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Multi-task learning plays an important role in face multi-attribute prediction. At present, most researches ex-

cavate the shared information between attributes by sharing all convolutional layers. However, it is not appro-

priate to treat the low-level and high-level features of the face multi-attribute equally, because the high-level

features are more biased toward the specific content of the category. In this article, a novel multi-attribute

tensor correlation neural network (MTCN) is used to predict face attributes. MTCN shares all attribute fea-

tures at the low-level layers, and then distinguishes each attribute feature at the high-level layers. To better

excavate the correlations among high-level attribute features, each sub-network explores useful information

from other networks to enhance its original information. Then a tensor canonical correlation analysis method

is used to seek the correlations among the highest-level attributes, which enhances the original information

of each attribute. After that, these features are mapped into a highly correlated space through the correlation

matrix. Finally, we use sufficient experiments to verify the performance of MTCN on the CelebA and LFWA

datasets and our MTCN achieves the best performance compared with the latest multi-attribute recognition

algorithms under the same settings.
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1 INTRODUCTION

1.1 Motivation

Face attribute recognition is widely used in our lives, such as (i) target tracking, surveillance, and
salfeld child control [15, 35, 36, 38, 39, 55], e.g., prisoner tracking, pedestrian identification; (ii) face
retrieval [14, 45, 48, 60]; and (iii) social media [46, 47], e.g., face aging, face different attributes
transfer learning.
In spite of the recent progress in face attribute estimation [10, 32, 49, 53], most work still uses

a specify algorithm to predict a single attribute, but they ignore the strong correlation between
attributes, such as beard and male, lipstick and female, apple knot and male, and so on.When some
attributes are unknown, we can perform correlation analysis on other closely related attributes
to accurately predict those attributes and a joint attribute estimation algorithm is one of the
typical applications [2, 12, 19, 40, 48]. Multi-task learning is generally used in the joint attribute
estimation algorithm and Figure 1 shows two commonly used multi-task attribute learning
models. In Figure 1(a), the algorithms of this type share all information from the input layer to
the fully connected layer [19, 48]. Although these face attributes have more commonalities in
the low-level features, they are more inclined to their own characteristics. If they completely
share the feature information from the low-level to the high-level, then most attributes will lose
their due characteristics in the high-level features. In Figure 1(b), these algorithms usually utilize
multiple single networks to extract the corresponding attribute features, and then fuse these
information to make the final prediction [2, 9–11, 65]. The model of this type is expensive to train
and ignores the correlations among attributes.
To share the low-level features and distinguish their high-level features for all attributes, Ref.

[20] designed a multi-task learning model (MCNN) for multi-attribute recognition. The model uses
the first two convolutional layers to share the low-level features of each attribute, and then the
third convolutional layer starts to distinguish the information of each attribute. After that the
authors design an additional network to count all attribute scores, thereby improving the classifi-
cation accuracies [27, 54, 66, 67]. Although the high-level characteristics of each attribute are dif-
ferent, there is a strong correlation between each other. MCNN does not make full use of these cor-
relations, and in addition, three convolutional layers cannot fully extract certain attribute-specific
information. Therefore, we build a multi-task CNN including five convolutional layers to extract
the characteristic information of each attribute, and explore the correlations among subnetworks,
which improves the original information of a single attribute.
We have already discussed that there are strong correlations between face attributes and mak-

ing full use of these correlations can improve the final prediction performance of a single attribute.
For example, we can predict the gender or age attributes of the face through the dynamic changes
of smile attribute [7, 8], and we can also utilize gender and race attribute to enhance age attributes
[17]. However, the strengths of the correlations between face attributes are not the same, and us-
ing a unified correlation learning algorithm to enhance a single attribute feature may cause the
performance of some attributes to decrease. To solve this kind of problem, we use a tensor canoni-
cal correlation analysis (TCCA) to excavate the correlation among high-level features. At the same
time, a global generalization matrix projects the features learned by TCCA into a highly correlated
space, so that both the correlations among attributes and its different degrees of influence between
the attributes are taken into account.

1.2 Our Contributions

In this article, we propose a multi-task learning model (MTCN) for the prediction of face attributes.
MTCN mainly consists of three parts: low-level feature sharing, high-level feature differentiation
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Fig. 1. The methods used for attribute estimation. In Fig. (a), the type of the method shares information in
all convolutional layers, while in Fig. (b), the approach fuses the features of multiple CNN models to achieve
robust features.

and correlation excavation, and correlations of global features learning via TCCA and generaliza-
tion matrix. As shown in Figure 3, MTCN first uses two convolutional layers to learn the common
features of all attributes, and then learns all attribute-specific information separately from the
third convolutional layer. At this time, the networks after C5 layer are called subnetworks, such as
(Age-Net, Gender-Net, Hair-Net, etc). To explore the correlations between the high-level features
of these different attributes, each subnetwork will extract features from other subnetworks to
enhance the useful information of the original attributes. After that, we utilize TCCA to learn
different degrees of correlations from global features to enhance features of each feature, and
then transform these features into a highly correlated space through the generalization matrix to
make the final attribute prediction. The neural network structure adopts multi-task joint learning
method for learning. During experiments, we analyze the performance without TCCA and con-
clude that the degree of correlation between attributes is different.We use sufficient experiments to
verify the performance ofMTCN on the CelebA [40] and LFWA [40] datasets, and compared it with
state-of-the-art methods. Experimental results show that MTCN achieves the best performance
of all compared algorithms on CelebA and LFWA with 92.97% and 87.86% accuracy, respectively.
The rest of this article is organized as follows. Section 2 presents closely related works. Section 3

shows our method. The final results are analyzed in Section 4, and the article is concluded in
Section 5.

2 RELATEDWORK

2.1 Multi-attribute Prediction from Faces

Researches on face multi-attribute prediction started in the 1990s [6]. Since then, a large amount
of work has been proposed and the early approaches mainly used handcrafted features to estimate
attributes. Neeraj et al. [31] utilized a commercial face detector to preprocess images and then a
separate SVM classifier learnt by extracted features are used to predict the face attributes. Based
on biologically inspired feature (BIF), Guo et al. [18] used the canonical correlation analysis (CCA)
and the partial least squares (PLS) methods for multi-attribute prediction.
Except for Reference [6], which used autoencoders to learn face attributes, all of the approaches

put forward above utilized the handcrafted features. Lately, convolutional neural networks have
made great success in computer vision applications. Dong et al. [65] designed a deep learning
model to extract features from multi-scale patches and the CNN model was used to jointly predict
face attributes via concatenating. Levi et al. [34] proposed two independent CNNmodels. Liu et al.
[40] first located the face, and then used SVM to classify the extracted features. Uricar et al. [57]
also utilized SVM to classify the face features extracted by CNN model. Yang et al. [68] used off-
the-shelf CNN features to estimate 40 face attributes on CeleA and LFWA [40]. In Reference [23],
a margin local embedding kNN (LMLE-kNN) approach was utilized to classify large-scale imbal-
anced attributes. Ehrlich et al. [12] proposed a new multi-task learning method to learn a shared
feature representation and three multi-task public datasets were used to evaluate the proposed
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model. Xie [61] proposed an online mulit-instance learning method for early expression detection
and acquired better performance on video-based expression datasets. Kalayeh et al. [28] improved
facial attribute prediction using semantic segmentation. In Reference [19], to excavate correlation
and heterogeneity among face attributes, a Deep Multi-Task Learning (DMTL) approach was
designed to predict multiple heterogeneous attributes of an image. An ensemble structure was
proposed by Duan et al. [10] for age prediction that fully utilized feature enhancement and age
grouping strategies. Cao [3] proposed a partially shared multi-task Convolutional Neural Network
(PS-MCNN) to learn face attributes, which considered the identity information and attribute
relationships simultaneously. Huang et al. [24] used a deep imbalanced learningmethod for face at-
tribute estimation and achieved significant improvements in accuracy over compared approaches.

