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a b s t r a c t

Multi-task allocation in multi-agent systems aims to accomplish tasks efficiently and successfully,
while obtaining more rewards to enhance the entire system operation at the same time. Most existing
assignment methods are based on agent coalitions, which cannot balance the profit distribution and
task execution success rate or ignore the coalition stability, leading to a low execution level and
assignment failures. Few coalition scheduling methods exist for multi-task allocation based on a fixed
agent population. In this paper, we propose an effective stability quantum particle swarm optimization
(SQPSO) algorithm which includes high rewards obtaining, benefit dividing, coalition stability insuring,
and a historical task mechanism for search acceleration. Secondly, we design an efficient establishment
quantum particle swarm optimization (EQPSO) algorithm for coalition scheduling, which is equipped
with coalition similarity judgment to reduce the coalition formation time cost. The experiment results
show that SQPSO guarantees a superior coalition for every task and earlier convergence in the whole
task set allocation, and EQPSO gives the optimal scheduling order which reduces the total execution
time.

© 2020 Published by Elsevier B.V.
1. Introduction

Task allocation is a significant component in multi-agent sys-
ems for the achievement of comprehensive and complex goals.
hen a complex task arrives, it will be allocated to a coalition
irectly such that agents cooperate to finish it or be divided into
ubtasks and then allocate to agents to accomplish. The process
f finding the essential solution is known as task allocation.
herefore, the challenges of task allocation include three factors.
irst, for the way that allocates one task to an agent coalition, the
ssential step is to find the best coalition so that agents can coop-
rate to finish a task. Second, for the approach that divides a task
nto subtasks then allocates them to agents, it requires a number
f agents that coordinate to finish the tasks. Third, to measure
he quality of allocations, standards are complex and various,
hich can be execution time, task achievement, success rate of
llocation and total utility, or a combination of above. Based on
hese three kinds of challenges, three branches of solving method
merge.
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Different task allocation methods are proposed to adapt vari-
ous of constraints and circumstances to get lower execution time,
higher task achievement and more total utilities. As for the first
challenge, Dutta et al. [1] explored coalition formation for hetero-
geneous agent, which made different type agents cooperate for
finishing instantaneous allocations. Besides, Jiang et al. [2] based
on game-theory proposed autonomous decision-making method
for agent cooperation to address task allocation in a large-scale
population. While for the approach dealing with second challege,
Abdallah et al. [3] accomplished the task decomposing and found
agents suitable for subtasks. Based on this idea Rahman et al. [4]
proposed optimum subtask allocation to achieve a two-level feed-
forward optimization for better performance. What is more, in
the subtask allocation method, with resource or time constraints
there is no doubt that coordination is an effective concept for
agents to solve conflicts of resource use or time constraint prob-
lems in a cooperative multi-agent systems (MAS) environment. In
the coordination mechanism based on protocols, such as contex-
tual resource negotiation-based (CRN) [5], contract net protocol
(CNP) [6,7] or other negotiation methods, agents are supplied
with communication skills to aid coordination when limitations
or conflicts occur. For the third challenge, one significant point
of the influence of measuring allocation is the cost. It is obvious
that the main cost is the communication cost during these coor-
dinations. Thus, the pattern of allocation is extremely important
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for cutting down time from the aspect of interaction frequency
among agents. Based on this perspective, Faezeh [8] proposed an
efficient task assignment approach that not only improved the
allocation success rate via resource reliability calculation but also
saved the execution time by accurate task matching. Hence, the
negotiation protocols and advanced reliable methods mentioned
above can contribute to decreasing the execution time to a cer-
tain extent. However, unlike above non-coalition measures, the
mechanism for coalitions usually attaches to coalition advantages
in cooperating to finish the task at a higher efficiency level.

Using coalitions to replace discrete agents has an obvious
advantage, which is reducing the time needed for information
passing, such that maximum utility increases in task allocation.
Compared with the method in which several agents execute
subtasks, assuming that plenty of agents are available for tasks,
a cooperative coalition that solve one task might save greater
time and cost because of advantages on resource sharing, con-
flict solution and cooperation optimization. Therefore, for the
allocation based on coalitions, the most significant portion of
task achievement is formulating a suitable coalition to meet the
corresponding task requirements. Coalition formation has been
shown to be an NP-hard problem [9] and the correlative al-
gorithms aim to find the optimal coalition structure to satisfy
one or several objectives in many research studies. And to im-
prove the search efficiency, Rahwan et al. [10] decreased the
search space and applied a cycle technology that can generate a
valid coalition only. Besides, Yu et al. [11] considered resource
constraints and proposed a new heuristic to give an optimal
coalition combination for single-task robots, multi-robot tasks
and the instantaneous assignment (ST-MR-IA) problem. Both of
these two studies paid attention to a problem, how to find an
optimal coalition in the search space. And they also gave the
corresponding better solutions. Furthermore, with the increasing
complexity of real applications, MAS turns to multi-task for multi-
agent. With respect to the resource, Doucette [12] proposed a
distributed algorithm for newly arriving tasks that included two
types of agents-task agents and resource proxy agents. In his
algorithm, the target was focused on leverage preemption: if
there are resources more suitable for newly arriving tasks, the
preemption occurs. However, when agents need cooperation to
implement the tasks, it is a challenge for effective scheduling
to search in exponential agent group combinations. Faced the
exponential search space of agent combinations, an intelligent
optimization algorithm is also a feasible strategy. Particle swarm
optimization (PSO) has a big advantage, i.e., it is easy to modify
PSO to weighted PSO, hybrid PSO, when it performs the short-
comings of premature convergence or traps in local optimality.
And for the problem of multi-agent system task allocation, using
PSO is easy for agent coalition encoding. Brief coalition expression
makes optimal solution finding easier and more efficient. PSO
method not only performs better results in agent control, solution
search and social simulation, but also is good at the assignment,
such as customer order assignment, etc. Win-Chin [13] reduced
the order completion time of one agent and limited all agents’
total completion time using the weighted PSO, which achieved
matching of the suitable order and right agent. According to the
classification PSO algorithm, this method has the limitation of
falling into local optima. However, the quantum particle swarm
optimization (QPSO) [14] produces a better performance than
the PSO with respect to getting stuck in a local optimal solu-
tion, and its two-situation calculation makes the entire process
more efficient. Because the quantum evolution algorithm (QEA)
displays information by quantum state vectors and expresses
chromosome coding by the probability distribution of qubits, a
chromosome can be described as a superposition of multiple

