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Abstract—Elastic scaling of parallel operators has emerged as
a powerful approach to reduce response time in stream applica-
tions with fluctuating inputs. Many state-of-the-art works focus on
stateless operators and change the operator parallelism from one
aspect. They often lack efficient management of operator states
and overlook the costs associated with resource over-provisioning.
To overcome these limitations, we introduce Es-Stream for elastic
scaling of stateful operators over fluctuating data streams, which
includes: 1) We observe that under-provisioning of operator paral-
lelism leads to data pile-up, resulting in longer system latency, while
over-provisioning of operator parallelism causes idle instances and
additional resource consumption. 2) The Es-Stream system scales
in two dimensions: the parallelism of operators and the number
of resources. It dynamically adjusts operators to an optimal paral-
lelism while scaling the resources used by the stream application.
3) When the parallelism of stateful operators changes, upstream
operators backup downstream operators’ state and cache the emit-
ted data tuples at dynamic time intervals, ensuring the operator
parallelism is adjusted in a low-overhead way. 4) Experimental
results demonstrate that Es-Stream provides promising perfor-
mance improvements, reducing the maximum system latency by
3x and saving the maximum state recovery time by 2x, compared
to existing state-of-the-art works.

Index Terms—Distributed stream computing, operator paralle-
lism, resource scaling, state management, stateful operator.

I. INTRODUCTION

PROCESSING continuous data streams in a scalable and
timely manner is becoming crucial for applications such as

Internet of Things (IoT), traffic monitoring, telecommunications
and health care [1], [2]. These stream-oriented applications
need to quickly analyze large volumes of continuous data and
produce predictable and actionable results in a high-performance
computing environment [3], [4]. The performance of a stream
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computing system can be affected by multiple factors, including
computing resource, operator parallelism, memory settings and
buffer sizes [5]. Among them, the degree of operator parallelism
plays an important role in exploiting the system performance [6].
Automatic adjustment to the operator parallelism for perfor-
mance optimization has become a key challenge [7].

A real-time stream application running in a stream computing
system can be modeled as a directed acyclic graph (DAG) which
describes the dependency between its tasks [8]. The DAG is
submitted to the cluster for deployment and each task in the DAG
is scheduled to compute node in the cluster for execution. If there
are no manual intervenes or system failures, the deployed appli-
cations will run forever [9]. In this case, the operator parallelism
settings of DAGs are static and cannot adapt to the fluctuating
data stream rates [10]. This brings two negative effects: 1) When
the arrival rate of data stream exceeds the tuple processing bot-
tleneck of the system, a large amount of data will pile up, leading
to slow latency and even system crash. 2) When the arrival rate
is consistently low, the computing resources occupied by the
operators of DAG cannot be dynamically recycled, causing the
system to generate idle resource consumption.

To ensure that data streams are processed with low latency and
resource efficiency, an elastic scaling mechanism for operators
is essential [11]. This mechanism is expected to dynamically
adjust the degree of parallelism between the operators of DAG
for low latency and effective resource allocation. However, many
existing works [12], [13] don’t provide a suitable method that
supports operator scaling up/down and coordinates resources
between operators of a DAG to dynamically allocate and release
resources based on current data rate. For example, DRS [12] allo-
cated resources along one dimension by gradually increasing the
parallelism of the operator that benefits the most in the topology.
However, when the resources used by the stream application are
inadequate, simply changing the operator parallelism may not
improve the system performance [6].

Recent research [10], [14] has been developed to incorporate
multiple aspects for optimizing the parallelism of operators.
Specifically, [14] presented a platform that supports approxi-
mate computing and scales the parallelism of operators when
resources are sufficient. [10] focused on balancing the load
across stateful operator instances while scaling the parallelism,
offloading tasks from overloaded instances to new one. Despite
their great efforts, both studies overlooked the fact that adjusting
the operator parallelism using a greedy algorithm can lead to
increased system overhead. Additionally, improper instances
deployment during scaling can result in the over-provisioning
of compute nodes and resource waste.

Changing the operator parallelism of streaming applications
can improve the system performance [13], however, it also
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introduces new challenges for the state management of tasks,
further complicating the auto-scaling mechanism. Changes to
the DAG’s structure can cause the inconsistency of data depen-
dency between the backups and the states of operators before
and after auto-scaling [15]. If the backups are re-partitioned
according to the scaled operators, additional overhead can be
generated. Should there be a better state management method
and an operator scaling up/down mechanism to dynamically
adjust the parallelism of stream applications for fluctuating data
streams, the system stability and performance may be improved.
These ideas motivate our research on elastic scaling of parallel
operators for fluctuation data streams.

To address the aforementioned issues, we scale parallel opera-
tors to reduces the system latency and ensure the state reliability
of application operators. The following questions are to be
resolved: 1) Scaling operator parallelism. In a streaming applica-
tion, how to tune the ratio of parallelism degrees between opera-
tors so that the system latency is minimized when the application
occupies fixed computing resources? 2) Scaling resources. How
to dynamically allocate more resources to an application when
its occupied resources are not sufficient? 3) Low-overhead state
recovery. How to effectively guarantee consistency between the
processed data tuples and the stored task states if the application
topology is changed?

A. Contributions

In this paper, a reliable resource scaling in/out framework (Es-
Stream) is proposed to reduce the response time of distributed
stream computing systems. Our contributions are summarized
as follows:

1) We observe that under-provisioning of operator paral-
lelism leads to data pile-up and resource constraints, while
over-provisioning causes idle instances and extra resource
usage. This finding reveals the inherent conflict between
operator parallelism and resource dynamics.

2) A data tuple queuing model based on the M/M/k system
is built to optimize the operator parallelism and achieve
a trade-off between the system latency and resource con-
sumption. Resource scaling is performed using skewed
distribution to evaluate the resource consumption.

3) Upstream backup of operator states and data tuple caches
in dynamic time intervals is achieved to reduce the state
recovery cost. In addition, the backup interval can be dy-
namically changed based on the resource load of compute
node to lower the system overhead.

Experimental results show that Es-Stream makes promising
improvements in resource configuration and state management
compared to existing works.

B. Paper Organization

The rest of this paper is organized as follows. Section II
discusses the effect of parallelism on system latency and the
motivation for the research. Section III introduces the system
models, including the stream application model, communication
model, data model and resource constraint model; Section IV
formalizes the resource allocation problem between the opera-
tors and the states before and after scaling; Section V introduces
the Es-Stream system and its main algorithms; Section VI evalu-
ates the performance of Es-Stream; Section VII presents related

Fig. 1. System latency under different resource configurations for COMM-
Count topology.

work and Section VIII concludes our work along with future
directions.

II. OBSERVATION AND MOTIVATION

A series of experiments are designed on the Storm 2.4.0
platform to identify the impact of different parallelisms on
the system latency and resource utilization, thus leading to the
motivation of our research.

