

(1−pi )pi
x > 0

0 x ≤ 0
, (10)

and
pi = f (W i

C9, X
i
(дender, C9) (I ), b

i
C9), (11)

then
∂X i

(дender, C9)
(I )

∂X i
(дender, C7)

(I )
=

{
W i

C7 x > 0
0 x ≤ 0

, (12)

∂X i
(дender, C7)

(I )

∂X i
(дender, C5)

(I )
=

{
W i

C5 x > 0
0 x ≤ 0

, (13)

∂X i
(дender, C5)

(I )

∂W i
C3

=

{
X i

(дender, C3)
(I ) x > 0

0 x ≤ 0
, (14)

∂X i
(дender, C5)

(I )

∂bi
C3

=

{
1 x > 0
0 x ≤ 0

. (15)
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For each iteration, the results of Equations (10), (11), (12), (13), (14), and (15) can be calculated
according to Back Propagation method. Based on those results, we can quickly achieve the results
of Equations (8) and (9). Finally, we can update the weights and biases of the C3 layer as follows:

W i+1
C3 =W

i
C3 − ηΔW i

C3, (16)

and
bi+1

C3 = b
i
C3 − ηΔbi

C3, (17)

whereW i+1
C3 and bi+1

C3 denote the weights and biases of (i + 1)th sample and η is the learning rate.

3.2 Age Grouping and Prediction

3.2.1 Interval Partition Strategy for MORPH-II and LAP-2016. As we have analysed above,
age prediction from a small age range can achieve a better result. Therefore, according to
the age distribution characteristics of different datasets, we first adopt corresponding interval
partitioning strategy to partition output intervals of ELM models. For a single ELM classifier,
the face images are divided into different non-overlapping ranges, while the age ranges in these
two ELM models have several overlapping ranges. MORPH-II and LAP-2016 datasets are used
to verify the performance of our EGroupNet. Because those datasets provide the accurate ages,
we add two kinds of age groups (Table 1) into the labels of each dataset, which means that each
dataset has two kinds of age groups. Because the processes of adding two types of age groups into
the labels of dataset are almost the same, we present only one kind of age grouping method. The
detailed process is presented in Algorithm 3. After we obtain the new labels with the age groups
for Morph-II and LAP-2016. From Table 1, we learn that group (a) and group (b) have overlapping
ranges, and we present the detailed merging process of age group in the next subsection.

ALGORITHM 1: Interval Partition Strategy

Require:

The number of images in dataset: N ;
The accurate ages of images: Aдei , i = {1, 2, . . . , N };
Age groups: (ak ,bk ), k = {1, 2, . . . , n}, where b(k−1) = ak and bk = b(k+1) ;
n denotes the number of the age groups;

Ensure:

The new labels of each dataset with age groups.
1: for i in range (N )
2: if (ak < Aдei < bk )
3: add (ak ,bk ) into the labels of images with Aдei ;
4: else if (Aдei = ak )
5: add (ak ,bk ) or (a(k−1) ,b(k−1) ) into the labels of images with Aдei ;
6: else if (Aдei = bk )
7: add (ak ,bk ) or (a(k+1) ,b(k+1) ) into the labels of images with Aдei ;
8: end if

9: Return the new label lists.

3.2.2 Interval Partition Strategy for Adience Benchmark. Although Adience Benchmark pro-
vides the age groups rather than the accurate age labels, the ranges of these groups, (such as
0–2, 4–6, . . . , 48–53), are so small that the results of state-of-the-art methods are less than 70%. We
learn that if we train only a neural network with those age groups, it is hard to obtain the better
performance because of the small dataset and its real-world characteristic that is without prior
manual filtering. Therefore, we attempt to design a hierarchical age prediction mechanism on our
EGroupNet. First, the part of neural network in our system is still used to extract the features and
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Table 1. The Detailed Age Groups for Morph-II and LAP-2016

Datasets
Age Groups

Datasets
Age Groups

Group (a) Group (b) Group (a) Group (b)
10–19 15–24 0–9 5–14
20–29 25–34 10–19 15–24
30–39 35–44 20–29 25–34

Morph-II 40–49 45–54 LAP-2016 30–39 35–44
50–59 55–64 40–49 45–54
60–69 65–74 50–∞ 55–∞
70–77 - - -

explore the correlations. Then the two ELM models classify the feature matrix into two types of
age groups and the groups are presented in Table 2. Finally, the two age groups are merged into
a new age group according to Algorithm 3 and through comparing the new age group with the
origin age groups, we can learn that whether the prediction is right or not. We added the two
kinds of age groups into the labels. We present only the process of adding group (a), because the
processes of adding group (a) and group (b) are almost the same. The detailed process is shown in
Algorithm 2.