quantum states. These features make the quantum evolution
algorithm having more parallelism than traditional evolutionary
computing, which leads to high efficiency, and is applied in many
works, such as [15–17]. Then, as a novel algorithm, QPSO is
combined with improved QEA theory. In the QPSO algorithm,
qubits are applied on particle current position encoding, quantum
revolving gates are used to searching the optimal location of
particles, and quantum NOT gates help the mutation of particle
locations to avoid premature convergence. Therefore, the optimal
solution searching capacity and optimal efficiency of QPSO are
better than basic PSO. And QPSO has been used for many fields.
For instance, Alokananda et al. [18] proposed a novel method
based on quantum inspired which identified the optimal number
of clusters automatically from an image data set.

Our objective is to accomplish the allocation and scheduling of
multi-task to multi-agent through a novel QPSO method, which
is aimed at finding the optimal coalition for each task based on
the aspects of execution time, agent satisfaction and total profit.
Compared with traditional allocation, we comprehensively con-
sider the satisfaction of agents, which is related to the coalition
stability. Only when agent cooperation could deliver more bene-
fits in the corresponding group, i.e., agents prefer to stay in this
coalition rather than maintaining other coalitions or becoming
independent because their satisfaction is at a superior level, can
we believe that this coalition is relatively stable and has a low
possibility to occur execution failures caused by alliance collapse.
Additionally, we also consider the task similarity in the process of
coalition searching for the entire task set to accelerate the total
running time. On the one hand, an accurate and efficient coalition
set can make more utilities and save more time, on the other
hand, the global scheduling is also a significant contributor to im-
prove execution time for tasks and coalitions. The establishment
and disbanding of one coalition occupy time, and several disjoint
coalitions could execute the corresponding task simultaneously.
Thus, formulating an appropriate coalition scheduling for tasks
is expected to speed up the achievement. By combining the
above two important aspects of multi-task allocation in MAS, our
contributions are described as follows. Firstly, we design a novel
stability quantum particle swarm optimization (SQPSO) method
to find the best coalition for each task in the task set, which
simultaneously includes agent satisfaction, task similarity and
completion reward. Secondly, we finish the coalition scheduling
for the tasks in the establishment of quantum particle swarm
optimization (EQPSO) algorithm to improve the speed of the
entire execution time. Section 2 presents the related work on
MAS task allocation measures and applications. Then, Section 3
describes our allocation problem and presents the details of the
two main algorithms, SQPSO and EQPSO. And in Section 4 we
describe the experiments on a whole allocation process and give
the related analysis. Finally, Section 5 presents the conclusions
and notes the directions of our future work.

2. Related work

Task allocation based on no coalition, such as control mech-
anisms, usually combines two types of approaches, centralized
and distributed, to make a system more flexible, which presents
a highly self-organized distributed method and a comprehensive
quality of centralized method [5]. The exact control mechanism
combination includes several significant aspects of task allocation
for improving the execution time in the total MAS, namely, re-
source access, reliability and constraint. First, the resource access
method might cause resource accumulation disparities, which
means that agents in certain areas could become quite ‘‘rich’’
in the process of ‘‘borrowing’’ other agents’ resources through
links to finish tasks, and subsequently they have more oppor-
tunities to be assigned tasks. Thus, in this circumstance, the
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‘‘richer’’ the agents are, the more chances they will get, which
makes task allocation become stuck with the partial agents. This
is the largest disadvantage in that tasks are not assigned to
other agents that might be more appropriate to them. The stud-
ies of Quentin et al. [19] based on two types of negotiations
could decrease the assignment prejudice through a ‘‘reducer’’
agent, which helps to avoid unfair allocation within the data
resource. Lucija et al. [20] proposed a method called STAPSO
to solve the task assignment in the field of software develop-
ment which shown promising performances on scrum sprint
planning. Secondly, the resource supplied for tasks might not be
reliable, and certain cheating behaviors might occur, i.e, agents
accept tasks but do not have sufficient resources to accomplish
them. To avoid this phenomenon, Jiang [21] used reconnaissance
in their mechanism to test such agents. Guessoum [22] used
agent replacement rules to ensure ‘‘cheater’’ agents could be
replaced by positive agents when monitors observed them. Al-
though these methods found better solutions for tasks, certain
problems still exist for different constraints, such as time, re-
source or agent conflicts. Thus, the third point is offering accurate
measures for the constraints. Kong [23] supplied time price cal-
culation equations for agents and signed a contract to accomplish
the allocation in the open grid circumstance according to the
price computing results. Xing [24] proposed an approach for
information collection to decrease the contacting links, and avoid
the communication constraint and subsequently assigned the
tasks for agents with sufficient and suitable space capability to
avoid the space constraint. These three branches of task allocation
without coalitions could find better solutions, but they also suffer
from disadvantages in communication or increased system cost.