We use the public data [16] from AliCloud to evaluate the sys-
tem performance. The system’ s cluster comprises 16 machines,
each powered by an Intel(R) Xeon(R) X5650 CPU (dual-core,
2.4 GHz), equipped with 2GB of RAM and a 100Mbps Ethernet
interface card. Among the 16 machines in the cluster, 3 run
Nimbus as master nodes, and 13 deploy Supervisor nodes. 3
machines (3 multiplexed with the Nimbus nodes) deploy the
Zookeeper cluster. We configure each compute node to deploy
a maximum of two Workers, with each Worker running up
to two operator instances. The average size of tuples emit-
ted by the data source is 92 bytes. Two stream applications,
COMMCount and Top_N, are submitted to the cluster using
the EvenScheduler, which are commonly used for performance
test and analysis of stream computing system. EvenScheduler
employs a round-robin strategy to evenly distribute these in-
stances across compute nodes. Once deployed, the operator
instances run continuously unless there is a failure or manual
intervention. COMMCount and Top_N count the number of
browsing commodities and the most purchased commodities,
respectively. The function and logic graph of each operator in
their DAGs are similar to [17].

A. Observations

As shown in Fig. 1, we allocate different resources to the
COMMCount topology by setting different instance numbers to
the operators. It can be observed that the system latency under
different resource configurations is different, and the optimal
resource configuration changes with the data rate. When the
input data rate is kept stable at 900 tuples/s, the optimal instance
number for operators is (3,10,11). However, when the input rates
are 1,800 tuples/s and 2,700 tuples/s, the optimal configurations
for COMMCount topology are (3,13,8) and (8,15,6), respec-
tively. This result shows that there exists an optimal configura-
tion producing minimal system latency for a topology, and this
configuration usually changes with the input data rate.

As shown in Fig. 2, different resources are configured to the
Top_N topology to test the system latency. It can be observed
that there exists an optimal configuration. When the input is
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Fig. 2. System latency under different resource configurations for Top_N
topology.

Fig. 3. System latency under different instance numbers of the second
operator.

900 tuples/s, the optimal and worst configurations for Top_N
topology are (3,10,6,1) and (3,9,7,1), respectively. The main
reason behind is that the computing resources occupied by
different numbers of parallel operators are different, and poor
resource allocation between operators will cause longer queuing
time for data processing. In this experiment, the system latency
exhibits fluctuations because resource competition and data
queue buildup alternately become the primary factor affecting
the latency under different topology configurations. In addition,
varying data stream rates lead to varying optimal resource al-
locations between operators in the topology. For example, at
configuration (3,9,7,1), the input rate of 2,700 tuples/s has a
lower latency than those of 900 tuples/s and 1,800 tuples/s,
because the input rate of 2,700 tuples/s receives a better resource
allocation between the operators. This observation highlights the
importance of finding a dynamic scaling mechanism for varying
numbers of operator instances to handle fluctuating data streams.

In Fig. 3, the input rate is stabilized at 1,800 tuples/s, and
the instance number of the second operator gradually increases.
When the instance number is less than 10, increasing the operator
parallelism helps decrease the system latency. However, when
the number is greater than 10, the system latency gradually
becomes stable. The result shows that an excessive instance
number no longer helps diminish the system latency. Therefore,
it is important to set a proper instance number for each operator
to lower the resource consumption.

Resource consumption of a topology increases with the num-
ber of instances. As shown in Fig. 4, with the input rate of data
stream stabilized at 100 tuples/s, the resources consumed by all
the instances of the second operator increase with the number of
instances. The main reason is that a new operator instance takes
up memory resources and consumes certain CPU resources, also
incurs additional communication overhead. It is important to
set a proper instance number for each operator to optimize the
system latency and resource consumption.

Fig. 4. Resource utilization under different instance numbers of the second
operator.

B. Motivations

Based on the above observation and analysis, it can be seen
that the system latency can be affected by different resource
configurations to the topological operators. The optimal con-
figuration for a given topology is dynamic and affected by the
input rate. A poor resource allocation to operators will likely
generate longer latency and consume more resources. It is wise
to consider changing the operator parallelism at runtime for
performance optimization. However, manual adjustment to the
instance number of operator would incur expensive costs and
make it more difficult to maintain the operator states. To optimize
the performance and state recovery, an elastic scaling method for
parallel operators may help. Our motivations can be summarized
as follows:

1) Given the input rate, output rate of instance and resource
load, how to achieve the trade-off between the instance
number of the operators and the resources consumed by
the instances in a comprehensive way when targeting low
system latency?

2) Given the resource load of the cluster and resources con-
sumed by topologies, at what time to scale the number
of resources consumed by topologies when targeting high
system throughput?

3) How to effectively maintain the consistency between the
processed data tuples and the stored task states when the
parallelism of stateful operators changes?

III. SYSTEM MODEL

Before formalizing the resource allocation and state manage-
ment problem and introducing our proposal, we first establish
models for stream application, communication load and resource
constraint.

A. Stream Application Model

In a stream computing environment, user defines a topol-
ogy [17] for a given stream application and then submits it to the
computing cluster. The topology can be described as a directed
acyclic graph G = {V (G), E(G)}, composed of a finite vertex
set V (G) = {v1, v2, . . ., vi, . . ., vn} and a finite directed edge
set E(G) = {ei,j |vi, vj ∈ V (G)}. A vertex vi represents an
operator in the stream application, which is implemented by
a specific function f(vi) defined by the user. The function f(vi)
of each vertex vi is different, that is if ∀vi, vj ∈ V (G), vi �= vj ,
then f(vi) �= f(vj). Edge ei,j between vertex vi and vertex vj
describes the dependency between the two vertices and can be
used to represent their communication load.
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When a stream application is committed to the data centre, the
application is deployed by the scheduler. In this process, multiple
instances of vertex vi can be initialized with the same function
based on the parallelism set by the user, where ∀vi,k, vi,m ∈ vi,
then ∃f(vi,k) = f(vi,m). The dependency between instances
is described as a directed acyclic instance topology IT =
{V (IT ), E(IT )}, and V (IT ) ⊆ V (G), E(IT ) ⊆ E(G). This
instance topology is allocated with computing resources by the
scheduler.

B. Communication Load Model

In the mapped instance topology IT = {V (IT ), E(IT )}, we
use edges E(IT ) to describe the transmission rates between
instances. E.g., tr(vi,k, vj,m) represents the data tuples’ rate that
instance vj,m receives from an upstream instance vi,k. At time
t, the number of data tuples received by instance vj,m from
upstream can be calculated by (1).

wj,m =
∑

vi,k∈pre(vj,m)

tr (vi,k, vj,m), (1)

where wj,m denotes the number of tuples received by instance
vj,m per time unit, and pre(vj,m) is the set of immediate prede-
cessor instances of instance vj,m.

Since there may be transient fluctuations in the data arrival
rate, we calculate the average of wj,m by (2) to ease the impact
brought by sudden fluctuations.

Ewj,m
=

∫ te
ts

wj,mdt

te − ts
, (2)

where Ewj,m
represents the average input rate of instance vj,m

in time interval [ts, te]. ts and te denote the start time and end
time of a given short time period which can be set by users.