ALGORITHM 2: Interval Partition Strategy for Adience

Require:

The number of images in dataset: N ;
The original age groups:mκ (i )-nκ (i )), κ = {1, 2, . . . , 8}, i = {1, 2, . . . , N };
Age groups: (ak ,bk ), k = {1, 2, . . . , n}, where b(k−1) = ak and bk = b(k+1) n denotes the number of the age
groups;

Ensure:

The new labels of each dataset with age groups.
1: for i in range (N )
2: if (ak ≤mκ (i ) and nκ (i ) ≤ bk )
3: add (ak ,bk ) into the labels of images with Aдei ;
4: end if

5: Return the new label lists.

3.2.3 ELM Models Training. In the first stage, training datasets are applied to train the model
and then the fine-tuned network is applied to extract the features from the original for construct-
ing the feature matrices, which are used to train the ELM models. Note that one-third of training
datasets are used to train ELM models. As we analyzed above, ELM is an efficient and fast-learning
algorithm and the weights of the input layer, and biases are randomly initialized to achieve the
output of the hidden (second) layer. By a simple generalized inverse operation of the second layer
output matrix, the weights of hidden layer and bias are computed. It has been proved in Refer-
ence [11] that the performance of radial basis function (RBF) is superior compared to its alter-
natives such as liner and polynomial kernels; therefore, RBF is used to calculate HH

T from the
input feature vectors. ELM with RBF are used to train a structure and the faces are classified into
different age groups. The process is shown in Figure 3.

The detailed training stages of ELM classifier models are as follows:
Stage 1. For each image of training dataset, the features extracted by the fine-tuned neural

network are merged into a feature matrix and then a final correlation matrix is achieved via relation
matrix. We store the corresponding correlation matrix as one sample of a new dataset;
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Table 2. The Detailed Age Groups for Adience Benchmark

Datasets
Age Groups

Origin Age Groups Group (a) Group (b)

Adience

0–2 0–4 0–6
4–6 4–8 6–13
8–13 8–15 13–20
15–20 15–25 20–32
25–32 25–38 32–43
38–43 38–48 43–53
48–53 48–60 53–
60– 60– -

Fig. 3. The process of ELM classifier
training.

Fig. 4. The process of overlapping age
groups mergence.

Stage 2. Each of the samples in the new training datset with the age groups is utilized to train
the two ELM models, and then we obtain the weights and biases of the hidden layer.

Stage 3. We achieve the average weights and biases of the hidden layer for ELM classier models
during the training process.

During the process of the training of ELM models, its outputs are used to train the ELM regressor.
The detailed training stages of ELM regressor model are as follows:

Stage 1. For the outputs of the two ELM classifiers for each sample, we merge the groups into
a smaller age group according to Algorithm 3;

Stage 2. We train the ELM regressor using the smaller age group with the accurate age label;
Stage 3. We achieve the average weights and biases of hidden layer for ELM regressor model

during the training process.

3.2.4 The Process of Mergence on the Overlapping Age Groups. The goal of designing the two
types of age groups is to obtain a narrow age range for a face image. The adjacent age groups of
two ELM classifiers have overlapping intervals. The image is first classified into two age groups
via ELM models and then a narrow age range is obtained via Algorithm 3. Figure 4 is a detailed
example for the process mergence of age groups on Morph-II.

3.2.5 Age Estimation with Age Groups. During the validation and testing stages, each image of
validation and testing datasets is first transformed into a feature correlation matrix via the fine-
tuned neural network and then classified into two age groups. After that, a narrow age group
is achieved via Algorithm 3. Finally, a final age prediction is made through the fine-tuned ELM
regressor model.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 2, Article 42. Publication date: May 2020.



42:12 M. Duan et al.