According to the agents’ capabilities and task requests, the
coalition formation algorithm is a feasible method for reducing
communication cost and improving allocation effectiveness, es-
pecially when it is equipped with the appropriate cooperation
mechanism and scheduling designs. Methods based on coalitions
have been widely studied for optimal groups to achieve better co-
operation on tasks. Yin [25] proposed the ‘‘quit-to-choose’’ mech-
anism for agents to obtain an undetermined state and maintained
this state until the most suitable task arrived, at which point
the agents join in the corresponding coalition. For dynamic tasks,
Jin [26] suggested a new coordination control for agent group
cooperation on tracking tasks, which was proved extraordinarily
effective and was extended to uncertain allocation. Morisawa [27]
presented the comparative advantage theory that allowed agents
to choose necessary partners to maximize the economic benefits
in the uncertain task environment. It is obvious that the coalition
facilitates much greater progress on task cooperation and this
technology has been applied to many realistic scenes. Jiang [28]
designed a two-layer decision model for the agent group for-
mation cycle to address the cyber–physical production systems
(CPPS) targets and constraints. Besides, Ramchurn [29] applied
agent autonomy to unmanned aerial vehicles (UAV) cooperation
to finish tasks related to scheduling, assignment and reaction of
dropping and they designed a flexible coordination model for
UAV to ensure that they establish a suitable and correct coalition,
similar to agents.

Optimization and improvement are significant components
in MAS for task allocation based on a coalition because of the
coalition advantages and wide application fields, and its for-
mation method plays a central and crucial role in improving
assignment. In fact, a number of optimizations in MAS simulation
rely on intelligent optimization algorithms, including coalition
optimization. For instance, for the aspect of MAS simulation,
Janecek [30] combined PSO algorithm for agent social simula-
tion, which produced the decision making process of customer

consumption. As an example for agent task allocation, Younas
Fig. 1. The relationship of tasks, agents and coalitions.

t al. [31] examined a modified genetic algorithm (GA) to fix
he assignment problem (AP) by focusing on one class problem
n which every task is assigned to a group of agents to finish,
hich means that they used coalitions to address the large tasks
roblem. And it has been proved that their novel GA could can
ind the near-optimal solution using crossover operator building.
imilarly, Kouka [32] presented a novel multi-objective particle
warm optimization (MOPSO) for MAS address the local optimum
nd stagnation problems. Obviously, the researchers obtained im-
rovement among cooperative agents using this measure and the
areto order queue to dynamically adjust agent population and
ubpopulation. It is worth to noting that associating MAS with
he quantum property increases the correction and also acceler-
tes the algorithm running time. Fougères et al. [33] introduced
uantum cognition for agent strategy determination and applied
t to the Takuzu game and presented a discussion of complex
gent system modeling with quantum cognition. Furthermore,
riarunothai [34] speeded up the agent learning process using
n ion trap quantum, and Lon [35] used quantum annealing for
he best coalition on D-wave. Consequently, it is necessary and
ignificant to introduce quantum cognition into MAS for shorter
unning time and higher accuracy.

. The proposed algorithms

.1. Problem description

The problem is finding the optimal coalition for each task that
an meet the conditions of more profits, high agent satisfaction
nd rapid execution time, giving the most suitable scheduling for
oalitions and the optimal scheduling plan for the entire task set.

(1) Task, agent and coalition definition.
A task, denoted as τi, is 2-tuple (td, Bτi ), where td is the
duration time of task τi and Br is the set of r kinds of
capability values of τi, Bτi = {b1, b2, . . . , br}.
An agent, denoted as ai is 2-tuple (ID, Bai ), where ID = i is
the identification number of ai and Bai is the set of r kinds
of capability values of ai, Bai = {b1, b2, . . . , br}.
A coalition, denotes as Ci is a set of agents that are allocated
to task τi. The size of every coalition is different, which is
decided by the allocation targets.
In order to make the relationship of tasks, agents and coali-
tions, we give the following illustration. In Fig. 1, we can
see that different tasks have various agent combinations
and unequal coalition sizes. When executing the current
task τi, agents make the coalition Ci, and after finishing this
task coalition Ci dismisses automatically.

(2) Assumptions.

(1) One agent can join only one coalition working on one
task at a time.
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(2) In the entire execution process of one coalition, the
agent can only join one coalition from the begin-
ning to the end or ignore it completely with no
participation.

(3) The reward for finishing any task by one agent itself
is less than the coalition cooperation reward, and the
total environment is non-superadditive.

(4) Different coalitions can obtain varied rewards from
the same task, and different tasks feedback varied
profits for the same coalition.

(5) The condition that one task can be executed suc-
cessfully is that at least one agent can reach all the
capability value in the Br of the task. (Therefore, ac-
cording to assumptions (3) and (5) we ensure that no
more than one agent cannot meet the corresponding
task’s requirement set.)

To solve the multi-task allocation in MAS, we take task similarity
into consideration, which is defined as:

ρτi,τj =

∑r ′
k=1(v

k
i − vi)(vk

j − vj)√∑r ′
k=1(v

k
i − vi)

√∑r ′
k=1(v

k
j − vj)

. (1)

ince we consider the optimal Shapley value [36] of the optimal
olution, we calculate the similarity index based on the task
ewards of each combination agent group. The similarity index
etween the two tasks τi and τj can be indicated by the task
ewards vk

i , which means the average reward for the kth com-
ination of the coalition working for task τi and there are r ′ (r ′

=
n
i=1 C

i
n, n is the agent population) kinds of combination size

otal. vi means the average reward value of all kinds of coalitions
f task τi. The similarity application accelerates the process of
ssignment.

.2. Coalition evaluation

To evaluate the coalition assigned, we consider the coalition
tability, the total functions it obtains and the average coalition
ember satisfaction. In the cooperative game theory environ-
ent, selfish agents aim to earn more benefits, and thus agents
refer to join the task coalition that could assign them more from
he total rewards. Since that one of our judgment rules is agent
atisfaction calculation, we write the following equation:

(ai) =
vτj (Cj, ai) − vτj (ai)

vτj (ai)
. (2)

In the above equation, S(ai) denotes the satisfaction of agent
ai, vτj (ai) denotes the profit agent ai obtained by finishing task τj
itself, and vτj (Cj, ai) denotes the profit that agent ai is assigned by
cooperating in coalition Cj for task τj. Through this equation, we
count every agent’s satisfaction, therefore the average satisfaction
index, which represents coalition stability can be calculated by:

SCi =
1

|Ci|

|Ci|∑
i=1

S(ai), (3)

here SCi denotes coalition Ci’s stability index and |Ci| is the size
of coalition Ci.