2.2 Canonical Correlation Analysis in Deep Learning

CCA was first proposed by Hotelling (1936) to find bases for two sets of variables so that the pro-
jections of the variables on these bases are maximally correlated [41]. The CCA tries to maximally
preserve the useful/positive information [43] and it has been widely used in deep learning, mainly
multi/cross-view learning/analysis [37, 51, 56, 59, 63], image annotation [44], the matching of (au-
dio and articulation, audio and video, images and text, or text in two languages) [22, 52, 58], and
so on.
Murthy et al. [44] proposed an effective method for image annotation, in which CNN is utilized

to extract features from an image and word embedding vectors, and CCA-KNN explores the cor-
relations among the image and vectors. [59] utilized deep canonically correlated autoencoders to
learn multi-view features and achieved good performance. [62] used deep canonical correlation
analysis (DCCA) to match images and captions in a joint latent space and addressed the high di-
mensionality features cased by DCCA. Yao et al. [64] proposed a novel Ranking CCA (RCCA) to
learn query and image similarities and the satisfactory performance of the method are achieved
via verifying with 11.7 million queries and one million images. [13] introduced deep discrimi-
native canonical correlation analysis (DDCCA) to learn the nonlinear transformation among two
datasets, whichmaximizes correlation within-class while minimizes correlation among inter-class.
[63] proposed a CCA network (CCANet) to classify images and this method achieved good perfor-
mance on several public datasets. Gao [16] utilized a labeled multiple CCA (LMCCA) to fuse and
represent multimodal information, and datasets including from both audio and visual domains are
used to verify its performance. Kim [29] proposed a TCCA to classify action/gesture in video and
it significantly achieved better detection accuracy. Luo [41] used TCCA for multi-view dimension
reduction and it aimed to maximize the canonical correlation of multiple views. The proposed
algorithm performs well on various challenging tasks. This article attempts to apply TCCA to
explore the correlations among face attributes and then utilizes the correlations to enhance the
performance of final face attribute predictions.

3 PROPOSED METHOD

Our goal is to predict multiple face attributes through a joint estimation model. To learn fea-
tures effectively, we try to leverage the attribute inter-correlations to enhance origin information.
Figure 2 presents an example of strong pair-wise correlations among face attributes in the CelebA
dataset.1 We can see that the correlations among face attributes are different, some attributes are
strongly related, and some attributes are generally related. Therefore, we propose a MTCN model
to explore these correlations and use them to enhance the feature information of face attributes.
Figure 3 presents the overall system framework. MTCN mainly consists of three parts: (1) shallow

1http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
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Fig. 2. Heat map of pair-wise correlations matrix of the 40 face attributes from the CelebA dataset.

Fig. 3. Our system framework. (C1, . . . , C9) represent the convolutional layers, (S2, . . . , S6) denotes pool-
ing and normalization operations, N8 is the normalization operation, and (F10 and F11) signifies the fully
connected layers. MTCN shares all attribute features at the low-level layers, and then distinguishes each
attribute feature at the high-level layers. To better excavate the correlations among high-level attribute fea-
tures, each subnetwork explores useful information from other networks to enhance its original information.
Then a tensor canonical correlation analysis (TCCA) method is used to seek the correlations among the fea-
tures of the C9 layers, which enhances the original information of each attribute. After that, these features
are mapped into a highly correlated space through the generalization matrix and final estimations are made
based on these features.

feature sharing; (2) high-level feature differentiation and correlation; (3) excavation and utilization
of global correlation. We will explain the three parts in detail later.

3.1 Network Structure Design

Many studies have successfully used shallow networks to predict face attributes and achieved
good performance [3, 19, 20], and we utilize a five-layer convolutional network to identify face
attributes. Table 4 presents the detailed parameters. Multi-CNN (MCNN) [20] has proven that
the characteristics of different attributes of the same face image at the lower levels are basically
the same, and it proposes a multi-task learning model for predicting multiple attributes of face
images. In MCNN, the first two layers share attribute features, and the third layer of convolution
starts to distinguish each attribute feature information. The MTCN we propose is based on the
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Table 1. Network Structure Analysis

Accuracy Accuracy Computational Computational No. Param. No. FLOPs
on CelebA on LFWA time on CelebA time on LFWA (× 109) (× 109)

Share-0 91.27% 85.93% 66 hours 40 hours 7.389 78.4
Share-1 90.21% 82.73% 10.57 hours 5.63 hours 7.389 67.55
Share-2 91.95% 86.67% 7.33 hours 3.08 hours 7.380 40.75
Share-3 87.43% 79.88% 4.31 hours 2.12 hours 7.346 14.95

“Share-0”→ No shared layers, “Share-1”→ C1 and S2 are shared, “Share-02”→ C1, S2, C3, S4 are shared, “Share-03”

→ C1, S2, C3, S4, C5 are shared.

MCNNmodel while our MTCN will cross-extract high-level features of different networks to fully
excavate the correlations among attributes. To make our proposed model more convincing, we
give the recognition accuracy, system parameters, floating-point operations (FLOPs), and training
and testing time of the same network structure in the case of different shared layers. In this time,
TCCA is not used to excavate correlations, and other settings are the same. From Table 1, as the
number of shared network layers increases, computational time, system parameters, and FLOPs
decreasewhile the accuracy increases first and then decreases.We can conclude that if we share the
first two convolutional layers, the system achieves the best performance. It should be emphasized
that when there is no shared layer, there is no cross-extraction feature among the 40 subnetworks,
mainly because each network processing process is not synchronized, and the final prediction is
the average of the prediction results of all subnetworks. At this time, the calculation time of the
system is the sum of the calculation times of all subnetworks.

3.2 Low-level Feature Sharing for Face Attributes

Different convolutional layers extract different abstract feature information, and the shallow con-
volutional layer extractsmore spatial information [42]. Therefore, when using convolutional layers
extract the features of face images, the spatial information are basically similar, for example, the
corners of the face, the convexity of the nose, the positions of the eyes and the mouth, and so on.
The high-level convolutional layer mainly extracts more semantic information, which is generally
a unique feature of the input image, and it is also the most critical part for judging the category of
the input image. At this time, high-level features involve fewer spatial features. According to the
latest twoworks [20, 42], we can conclude that the first two convolutional layers contain more spa-
tial information, so the information in this part of the different networks can be shared, reducing
the computational overhead of multiple single-networks.

3.3 Differentiation and Correlation in High-level Layers

Since CNN can learn different abstract features during the process of trainingwith different targets,
we split the network into multi-subnetworks from the third convolutional layer. At this time, these
abstract features are unique to attributes. MTCN usesmultiple identical subnetworks to learn these
feature information, and the same network structure of subnetworks is conducive to the learning
and convergence of MTCN.
Meanwhile, according to References [7, 8, 10, 17], there are a lot of positive correlations among

face attributes, and by seeking which attributes can enhance their original features, thereby im-
proving the final prediction performance. As can be seen from Figure 3, each subnetwork excavates
positive information from other subnetworks, and because the convolutional layer contains more
semantic information, this operation occurs twice on the two convolutional layers C7 and C9.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 3. Publication date: November 2020.
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In MTCN, the features extracted from the C5 layer to the F11 layer can fully represent the
uniqueness of different attributes. To fully excavate the correlations between different attributes,
we utilize the C7 and C9 layers of each subnetwork to extract the feature information of the S6 and
N8 layers of other subnetworks. The S6 and N8 layers are not used to extract the C5 and C7 layer
feature information, because the convolution operation can extract valuable information more ef-
fectively. Each convolution in the C5 and C7 layers of any subnetwork not only extracts feature
information from its S6 and N7 layers but also extracts those feature information of other subnet-
works. It is particularly emphasized that during this process, this type of convolution operation
does not change the size and parameters of the convolution kernel.
Because MTCN utilizes multi-task learning for feature extraction, how to update the parameters

of neural network model is an extremely important part of the entire learning process. Through
theoretical analysis, we can conclude that the parameter learning of the convolutional layers is
the most complicated part in the whole process of gradient learning. So in the following sections,
we show the derivations and the implementation of this part in detail. Because the labels of each
attribute are discrete, we use the cross-entropy loss function to calculate the system loss, which
can be written as

ϕ = − 1

N

N∑
i=1

(yi lnpi + (1 − yi ) ln (1 − pi )), (1)

where pi expresses the final result of an attribute, yi denotes the label, and N is the number of
training instances.