Then, the average input rate for operator vj can be calculated
by (3).

Irvj
=

∑
wj,m∈vj

Ewj,m
, (3)

where Irvj
is the sum of average input rates of all instances of

operator vj during [te, ts], which provides data support for the
elastic scaling of operator parallelism degrees. The larger the
Irvj

, the more instances that operator vj needs to reduce the so-
journ time of data tuples in vj . If Irvj

is small and the parallelism
of operator vj is relatively large, operator vj will consume extra
resources. Therefore, making the operator’s instance number
adaptive to varying Irvj

is important.

C. Resource Constraint Model

The latency of the instance changes with the resource load of
the compute node [18]. Resource overload can cause a node to
experience downtime. It is necessary to model the constraints
on node resources to ensure the cluster to work uninterrupted.
The resource load of compute nodes can be measured in dif-
ferent dimensions, such as CPU, memory and I/O. We assume
that each compute node in the cluster does not deploy other
services except for stream applications. Given a cluster with s
compute nodesCN = {cn1, cn2, . . ., cns}, the CPU utilization,
memory utilization and I/O utilization consumed by an instance
of the stream application are denoted as rcvi,j

, rmvi,j
and rivi,j

,
respectively. Multiple instances are deployed on a compute node.
Therefore, the CPU, memory and I/O utilization of a compute

Fig. 5. Parallelism of operators.

node cnk can be calculated by (4).⎧⎨
⎩
Rc

cnk
=

∑
vi,j∈cnk

rcvi,j
+ bccnk

,

Rm
cnk

=
∑

vi,j∈cnk
rmvi,j

+ bmcnk
,

Ri
cnk

=
∑

vi,j∈cnk
rivi,j

+ bicnk
,

(4)

where Rc
cnk

, Rm
cnk

and Ri
cnk

denote the CPU, memory and I/O
utilization of the compute node cnk, respectively. bccnk

, bmcnk
and

bicnk
denotes the static CPU, memory, and I/O utilization of the

compute node cnk without running other services.
Once a stream application is submitted to the cluster, data are

continuously generated and processed. The instance deployment
caused by the elastic scaling of operator parallelism degrees
should not lead to resource overload on the compute nodes. The
following condition (5) is to be satisfied.

Rc
cnk
≤ αc, R

m
cnk
≤ αm, Ri

cnk
≤ αi, (5)

where αc, αm and αi denote the maximum CPU, memory and
I/O resources consumed by the compute node cnk, respectively.

Based on this condition (5), it can be known that the system
performance can be affected by any of the CPU, Memory and
I/O [19]. Therefore, the resource load Rcnk

of compute node
cnk is represented by (6).

Rcnk
= max{Rc

cnk
, Rm

cnk
, Ri

cnk
}. (6)

IV. PROBLEM STATEMENT

In this section, we formalize the problem raised by the static
configuration of application topology, which mainly includes the
scalability of operator parallelism, state consistency and state
recovery overhead.

A. Scalability of Operators

Based on the above models (Section III), the resource allo-
cation problem between operators can be described as follows.
Poor resource allocation between operators can affect system
performance or waste computing resources [13]. For example, in
Fig. 5, there are two operators vi and vj , and the numbers of their
instances are k1 and k2, respectively. The input rate Irvj

of the
input queue for operator vj can be calculated by the communica-
tion load model (Section III-B). Assume that the tuple processing
rates of the instances in vj are {μj,1, μj,2, . . ., μj,k2

}. Then, the
tuple processing rate μvj

of operator vj can be calculated by (7).

μvj
=

k2∑
m=1

μj,m. (7)

Obviously, operator vj must have enough instances for tuple
processing to keep up with the input rate. If Irvj

> μvj
, the
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queue for operator vj will keep getting longer, resulting in the in-
crease of tuple sojourn time of the operator, which further pushes
the downtime risk of the instances. In addition, if Irvj

<< μvj
,

some instances of operator vj may experience idle time while
waiting for input from the upstream. This is a waste of resources.
Therefore, the number of instances for operator vj is be adjusted
to balance Irvj

and μvj
and minimize the sojourn time of data

tuples in the operator.
The optimization problem for a operator can be described as

(8).

z(k) = β · k + (1− β) ·Qvj
(k), (8)

where β is the resources used by each instance of operator vj ,
k is the number of instances of vj . Qvj

(k) is the average queue
length of k instances of operator vj . Our objective now is to find
the minimum value k∗ in function z(k) under the constraints of
resource consumption and system latency.

Since k can only take integers, z(k) is not a continuous
function. We use marginal analysis to find the minimum value,
which is described as condition (9).{

z(k∗) ≤ z(k∗ − 1),
z(k∗) ≤ z(k∗ + 1).

(9)

Taking (8) into condition (9), we get⎧⎪⎨
⎪⎩
β · k∗ + (1− β) ·Qvj

(k∗)
≤ β · (k∗ − 1) + (1− β) ·Qvj

(k∗ − 1),
β · k∗ + (1− β) ·Qvj

(k∗)
≤ β · (k∗ + 1) + (1− β) ·Qvj

(k∗ + 1).

(10)

After simplifying condition (10), we get

Qvj
(k∗)−Qvj

(k∗ + 1) ≤ β

1− β

≤ Qvj
(k∗ − 1)−Qvj

(k∗). (11)

Ultimately, our optimization problem is simplified to find an
optimal number k∗ which is the instance number of a given
operator and satisfies the constraints of resource and system
latency. If each operator satisfies the condition (11), the system
will have less latency and less waste of resources.

B. State Consistency

In a streaming application, intermediate results (i.e., states)
are produced by an instance when processing data tuple dt. This
state information is usually stored in memory at runtime. To
improve the system reliability, the state information is usually
backed up in remote storage by checkpoint mechanism. As
shown in Fig. 6, instance vi,1 emits four data tuples dt1, dt2, dt3
and dt4 to downstream instances vj,1 and vj,2 of operator vj at
time t1. Instance vj,1 receives data tuples dt1 and dt2, performs
logical computation and produces states (k1, v1) and (k2, v2),
where k1 is the key of tuple dt1 and v1 is the intermediate result
of processing dt1 by any instance of operator vj (as instances
have the same processing logic). The process of data tuple dti is
grouped by the Hash function, which can be described by (12).

vj(m
′) = Hash(dti(ki))%m, (12)

wherem denotes the instance number of operator vj , and vj(m′)
denotes that the data tuple dti will be emitted to the instance
vj,m′ for processing. In addition, the state of instance vj,m′ is
periodically backed up to the remote storage.

Fig. 6. States before and after the change to the number of operator instances.

Fig. 7. State backup in stream computing system.

At time t2, adding an instance to operator vj allows instance
vi,1 to redirect the data stream, which is described by (13).

v′j(m
′) = Hash(dti(ki))%(m+Δ), (13)

whereΔ denotes the variation in instance number. IfΔ �= 0, then
vj(m

′) �= v′j(m
′). As shown in Fig. 6, instance vj,3 receives data

tuple dt3 after adding an instance to operator vj at time t2, but
the state of dt3 has been previously stored in instance vj,2 at time
t1. Similarly, instance vj,2 receives dt2 at time t2, but the state
of dt2 has been stored in instance vj,1 at time t1. As a result,
the tuples processed by the instances are inconsistent with the
previously stored states after the data stream is redirected.