As shown, the coalition stability is strongly related to what
every member obtains, and thus, the obtained assignment has a
decisive effect for each coalition. From the perspective of justice,
we divide the total profit according to the Shapley rules [36]:

v(C, ai) =

∑
C ′∈C

ω(
⏐⏐C ′
⏐⏐)[v(C ′) − v(C ′

\{ai})], (4)

ω(
⏐⏐C ′
⏐⏐) =

(
⏐⏐C ′
⏐⏐− 1)!(|C | −

⏐⏐C ′
⏐⏐)!

,

|C |!
Table 1
Coalition cooperation cost value.
Coalition size 1 2 [3,4] [5,7] [8,10] [11,15]

vcost (C ′) 0 0.4 0.5 0.8 1.1 1.5

here, v(C, ai) denotes the value that the ith agent ai gets from
he coalition C ’s total gain. According to the Shapley uniqueness
rinciple [37] the v(C ′) is the total profits of coalition C ′, where
′
∈ C , and its value is calculated by v(C ′) = v(τ , C ′) − vcost (C ′),
hich means finishing one task τ will bring v(τ , C ′) reward
nd the cooperating cost inside the coalition vcost (C ′) should be
educted from it. We set the communication cooperation cost in
able 1 according to the coalition size.
The other judgment rule is the single task execution time. The

ime calculation of coalition C working for task τ is shown in the
ollowing equation:

(τ ,C) =
1
r

r∑
i=1

(
bi,τ

1
|C |

∑
|C |

j=1 bi,j

)
td. (5)

As shown in Section 3.1, there are r kinds of capabilities for
every agent and task, thus we count every kind of capability
average value among members to evaluate the total efficiency of
the coalition. In this work, we present the execution time T(τ ,C)
that coalition C work for task τ . bi,τ denotes the ith capability
value of task τ , and bi,j represents the ith capability value of the
jth agent in coalition C.

3.3. SQPSO for task allocation

Inspired by the QPSO algorithm proposed by Tang et al. [38],
which ensured that the calculation did not easily get stuck into
the local optimization, we propose stability quantum particle
swarm optimization (SQPSO) algorithm for task optimal alloca-
tion and corresponding scheduling. In the first step, we use our
algorithm to find the best suitable coalition for every task in the
multi-task circumstance.

By determining the two judgment rules in Section 3.2, we
design the fitness function of one particle Pi, which can be trans-
formed into the corresponding task coalition Ci:

f (Pi) = αv(Ci)S(Ci) + β
1

T(τ ,Ci)
, (6)

where v(Ci) denotes coalition C ′

i s reward, S(Ci) denotes the coali-
ion satisfaction and we can set α′s and β ′s value by the rule:
+ β = 1.
After giving the fitness function, the main steps of the SQPSO

lgorithm are detailed as follows. Compared with the regular PSO
lgorithm, SQPSO has several obvious differences which we can
ee in the following three steps. First, in the first step, SQPSO
dopts the probability amplitude of qubits to the current loca-
ion encoding expression and every quantum particle has two
ositions which correspond probability amplitude of two quan-
um states |0⟩ and |1⟩ respectively. Next, SQPSO uses quantum
revolving gates to accomplish particle moving, which makes the
particle’s speed update by revolving gate angle changing. Finally,
unlike regular PSO, in order to avoid loss of population diversity,
SQPSO introduces a mutation operator through the quantum NOT
gate which also avoids premature convergence.

(1) Produce the initial quantum particle swarm. One particle
represents one coalition formation and it is encoded as:

Pi =

[⏐⏐⏐⏐⏐ cos(θi1)

sin(θi1)

⏐⏐⏐⏐⏐ cos(θi2)

sin(θi2)

⏐⏐⏐⏐⏐ · · ·

· · ·

⏐⏐⏐⏐⏐ cos(θij)

sin(θij)

⏐⏐⏐⏐⏐ · · ·

· · ·

⏐⏐⏐⏐⏐ cos(θin)

sin(θin)

⏐⏐⏐⏐⏐
]
.

(7)
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Here, i = 1, 2, . . . ,m, m is the size of the quantum particle
swarm, j = 1, 2, . . . , n, n represents the agent population
size, θij = 2π × rnd, and rnd is a random value in (0, 1).
Therefore, every particle includes two states, cosine state
Pic and sine sites Pis for two types of coalition combination:

Pic = ((cos(θi1)), (cos(θi2)), . . . , (cos(θin)))
Pis = ((sin(θi1)), (sin(θi2)), . . . , (sin(θin)))

. (8)

Taking Pic as an example, each qubit cos(θij) represents the
ith agent’s probability of joining the coalition that executes
the corresponding task. The value of the join probability
is converted into 1 or 0 for joining the coalition or not
joining the coalition, and thus the particle is converted into
a coalition vector CVic as follows:

CVic = (cvi1, cvi2, . . . , cvin), cvij =

{
0, if cos(θij) > 0

1, otherwise

(9)

The calculation methods of Pis and CVis are the same as
above.