ALGORITHM 3: Overlapping Age Groups Mergence Method

Require:

Given two age groups results for a face image (a, b) and (m, n) , a < b,m < n. (a, b) denotes the prediction
result using one ELM classifier and (m, n) is the other result using the second classifier for the same
image;

Ensure:

The final age group.
1: Start with the empty final age group set χ = {∅};
2: if (a <m < b and b < n)
3: χ = {m, b};
4: else if (m < a and a < n < b)
5: χ = {a, n};
6: else if (n < a or b <m)
7: χ = {∅}.
8: end if

9: Return χ .

4 EXPERIMENTS

We verify the performance of our EGroupNet on MORPH-II, LAP-2016, and Adience Benchmark
and compare the results with the latest methods. Our EGroupNet are trained on NVIDIA Tesla P100
using the Tensor f low 1.0.1 framework [1]. First, the image is resized into 256 × 256 pixels. After
that, 224 × 224 crop is chosen from the center or the four corners of the whole image. We adopt
several dropout methods to reduce the risk of overfitting. For our ELM classifier and regressor
models, L is set as {1,800, 2,000, . . . , 4,000}. We conduct each experiment ten times, and we achieve
the corresponding average results. The following shows the details of results.

4.1 Dataset Preparation

4.1.1 MORPH-II Dataset. MORPH-II [54] includes more than 55,000 facial images and two
kinds of experimental settings on Morph-II are used to verify the performance of our EGroupNet.
The first setting (S(1)) used in References [2, 6, 7, 24, 56–58, 60, 66] selects 5,492 images of Caucasian
Descent people from Morph-II to lower the effects of cross-ethnicity, 80% of which are randomly
selected as training dataset and the rest as testing dataset. Final results are achieved via 10-fold
cross-validation. The second setting (S(2)) introduced in References [18–20, 58, 59] uses 80% of the
whole images as training datset and the rest are as testing datasets, and 10-fold cross-validation is
utilized in this setting.

4.1.2 LAP-2016 Dataset. The ChaLearn Looking at People 2016—Apparent Age Estimation chal-
lenge dataset [15] has 7,591 images that were recorded by human. Each label sample is noted with
the mean μ and the standard deviation σ . For the reason of providing age label by the dataset, we
pretrain the network on ImageNet and CelebA dataset [47] containing smiling, gender, age, and
skin attributes. Then, we just fine-tune the Age-Net not the shared part with LAP-2016. Images
of 4,113, 1,500, and 1,978 are randomly chosen as the training samples, validation samples, and
testing samples, respectively.

The images are preprocessed as follows. First, a DPM detector [50] detect the input facial images.
Because the images in this dataset are in unconstrained poses, the input images are rotated in the
interval of [−60◦, 60◦] by 5◦ as in Reference [64], and by −90◦, 90◦, and 180◦. The highest rotation
angle and detection score are obtained by the face box. Second, we increase the face box size by
40% in both width and height, and the face image is cropped. Finally, the image is resized into
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Table 3. The Age Interval Distributions of the Three Categories on Adience

0–2 4–6 8–13 15–20 25–32 38–43 48–53 60– Total
M 745 928 934 734 2308 1294 392 442 8192
F 682 1234 1360 919 2589 1056 433 427 9411
B 1427 2162 2294 1653 4897 2350 825 869 19487

Table 4. Subnetwork Parameters

Layers Parameters Layers Parameters Layers Parameters

Num_output: 96 Num_output: 96 Local_size: 5
Conv1 Kernel_size: 5 Pool1 Kernel_size: 3 Norm1 alpha: 1e-1

Stride: 2 Stride: 2 beta: 0.75
Num_output: 256 Num_output: 256 Local_size: 5

Conv2 Kernel_size: 3 Pool2 Kernel_size: 3 Norm2 alpha: 1e-1
Stride: 1 Stride: 2 beta: 0.75

Num_output: 384 Num_output: 384 Local_size: 5
Conv3 Kernel_size: 3 Pool3 Kernel_size: 3 Norm3 alpha: 1e-1

pad: 1 Stride: 2 beta: 0.75
Num_output: 384 Local_size: 5 Num_output: 256

Conv4 Kernel_size: 3 Norm4 alpha: 0.01 Conv5 Kernel_size: 3
Stride: 1 beta: 0.75 Stride: 1

256 × 256 pixels, and then a 224 × 224 cropped image is chosen from the center or the four corners
of the whole image.

4.2 Adience Benchmark

We use the recently released unconstrained Adience benchmark [14, 41] to verify the performance
of EGroupNet. Because these images were uploaded to Flickr and they are without prior manual
filtering, they are highly unconstrained, which means that they are closed to the real-world appli-
cations. Table 3 gives the detailed age interval distributions.