3.3.1 Gradients Transferred from the C9 Layer to the N8 Layer. During the process of feature
extraction, MTCN extracts features not only from the feature map of its low-level layer but also
from the feature map of the same layer of other subnetworks. Since the structure, the input dataset,
and the learning process of the subnetwork are the same, we only introduce the derivations and
the implementation process of Gender-Net in detail. Here, wnc and bnc , and wcf and bcf denote
the weights and biases of the C9 layer and the fully connected layer, respectively. K represents the
number of subnetworks. At the same time, we assume that the outputs of the C9 and N8 layers
of ith sample are X i

c and X i
n . To make the article easier to understand, we will treat the feature

maps of each subnetwork as a whole, such as (X i
1, X

i
2, . . . ,X

i
K
) represents the feature maps of the

K subnetworks, so the feature extraction results of the C9 layer of Gender-Net can be computed
as

X i
c = f

(
X i
1wnc + X

i
2wnc + · · · + X i

Kwnc + bnc
)
. (2)

Based on the cross-entropy loss function, we can achieve the partial derivative of the weights
and biases (For reader’s convenience, the detailed derivation process can be seen in the supple-
mentary file). We use η to denote the learning rate and the corresponding weights and biases can
be updated as

wnc = wnc − η ∂ϕ
∂wnc

, (3)

bnc = bnc − η ∂ϕ
∂bnc
. (4)

3.3.2 Gradients Transferred from the N8 Layer to the S6 Layer. The parameter learning process
from the C7 to S6 layers is the same as that of the upper layers. At this time, because the C9 layer
extracts features not only from its own low-level layer network but also from other subnetworks,
how the C7 layer learns the gradient of the upper layer is full of challenges. We use w′sc and b

′
sc

to denote the weights and biases of the C7 layer, respectively, and X i′
c expresses the extracted
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features of the C7 layer (for reader’s convenience, the detailed derivation process can be seen in
the supplementary file). After that, the weights and biases of the C7 layer can be updated as

w ′sc = w ′sc − η
∂ϕ

∂w ′sc
, (5)

b ′sc = b ′sc − η
∂ϕ

∂b ′sc
. (6)

3.3.3 Gradients Transferred from Subnetworks to a Shared Single Network. The parameter up-
date process of the C5 layer is the same as the general gradient learning process and how to pass
the gradients from multiple subnetworks to the shared network is the most critical thing. We pro-
pose a joint gradient transfer method to pass these gradients. We utilize ϕ1, ϕ2, . . . , ϕK to represent

the losses of the subnetworks. In addition,w
′′′
sc and b

′′′
sc , andw

′′
sc and b

′′
sc represent the weights and

biases of the C3 and C5 layers, respectively. The joint gradient transferred method is computed as

Δw =
∂ϕ1

∂w ′′′sc
+
∂ϕ2

∂w ′′′sc
+ · · · + ∂ϕK

∂w ′′′sc
, (7)

Δb =
∂ϕ1

∂b ′′′sc
+
∂ϕ2

∂b ′′′sc
+ · · · + ∂ϕK

∂b ′′′sc
, (8)

where
∂ϕ1

∂w ′′′sc , . . . ,
∂ϕK
∂w ′′′sc and

∂ϕ1

∂b′′′sc , . . . ,
∂ϕK
∂b′′′sc are computed using the chain rule.

As a consequence, the parameters of the C3 layer are updated as

w ′′′sc = w ′′′sc − ηΔw, (9)

b ′′′sc = b ′′′sc − ηΔb . (10)

3.4 Multi-attribute Tensor Correlation Learning Framework

3.4.1 Short Review of TCCA. The n-mode product of X with the matrix U ∈ R Jn×In can be ex-
pressed as M = X × nU , which is a tensor with I1 × I2 × · · · × In−1 × Jn × In+1 · · · ×IN , and the
n-mode product is written as

M (i1, . . . , in−1, jp , in+1, . . . , iN ) =
In∑

in=1

X (i1, . . . , iN )U (jn , in ). (11)

The product of X and a sequence of matrices {Un ∈ R Jn×In }Nn=1 is calculated as

M = X × 1U1 × 2U2 × · · · × NUN . (12)

The CANDECOMP/PARAFAC (CP) decomposition [4] decomposes an N th-order tensor, X ∈
RI1×I2×···×IN , into a linear combination of terms, a

(1)
r ◦ a(2)r ◦ · · · ◦ a(N )

r , which are rank-1 tensors,
and the process of decomposition is

X � R∑
r=1

λr a
(1)
r ◦ a(2)r ◦ · · · ◦ a(N )

r

= Λ × 1A
(1) × 2A

(2) × · · · × NA
(N ) .

(13)

The variance matrices ofm views are Hpp =
1
N

∑N
n=1 xpnx

T
pn , where Xp expresses samples of a

view and Xp = {xp1, xp2, . . . , xpN }∈ Rdp×N . After that, the covariance tensor of all views can be
computed as

H1,2, ...,m =
1

N

∑N

n=1
x1n ◦ x2n ◦ · · · ◦ xmn , (14)

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 1, Article 3. Publication date: November 2020.



A Novel Multi-task Tensor Correlation Neural Network for Facial Attribute Prediction 3:9

where H is a d1 × d2 × · · · × dm tensor. Based on the classic CCA [21], the canonical variables
and canonical vectors are zp = XT

p hp and {hp ∈ Rdp×1}mp=1, respectively, where p = 1, 2, . . . ,m. As

a consequence, the optimization function can be denoted as

argmax
{hp }

= corr(z1, z2, . . . , zm ),

s .t . zTp zp = 1, p = 1, . . . ,m,
(15)

where (z1 � z2 � . . . , �zm )T e = corr(z1, z2, . . . , zm ) denotes the canonical correlation,
⊙

ex-

presses the element-wise product, and e ∈ RN . Based on TCCA [41], Equation (15) is equivalent to

argmax ρ
{hp }

= H1,2, ...,m
−×1hT1

−×2hT2 . . .
−×mhTm ,

s .t . hTpHpphp = 1, p = 1, 2, . . . ,m,
(16)

where
−×p denotes the p-mode contracted tensor-vector product. Let up = H̃ 1/2

pp h and M =
H1,2, ...,m

−×1H̃ 1/2
11 h

−×2H̃ 1/2
22 h

−×3 . . . −×mH̃ 1/2
mmh. Then, the optimization problem in Equation (16) is de-

scribed as

argmax ρ
{hp }

=M−×1uT1
−×2uT2

−×3 . . . −×muTm ,
s .t . uTp up = 1, p = 1, 2, . . . ,m,

(17)

where H̃pp = Hpp + ϵI , I expresses the identity matrix, and ϵ denotes a nonnegative trade-off
parameter.
According to Reference [33], Equation (17) is equivalent to following formula:

M ≈
r∑

k=1

ρku
(k )
1 ◦ u(k )

2 ◦ · · · ◦ u(k )
p . (18)

The alternating least squares (ALS) method [5, 30] is utilized to find approximate solutions. Let

Up = [u
(1)
p , . . . , u

(r )
p ], the mapped features for the pth view are computed as

Zp = XT
p H̃
−1/2
pp Up . (19)

After that, TCCA concatenates the wholeZp
m
p=1

to achieve the final representationZ ∈ R (mr )×N ,
which is used as input for subsequent operations.