(2) Update the quantum particle. The updating of every parti-
cle Pic and Pis follows the increment of the qubit argument
θ :

P̃ic = (cos(θi1(t) + ∆θi1(t + 1)), . . . , cos(θin(t) + ∆θin(t + 1)))

P̃is = (sin(θi1(t) + ∆θi1(t + 1)), . . . , sin(θin(t) + ∆θin(t + 1)))
,

(10)

where ∆θij(t + 1) = w∆θij(t) + c1r1(∆θl) + c2r2(∆θg )

∆θl =

⎧⎨⎩
2π + θilj − θij, (θilj − θij < −π )
θilj − θij, (−π ≤ θilj − θij ≤ π )
θilj − θij − 2π, (θilj − θij > π )

,

∆θg =

⎧⎨⎩
2π + θgj − θij, (θgj − θij < −π )
θgj − θij, (−π ≤ θgj − θij ≤ π )
θgj − θij − 2π, (θgj − θij > π )

In this manner, Pic and Pis are transformed to P̃ic and P̃is.
(3) Execute the mutation operation. Via the quantum NOT

gate, the mutation can be achieved by:[
0 1
1 0

][
cos(θij)
sin(θij)

]
=

[
sin(θij)
cos(θij)

]
=

[
cos( π

2 − θij)
sin( π

2 − θij)

]
,

(11)

where i ∈ {1, 2, . . . ,m}, and j ∈ {1, 2, . . . , n}. The mutation
probability is pm, and every particle has one random value
rndi in (0, 1). If rndi < pm, then ⌈n/2⌉ qubits are chosen
randomly from particle i, and the NOT gate operation is
executed on them.

According to the fitness function of coalition for one task, the
SQPSO algorithm is designed as in Algorithm 1.

Let q denote the number of tasks. Before the optimal coalition
finding of every task, we apply the similarity calculation in lines
3–4. If the similarity is greater than 0.6, we apply the historic
optimal position to this iteration for the current task, where Pil
denotes particle i’s self-optimal position, Pic and Pis denote par-
icle i’s two position states, and Pg represents the global optimal
osition.

.4. Coalition scheduling

In addition to finding the optimal coalition for every task, to
ccomplish integral allocation, we design the coalition scheduling
Algorithm 1 SQPSO Algorithm
Input: Agent set A and task set τ

1: Find the optimal coalition for each task in set τ (|τ |= q) and
use the history task set is τ ′ for task similarity computation
by Equation (1).

2: for t = 1 to q do
3: if max(ρ(τt ,τ ′

j )
) > 0.6 then

4: Pg = Piτ ′
max

5: end if
6: Produce m quantum state particles by Equation (7).
7: for g = 1 to gmax do
8: for i = 1 to m do
9: Produce coalition vectors CVic and CVis from Pic and

Pis by Equations (7) and (8), then calculate the corresponding
fitness.

10: if fitness(CVic) > fitness(CVil) then
11: Pil = Pic
12: end if
13: if fitness(CVis) > fitness(CV ′

il) then
4: P ′

il = Pis
15: end if
16: if fitness(CVil) > fitness(CVg ) then
17: Pg = Pil
18: end if
19: Update quantum particle by Equation (10), calculate

the updating vectors P̃ic and P̃is.
20: Execute the mutation operation by Equation (11).
21: end for
22: end for
23: Transform Pg to the coalition vector by Equation (9),

then out put task τi
′s optimal coalition combination into the

allocation set C and add task τi into history task set τ ′.
4: end for
5: Output the allocation set C(|C |= q) for task set τ .

to save addition time in the entire execution. First, because the
different tasks have diverse coalition members, disjoint coali-
tion sets can execute the corresponding task at the same time.
Second, adjacent groups which contain a portion of the same
agent members can save the coalition formation time by keeping
the intersection members. Through Eq. (5), we can obtain the
execution time computation of each task, but for precise and
effective scheduling, we take the coalition establishment time
into consideration for the whole multi-task execution time. The
coalition establishment cost that we consider is the time of dis-
missing and rebuilding between two coalitions in the scheduling.
We define the total coalition formation time δFT of one scheduling
for q tasks as the following equation:

δFT = FTC1 +

q∑
i=2

{
FTCi

|Cf \C ′
|+|Ci\C ′

|

|Ci|
, if |Cf \C ′

|+|Ci\C ′
|

|Ci|
< 1

FTCi , otherwise
,

(12)

here q is the number of tasks, C represents the coalition in
he scheduling, C ′

= Ci ∩ Cf and Cf denotes the one coalition
efore Ci. Considering that two adjacent coalitions might have the
ame subset of agents, the former coalition Cf can save a certain
mount of time by keeping the same members and only dismiss-
ng and adding the different agents. Thus, the latter coalition Ci
ormation time FTCi can be decreased to (|Cf \C ′

| + |Ci\C ′
|)/|Ci|

imes by above equation. The value of the formation time is set
s FTCi = vcost(Ci)|Ci|(|Ci| − 2)/2, where the value of vcost(Ci) is set
ccording to Table 1.
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By determining the execution time computation method, we
lso use a similar algorithm for scheduling. Thus, the main steps
etails of EQSPSO are as follows. The quantum particle is set as:

i =

[⏐⏐⏐⏐⏐ cos(θi1)
sin(θi1)

⏐⏐⏐⏐⏐ cos(θi2)
sin(θi2)

⏐⏐⏐⏐⏐ · · ·

· · ·

⏐⏐⏐⏐⏐ cos(θij)
sin(θij)

⏐⏐⏐⏐⏐ · · ·

· · ·

⏐⏐⏐⏐⏐ cos(θiq)
sin(θiq)

⏐⏐⏐⏐⏐
]
,

(13)

here, every particle has q qubits that represent q tasks in the
hole task set. Therefore, every qubit j denotes the jth task’s start
ime. According to the two states of each particle Pi, we can obtain
he scheduling time order vectors TSic and TSis by the following
quation:

TSic = (tsi1, tsi2, . . . , tsiq), tsij =
1
2 [bi(1 + α

j
i) + ai(1 − α

j
i)]

TSis = (tsi1, tsi2, . . . , tsiq), tsij =
1
2 [bi(1 + β

j
i ) + ai(1 − β

j
i )]

.

(14)

Using Eq. (14), we implement a solution space transformation in
which ai and bi represent the upper and lower limitations of the
time variable, respectively. According to the actual task set, the
upper value is the sum execution time of every task, the lower
value is zero, and α

j
i and β

j
i represent the sine value and cosine

value of the jth qubit in Pi, respectively.
Therefore, our scheduling fitness function is designed as:

(Pi) = Tcost(q) − δFT . (15)

where Tcost(q) represents the total running time of q tasks, which
is calculated by the corresponding scheduling order of TS. Based
n the above, the establishment quantum particle swarm opti-
ization (EQPSO) scheduling algorithm is designed as in Algo-

ithm 2.