C. State Recovery Overhead

In an environment with unbounded data stream, it is unavoid-
able to have failing tasks, which poses challenges in ensuring the
reliability of data processing and resource scaling. Checkpoint
mechanism is usually used to cope with faulty tasks. However,
it also introduces additional overhead, such as 1) Double com-
puting. If a task fails, the system will lose part of the state data
and perform a rollback to recalculate the lost state. As shown in
Fig. 7, the latest state in the system is produced at t+ 1. When a
task fails, the whole system needs to roll the task back to its state
produced at t. In the process, the state at t+ 1 is lost and the
data tuples are re-fed from tuple dto. 2) Global rollback. Once a
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Fig. 8. Es-Stream architecture.

task fails, the whole task topology needs to roll back to the prior
state, discarding valid intermediate stream states.

V. ES-STREAM: ARCHITECTURE AND ALGORITHMS

Based on the above analysis, an elastic scaling method for
operator parallelism, Es-Stream, is proposed. It aims to dy-
namically adjust the configuration of topology in a volatile
data stream environment. This section provides an overview of
Es-Stream, its architecture and the algorithms used for elastic
scaling and adaptive state repair.

A. System Architecture

As shown in Fig. 8, Es-Stream consists of the modules for
monitor, topology analysis, resource analysis and state notifica-
tion management.

The monitoring module is responsible for real-time infor-
mation collection, including CPU, I/O and memory resource
consumption of compute nodes and tasks in the cluster, the
data transmission rates between tasks in the topology, and the
running status of the stream system. The collected information
is subsequently stored in the database.

The topology analysis module focuses on optimizing the
instance number for each operator in the topology. This in-
stance number is a critical parameter during when topology
initialization. A well-defined instance number for an operator
can effectively improve the system throughput and reduce the
response time. The topology analysis module retrieves the topol-
ogy information stored in the database, analyzes and models
these data to determine the optimal instance number for each
operator in the topology.

The resource analysis module analyzes the resource load of
the cluster and determines the appropriate nodes for deploying

or recycling operator instances based on the results of topology
analysis.

The state notification module notifies the tasks to repartition
the backup state. Using the output from the topology analysis
module, changes to the number of instances for stateful operators
can be obtained. If the number of operator instances is scaled at
runtime, the task’s state should be repartitioned accordingly to
ensure that the buffered data tuples are correctly mapped to the
respective partitions.

Compared to traditional solutions, Es-Stream has the follow-
ing advantages: 1) Traditional solutions configure the instance
number for operators in a topology based on the stable rate
of data stream, resulting in a static running topology in the
cluster. Es-Stream, on the other hand, can dynamically perceive
changes in the data stream rate and adjust the resource allocation
weight between operators accordingly. In addition, Es-Stream
can effectively reduce the resources used in low data stream
rates scenarios. 2) Traditional solutions only adjust the number
of instances for stateless operators, which limits their ability to
improve system bottlenecks. Es-Stream can scale the number of
instances for both the stateless and stateful operators for overall
throughput improvement. Additionally, Es-Stream implements a
flexible and low-overhead state recovery mechanism by backing
up task states to upstream instances and caching data tuples
within a checkpoint interval.

B. Elastic Scaling

After operators of a streaming application are deployed to
the compute nodes, there arises a need to automatically scale
the instance number for operators to adapt to fluctuating data
streams. Several factors need to be considered in this process.
When the resources utilized by the streaming application are
sufficient, scaling up/down the parallelism of operators within
the stream application proves to be an effective way for reducing
system latency. When the resources are inadequate, scaling out
the resources becomes a viable solution to improving the system
bottlenecks. This involves instantiating new instances of opera-
tors on additional compute nodes. Therefore, the elastic scaling
mechanism primarily encompasses scaling operator parallelism
and resource allocation.

(1) Scaling operator parallelism: We first focus on the
instance number of operator vi. Assume the average input
rate of operator vi in time interval [te, ts] is Irvi

, and each
instance of operator vi processes data tuples at the rate of
{μi,1, μi,2, . . ., μi,k}, where k is the current instance number
of operator vi, the average processing rate μvi

of vi’s instances
can be calculated by (7).

If Irvi
> μvi

· k, operator vi can not keep up with the in-
coming tuples, resulting in an increasing number of tuples in
the operator queue over time and infinite queuing latency. In
such cases, scaling up the parallelism for operator vi becomes
crucial for system performance optimization. Conversely, if
Irvi

< μvi
· k, we model operator vi as an M/M/k queuing

system [20] to further reduce the sojourn time of tuples processed
by operator vi.

Based on Erlang formula [12], it can be inferred:

pn = P{N = n} =

⎧⎪⎨
⎪⎩

ρ
n

n!·p0, n=1,...,k,

ρ
n

k!·kn−k · p0, n ≥ k,

(14)

Authorized licensed use limited to: China University of Geosciences. Downloaded on March 20,2025 at 01:51:21 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: ELASTIC SCALING OF STATEFUL OPERATORS OVER FLUCTUATING DATA STREAMS 3561

where pn denotes the probability distribution of queue length
n for operator vi in a steady environment, and p0 and ρ can be
calculated by (15).

p0 =

⎡
⎣k−1∑
n=0

ρn

n!
+

ρk

k! ·
(
1− Irvi

k·μvi

)
⎤
⎦
−1

, ρ =
Irvi

μvi

. (15)

The probability of n data tuples in operator vi under steady
conditions is given by (14). If n ≥ k, the data tuple emitted by
the upstream instance will be placed in the queue in operator
vi, awaiting processing. The waiting probability of data tuples
form upstream can then be calculated by (16).

wp =

∞∑
n=k

pn =
ρk

k! ·
(
1− Irvi

k·μvi

) · p0. (16)

Based on the waiting probabilitywp, the average queue length
Ql can be calculated by (17).

Ql =
∞∑

n=k+1

(n− k) · pn

=
p0 · ρk
k!

·
∞∑

n=k

(n− k) ·
(

Irvi

k · μvi

)n−k

=
wp · Irvi

k·μvi

1− Irvi
k·μvi

. (17)

The number of data tuples in operator vi mainly consists of
the average queue length and the average number of tuples being
processed. Hence, the average queue length Qvi

for tuples in
operator vi can be calculated by (18).

Qvi
(k) = Ql + ρ

=
wp · Irvi

k·μvi

1− Irvi
k·μvi

+
Irvi

μvi

=

(
Irvi
μvi

)k

· Irvi
· p0

k! ·
(
1− Irvi

k·μvi

)2

· k · μvi

+
Irvi

μvi

, (18)

where Qvi
(k) denotes the average number of data tuples in

operator vi when the number of instances of operator vi is k.
If there exists a value k∗ that makes Qvi

(k∗) satisfy condition
(11), then k∗ is considered the optimal number of instances for
operator vi.