4.2.1 Network Structure. The part of neural network in EGroupNet consists of two parts, the
shared network and several subnetworks. These subnetworks are with the same network layers,
such as convolutional layers, contrast normalization layer, pooling layer, ReLU nonlinear function,
and with identical network parameters. The detailed subnetwork configurations are shown in Ta-
ble 4. Convolutional layer if followed by ReLU, a max pooling and a local response normalization
layer. Every F10 layer has 4,098 units and is followed by a ReLU and 50% dropout to avoid overfit-
ting. Each F11 layer is fully connected to a corresponding F10 layer, also with 4,098 units. and it
also followed by ReLU and a 50% dropout. The finial fully connected layer fully connects F11 with
1,000 units.

4.3 Evaluation Criteria

4.3.1 Mean Absolute Error (MAE). We use ELM with RBF kernel to estimate human face images.
MAE is adopted to estimate the accuracy of predicted age and it is calculated as follows:

MAE =
1

N

N∑
i=1

|xi − yi |, (18)
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Fig. 5. Classification accuracies of different age groups on Morph-II, LAP-2016, and Adience. (a) 1→ (10–19)
and (15–24), 2→ (20–29) and (25–34), 3→ (30–39) and (35–44), 4→ (40–49) and (45–54), 5→ (50–59) and
(55–64), 6→ (60–69) and (65–74). (b) 1→ (0–9) and (5–14), 2→ (10–19) and (15–24), 3→ (20–29) and (25–34),
4 → (30–39) and (35–44), 5 → (40–49) and (45–54), 6 → (50–∞) and (55–∞). (c) 1 → (0–4) and (0–6), 2 →
(4–8) and (6–13), 3→ (8–15) and (13–20), 4→ (15–25) and (20–32), 5→ (25–38) and (32–43), 6→ (38–48) and
(43–53), 7→ (48–60) and (53–).

where xi is the true label, yi denotes the predicted value, and N represents the size of testing
images. The cumulative score (CS) is described as

CS (L) = (ne≤L/N ) × 100%, (19)

where ne≤L denotes the number of test images whose absolute error e of the age prediction is
lower than L years.

4.3.2 Normal Score (ϵ). Because the LAP-2016 is labelled by different human, the results of an
age prediction structure might be more conclusive by considering the variance of the annotations
for each sample. Hence, by fitting a normal distribution with mean μ and standard deviation σ of
the annotations for each sample, the ϵ-score is

ϵ = 1 − e−
(x−μ )2

2σ 2 . (20)

Hence, ϵ ∈ (0, 1), and 0 denotes best case while 1 is worst case.

4.4 Results of Age Grouping

In the age grouping stage, we evaluate the classification accuracies of our ELM classifiers using
MORPH-II, LAP-2016, and Adience Benchmark databases. Figure 5 presents the detailed classi-
fication accuracies and corresponding standard deviations of different age groups on Morph-II,
LAP-2016, and Adience. Figure 6 shows the detailed classification accuracies and corresponding
standard deviations under different hidden nodes on Morph-II, LAP-2016, and Adience.

As shown in Figures 5(a), 5(b), and 5(c), most of the classification results of different age groups
on Morph-II and LAP-2016 have reached high accuracies. The size of the whole training dataset
for corresponding age groups affects the classification accuracies, which means that large size of
face images in some age range can fine-tune the model and a better performance can be achieved.
According to the statistics of different age groups on these datasets, some groups have small size of
face images but obtain better performance, for example, the age groups (48–53) and (53–) on Adi-
ence just have 825 and 869 images, respectively. But, the performance can not be more decreased
than these of other groups that have more than 1,000 face images. More importantly, the trend
of the entire classification accuracies fluctuates a little. These are mainly attributed to the novel
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Fig. 6. Average classification accuracies under different hidden nodes on Morph-II, LAP-2016, and Adience.