Algorithm 2 Scheduling Algorithm EQPSO
Input: Coalition set with corresponding time
1: Produce m quantum state particles by Equation (13).
2: for g = 1 to gmax do
3: for i = 1 to m do
4: Produce time order vectors TSic and TSis from Pic and

Pis by Equations (14), then calculate the corresponding fitness,
that is the whole execution time by Equation (15).

5: if fitness(TSic) < fitness(TSil) then
6: Pil = Pic
7: end if
8: if fitness(TSis) < fitness(TS ′

il) then
9: P ′

il = Pis
0: end if
1: if fitness(TSil) < fitness(TSg ) then
2: Pg = Pil
3: end if
4: Update quantum particle by Equation (10), calculate P̃ic

and P̃is.
5: Execute the mutation operation by Equation (11).
6: end for
7: end for
8: Output the allocation time order queue set TO(|TO|= q).

4. Experiment

The objective of this section is to evaluate and analyze the
erformance of our SQPSO method in MAS task allocation and
hat of our new scheduling method EQPSO in coalition scheduling.
ur testbed is based on MATLAB R2018b. In this part, we need the
gent data set and the task data set. For the design of data set,
we use a synthetic data generation code to produce the virtual
task data and agent data which meets the problem definitions.
According to the task’s and agent’s 2-tuple, our data generation
can ensure the tuple’s vector. Besides, it can set similar tasks
data, different rewards to carious agents and different profits for
various ‘‘coalition-task’’ pairs. Thus, the reason why we use a syn-
thetic data generation code to do the data test of two algorithms
is that the normal data set cannot meet the above requirements.
By the way, our problem definitions are based on real allocations.
Although the synthetic data generation code produce the data
set for our experiments, the produce processing obeys the real-
istic applications, such as disaster evacuation, factory and seller
matching, machine scheduling and medical resource assignment.
As long as our data set crossposting to the specific model of
realistic problem, our method can be applied on it. The rest of
this section is organized as follows. In Section 4.1, we evaluate
the performance of SQPSO, includes fitness value and conver-
gency, in varied parameter and task settings. Secondly, we test
the EQPSO algorithm for the coalition scheduling in Section 4.2,
which includes evaluation and analysis under different settings of
parameters such as similarity index, task size, etc.

4.1. SQPSO performance

As described in Section 3.3, we design the SQPSO algorithm
based on better assignment in coalition reward for the corre-
sponding tasks, coalition stability and execution time. Thus in this
subsection, we evaluate the SQPSO performance on the allocation
results in Section 4.1.1 and perform algorithm analysis on the
different conditions in Section 4.1.2.

4.1.1. Assignment effect
In order to evaluate allocation effect of our algorithm, three

methods are shown under the same experiment circumstance,
Greedy heuristic, normal PSO and High efficient task allocation.
For Greedy heuristic approach, it takes agent rewards order into
task allocation to obtain a higher pay back in every greedy step.
And High efficient task allocation calculates agent capability en-
richment factor according to each task before every assignment.
Then we can set the parameters as follows: the agent population
is 10, the task set size is set in [10,50] and increases by 10, and
the single iteration maximum is gmax = 500. The related attribute
alues of the task requirements and agent capabilities are found
n our data sets, which ensures that different combinations for
he same task have different reward values and that the profits
etween tasks are varied. Therefore, every type of reward can
e assigned by the Shapley rules to evaluate the corresponding
oalition qualities undertaken by four methods. According to the
itness function in Eq. (6), in SQPSO we can set the values of α and
β according to our targets. As a result, we set α = 1, β = 0 and
α = 0.5, β = 0.5 separately. Therefore with the former setting,
we can focus on the total profits that the coalition earns and the
coalition stability, while for the latter setting we can focus on the
integrated qualities, which include reward and execution time.

After running SQPSO algorithm 500 times and obtaining the
average profit of the same task set, we get the normalized results
for convenience of comparison in Fig. 2 under the settings (α =

1, β = 0 and α = 0.5, β = 0.5) respectively. To demonstrate
the SQPSO advantages, we also run the other three algorithms
under the same experimental conditions for comparison. After
500 times running we calculate the statistics of the average
rewards and the agent satisfaction of the optimal coalitions under
the Greedy heuristic method (GH), normal PSO method High ef-
ficient task allocation method (HETA) and Negotiation allocation
algorithm (NA), as shown in Fig. 2.

From Fig. 2, it is clear that the SQPSO method obtains a better
performance than other methods under the two kinds of weight
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oefficient settings of α and β . By increasingly growing number of
tasks, SQPSO always get the best results of the optimal coalition,
which is more than 0.8 for every task set.

In Fig. 2(a), the other four methods do not take coalition
stability into the calculations, hence, the statistics for their results
are lower than those of our method, which means that the coali-
tion stabilities cannot be guaranteed using these four methods.
Especially, with the growing number of tasks, the calculation
results of agent profits and capability enrichment factor have
more approximate values which makes Greedy heuristic and High
efficient method have a worse performance. Besides, NA method
has more conflicts that cannot be avoided and lead to worse
results. And the reason why SQPSO has higher values than PSO
method is that SQPSO algorithm has stronger ability to avoid
getting stuck in local optimum than PSO. Although we set the
PSO parameters as: Vmax = 5, Vmin = −5 (particle speed range),
max = 1, Xmin = 1 (optimum solution range), the optimal inertia
actor ω > 0, and PSO gives its best results, it is not better than
PSO. While in Fig. 2(b), we can observe that SQPSO has the
est performance in comprehensive solution searching. With the
etting of α = β = 0.5, the execution time is taken into the
itness counting. While GH and HETA method cannot integrate
ore objectives for better coalitions because of the complexity
f themselves, they get a lower result. And NA method cannot
andle the complex goals except avoiding the conflicts between
gent coalition formation, so it performs unstably. Through im-
roved calculation complexity, SQPSO gives the best result on
verage optimal solutions within varied task sizes. At the setting
f α = β = 0.5, we also give the best performance on the
orresponding setting of these five algorithms in Table 2. We can
bserve that SQPSO has an optimum result under every condition.
reedy heuristic method and negotiation method have weaker
olutions. High efficient method has unstable evaluations under
ifferent conditions. In this time, we set the adaptive weight ω′