From the stream application model, it is evident that a stream
application can be regarded as a directed acyclic graph. Thus,
the data tuples processed by the application follow a directed
flow, with upstream instances emitting processed data tuples to
downstream instances. When scaling up or down the number of
instances of operatorvi, it does not affect the upstream operators’
ability to process data tuples. However, it may result in down-
stream operator instances accumulating data tuples or generating
idle resources. Therefore, adjusting the instance number of oper-
ators should be performed hierarchically, with priority given to
scaling up/down the instance number of upstream operators. We
utilize topological sorting to determine the sequence of scaling
operators, as it can effectively analyze the dependencies between
operators.

Algorithm 1: Scaling Up/Down the Instance Number of
Operators.

Input: Irvi
and μvi

.
Output: k∗.

1 Get the resource β used by the instance of operator vi;
2 Initialize the number k of instances for operator vi,

k = | Irviμvi
|;

/* Search the optimal number of
instances */

3 while true do
4 Calculate the average queue length Qk of k instances

by (18);
5 Calculate the average queue length Qk+1 of k + 1

instances by (18);
6 Calculate the average queue length Qk−1 of k − 1

instances by (18);
7 if Qk −Qk+1 ≤ β

1−β ≤ Qk −Qk−1 then
8 k∗ ← k;
9 Break;

10 end
11 k ++;
12 end
13 return k∗

The algorithm for scaling up/down the instance number of
operators for stream applications is described in Algorithm 1.

The input of Algorithm 1 includes the input rate Irvi
and

processing rate μvi
of operator vi. The output of the algorithm

is the optimal number k∗ of instances for operator vi. Step 1 gets
the average resource used by each instance of operator μvi

. Step
2 initializes the minimum number of operator instances, where
the input rate equals the processing rate of the operator. Under the
constraints of resource consumption and system latency, steps 4
to 13 search for the optimal number of operator instances. The
time complexity of Algorithm 1 is O(k∗), where k∗ denotes the
optimal number of instances.

(2) Scaling resources: Given a cluster CN = {cn1, cn2,...,
cns,...,cnsc}, where cns represents a compute node in the cluster
of size sc, we assume the CPU utilization, memory utilization
and I/O utilization of a compute node cns are Rc

cns
, Rm

cns
and

Ri
cns

, respectively. For a compute node cns, if its resource
load satisfies condition (5), tasks deployed on that node can
process data tuples efficiently. Considering all compute nodes
in the cluster, when the data stream rate increases, to keep the
resource load of all nodes satisfy the condition (5), we need to
decide whether to deploy new instances on the fixed compute
nodes used by the stream application or preempt new compute
nodes. Similarly, when the data stream rate decreases, we need to
determine whether to reduce the number of compute nodes used
by the stream application. To address this problem, we construct
a resource load model to evaluate the system’s resource usage.
It is described by (19).

SK =
cs ·∑cs

i=1

(
Rcni

−Rcn

)3
(cs− 1) · (cs− 2) · σ3

, cs ≤ sc, (19)

where SK is the skewness coefficient of the resource load for
the compute nodes used by the stream application, cs denotes
the number of compute nodes used by the stream application, sc
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denotes the size of the cluster, Rcn is the average value of Rcni
,

and σ can be calculated by (20).

σ =

√∑cs
i=1

(
Rcni

−Rcn

)2
cs

, (20)

where σ is the standard deviation of resource load for the
compute nodes used by the stream application.

If SK > 0, it shows a right-skewed distribution of resource
load among nodes, meaning that most nodes have a lower
resource load compared to the average value Rcn. If SK < 0, it
implies a left-skewed distribution of resource load, where most
nodes have a higher resource load than the average value Rcn.
In addition, a larger absolute value of SK indicates a more
pronounced skewness in the load distribution among nodes.

Based on the above analysis, if SK ≤ η and Rcn ≥ ϕ, the
system may approach a performance bottleneck. In this case, if
the data stream rate continues to increase, the problem of data
tuples piling up in the system can be addressed by adding some
new instances of operators in the stream application. However,
it is not advisable to deploy these new instances on the nodes
already used by the topology, as the resource load of most nodes
already exceeds ϕ. Instead, a better approach to mitigate the risk
of introducing a bottleneck in the stream application is to deploy
the new instances, generated through scaling up the topology,
on separate compute nodes.

If SK ≥ η or Rcn ≤ ϕ, it indicates that the system has
sufficient capacity to process more data tuples. In such cases,
deploying new instances on the compute nodes used by the
stream application can be explored. Consideration is first given
to deploying the new instance on the nodes with the minimum
resource load. If the nodes with the lowest resource load cannot
meet the deployment conditions, an appropriate node will be
selected from the entire cluster. In addition, the CPU resource
rcnew consumed by a new instance of operator vi can be measured
by (21).

rcnew =
1

k
·

∑
vi,j∈vi

rcvi,j
, (21)

where k denotes the optimal number of instances for operator vi
and rcvi,j

denotes the CPU resource consumed by instance vi,j
of operator vi.

Similarly, the memory resource rmnew and I/O resource rinew
consumed by the new instance of the operator can be measured
in the same way.

Based on the resource constraint model (Section III-C), de-
ploying a new instance of an operator to the compute node cns

needs to satisfy the conditions represented by (22).⎧⎨
⎩
Rc

cns
+ rcnew ≤ αc,

Rm
cns

+ rmnew ≤ αm,
Ri

cns
+ rinew ≤ αi.

(22)

If SK ≥ χ and Rcn ≤ ζ, it indicates that the system may have
idle resources. In this case, if the data stream rate continuously
decreases, reducing the number of instances can effectively
prevent the stream application from consuming unnecessary
resources. During this process, the compute nodes that were
preempted by scaling out the resource for the stream application
are prioritized for releasing resources to shrink the number of
nodes used by the stream application.

C. State Recovery

To support scaling up or down the parallelism for stateful oper-
ators, we design a data repartitioning mechanism that involves
partitioning and merging data backups while auto-scaling the
instances of operators at runtime. For each instance of a stateful
operator, when the logical topology of instances is changed
through elastic scaling, the backup for each instance needs
to adjust the mapping relationship between the state of data
tuples and the instance of the operator. This mapping adjustment
process is described by (23).

S(vi,j)
Map(vi)−→ {S(vi,1, Si,1), . . ., S(vi,k∗ , Si,k∗)}, (23)

where S(vi,j) denotes the backup state of instance vi,j in opera-
tor vi, and Si,k∗ and k∗ respectively denote the partial state of in-
stance vi,j and the optimal number of instances after scaling the
instances of operator vi. The backup state is defined as the union
of individual backup partitions, denoted as S(vi,j) = Si,1 ∪
Si,2 ∪ . . . ∪ Si,k∗ , Si,1 ∩ Si,2 ∩ . . . ∩ Si,k∗ = ∅. Each partition
Si,m corresponds to a specific instance of operator vi. The
repartitioned states {Si,1, ..., Si,k∗} from the backup of instance
vi,j are emitted to their corresponding instances. Upon receiving
the states from the backups, the instance merges these state data,
as described by (24).