3.4.2 Multi-attribute Tensor Correlation Learning. The neural networks of MTCN mainly seek
the correlations among attributes from abstract features, thereby enhancing the original informa-
tion of each attribute and improving the accuracy of attribute estimation. However, the degrees
of correlation between attributes are different, and the subnetworks do not fully consider this fac-
tor. Therefore, we use TCCA [41] to further explore the different degrees of correlation among
high-level features.
To fully utilize the correlation between the different attributes of the C9 layer, we assume thatXi

l

= {{X 1
1 ,X

1
2 , . . . ,X

1
L }, {X 2

1 ,X
2
2 , . . . ,X

2
L }, . . . , {XK

1 ,X
K
2 , . . . ,X

K
L }}, where l = 1, 2, . . . ,L, L expresses

the number of feature maps of C9 layer, and i = 1, 2, . . . ,K . X i
l
signifies a 3-D tensor, and κ×κ

represents the size of the feature map in C9 layer.X ∈ Rκ×κ×KL , whereKL expresses the number of
all feature maps. According to TCCA, the feature maps in C9 layer can be expressed as {Xp }KLp=1 and

Xp = {xp1, xp2, . . . , xpκ } ∈ Rκ×κ , and we calculate the variance matrices as Hpp =
1
κ

∑k
j=1 xpjx

T
pj .

The covariance tensor among X1, X2, . . . ,XKL is computed as

H1,2, ..., (KL) =
1
κ

∑κ
j=1 x1j ◦ x2j ◦ · · · ◦ x(KL)j , (20)

where ◦ denotes the outer product andH expresses a κ × κ × · · · × κ tensor.
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The canonical correlation is denoted as

argmax ρ = corr (z1, z2, . . . , zKL ),

s .t . zTp zp = 1, p = 1, 2, . . . , (KL),
(21)

where the canonical variables zp = XT
p hp .

According to TCCA, Equation (21) is equivalent to

argmax ρ =
κ∑
j=1

z1 (j )z2 (j ) · · · zKL (j ),

=
κ∑
j=1

KL∏
p=1

zp (j ) =
κ∑
j=1

KL∏
d=1

�
�

κp∑
kp=1

xp, j (kp )h(kp )�
�
,

(22)

where zp (j ) denotes the jth element of zp , and xp, j (kp ) and h(kp ) denote the kp th elements of xp, j
and zp .

Furthermore,

(H −× ph
T
p ) (k1, k2, . . . ,kp−1,kp+1, . . . ,kKL )

=
κp∑
kp=1
H (k1, k2, . . . ,kKL )h(kp )

=
κ∑
j=1

κp∑
kp=1

(
KL∏
p=1

xp, j (kp )

)
h(kp ),

(23)

where
−× p expresses the p-mode contracted tensor-vector product. We can learn that Equation (29)

is equivalent to Equation (23), that is,

corr (z1, z2, . . . , zKL ) = H1,2, ...,KL
−× 1h

T
1

−× · · · −× KLh
T
KL . (24)

According to the TCCA, Equation (24) is further denoted as

H1, ...,KL
−× 1h

T
1

−× 2h
T
2 × · · ·

−× KLh
T
KL

= h
T
KLC (KL) (hKL−1 ⊗ · · · ⊗ h2 ⊗ h1)

= u
T
KLH̃

−1/2
(KL)(KL)

H (KL)

·
((
H̃−1/2
KL−1,KL−1uKL−1

)
⊗ · · · ⊗

(
H̃−1/21,1 u1

))
= u

T
KLH̃

−1/2
(KL)(KL)

H (KL)

·
(
H̃−1/2
KL−1,KL−1 ⊗ · · · ⊗ H̃−1/21,1

)
(uKL−1 ⊗ · · · ⊗ u1),

(25)

where hTpHpphp = 1, up = H̃ 1/2
pp hp , and F = H1,2, ...,KL

−× 1H̃
1/2
11

−× 2H̃
1/2
22

−× · · · −× KLH̃
1/2
(KL)(KL)

.

Therefore,

H1, ...,KL
−× 1h

T
1

−× · · · −× KLh
T
KL = F

−× 1u
T
1

−× · · · −× KLu
T
KL . (26)

Based on the analysis of Reference [33], Equation (26) is aimed to find the best rank-1 approxi-

mation of F . Let
∧
F = ρu1 ◦ u2 ◦ · · · ◦ uKL . Our aim is

argmax
up

| |F − F̂ | |. (27)

We use ALS method to optimize the problem, and we can obtain the solution up . After that,

the canonical variables are calculated as zp = XT
p hp = XT

p H̃
−1/2
pp up . Let Up = [u

(1)
p , . . . , u

(r )
p ] and
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Table 2. Complexity Analysis

Method
Input No. Param. No. FLOPs Trunk

Method
Input No. Param. No. FLOPs Trunk

Method
Input No. Param. No. FLOPs Trunk

Size × 106 × 109 Depth Size × 106 × 109 Depth Size × 106 × 109 Depth

MCNN 227 × 227 320 8.6 5 PS-MCNN 192 × 160 16 6.7 7 MTCN 224 × 224 7380 40.75 7

z
(1)
p , . . . , z

(r )
p express the column vectors of Zp . U signifies the transformation matrix. As a conse-

quence, the mapped features for the p’th attribute can be computed as

Zp = XT
p H̃
−1/2
pp Up . (28)

According to TCCA, Equation (21) is equivalent to H1,2, ..., (KL)
−× 1h

T
1

−× 2h
T
2

−× · · · −× (KL)h
T
(KL)

,

and Equation (22) can be denoted as

argmax ρ = H1,2, ..., (KL)
−× 1h

T
1

−× · · · −× (KL)h
T
(KL)
,

s .t . hTpHpphp = 1,

(29)

where Hpp = XpX
T
p .

Based on our previous analysis, the ALS method is utilized to solve approximate solutions. We

setUp = [u
(1)
p , . . . , u

(r )
p ], and the mapped feature for the p’th view is computed as

Zp = XT
p H̃
−1/2
pp Up . (30)

After that, the final representation can be denoted as Z ∈ R (KLr )×κ via concatenating the dif-

ferent {Zp }(KL)p=1 . Since the above method only achieves the correlation among different attributes

for one face image, to ensure MTCN have better generalization performance for whole dataset,
we construct a generalization matrix to ensure that the mapped features of each image are highly
correlation. During the parameter learning of the generalization matrix, the previous neural net-
work is not updated. Because MTCN adopts a multi-task learning model to recognize face multi-
attributes, we use a joint attribute estimationmethod to calculate thewhole loss ofMTCN to update
its relevant parameters. If an image has ω attributes, then a joint attribute prediction system is

ϵ = arg min

ω∑
i=1

Hi + γΦ(W ), (31)

where Hi expresses the loss of the ith attribute,W expresses the weights of generalization ma-
trix, Φ(·) is used to penalize the complexity of the weights, and γ > 0 denotes a regularization
parameter.
We utilize CelebA and LFWA datasets [40] to test the performance of MTCN. The whole process

of MTCN is roughly summarized as the follows:
Step 1: Utilize CelebA or LFWA dataset to train MTCN without TCCA and then a fine-tuned

model is utilized to estimate face attributes, and Equation (1) is as the loss function in this process;
Step 2: Use one third of the training datasets to train the generalization matrix with TCCA and
Equation (31) is as the loss function in this time; Step 3: Utilize the testing datasets to validate the
performance of MTCN.

3.5 Complexity Analysis

We analyze the time and memory complexity of MCNN [20], PS-MCNN-LC [3], and MTCN via
FLOPs. As can be seen from Table 2, MTCN consumes about 55% more FLOPs and has 10 times
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Table 3. Summary of the 40 Face Attributes Provided in the CelebA Dataset

Attr.
Idx.

Attr. Def
Attr.
Idx.

Attr. Def
Attr.
Idx

Attr. Def
Attr.
Idx.

Attr. Def
Attr.
Idx.

Attr. Def
Attr.
Idx.

Attr. Def
Attr.
Idx

Attr. Def
Attr.
Idx.