for PSO, it can be seen that it shows better than in Fig. 2(a),
but QPSO also exceeds PSO a lot. To summarize, SQPSO has
outstanding validity in finding the optimal coalition with both
higher coalition stability and lower execution time under the
condition of a growing searching space.

Excepting task number, agent population size is another factor
in the assignment effect. Agent size has a strong and direct
influence on the search space of one task allocation. Therefore,
we test a 30-task set with different agent populations on SQPSO,
which means that each task-coalition matching has

∑
|A|

i=2 C
i
|A|

(|A|

s the agent size) kinds of possible combinations. Here, we choose

he two parameters setting as: α = 0.5 and β = 0.5, and t
Table 2
Optimum coalition evaluation value of five algorithms.
Task number Optimum value

GH PSO HETA NA SQPSO

10 0.752 0.804 0.730 0.780 0.877
20 0.710 0.734 0.685 0.727 0.933
30 0.662 0.707 0.623 0.596 0.904
40 0.551 0.654 0.551 0.588 0.926
50 0.462 0.633 0.502 0.570 0.941

Fig. 3. Comparison on different agent populations.

t will be fixed in the subsequent experiments. By running the
QPSO, Greedy heuristic method, PSO High efficient algorithm
nd Negotiation allocation method 500 times, we get the average
f the optimal coalition evaluation values, and the results are
hown in Fig. 3.
With a growing number of agent populations, the search space

ncreases substantially such that the calculation capability of the
eneral greedy method, negotiation allocation method and high
fficient method cannot follow the speed of growth and obtain
he worse results. In the notably large combination space, the
ifferences between superior coalitions are more delicate, and
hus PSO is more easily trapped in local optima. Therefore, PSO
resents a decreasing trend in the above figure. We note that
QPSO maintains a steady performance exceeding 0.8, although
he line shows a small declining trend because of the growing
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Fig. 4. Average convergence of three methods.

earching space. Besides, from the five lines, we can compare the
xecution time of the five algorithms on different agent popula-
ion sizes. It is obvious that all algorithms’ running time grows up
ith the increasing agent population size. But it should be noticed
hat Greedy algorithm always performs worst, and SQPSO obtains
he shortest time. The reason is that SQPSO can find the optimal
olution more efficiently by the quantum revolving gate and the
istorical mechanism saving the time between the solutions of
imilar tasks.

.1.2. Algorithm convergence
The convergence is one of the standards for estimating the

QPSO’s speed of finding the optimum, thus we set the task
opulation as 30 and with a 10-agent size for 10 runs. For each
unning, we record the current global best fitness value change
f every task and obtain the average. We subsequently calculate
he average of 10 times running. We set the iteration number as
max = 500 and run the PSO, HPSO (PSO method with added

historical task mechanism) and SQPSO for the average change
process of the fitness value shown in Fig. 3.

The results show that SQPSO obtains the best coalition solu-
ion at approximately the 50th iteration at the average level. The
SO’s convergence point is about 200 and that of HPSO is near
20. It is obvious that the similarity rules aid the speed aspect
hrough comparison of PSO and HPSO. And SQPSO has a notable
dvantage in finding the optimal coalition for the tasks fast which
an reflect by the blue line. Therefore, the first main reason for
QPSO’s early convergence point is our historical task set for
imilar task judgment, which speeds up the entire algorithm.
he second main reason is that SQPSO method can calculate two
itness values of one particle which accelerates the convergence.
ith these two aspects, SQPSO shows the better results. In addi-

ion, the blued line height in Fig. 4 also shows the excellent SQPSO
earching ability.
In order to test the further effect of our similarity rules on

he convergence, we run the SQPSO algorithm on the varied
ask set conditions. As shown in Fig. 5, we set the similar task
ercentage as 15% and 30% for different task numbers of 10, 30
nd 50. (Under the searching order of the task set, the similar task
ercentage of 15% means that 15% of tasks can find a similar task
n the history task set.)

First, when the similarity index η is 15%, the 10-task line con-
verges near the 49th iteration, while the 30-task line and 50-task
line converge at the 60th and 63th iterations respectively. The
10-task line converges earlier because the similar task number is
η ∗ 10 = 1.5, therefore no more than two tasks are similar tasks.
Fig. 5. SQPSO performance on different task settings.

Fig. 6. SQPSO performance on different task settings.

Thus, the result is similar to the result of SQPSO in Fig. 4. As long
as η is invariant, the convergence point displays little fluctuation
within [50, 100] when the task set size changes. Second, when the
size of task is fixed at 50, we can see that the convergence point
of η = 0.3 occurs earlier than that of η = 0.15, which proves that
the similar tasks rule improves the algorithm.

Besides, we compare QPSO with SQPSO in different task sizes,
and Fig. 6 displays the results. From Fig. 6, SQPSO has a smaller
average iteration number than QPSO in the same task size condi-
tions, and the average iteration number decreases when η grows
in SQPSO performance because of the historical mechanism.

4.2. Scheduling and execution time

In this section we test the coalition scheduling of EQPSO and
compare it with other three methods. In the first section we
examine the scheduling time of EQPSO and perform the compar-
ison. And in the last part, we analyze the EQPSO under different
parameter settings.