S ′(vi,j) = S1,j ∪ S2,j ∪ . . . ∪ Sk∗,j , (24)

where S ′(vi,j) denotes the merged state of instance vi,j and
S1,j ∩ S2,j ∩ . . . ∩ Sk∗,j = ∅.

The overhead of this data repartitioning mechanism conforms
to the following Theorem 1.

Theorem 1: The repartitioning timeRT of stateS for operator
vi decreases as the number of scaled instances in operator vi
increases.

Proof: When the parallelism of an operator changes, we need
to repartition the operator’s state to maintain state consistency.
Let the state of operator vi be S, its repartitioning time RT
is the maximum time taken to repartition the state S across
all instances of vi. In this repartitioning process, each instance
vi,j primarily incurs two time costs: the computation time for
repartitioning the state and the transmission time for emitting
the partitioned data to downstream instances. The repartitioning
time RT of state S for operator vi can be calculated by (25).

RT = max

(
S

k∗ · cej +
S

k∗ · trj

)
, j = 1, 2, . . ., k (25)

where cej and trj respectively denote the computing efficiency
and the transmission bandwidth of the instance backing up the
state of vi,j , and k∗ denotes the optimal instance number for
operator vi.

From (25), it can be seen that RT is the repartitioning time of
the worse-performing instance (i.e., with the lowest computing
efficiency and bandwidth). When the optimal instance number
k∗ increases, the repartitioning timeRT of the worse-performing
instance can be significantly reduced.

To minimize overhead while achieving a state repair mech-
anism for scaling the parallelism of stateful operators, we also
design a mechanism for the upstream operators to backup state
and cache data tuples. This mechanism has two key aspects:

1) State Backup: The state of instances in stateful operators
is backed up to their upstream instances. Leveraging the
existing communication connections in the logical ring
formed by all operators in the stream application, each
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instance in a stateful operator manages its own state. If
the resource load of a node is below a threshold value,
denoted as α, the instance periodically synchronizes its
state with the upstream. Otherwise, the sync interval is set
to infinite.

2) Output Result Backup: For a stateful operator, the output
results of its upstream instances for processing data tuples
are locally backed up within a specific time interval. When
the parallelism of stateful operators changes, the upstream
instances repartition the backup state and send the parti-
tioned state to the corresponding downstream instances.
Subsequently, the locally cached backup output results
within the current time interval in the upstream instances
are re-emitted to the downstream instance. This approach
avoids the need for a global rollback of state across the
entire topology and reduces system overhead.

The overhead of this state repair mechanism conforms to the
following Theorem 2.

Theorem 2: When operator vi has failed instances, there is
a positive correlation between the state repair time SR and the
checkpoint interval time CI for operator vi.

Proof: When there are failed instances in operator vi, merely
pulling the state of operator vi from the previous backup is
insufficient because the state data processed during the current
checkpoint interval has been lost. This state data has to be
recovered. Let the average input rates of the f failed instances
in operator vi be {IRi,1, IRi,2, . . ., IRi,f}. In this state re-
pairing process, upstream data emission and downstream data
processing occur simultaneously, but they may have different
completion time due to variations in workload. Therefore, the
state repair time of each failed instance is the maximum between
the upstream data emission time and the downstream data pro-
cessing time. The state repair timeSR for operator vi is the max-
imum repair time across all the failed instances, which can be
calculated by (26).

SR = max

(
max

(
IRi,j · CI

eri,j
,
IRi,j · CI

μi,j

))

= CI ·max

(
max

(
IRi,j

eri,j
,
IRi,j

μi,j

))
, j ∈ [1, f ] (26)

where eri,j denotes the data receiving rate of the failed instance
vi,j during the state repairing process, which is calculated by
(3). μi,j denotes the processing rate of the failed instance vi,j .
f denotes the number of failed instances in operator vi.

From (26), it can be seen that the state repair time SR for
operator vi is determined by the worst-performing instance
(i.e., with the lowest computing efficiency and/or the slowest
data receiving rate from upstream). Increasing or decreasing the
checkpoint interval CI can directly affect the state repair time
of the worst-performing instance.

VI. PERFORMANCE EVALUATION

In the section, we focus on evaluating the proposed Es-
Stream framework. Es-Stream was implemented and tested in
a simulated real-world production environment. We utilized
the public dataset from Alibaba Tianchi [16] to design two
application scenarios: real-time statistics of product exposure
(COMMCount topology) and identification of best-selling prod-
ucts (Top_N topology), both of which are commonly found in
the e-commerce field. The experimental settings are the same as

Fig. 9. System latency of COMMCount under stable data rate.

those in Section II. We evaluate two key performance metrics for
the COMMCount and Top_N applications: system performance
and system overhead for scaling the parallelism of stateful oper-
ators. The evaluation of Es-Stream aims to answer the following
questions:

1) Can Es-Stream improve system performance when pro-
cessing a high data stream rate?

2) Can Es-Stream scale up/down the number of operator
instances and nodes in a streaming application to adapt
to a fluctuating stream data rate?

3) Can Es-Stream decrease the system overhead when scal-
ing the parallelism for stateful operators?

A. System Latency

System latency is the time interval from the input of data
tuples to the output of the system. We evaluate the latency
under different input rates, and compare it with state-of-the-art
works. Among these works, EvenScheduler [21], R-Storm [22]
and DRS [12] are the most representative in resource manage-
ment and parallelism configurations. In addition, we define the
system stabilization time as the duration from the submission
of a streaming application to the point where system latency
variations become minimal. We consider the system to have
reached a stable state when the system latency fluctuates below
a preset threshold over a system-defined number of consecutive
samplings. Specifically, if the difference between the maximum
and minimum system latency over five consecutive samplings
taken every 2 mins is less than 4ms on Storm, we consider the
system stable.

Given a stable data input rate of 1,800 tuples/s, Es-Stream
exhibits lower latency compared to other solutions when the
system becomes stable. Fig. 9 shows that the average response
time of COMMCount topology are 2.1 ms, 6.4 ms, 4.5 ms
and 2.9 ms for Es-Stream, EvenScheduler, R-Storm and DRS,
respectively, after the systems stabilize. This indicates that Es-
Stream outperforms EvenScheduler, R-Storm and DRS in terms
of system latency.

Given a stable data input rate of 2,700 tuples/s, Es-Stream
exhibits a shorter average response time compared to Even-
Scheduler, R-Storm and DRS after the systems stabilize. In
Fig. 10, the average response of Top_N topology are 14.2 ms,
9.9 ms and 7.1 ms for EvenScheduler, R-Storm and DRS,
respectively. However, Es-Stream achieves an average response
time of 5.9 ms. This clearly demonstrates that Es-Stream has a
lower latency compared to EvenScheduler, R-Storm and DRS.
It was observed that DRS had the closest latency to Es-Stream,
but Es-Stream consistently maintained a lower latency. This is
because, while DRS is capable of constructing a well-optimized
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Fig. 10. System latency of Top_N under stable data rate.