Attr. Def

1 5 O’ClockShadow 6 Bald 11 GrayHair 16 DoubleChin 21 Male 26 OvalFace 31 SideBurns 36 WearHat

2 ArchedEyebrows 7 Bangs 12 BigLips 17 Eyeglasses 22 MouthSlighlyOpen 27 PaleSkin 32 Smiling 37 WearLipstick

3 BushyEyebrows 8 BlackHair 13 BigNose 18 Goatee 23 Mustache 28 PointyNose 33 StrightHair 38 WearNecklace

4 Attractive 9 BlondHair 14 Blurry 19 HeavyMakeup 24 NarrowEyes 29 RecedingHairline 34 WavyHair 39 WearNecktie

5 BagsUnderEyes 10 BrownHair 15 Chubby 20 HighCheekbones 25 NoBeard 30 RosyCheeks 35 WearEarrings 40 Young

more parameters than PS-MCNN-LC. MCNN uses a MTL structure to recognize face attributes,
which leads to its most parameters, which is also the main reason why MTCN has so many pa-
rameters. PS-MCNN-LC adopts a partially shared multi-task learning model, which is why it has
fewer parameters. MTCN consumes the most FLOPs and needs the most memory, because it needs
to excavate the correlation information from different subnetworks twice. However, these opera-
tions can enhance the original information of each attribute. From Table 5, we also see that each
prediction result of face attributes on CelebA is relatively stable, and there is no large fluctuation
prediction result. These operations also ensure MTCN gets the best results on the LFWA dataset.
The corresponding computational time is analyzed in detail in Sections 4.3.4 and 4.3.5.

4 EXPERIMENTS

4.1 Datasets

4.1.1 CelebA. CelebA [40] contains 200,000 images and each image has 40 attributes (see
Table 3): 160,000, 20,000, and 20,000 are utilized for training, validation, and testing, respectively.
We did not augment the CelebA dataset, because it is large enough.

4.1.2 LFWA. LFWA [40] is another dataset containing 40 face attributes and its face images
are from the LFW dataset [25]. Its attribute annotations are the same as these in CelebA. The
LFWA contains only 13,143 photos. Most studies adopt 6,263 photos as the training dataset, and
6,880 photos are utilized for testing. However, due to the complexity of MTCN, these dataset are
difficult to train a model well, so we adopt data augmentation method proposed in Reference [20]
to augment the original photos, and then we achieve more than 75,000 photos as the training
dataset.

4.2 Implementation Details

We implement MTCNwith Tensorflow [1] on NVIDIA Tesla P100. The selectionmethod for crop is
the same as that used in ref. [11] and dropout methods are used to reduce overfitting. We initialize
the weights of MTCN with Gaussian distribution. We set the mean, standard deviation, and base
learning rate as 0, 0.01, and 10−4, respectively. Every 100,000 iterations, the learning rate is reduced
by 10%. During theMTCN training, a batch size of 100 is utilized andMTCN is trained for 30 epochs
on CelebA or LFWA. As a whole, it takes approximately 10 and 4 h to train MTCN with TCCA
on CelebA and LFWA, respectively, and the training of the generalization matrix takes nearly
1.5 h. We conduct each experiment ten times, after that we achieve the corresponding average
results. We just present the results of the baseline methods, because codes of these methods used
in corresponding publications are not available in the public domain.

4.2.1 Network Structure. The neural network structure of MTCN consists of a shared network
and 40 subnetworks, and all subnetworks have the same structures. The detailed subnetwork con-
figurations are shown in Table 4. A max pooling layer and a local response normalization layer
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Table 4. Subnetwork Parameters

Layers Parameters Layers Parameters Layers Parameters Layers Parameters Layers Parameters Layers Parameters

Num_output: 96 Num_output: 96 Local_size: 5 Num_output: 384 Num_output: 384 Local_size: 5

Conv1 Kernel_size: 5 Pool1 Kernel_size: 3 Norm1 alpha: 1e-1 Conv3 Kernel_size: 3 Pool3 Kernel_size: 3 Norm3 alpha: 1e-1

Stride: 2 Stride: 2 beta: 0.75 pad: 1 Stride: 2 beta: 0.75

Num_output: 256 Num_output: 256 Local_size: 5 Num_output: 384 Local_size: 5 Num_output: 256

Conv2 Kernel_size: 3 Pool2 Kernel_size: 3 Norm2 alpha: 1e-1 Conv4 Kernel_size: 3 Norm4 alpha: 0.01 Conv5 Kernel_size: 3

Stride: 1 Stride: 2 beta: 0.75 Stride: 1 beta: 0.75 Stride: 1

Fig. 4. Examples of positive information learnt by the correlation explored process. C1/C3/C3/C7/C9 denote
the corresponding convolutional layers of MTCN. CL expresses correlation learning.

follow the convolutional layer. Both F10 and F11 layers have 4,098 units and are followed by a
ReLU. We use 50% dropout method to reduce overfitting and the final layer is with 1,000 units.

4.2.2 Examples of Feature Learning via MTCN. Our MTCN tries to fully excavate the corre-
lations among face attributes to enhance the useful information of origin features. We want to
knowwhat has learnt via correlation learning that ensures our MTCN achieving best performance
among compared methods instead of using deep network, such as DenseNet and ResNet. Due to
that the correlation learning process of each attribute is same, we just present each convolutional
layer features of an image via fine-tunedAge-Net andGender-Net whether using correlation learn-
ing. Figure 4 presents examples of positive information learnt by the correlation explored process
for gender/age attributes.
Although we use a small network rather than a DenseNet or ResNet, it achieves better perfor-

mance than DMTL [19] with deep network. By capturing the correlation among these attributes
to enhance the original features, our work pursues better performance by applying width of the
network instead of “deep” network, and the “width” networks can be easily fine-tuned, which is
the reason why we have not adopted the DenseNet and ResNet. In other words, it is just because
of without using the deep models that the correlation learning in our model plays an important
role in the whole predictions. Figure 4 presents the positive information learnt by correlation ex-
plored process. Under the situation of the same prediction system, a feature with more gender/age-
related information may achieve the best performance. From Figure 4, we can learn that Age-Net
and Gender-Net without the correlation learning, it just learns part of age-related information;
however, with the correlation learning, positive effects of other facial attributes on gender/age are
learnt to enhance the original feature and the new features are with more age-related information.
The same positive information are learnt by the decompositions.
Generalization matrices for CelebA and LFWA are visualized in Figures 5 and 6. The goal of

the matrix is to make the correlation feature matrix more robust and smoothness for each image
in dataset. The size of matrix is 40 × 40 and red and yellow colors indicate high values. Through
the TCCA process, the correlations among face attributes are fully exploited and utilized. The
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Fig. 5. Heat map of general-
ization matrix for CelebA.

Fig. 6. Heat map of general-
ization matrix for LFWA.

generalization matrix projects the correlation feature matrix into a new space that ensures the
outputs of TCCA for the whole image being not a lot of volatility.

4.3 Results

The prediction accuracies for face attributes on CelebA and LFWA by our method and several
compared approaches [3, 9, 11, 19, 20, 26, 40, 50] are presented in Table 5. The MTCN with TCCA
outperforms [9, 11, 19, 20, 26, 40, 50] for most of the 40 face attributes on both datasets. In terms of
the average accuracies for CelebA, our MTCNwith TCCA improves on Reference [40] by 5.67%, on
Reference [50] by 2.03%, on Reference [20] by 1.68%, on Reference [19] by 0.37%, on Reference [9]
by 1.74%, on Reference [26] by 1.34%, and on Reference [11] by 0.61%. Although the performance
of the PS-MCNN-LC algorithm is similar to our proposed algorithm, the predictions of our algo-
rithm for each attribute are relatively uniformwhile those of the PS-MCNN-LC algorithm fluctuate
greatly, for example, the prediction result of attributes (� 12) is only 73.13% while that of our algo-
rithm is 89.28%. In terms of the average accuracies for LFWA, our MTCN with TCCA improves on
Reference [40] by 4.03%, on Reference [28] by 2.58%, on Reference [20] by 1.55%, on Reference [19]
by 1.71%, on Reference [26] by 1.7%, and on Reference [3] by 0.5%. AlthoughMTCN obtains the best
performance among all the compared methods, we still do not know whether MTCN with TCCA
is effective for the overall attributes or for some attributes, so we conduct further exploration and
research.