4.2.1. Scheduling performance
By accepting the consequences of SQPSO algorithm in Sec-

tion 4.1.1 Fig. 2(b), we can obtain optimal coalition solutions for
10 to 50 task sets’. And based on these coalition sets, we can
do the coalition scheduling by running EQPSO, and other four



M. Li, C. Liu, K. Li et al. / Applied Soft Computing Journal 96 (2020) 106603 9

E
w
t
a
o
l
s
s
t
t
i
d
E
s
t
t
p

t
p
p
t
c
p

4

j
e
r
s

Fig. 7. Scheduling time comparison in different task sizes.

approaches, PSO, Agent dependency (AD), Greedy heuristic (GH)
method and shortest Job First (SJF) algorithm, respectively. The
EQPSO algorithm obeys the counting rules of execution time and
the similar coalition mechanism to save time, like we described in
previously parts. Whereas the PSO algorithm only obeys the nor-
mal execution time, Greedy heuristic obeys greedy rules avoiding
agent conflicts, Agent dependency method calculates constraints
set to decrease the time and SJF obeys the shortest sequence
of tasks. By running these methods, we can obtain five optimal
scheduling time queues, and then we subsequently calculate the
total execution time of each task set and calculate the statistics,
which are shown in Fig. 7.

At the same conditions, regardless of the task population,
QPSO obtains a shorter time than others for the entire execution,
hich proves that saving formation time between similar coali-
ions is necessary and effective. Both Agent dependency method
nd Greedy heuristic method have unstable performance because
f the various size of agent confliction under different task popu-
ations. And SJF shows the worst performance because the simple
equence has little help in saving more time. Whereas, using
imilar coalition computation can save approximately 4%–18% of
ime, which proves our time calculation rules are necessary. For
he further analysis, this percentage is decided by the similarity
ndex and disjoint ratio. The former parameter, the similarity in-
ex, reflects the possibility and percentage of formation time that
QPSO can save between neighboring similar coalitions in the
cheduling order. The latter parameter, the disjoint ratio, exposes
he possibility and ratio of the coalitions that can be executed at
he same time in the corresponding agent population. These two
arameters will be discussed in the following subsection.
We also present the statistics of the EQPSO’s convergence in

he above conditions, and the results are shown in Fig. 8. Com-
ared with the PSO algorithm, EQPSO reaches the convergence
oint much earlier, at approximately the 60th iteration, whereas
he PSO reaches this point near 240th iterations. The EQPSO’s
onvergence is similar to that of SQPSO, and thus we do not
resent the repeated illustrations.

.2.2. Scheduling adaptability
As mentioned in Section 4.2.1, the similarity index and dis-

oint ratio are the most significant aspects that can influence the
xecution time in EQPSO. Therefore, we test how these two pa-
ameters influence the execution time in the 10-task and 30-task
ets and show the results in the following figures.
Fig. 8. Average convergence of two scheduling methods.

Fig. 9. Scheduling time under different disjoint ratios.

It is obvious that the larger the disjoint coalition percentage,
the higher the possibility of simultaneously executing the coali-
tions. At the same time, the total execution time is much shorter.
If there are no disjoint coalitions (disjoint ratio equals to 0), it
means that no coalitions can be executed at the same time in
the current agent population, thus the execution time minimum
is the value of saving time between the similar neighboring
coalitions to the extent possible.

From Fig. 9, when the ratio is zero (which means only saving
formation time), the minimum time when |τ | = 10 is 90%, and
the maximum when |τ | = 30 is 87%. If the ratio is equal to
1, it means that all of the coalitions are disjoint, thus all of the
coalitions can be executed at the same time. Therefore the total
execution time equals to the longest single task execution time.
In Fig. 10, the two longest time values are 23% and 12%. Except
for the two special extreme values of the disjoint percentage, we
can observe that the entire trend is declining, thus the high ratio
helps to decrease the entire execution time significantly.

Compared with the disjoint ratio, the similarity index also has
an influence on the scheduling effect. From Fig. 9, the two lines
both show a ‘‘V’’ trend, and the analysis of this phenomenon is
described as follows: when the index is equal to 0, it means that
all coalitions are not similar, therefore EQPSO can only assign dis-
joint coalitions executed simultaneously for a better scheduling.
As a result, the time can be decreased to 80.2% and 75.1%. When
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Fig. 10. Scheduling time under different similarity index.

he index is equal to 1, all coalitions are similar, thus no coalitions
an be executed at one time and it leads to two high points of
3% and 86%. However, when the index values reach a suitable
alue with the disjoint ratio in the range of (0, 1), the time can be
ecreased to the smallest value in the corresponding scheduling,
hich is the lowest point of the ‘‘V’’ trend.

. Conclusion

In this paper, we propose the SQPSO algorithm for multi-task
llocation in MAS, which focuses on coalition stability, reward
ssignment and execution time, and then we propose the EQPSO
ethod for coalition scheduling to decrease the entire execu-

ion time for a multi-task set, which creatively takes coalition
imilarity into the consideration. In the SQPSO algorithm, the
irst contribution is that combining the similar task judgment
nd quantum particle two-state feature improves the speed of
omplex task allocation in MAS, and the second contribution is
hat agent satisfaction calculation ensures the coalition stability,
hich increases the quality of assignment. The third contribution

s that EQPSO gives a guarantee for the total scheduling because it
aves time from similar coalitions in the aspect of formation costs.
esides, in the experimental section, we show the performance
f the two algorithms under varied parameters and conditions,
uch as agent population and task set, then we give illustrations
nd explanations. To summarize, the SQPSO and EQPSO methods
ccelerate the allocation speed and are better able to avoid the
ocal optimum dilemma, thus reaching a better global result
specially in the complex and notably large search space of MAS.
dditionally, the historical task mechanism and similarity rules
lso reinforce the optimal consequences. In the future, we will
tudy automatic coalition formation for MAS task allocation on
he Qbsolv platform. The research on the quantum-agent in MAS
nder complex topologies is also a significant target for future
tudies.
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