Fig. 11. System latency of COMMCount under increasing data rate.

Fig. 12. System latency of Top_N under increasing data rate.

topology for streaming applications, it ignores the fact that
changes in the parallelism of upstream operators can affect the
data processing time of downstream operators.

Given an increasing data stream rate, Es-Stream consistently
exhibits lower response time compared to EvenScheduler, R-
Storm and DRS. Figs. 11 and 12 show the average response
time for the COMMCount and Top_N topologies under different
input rates after the systems stabilizes. The results show that
the system latency increases as the input rate grows. However,
Es-Stream shows a smaller incremental response time compared
to EvenScheduler, R-Storm and DRS when the data stream rate
increases. Overall, Es-Stream outperforms the other three in
terms of system latency across different input rates.

In summary, Es-Stream has a lower system latency, because
Es-Stream consistently identifies an optimal configuration for
the operator parallelism of the topology under varying resource
demands, and elastically scales the number of nodes used by the
topology. Through these methods, Es-Stream effectively reduces
the backlog of data tuples in operator instances, thereby further
reducing the system latency.

B. System Bottleneck

System bottleneck refers to the maximum data processing
rate that a system can handle. As the data stream rate increases,
if any task in a stream application fails, we consider the data

Fig. 13. System bottleneck of two streaming applications.

stream rate at that point to be the system’s bottleneck. To identify
this bottleneck, we deploy two streaming applications respec-
tively under EvenScheduler, R-Storm, DRS and Es-Stream in
the same resource environment. To ensure fair comparison, all
experiments use the same number of compute nodes, the same
dataset, and applied identical stream rate increments.

Given an increasing data stream rate with increment of 500 tu-
ples/s, Es-Stream has higher system throughput than Even-
Scheduler, R-Storm, and DRS. As shown in Fig. 13, in the
two stream applications COMMCount and Top_N, Es-Stream’s
system bottlenecks are 15,000 tuples/s and 13,500 tuples/s,
respectively, which are significantly higher than those of Even-
Scheduler, R-Storm, and DRS.

The reason for Es-Stream’s better performance is its ability
to dynamically adjust resource allocation based on operator
requirements. For operators that need more resources, Es-Stream
automatically configures higher parallelism; for those with lower
demands, it configures lower parallelism. This dynamic adjust-
ment ensures efficient resource utilization, reducing waste and
competition among operators. By optimizing resource alloca-
tion, Es-Stream can optimize the system’s processing capacity,
thereby increasing overall throughput.

C. Elastic Scaling

In this experiment, we aim to assess the effectiveness of the
elastic scaling mechanism by observing the variations in the
number of topology instances and computing nodes. To conduct
the experiment, the streaming applications are deployed in a
well-resourced cluster. For the stable input rate scenario, we
set the time interval between adjustments in the parallelism of
operators to 15s. In the case of changing input rates, we set
the adjustment time to 10s. We disable the scaling of stateful
operators, which will be discussed in the subsequent subsection.
In addition, we set the trigger scaling factor to 0.2, meaning that
the data stream rate increases by more than 0.2x for scaling to
be triggered.

Given a stable input rate of 1,800 tuples/s, Es-Stream demon-
strates its ability to determine the optimal number of instances
for each operator, thereby minimizing system latency. Fig. 14
illustrates the changes in instance numbers for the first and sec-
ond operators in both the COMMCount and Top_N topologies
overtime. The instance number of the first operator decreases,
while that of the second operator increases. Moreover, after the
system becomes stable, the total number of instances decreases
for COMMCount and increases for Top_N. This observation
suggests that different stream applications require varying levels
of resources to process the data stream effectively. Es-Stream
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Fig. 14. Scaling up/down instances under stable input rate.

Fig. 15. Scaling up/down instances under changing input rate.

Fig. 16. Scaling up/down node number for COMMCount under fluctuating
input rate.

can automatically adjust the resources allocation of a stream
application to adapt to the data stream rate.

Given a variable data stream rate, Es-Stream can adjust the
number of instances in the topology to accommodate these
variations. In our experiment, we change the data stream rate
to 3,600 tuples/s at 100s. As shown in Fig. 15, the total number
of instances increases from 14 to 24 for COMMCount and from
18 to 27 for Top_N. Similarly, when we adjust the data stream
rate to 2,700 tuples/s at 160s, the total number of instances
decreases from 24 to 19 for COMMCount and from 27 to 23 for
Top_N. These results provide evidence that Es-Stream is able to
elastically scale a stream application in response to fluctuating
data streams.

Given a fluctuating data stream rate, Es-Stream can adjust
the number of compute nodes for the topology to adapt to
changing resource demands. As shown in Figs. 16 and 17,
Es-Stream exhibits adaptability by dynamically adjusting the
number of compute nodes based on the input rate, whereas DRS
and R-Storm use a static number of nodes regardless of input
rate fluctuations. In these experiments, Es-Stream dynamically
adjusts node usage, indicating an adaptive design that scales with
input load, while R-Storm maintains a minimal and consistent
node usage, prioritizing resource efficiency. However, while
R-Storm is resource-efficient, it may lead to system instability

Fig. 17. Scaling up/down node number for Top_N under fluctuating input rate.

Fig. 18. Recovery time for stateful operator with different checkpoint inter-
vals.

under high load conditions. DRS, with its static node usage,
may ensure stability but at a higher resource cost. Therefore,
Es-Stream is more suitable under fluctuating rates as it balances
both resource efficiency and system stability.

D. System Overhead

System overhead refers to the time required for scaling the par-
allelism of stateful operators and recovering from faulty nodes.
In this experiment, we use COMMCount topology to evaluate
the system overhead. The recovery time primarily includes the
time of recovering state and the time of recomputing data tuples.

Given a stable data input rate of 1,800 tuples/s, the recovery
time of Es-Stream for stateful operators is observed to be faster
than that of the Checkpoint mechanism. As shown in Fig. 18, the
recovery time for both Es-Stream and Checkpoint increases as
the Checkpoint interval increases. However, Es-Stream exhibits
a shorter recovery time compared to Checkpoint. In addition,
the standard deviation of recovery time for Es-Stream and
Checkpoint is 1.3 and 2.5, respectively. This indicates that the
Es-Stream has a smaller fluctuation in recovery time as the
checkpoint intervals increase, demonstrating its more stable and
efficient performance compared to the checkpoint mechanism.
This improvement is mainly attributed to the fact that Es-Stream
caches the data tuples of a checkpoint interval, and when stateful
operators experience state recovery caused by scaling, it ef-
fectively reduces the state recovery time through partial state
rollback.

Given a stable input data rate of 9,00 tuples/s and a checkpoint
interval of 5s, the overhead of Es-Stream in terms of recovery
time is observed to be smaller compared to the Checkpoint
mechanism as the state data size increases. As shown in Fig. 19,
the recovery time for both Es-Stream and Checkpoint gradually
increases as the state data size grows. However, Es-Stream
exhibits a shorter recovery time compared to Checkpoint, in-
dicating its efficiency in handling larger state data sizes. In
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Fig. 19. State recovery time with increasing state data size.
.