4.3.1 Ablation Analyses on the CelebA Dataset. Since there is no strong correlation between
some face attributes, MTCN will not enhance the features of all attributes, but most attributes
have better prediction results. According to the results in Table 5, we divide the attributes into three
categories: (I) attributes (1, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 21, 23, 25, 27, 30, 31, 36, 39), most of their
prediction accuracies exceed 95% via MTCN with TCCA, while these using compared methods
are less than 95%. The main reason is that there are strong correlations among these attributes
and by fully excavating which, MTCN improves the prediction performance of each attribute. The
compared algorithms do not make full use of these correlations, resulting in poor prediction results
for some attributes; (II) the predictions of attributes (26 and 28) are lower than 80%, and the main
reason for those is that there is almost no correlation between these two attributes. The attributes
in category (III) have a strong one-line correlation with those in category (I). In other words, the
attributes of the former can well enhance the prediction performance of attributes in category
(I). On the contrary, the attributes in category (I) cannot significantly enhance the attributes in
category (III). For example, {20 (HiдhCheekbones) and (25 (NoBeard), 32 (Smilinд))}, {25 (NoBeard)
and 3 (BushyEyebrows)}, and {2 (ArchedEyebrows) and 25 (NoBeard)}.
Table 6 provides statistics on the prediction results of the three categories by different meth-

ods. First, the result for category (I) with MTCN without TCCA is 96.46%, which improves on
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Table 5. The Accuracies (in %) of 40 Binary Attribute (See Table 2) Predictions on the CelebA and LFWA by
the MTCN and the Latest Methods [3, 9, 11, 19, 20, 26, 40, 50]

Approach Attribute index

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
e
le
b
A

LENet+ANet [40] 84.00 82.00 83.00 83.00 88.00 88.00 75.00 81.00 90.00 97.00 74.00 77.00 82.00 73.00 78.00 95.00 78.00 84.00 95.00 88.00

MOON [50] 94.03 82.26 81.67 84.92 98.77 95.80 71.48 84.00 89.40 95.86 95.67 89.38 92.62 95.44 96.32 99.47 97.04 98.10 90.99 87.01

MCNN+AUX [20] 94.51 83.42 83.06 84.92 98.90 96.05 71.47 84.53 89.78 96.01 96.17 89.15 92.84 95.67 96.32 99.63 97.24 98.20 91.55 87.58

DMTL [19] 95.00 86.00 85.00 85.00 99.00 99.00 96.00 85.00 91.00 96.00 96.00 88.00 92.00 96.00 97.00 99.00 99.00 98.00 92.00 88.00

PaW [9] 94.64 83.01 82.86 84.58 98.93 95.93 71.46 83.63 89.84 95.85 96.11 88.50 92.62 95.46 96.26 99.59 97.38 98.21 91.53 87.44

GNAS [26] 94.76 84.25 92.99 83.06 85.87 98.96 96.2 90.24 96.11 89.75 98.37 71.79 85.1 96.42 96.93 96.48 99.69 97.59 91.82 88.05

TCFN [11] 94.81 84.53 85.94 84.13 99.01 98.42 95.8 85.81 90.63 96.11 96.67 88.93 92.31 95.73 96.43 96.38 98.32 98.17 91.93 88.29

PS-MCNN-LC [3] 96.6 85.77 94.51 84.39 87.29 99.41 98 91.66 97.93 91.03 98.66 73.13 86.4 98 97.66 98.29 99.85 97.74 93.31 89.5

MTCN without TCCA 94.68 84.92 84.71 85.11 98.05 97.73 86.04 84.18 90.42 95.47 95.13 88.48 91.37 95.49 96.18 99.03 98.42 98.10 91.47 87.19

MTCN with TCCA 95.46 86.02 86.23 85.97 99.12 99.42 95.44 86.03 91.14 96.82 96.44 89.28 92.00 96.32 97.16 99.68 98.73 98.59 92.34 88.95

L
F
W
A

LENet+ANet [40] 84.00 82.00 83.00 83.00 88.00 88.00 75.00 81.00 90.00 97.00 74.00 77.00 82.00 73.00 78.00 95.00 78.00 84.00 95.00 88.00

MCNN+AUX [20] 77.06 81.78 80.31 83.48 91.94 90.08 79.24 84.98 92.63 97.41 85.23 80.85 84.97 76.86 81.52 91.30 82.97 88.93 95.85 88.38

DMTL [19] 80.00 86.00 82.00 84.00 92.00 93.00 77.00 83.00 92.00 97.00 89.00 81.00 80.00 75.00 78.00 92.00 86.00 88.00 95.00 89.00

PS-MCNN-LC [3] 78.17 83.53 85.72 81.84 86.74 92.6 91.45 92.96 98.51 81.87 91.04 82.7 86.48 87.2 78.11 86.7 92.78 84.11 96.6 88.77

MTCN without TCCA 80.39 85.10 82.23 83.71 91.94 92.65 80.53 84.46 92.19 97.29 87.85 80.86 83.03 78.85 80.13 91.42 85.48 88.63 95.61 88.55

MTCN with TCCA 81.68 86.13 83.01 84.29 92.13 93.27 84.33 85.06 93.18 97.89 89.26 81.61 84.43 83.19 81.94 92.84 87.03 89.66 96.25 89.57

Approach Attribute index

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C
e
le
b
A

LENet+ANet [40] 94.00 82.00 92.00 81.00 79.00 74.00 84.00 80.00 85.00 78.00 77.00 91.00 76.00 76.00 94.00 88.00 95.00 88.00 79.00 86.00

MOON [50] 98.10 93.54 96.82 86.52 95.58 75.73 97.00 76.46 93.56 94.82 97.59 92.60 82.26 82.47 89.60 98.95 93.93 87.04 96.63 88.08

MCNN+AUX [20] 98.17 93.74 96.88 87.23 96.05 75.64 97.05 77.47 93.81 95.16 97.55 92.73 83.58 83.71 90.43 99.05 94.11 86.63 96.51 88.38

DMTL [19] 98.00 94.00 97.00 90.00 97.00 78.00 97.00 78.00 94.00 96.00 98.00 94.00 85.00 87.00 91.00 99.00 93.00 89.00 97.00 90.00

PaW [9] 98.39 94.05 96.90 87.56 96.22 75.03 97.08 77.35 93.44 95.07 97.64 92.73 83.52 84.07 89.93 99.02 94.24 87.70 96.85 88.59

GNAS [26] 98.5 94.16 97.03 88.66 96.3 75.57 97.24 78.24 93.94 95.01 97.96 93.24 84.77 84.52 90.98 99.12 94.41 87.61 96.76 88.89

TCFN [11] 98.43 94.23 97.02 88.95 96.83 77.49 97.03 77.93 94.14 95.33 98.07 93.41 84.93 85.73 90.74 99.04 94.28 88.83 96.83 86.92

PS-MCNN-LC [3] 98.81 95.99 98.56 89.07 98.03 77.43 98.84 79.32 95.85 96.92 98.22 94.85 85.96 86.39 92.66 99.43 95.7 88.98 98.52 90.54

MTCN without TCCA 98.43 93.89 96.59 88.97 96.71 76.35 97.04 77.81 93.92 95.78 97.91 93.07 84.98 86.54 90.17 98.91 93.18 88.76 97.00 89.95

MTCN with TCCA 98.52 94.61 97.18 89.42 97.31 78.52 97.18 78.47 94.35 96.00 98.34 93.91 85.49 87.00 91.04 99.10 94.00 89.31 97.26 90.71