Table 5. MAEs of Different Age Estimation Methods on MORPH-II

Method (S(1)) MAE Method (S(1)) MAE Method (S(2)) MAE Method (S(2)) MAE
Human workers [31] 6.30 AGES [22] 8.83 IIS-LDL [20] 5.67 CPNN [21] 4.87

MTWGP [69] 6.28 CA-SVR [7] 5.88 Huerta et al. [35] 4.25 BFGS-LDL [19] 3.94
SVR [24] 5.77 OHRank [6] 6.07 OHRank [6] 3.82 LSVR [27] 4.31
DLA [66] 4.77 Rank [5] 6.49 CCA [26] 4.73 OR-CNN [52] 3.27

Rothe et al. [57] 3.45 DEX [56] 3.25 DLDL [18] 2.42 SMMR [34] 3.24
ARN [2] 3.00 DRFs [58] 2.91 Ranking-CNN [8] 2.96 dLDLF [59] 2.24

MO-CNN [60] 2.52 EGroupNet (Ours) 2.48 DRFs [58] 2.17 EGroupNet (Ours) 2.13

designed neural network, which not only extracts the discriminative features but also excavates
the correlations between face attributes and age to enhance the age features quality.

At the same time, we present the entire average accuracies of groups (a) and (b) under different
hidden nodes in Figure 6. We can learn that the entire average accuracies are improved with the
increasement of hidden nodes. Furthermore, when the hidden nodes exceed 4,000, the improve-
ment of performance are not obvious but increase the computational complexity of the system.
Therefore, we set the hidden nodes as 4,000.

4.5 Age Estimation

4.5.1 Age Estimation on the MORPH-II Database Under Different Conditions. MORPH-II is
utilized to evaluate the performance of EGroupNet, and we compare the results with the latest
methods. The robustness and effectiveness of EGroupNet are analyzed in terms of the MAEs
and cumulative scores (CS). We compare the performance of EGroupNet with the state-of-
the-art methods. Table 5 presents the detailed results, which listed the training datasets and
corresponding networks.

We can learn that our EGroupNet obtains the best results. Although DEX is an effective approach
for age prediction, it may be attributed to the structure pretrained on IMDB-WIKI. The approach
in Reference [2] obtains competitive results, the main reason is that the system fully utilizes the
smoothed relaxation of a piecewise linear regressor. dLDLF [59] adopts a novel label distribution
learning algorithm for age estimation and DRFs [58] utilizes a Deep Regression Forests (DRFs) to
predict age by making full use of homogeneous data. However, these methods do not exploit the
influence of other attributes of the face on the age prediction, which is one of the main reasons
why our EGroupNet has achieved best prediction results among all comparison algorithms.

Three main reasons are attributed to the exciting results of our EGroupNet. First, EGroupNet is
pretrained on ImageNet and IMDB-WIKI datasets. Second, our approach tries its best to excavate
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Fig. 7. Examples of (a) good
and (b) poor estimation on
MORPH-II. “m/n/q/l” expresses
group (a)/group (b)/mergence
group/prediction results.

Fig. 8. Examples of (a) good and
(b) poor estimation on Adience
Benchmark. “m/n/q/l” expresses
group (a)/group (b)/prediction re-
sults.

Table 6. ChaLearn Looking at People 2016 Apparent Age Estimation
Challenge Final Results

Position Team Test error Position Team Test error
1 OrangeLabs 0.2411 6 ITU_SiMiT 0.3668
2 palm_seu 0.3214 7 Bogazici 0.3740
3 cmp+ETH 0.3361 8 MIPAL_SNU 0.4569
4 WYU_CVL 0.3405 9 DeepAge 0.4573
5 EGroupNet (Ours) 0.3578 - - -

the correlations between facial attributes and age attribute, and then projects the high-level fea-
tures for an image into a closely related feature matrix, which is used to make a prediction. Third,
our EGroupNet makes prediction from a narrow age range instead of wide age range, which leads
to better results. Although our EGroupNet has obtained satisfactory performance, the predictions
of some images are not very good. Examples of good and poor results by EGroupNet are presented
in Figure 7.

4.5.2 Age Estimation on the LAP-2016 Database Under Different Conditions. We also list the
results of our EGroupNet on LAP-2016 dataset. Table 6 presents the final results of the challenge.
Our EGroupNet model achieves 0.3419 ϵ-score in the development phase and 0.3578 ϵ-score in
the testing phase. We pretrain the system on ImageNet dataset and then fine-tuned on CelebA
dataset with smiling, gender, age, and skin attributes. Finally, we fine-tune the network on LAP-
2016 dataset. The results verify the effectiveness of excavating the correlations between facial
attributes and age attribute, and age group schemes.