Fig. 20. Repartitioning time with increasing operator parallelism.

addition, the standard deviation of recovery time for Es-Stream
and Checkpoint is 0.7 and 1.5, respectively, suggesting that
Es-Stream achieves a more stable and consistent performance
in recovering the state of instances for stateful operators with
increasing state data size. Es-Stream performs well in increasing
state size because Es-Stream performs concurrent state reparti-
tioning and then merges the results, which enables Es-Stream to
have better performance in executing larger state recovery.

Given the same data state size (e.g., 42MB), Es-Stream
demonstrates lower state repartitioning time through concurrent
execution. As shown in Fig. 20, when the degree of parallelism
increases, the time taken to repartition state using Es-Stream
generally decreases until it stabilizes at 0.225s. The time taken
using Checkpoint does not show a consistent decreasing trend
and remains relatively high, with slight variations around 0.71s
to 0.75s. The reason Es-Stream shows lower state repartitioning
times compared to Checkpoint is that Es-Stream performs con-
current state repartitioning and then merges these results. This
concurrent approach allows Es-Stream to efficiently handle the
repartitioning process, leading to reduced overall time compared
to Checkpoint, which appears to handle the process in a less
parallelized manner.

Given a stable data input rate of 1,800 tuples/s, Es-Stream ex-
hibits faster fault recovery time for stateful operators compared
to the Checkpoint mechanism. As shown in Fig. 21, Es-Stream
consistently shows lower fault recovery times for every check-
point interval. For instance, at the checkpoint interval time of 2s,
Es-Stream achieves a recovery time of 0.7s, whereas Checkpoint
requires 1.9s. This trend holds across all interval times tested. In
this experiment, the state repartitioning strategy is inactive due to
unchanged operator parallelism. Es-Stream’s efficiency in fault
recovery time is attributed to upstream operators caching data
tuples. When a stateful instance fails, these cached tuples are
resent to the failed instance to facilitate partial rollback for the
streaming application. In contrast, Checkpoint requires a global

Fig. 21. Fault recovery time with different checkpoint intervals.

rollback of all task states across the entire streaming application
by re-emitting tuples from the data sources.

VII. RELATED WORK

In this section, we review recent works in two related areas:
elastic scaling of operators and state management of operators.
A comparison between our work and the relevant research is
summarized in Table I, where Kmax denotes the maximum
number of operator instances, k denotes the number of operator
instances, andn denotes the number of operators in the topology.

A. Elastic Scaling Operators

The elasticity of resource scaling in cloud computing envi-
ronments has been widely researched. For example, [24], [25],
[26] dynamically adjusted computing resources according to
load variations, aiming to effectively utilize the compute nodes
in cloud environments to reduce budget costs, while ensuring
quality of service. However, in a stream computing environment,
the strong dependencies between operators within a stream ap-
plication make resource management more complex. Traditional
elasticity scaling strategies in cloud computing environments
cannot be directly applied to stream computing environments. To
address this limitation, researchers have made efforts to optimize
the scaling mechanisms for stream applications.

To balance operator parallelism and resource overhead, [8],
[27] implemented operator managers using reinforcement learn-
ing to control the automatic scaling of operators. However, it may
take a long time to collect information on operator parallelism
changes for making a good operator scaling strategy. An optimal
decision model requires continuous trial-and-error of the system,
which incurs additional system overhead. Other research [28],
[29] collected historical data on configuration parameters in
cloud environments, such as operator parallelism, and applied
machine learning to train models for determining suboptimal
parameter configurations. However, collecting such historical
data is time-consuming and labor-intensive, and the resulting
models may not generalize well across different scenarios.

To ensure the consistency of operator states after scaling,
Joker [30] iteratively increased the parallelism of operators until
the system performance cannot be further optimized. In this
process, it can adaptively redistribute operator states. However,
iterative updating of operator parallelism can introduce more
system overhead, and the redistributing of operator states with
changing parallelism can exacerbate this problem. In addition, if
the data processing is much smaller than the operator bottleneck,
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TABLE I
RELATED WORK COMPARISON

not promptly scaling down the parallelism will inevitably result
in resource waste.

In conclusion, the aforementioned solutions provide valuable
insights for addressing elastic scaling operations. Es-Stream
system, in particular, stands out by considering the resource
overhead of operators and the sojourn time of tuples within
operators. It also supports adjusting the operator parallelism, and
scaling stateful operators through low-overhead state recovery
mechanisms.

B. State Management of Operators

Effective state management not only reduces system over-
head, but also improves system reliability [9]. To optimize state
backup and recovery, an increasing number of researchers have
studied different aspects of the area, such as upstream state
backup, distributed state backup and state slicing.

A fault-tolerant mechanism was proposed by [15] to ensure
state backup consistency and rollback recovery. The mechanism
performs a self-adaptive upstream backup for operator state and
elastic data slicing to enhance the reliability of operator state.
To mitigate runtime overhead and output latency associated with
full-backup mechanisms, an approximate fault-tolerant scheme
was proposed by [31]. This scheme investigates the trade-off
between fault-tolerance overhead and output accuracy in stream
processing systems, aiming to minimize the overhead while
meeting the accuracy requirements defined by users. However,
this approach improves system performance at the cost of sac-
rificing some state accuracy.

In [32], the authors organize streaming application operators
into a distributed hash table, where each operator is associated
with a unique set of neighbors. It divides the in-memory state
of each operator into multiple fragments and periodically saves
them in the neighbors’s node to ensure state reliability. However,
this approach may face challenges when applied to state recovery
caused by scaling the parallelism of operators.

Compared to the above state-of-the-art works, Es-Stream
stands out by its ability to recover the state data when adjusting
the parallelism of stateful operators. In addition, it incorporates
a dynamic caching mechanism that effectively reduces system
overhead by caching data tuples within a variable time interval.

VIII. CONCLUSIONS AND FUTURE WORK

In a volatile data flow rate scenario, the key objectives of a
system implementation are to minimize system latency, reduce
resource overhead, and ensure the reliability of system state. To
achieve these objectives, it is essential to have a system that can
sense the size of data stream and the resource consumption of
operators in stream applications. The system should dynamically

allocate resource weights to operators, adjust the parallelism of
operators based on changing requirements, and maintain system
state consistency.

To address these requirements, we propose a reliable resource
scaling framework that adapts to volatile data streams. The
framework encompasses three main aspects. First, it can handle
changes in data streams by dynamically adjusting the parallelism
of operators, while minimizing the system latency and resource
consumed by operators. Second, it can expand or contract the
number of compute nodes deployed by the stream application,
minimizing system resource overhead. Third, it can respond
to changes in the parallelism of stateful operators in a stream
application. This ensures the consistency and reliability of the
system state.

In the future, we will further explore the following areas.
1) Integrate load balancing among the instances of stateful

operator into Es-Stream to further reduce system latency.
2) Design probability models to support approximate com-

puting results for specific scenarios.
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