L
F
W
A

LENet+ANet [40] 94.00 82.00 92.00 81.00 79.00 74.00 84.00 80.00 85.00 78.00 77.00 91.00 76.00 76.00 94.00 88.00 95.00 88.00 79.00 86.00

MCNN+AUX [20] 94.02 83.51 93.43 82.86 82.15 77.39 93.32 84.14 86.25 87.92 83.13 91.83 78.53 81.61 94.95 90.07 95.04 89.94 80.66 85.84

DMTL [19] 93.00 86.00 95.00 82.00 81.00 75.00 91.00 84.00 85.00 86.00 80.00 92.00 79.00 80.00 94.00 92.00 93.00 91.00 81.00 87.00

PS-MCNN-LC [3] 95.18 84.6 94.47 83.51 82.01 77.9 94.97 87.52 87.5 88.81 84.42 92.7 79.65 83.35 95.54 91.21 95.7 90.92 82.18 86.88

MTCN without TCCA 93.48 85.34 94.21 82.36 81.90 77.43 92.25 83.79 85.42 87.01 82.49 91.69 78.43 81.06 95.04 91.38 94.39 90.62 80.96 86.63

MTCN with TCCA 94.16 85.61 95.46 83.42 82.39 78.71 93.59 84.91 87.06 88.41 84.21 92.67 80.00 81.45 95.76 92.34 95.59 91.74 82.03 88.04

The average accuracies of [3, 9, 11, 19, 20, 26, 40, 50], and the proposed approaches are 92.98%, 91.23%, 92.36%, 92.60%,

91.29%, 91.63%, 87.30%, 90.94%, 91.95% (Ours), and 92.97% (Ours), respectively, on CelebA, and these of References [3, 19,

20, 40], and the proposed approaches are 87.36%, 86.15%, 86.31%, 83.85%, 86.67% (Ours), and 87.86% (Ours), respectively, on

LFWA.

Reference [20] by 0.99%, on Reference [26] by 0.2%, on Reference [40] by 13.04%, and on Reference
[50] by 1%. With TCCA, MTCN improves the average accuracy by 1.12% compared to that without
TCCA. Second, for category (II), for the average accuracies of References [20, 40, 50], [9, 19, 26], our
MTCN without TCCA, and our MTCN with TCCA are 77%, 76.1%, 75.31%, 75.31%, 78%, and 76.9%,
respectively. We can conclude that MTCN with TCCA obtains the best accuracy. Finally, the result
for category (III) with TCCA is 89.88% and it performs better than most comparison algorithms.
Through the above detailed analysis, we can first conclude that there are correlations among face

attributes. How to make good use of these correlations can improve the prediction performance of
attributes. Second, the correlations among some attributes is weak. The prediction performance at
this time is completely dependent on the training effect of themodel on the corresponding attribute
dataset. Finally, the degrees of the correlations between attributes are not the same. Some attributes
have an enhanced effect on other attributes, on the contrary, other attributes do not have such an
effect. Our MTCN fully explores the correlations between attributes from several aspects, and
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Table 6. The Average Results of the Three Categories on CelebA

Methods Category I Category II Category III Methods Category I Category II Category III

LENet+ANet [40] 83.42% 77% 85% GNAS [26] 96.26% 76.9% 88.66%

MOON [50] 95.46% 76.1% 87.99% TCFN [11] 97.08% 77.71% 89.19%

MCNN+AUX [20] 95.47% 75.31% 88.18% PS-MCNN-LC [3] 97.36% 78.38% 90.66%

DMTL [19] 95.14% 75.56% 87.06% MTCN without TCCA 96.46% 77.08% 89.01%

PaW [9] 97.31% 78% 89.42% MTCN with TCCA 97.58% 78.49% 89.88%

Table 7. The Average Results of the Three Categories on LFWA

Methods Category I Category II Category III Methods Category I Category II Category III

LENet+ANet [40] 89.17% 74% 79.76% PS-MCNN-LC [3] 87.58% 82.71% 88.03%

MCNN+AUX [20] 91.38% 77.39% 82.39% MTCN without TCCA 91.73% 77.43% 82.32%

DMTL [19] 91.67% 75% 81.95% MTCN with TCCA 92.73% 78.71% 83.69%

considers the degrees of the correlations of high-level features through the TCCA algorithm, and
finally uses a generalization matrix to ensure that MTCN has good generalization performance.

4.3.2 Ablation Analyses on the LFWA Dataset. The LFWA is a smaller dataset compared to the
CelebA, so the overall prediction results are lower than those of CelebA. Although MTCN still
obtains the best prediction results among all comparedmethods, the trends in the prediction results
for some attributes on LFWA are different from those on CelebA. For example, Banдs (7) on LFWA
belongs to category (II) and its prediction result is 84.33%, while Banдs belongs to category (I) on
CelebA. Even though LFWA is a relatively small dataset, the prediction results of most attributes
are close to those on CelebA. One important reason is that the data augmentation method is used
before training. In fact, a more important reason is that MTCN fully excavates the correlations
among attributes to obtain better prediction performance.
For better analysis and comparison, we divide the attributes into three categories according to

the prediction results in Table 5. The three categories are: (I) for attributes (5, 6, 9, 10, 11, 16, 18, 19,
20, 21, 23, 27, 30, 32, 35, 36, 37, 38, 40), most of the average accuracies reach 90% while the average
accuracies of the compared methods are less than 90%; (II) the result of attribute (26) is lower than
80%; and (III) for attributes (1, 2, 3, 4, 7, 8, 12, 13, 14, 15, 17, 22, 24, 25, 28, 29, 31, 33, 34, 39), all
average accuracies exceed 80%. Table 7 presents statistics on the average accuracies of the three
categories by different methods.
For category (I), the attributes on CelebA contain (1, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 21, 23, 25,

27, 30, 31, 36, 39), while LFWA includes attributes (5, 6, 9, 10, 11, 16, 18, 19, 20, 21, 23, 27, 30, 32, 35,
36, 37, 38, 40). We can find that attributes (1, 7, 14, 15, 17, 25, 31, 39) in LFWA are not in category
(I) in CelebA while that attributes (9, 19, 20, 32, 35, 37, 38, 40) in LFWA belong to category (III) in
CelebA. For the above situation, the main reason is due to the insufficiency of the LFWA, resulting
in MTCN not fully excavate the correlations among some attributes. We need to emphasize that
attributes (9, 19, 20, 32, 35, 37, 38) are relatively difficult to estimate, which are not strongly affected
by the insufficiency of LFWA.
From the above detailed analysis, we can conclude the following three points: (1) There is

a strong correlation among face attributes, but the degrees of these correlations are different;
(2) The size of the dataset will affect the model to learn the correlation. For example, when
the dataset is sufficient, MTCN can well excavate the different degrees of correlations among
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Fig. 7. Examples of 40 binary face attribute predictions. Rows (a) and (b) are good results and row (c) is poor
estimation. “m/n” expresses (the number of correct predictions)/(40 face attributes) for each face.

Table 8. Results on Different Models and Datasets

Methods
Results on CelebA Results on LFWA

Average accuracy Computational time Average accuracy Computational time

Subnetworks without correlation excavating operation 91.21% 2.63 hours 86.04% 1.27 hours

Subnetwork with one correlation excavating operation 91.58% 5.61 hours 86.39% 2.31 hours

MTCN without TCCA 91.95% 7.33 hours 86.67% 3.08 hours

MTCN with TCCA 92.97% 11.5 hours 87.86% 5.5 hours

attributes; (3) When the dataset is small, the advantages of MTCN can be reflected. It is because
of that advantage of MTCN, compared to the estimation performance on CelebA, those of most
attributes on LFWA decrease slightly.
Examples of good and poor results by our MTCN are shown in Figure 7. Some poor results on

CelebA are caused by the inconsistencies in the provided attributes and these on LFWA are due to
too much volatility and interference. In our future work, we will tries to address those problems
to boost the whole performance.