Some prediction results of the validation images are presented in Figures 9 and 10. Figure 9
illustrates the invariance of CNN features to common problems, such as blur, pose, and occlusions.
Figure 10 displays the failed results of age predictions, because of many possible reasons, such as
face misdetection, insufficient number of images to our EGroupNet, and alignment errors.

4.5.3 Age Estimation on the Adience Benchmark Under Different Conditions. We also use an
unconstrained dataset to test the performance of our proposed system. It is difficult to distinguish
the race categories of the dataset, because of its absent of prior manual filtering. Dropout structure
is used to limit the risk of overfitting and the dropout ratio is set to 0.5 (50% probability to set the
output value of a neural as 0). Table 7 shows the age estimation results on the Adience benchmark.
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Fig. 9. Examples of satisfactory pre-
diction.

Fig. 10. Examples of poor prediction.

Table 7. Age Estimation Results on
the Adience Benchmark

Method Average Accuracy
Best from Reference [41] 0.5071 ± 0.051
Best from Reference [13] 0.523 ± 0.057

DEX [56] 0.64 ± 0.042
CNN2ELM [10] 0.6649 ± 0.0508

EGroupNet 0.6978 ± 0.0713

Listed are the mean accuracy ± standard error over all age cate-
gories.

Obviously, the results of our EGroupNet outperforms these of the reported state-of-the-art
methods with considerable intervals. One obvious evident is the contribution of exploring the
correlations between gender and age attribute, which enhance the useful information of age fea-
tures. Furthermore, our EGroupNet utilizes the age group scheme to make the final age predictions
from a narrow age range, which leads to a better results.

Some example of results are provided in Figure 8. Figure 8(a) shows the fine predictions by our
EGroupNet, which proves the reliability of our method again. Figure 8(b) presents the examples
of misclassification made by our system. Most obvious errors are caused by low resolution or blur
and occlusions (particularly from the heavy makeup).

4.6 Ablation Study

4.6.1 Investigation on SubNetworks. The features extracted via neural network are closely
related to the target. When EGroupNet only extracts age-related attribute features, the neural
network pays more attention to the feature information about the age and will lose many other
attribute information of the face that may be closely related to age. Our EGroupNet adopts
multiple sub-networks to extract the different attribute features of the same face image, and then
enhances the age feature information through correlation learning to achieve better prediction
results. Adding sub-networks effectively improves the performance of the system, but at the
same time makes the model more complex, which makes the training process to take more time.
Therefore, this section analyzes the impact of subnetworks on the efficiency of the system in
detail and Table 8 presents the detailed results.

As the numbers of sub-networks continue to increase, the parameters of the system almost
double. However, since the sub-networks are trained in parallel, the training time does not
increase double, but it is not the same as the training time of a single network, mainly because the
convergence speed between different networks is not the same. Simultaneously, we can see that
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Table 8. Ablation Study of the Impact of Subnetworks on the Efficiency of the System
Parameter refers to the relevant parameters of the CNN.

Datasets SubNetworks FLOPs Parameters
Final

Accuracies

Morph-II
(S(1))

Age-Net 2,293M 8,473,850 2.78

Age-Net+Race-Net 4,543M 16,723,764 2.61

Age-Net+Race-Net+Gender-Net 6,120M 24,973,678 2.48

LAP-2016

Age-Net 2,293M 8,473,850 0.3694

Age-Net+Race-Net 4,543M 16,723,764 0.3651

Age-Net+Race-Net+Gender-Net 6,120M 24,973,678 0.3593

Age-Net+Race-Net+Gender-Net+Smile-Net 7,697M 33,223,592 0.3578

Adience
Age-Net 2,293M 8,473,850 0.6741

Age-Net+Gender-Net 4,543M 16,723,764 0.6978

Table 9. Ablation Study of Feature Correlation Schemes on Different Datasets

Datasets Networks Middle Results Training Datasets

Morph-II (S(1))
Age-Net 3.74

Morph-II
Predictions with Correlations 3.19

LAP-2016
Age-Net 0.3842

CelebA and LAP-2016
Predictions with Correlations 0.3792

Adience
Age-Net 0.524

CelebA and Adience
Predictions with Correlations 0.596

the system performance is greatly improved in accordance with the increasing of the numbers
of sub-networks. However, the different sub-networks have different effects on the performance
of the system, for example, Gender-Net has the greatest impact on the age attribute, followed by
race, and finally smile.

4.6.2 Investigation on Feature Correlation Schemes. As discussed earlier, exploring the correla-
tion between face attributes and age is a crucial procedure that achieves robust and discriminative
features and obtains a better performance. As shown in Figure 1, our fine-tuned EGroupNet can
make three times age prediction for an facial image. The first one is the Age-Net, and then, by
mapping these different kinds of features into a closely related feature matrix, the age prediction
for the same image can be obtained. Our EGroupNet can make the final prediction. Table 10 shows
the detailed results on the three datasets.

From Table 9, we can find that through exploring the correlation operations, these predictions
achieve better performance than that of just using a single CNN without seeking these correlations.
On Morph-II, we just consider the correlation among age, gender, and race, and the MAE decreases
0.55 points compared with that of Age-Net. On Adience, our approach fully explores the correlation
among age and gender features, and the accuracy rate increases 0.072 points. On LAP-2016, we
consider the influences of smiling, gender, and race for age attribute and the ϵ decreases 0.005
points. From the analysis above, we can learn that both exploring the correlations between age-
related attributes and age attribute and fully utilizing the correlations can improve the performance
of age prediction.
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Fig. 11. Feature matrix of a
testing image for Morph-II.

Fig. 12. Feature matrix of a
testing image for LAP-2016.

Fig. 13. Feature matrix of a
testing image for Adience.

Table 10. Ablation Study of Age Group Schemes on Different Datasets

Datasets Groups Accuracy Rates Networks Results
Morph-II

(S(1))
Group (a) 0.9717 ± 0.0103 Predictions with Correlations 3.19
Group (b) 0.9837 ± 0.0124 EGroupNet 2.48

LAP-2016
Group (a) 0.9683 ± 0.0398 Predictions with Correlations 0.3792
Group (b) 0.9975 ± 0.0511 EGroupNet 0.3578

Adience
Group (a) 0.7662 ± 0.0312 Predictions with Correlations 0.596
Group (b) 0.8079 ± 0.041 EGroupNet 0.6978

Which relationships have the proposed model learned? The best way to do this is to visualize the
age attribute feature information that are enhanced by correlation learning. The relation matrix
projects the features of the fully connected layer into a space that is only closely related to age
attribute and the mapped feature sizes are 3 × 1,000, 4 × 1,000, and 2 × 1,000, respectively. At this
time, the space can fully reflect the relationships of age. A random testing image is transformed
via relation matrix, and we visualize the feature information as Figures 11, 12, and 13. To better
visualize the mapped features, we resize the feature matrices into 30 × 100, 40 × 100, and 20 × 100,
which keep the size of these matrices uncharge. Through the analysis of the above figures, we can
find that the model will fully exploit and utilize the feature information closely related to the age
attribute from correlation learning. After that, it generates adequate feature information about age
attribute while filtering most redundant and useless feature information unrelated to age attribute,
which enhances the original age feature information.

4.6.3 Investigation on Age Group Schemes. Age group schemes also help to increase the perfor-
mance of the final prediction, and in this section, we analyze the importance of age group for age
prediction in details. Table 10 presents the results with different age group schemes. For accuracy
rates, we present the results of two ELM classifiers on corresponding testing datasets. At the same
time, we list the final prediction results and the intermediate results with correlations on Morph-II,
LAP-2016, and Adience datasets in detail.

It can be seen that the accuracy rates of group (a) and (b) on Morph-II and LAP-2016 exceed
96%. Adience benchmark just provides the age groups and our method is to make a final age group
prediction from a a narrow age range. We can find that making final age predictions based on
narrow age ranges can improve the final performance. On Morph-II, the final average accuracy of
age prediction decreases 0.61 points and the final ϵ on LAP-2016 decreases 0.0214 points. The final
prediction on Adience benchmark is 0.6978, which increases 0.1018 points compared with results
without using age group scheme.