4.3.3 Ablation Analyses on the Correlations between Different Subnetworks. The MTCN en-
hances the original feature information of the attributes by excavating the correlations among
different subnetworks. However, we do not know whether these operations work, whether the
attribute feature enhancement comes from the correlation excavating of the subnetworks or the
global correlation excavating from the TCCA. In addition, there are two correlation excavating
operations between the S6 and C7 layers and between the N8 and C9 layers, and we still do not
know which one is more important.
To figure out the above confusion, we show the test results (including the average accuracy and

computational time) of the four different models on the CelebA and LFWAdatasets, while the other
experimental settings are unchanged. The four models are Subnetworks without correlation exca-
vating operation, Subnetworks with one correlation excavating operation, MTCN without TCCA,
and MTCN with TCCA. There is no correlation excavating operation between the C5 layer and
the F11 layer of the first model, and that operation is used to excavate the correlation between
the S6 and C7 layers in the second model. MTCN without TCCA not only excavates the correla-
tions between the S6 and C7 layers but also excavates these between the N8 and C9 layers. The
computational time includes training time and testing time.
As can be seen from the above Table 8, as the correlation excavating operations between sub-

networks are gradually increasing, the final prediction performance continues to increase, and
MTCN with TCCA achieves the highest accuracy. We can conclude that correlation excavating
operations among subnetworks can enhance the original information of the face attributes, thus
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Table 9. Results on Different Models and Datasets

Methods
Results on CelebA Results on LFWA

Average accuracy Computational time Average accuracy Computational time

MTCN without TCCA 91.95% 7.33 hours 86.67% 3.08 hours

Subnetworks with projection matrix 92.17% 8.14 hours 87.23% 3.59 hours

MTCN with TCCA 92.97% 11.5 hours 87.86% 5.5 hours

improving the final prediction performance of the model. At the same time, we can also find that
as the model becomes more and more complex, the training and testing time of the model also
increase, but most of the computational time is still spent in the process of model training.

4.3.4 Ablation Analyses on Tensor Canonical Correlation Analysis Scheme. TCCA is used to ex-
cavate the global correlation from the features of the whole C9 layers, but we still do not know
whether the improvement of TCCA is brought by using features from subnetworks instead of
TCCA’s ability of using correlation of different tasks, and whether TCCA performs better than a
projection matrix that is learnt by back propagation.
To address the above questions, we use a projection matrix instead of TCCA when the other

settings are unchanged. At this time, since it is not necessary to consider the correlations among
high-level features, it is only necessary to fully excavate the useful information among high-level
features. For the convenience of calculation, we merge the fully-connected layer feature vectors
of each subnetwork into a matrix that is mapped into a lower dimension matrix via projection
matrix. The final predictions are made via softmax. The size of the projection matrix is 100 × 100,
which is learnt by back propagation. This model is represented as MTCN with projection matrix.
We can learn from Table 9 that even if there are correlation excavating operations among the

subnetworks, the accuracy of MTCN without TCCA on CelebA and LFWA is the worst among the
three comparison algorithms. Correlation excavating operations among the subnetworks are still
local operations that cannot fully exploit the effects of two or several attributes on other single or
several attributes. Based on this model, Subnetworks with projection matrix model converts the
fully connected layer feature vectors of all attributes into a 100× 100matrix via a projectionmatrix.
Although this method does not fully consider the global correlation between multiple attributes,
all attribute feature information is fused into a more comprehensive feature matrix through the
projection matrix conversion operation. However, with TCCA, MTCN achieves the best perfor-
mance among the comparison algorithms on CelebA and LFWA. The main reason is that MTCN
can fully exploit the global correlations among all attribute features, especially the correlation of
several attributes on several other attributes.
We can conclude that Subnetworks with projectionmatrixmodel uses features from subnetwork

to enhance the original feature information of all attributes. Although there are two correlation
excavating operations between subnetworks, the model only excavates correlations between mul-
tiple attributes and individual attribute. Therefore, the correlations among multiple attributes and
other multiple attributes are not considered. Furthermore, there are not only positive correlations
but also negative correlations among multiple attributes. With TCCA, MTCN can fully consider
and utilize various correlations among attributes. Therefore, MTCN with TCCA achieves the best
performance in all comparison algorithms.

4.3.5 Ablation Analyses on End to End Learning Scheme. MTCN does not use the end to end
learning method, mainly because the TCCA conversion process is an approximate conversion pro-
cess. It is also because of this process that a generalization matrix is used to keep the prediction
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Table 10. Results on Different Models and Datasets

Methods
Results on CelebA Results on LFWA

Average accuracy Computational time Average accuracy Computational time

MTCN without TCCA 91.95% 7.33 hours 86.67% 3.08 hours

MTCN using end to end learning 92.37% 9.08 hours 87.23% 3.97 hours

MTCN with TCCA 92.97% 11.5 hours 87.86% 5.5 hours

results of all transformed features stable. When the MTCN adopts the end to end learning method,
the loss of the whole system is jointly generated by the feature extraction process of the neural net-
work, feature conversion process via TCCA, and the final predictions with generalization matrix.
The total loss of an update process can be expressed as

Losstotal = Loss ( f (Wx + b)) + Loss (TCCA)
+Loss (GenerationMatrix ),

(32)

where Losstotal , Loss ( f (Wx + b)), Loss (TCCA), and Loss (GenerationMatrix ) denote the whole
loss, the loss of neural network, the loss of TCCA, and the loss of generation matrix, respectively.
Therefore, back propagation is used to update all the weights and biases. In such learning pro-

cess, the entire system does not update the parameters of the TCCA, which means that the losses
generated by the TCCA are all fed back to the previous neural network. Even if the system is
trained, these losses generated by TCCA always exist, and they are eliminated via the front neural
network. We present the losses of MTCN without TCCA as

Losstotal = Loss ( f (Wx + b)). (33)

We can draw a conclusion that the MTCN with end to end learning approach can excavate
the correlation among face attributes, but back propagation only updates the neural network and
generalization matrix while it does not update TCCA. Therefore, we suppose that the feature ex-
traction ability of a single neural network may be stronger than that of MTCN with end to end
learning, which we compare the performance of the two networks in terms of computational time
and average accuracy.
As can be seen from the Table 10, the end to end learning method can accelerate the entire train-

ing and testing process, but the accuracies do not increase compared with those of MTCN, mainly
because Loss (TCCA) is not used to update TCCA during the update process. Loss ( f (Wx + b)) and
Loss (TCCA) are all used to update the whole neural network, which results in the neural network
part not only extracting useful information from the attributes but also extracting some informa-
tion to compensate for the loss causing by TCCA conversion.Whenwe do not adopt the end-to-end
learning method, the losses generated by the TCCA are compensated by the generalization matrix.
We present predictions of the front neural network model in the case of end-to-end learning: the
prediction accuracies on the CelebA and LFWA datasets are 89.44% and 84.37%, respectively. The
results are worse than those of MTCNwithout TCCA, which also prove the validity of MTCN. The
front neural network model of MTCN firstly fully learns the face attribute information and the lo-
cal correlations, and then the TCCA excavates and utilizes the attribute global correlations. Finally,
the generalization matrix ensures that the whole prediction results have good robustness. These
are the main reason why MTCN has achieved the best performance in all comparison algorithms.

5 CONCLUSIONS

This article proposes a novel MTCN algorithm to estimate human face attributes. MTCN consists
of three parts: low-level feature sharing, high-level feature differentiation and correlation
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excavation, and correlations of global features learning via TCCA and generalization matrix.
MTCN first utilizes the multi-task learning model to excavate the correlations among different
attributes, and then the TCCA algorithm is used to ensure that different attributes learn the
different degrees of the correlations from other attributes. Finally, the generalization matrix to
ensure that MTCN has better generalization performance. CelebA and LFWA datasets are utilized
to validate the performance of MTCN, and our MTCN obtains the best performance compared
with the latest multi-attribute recognition algorithms under the same settings.
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