4.6.4 Investigation on ELM Models. From the previous experimental analysis, it can be seen that
ELM classifiers and regressor greatly improve the age prediction performance. However, we still
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Table 11. Accuracies in Different Conditions on Morph-II, LAP-2016, and Adience

Hidden Nodes 2,000 2,200 2,400 2,600 2,800 3,000 3,200 3,400 3,600 3,800 4,000

M

ELMS

ACCG 0.9322 0.9407 0.9448 0.9501 0.9521 0.9582 0.9619 0.9681 0.9715 0.9739 0.9762

MAEsP 2.97 2.94 2.91 2.88 2.85 2.81 2.77 2.71 2.67 2.64 2.62

ELMT

ACCG

0.9276 0.9313 0.9347 0.9383 0.9417 0.9452 0.9486 0.9521 0.9564 0.9597 0.9613

0.9368 0.9413 0.9453 0.9495 0.9537 0.9579 0.9623 0.9667 0.9703 0.9741 0.9789

MAEsP 2.79 2.78 2.76 2.75 2.73 2.71 2.69 2.66 2.64 2.61 2.48

L

ELMS

ACCG 0.9174 0.9233 0.9289 0.9367 0.9408 0.9462 0.9504 0.9673 0.9726 0.9741 0.9788

ErrorP 0.3739 0.3734 0.3727 0.3722 0.3715 0.3708 0.3703 0.3698 0.3692 0.3687 0.3682

ELMT

ACCG

0.9141 0.9219 0.9251 0.9361 0.939 0.9447 0.9596 0.9661 0.9674 0.9736 0.9758

0.9198 0.9241 0.9311 0.9379 0.9415 0.9481 0.9519 0.9699 0.9728 0.9744 0.9791

ErrorP 0.3655 0.365 0.3645 0.3643 0.3636 0.3627 0.3619 0.3611 0.3603 0.3593 0.3578

A

ELMS

ACCG 0.7148 0.7241 0.7316 0.7373 0.7409 0.7491 0.7525 0.7694 0.7731 0.7841 0.7901

ACCP 0.5634 0.5726 0.5837 0.5914 0.6009 0.6127 0.6228 0.6327 0.6411 0.6519 0.665

ELMT

ACCG

0.6679 0.6817 0.6853 0.6978 0.697 0.7063 0.7197 0.7207 0.7281 0.7359 0.7459

0.7153 0.7246 0.7319 0.7372 0.7413 0.7482 0.7528 0.7693 0.7734 0.7848 0.7906

ACCP 0.6579 0.6618 0.6657 0.6696 0.6734 0.6772 0.6813 0.6854 0.6891 0.6935 0.6978

M → the first setting (S(1)) of Morph-II, L → LAP-2016, A → Adience, ELMS → a single ELM classifier, ELMT →
two ELM classifiers, ACCG → classification accuracies of different age groups, MAEsP → MAEs of final prediction,
ErrorP → final test errors, ACCP → final prediction accuracies.

don’t know what is the responsibilities and main functions of ELM in EGroupNet, so we analyze
the performance of EGroupNet on Morph-II (S(1), LAP-2016, and Adience datasets under different
ELM classifiers and different hidden nodes. When only a single ELM classifier is selected, the age
interval is divided according to the Group (a) method, and the other settings remain the same as
those of the original model. Table 11 shows the final prediction results.

From Table 11, we can conclude that the performance of EGroupNet adopting two ELM regres-
sors is better than that using one ELM regressor. The main reason is that EGroupNet divides an
image into a narrower and more precise age range, for example, input image→ (10–20), (15–25)
→ (15–20)→ final prediction, while the final age division interval with one ELM classifier is not
accurate enough, for example, input image → (10–20) → final prediction. However, as the hid-
den nodes continue to increase, the accuracy of age grouping is continuously improved. When
the node reaches 4,000, EGroupNet achieves the best accuracy, and after that, the accuracy of the
system remains stable. In the case of the same network structure, if we utilize a softmax instead of
using the ELM regressor and ELM classifier, then the system performance will be greatly reduced.
Through the above analysis, it can be learnt that the ELM classifier and the regenerator play an
important role in the whole prediction process.

5 CONCLUSION AND FUTURE WORK

We propose a learning framework called EGroupNet for age estimation. This system includes
two processes: correlation excavation and age prediction. Extensive experiments conducted on
MORPH-II, LAP-2016, and Adience prove the effectiveness of our EGroupNet. The experimental
results verify that fully exploring the correlations between age-related attributes and age attribute
can improve the final performance of prediction, and classifying the image into narrow age groups
before reaching an age decision can achieve a better result. In the future, we will optimize the hier-
archical structure and apply them to processing multi-facial attributes, such as smiling, hair, chin,
and so on.
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