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 A B S T R A C T

In Industry 5.0, smart devices in intelligent factories will generate numerous computation-intensive tasks that 
require low latency. Due to the limited computation resources of local devices, it is required to partition and 
offload tasks to edge servers via wireless networks for end-edge collaborative computing. However, intelligent 
factories are usually located in low-rise buildings. The direct offloading paths between smart devices and edge 
servers are vulnerable to being obstructed by high-rise buildings and trees, leading to intolerable long task 
offloading delays and even failure in offloading. To tackle this problem, we develop an active reconfigurable 
intelligent surface (RIS)-assisted end-edge collaborative task partitioning and offloading model, which assists 
task offloading by reflecting communication signals through the active RIS. We propose to maximize the system 
utility by jointly optimizing the task partitioning and offloading decisions, reconfiguring the phase shift and 
amplification factor of the active RIS, and communication and computation resource allocation, aiming at 
energy-efficiently providing delay guarantee to industrial computation tasks. We formulate, decompose, and 
theoretically analyze the problem. The upper and lower bounds of offloading decisions, transmission powers, 
and computation resources constrained to delay bounds have been analyzed. Based on the analytical results, 
a two-stage heuristic algorithm, RISADA, has been proposed to address the problem. The results demonstrate 
the efficiency of our proposal for the delay guarantee while reducing energy consumption.
1. Introduction

There are three key features in Industry 5.0: human-centricity, 
sustainability, and resiliency (Leng et al., 2022). To support a human-
centric and sustainable production process, almost all smart devices 
(SDs), such as machines, productions, and humans wearing various 
sensors, will generate massive amounts of data. For maximizing the 
data value to support intelligent industrial applications, e.g., machine 
condition control, fault diagnosis, and intelligent production schedul-
ing (Zhang et al., 2024a), these data require high-performance and 
low-delay computing via various artificial intelligence (AI) algorithms, 
such as machine learning (ML), deep learning (DL), reinforcement 
learning (RL), and so on (Han et al., 2024), forming a massive amount 
of computation tasks with various data sizes and tolerating distinct 
delays. Offloading computation tasks from factories to a cloud center 
for cloud computing would cause tasks to experience long offloading 
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delays, e.g., hundreds of microseconds, which cannot meet the low 
delay requirement of delay-sensitive and computation-intensive indus-
trial applications. Moreover, industrial data is easily exposed to public 
networks and computing centers in the cloud computing paradigm, 
raising security and privacy issues.

In recent years, multi-access edge computing (MEC) has been con-
sidered a significant computing paradigm enabling industry 5.0. MEC 
supports low delay and high security by deploying computation re-
sources at a wireless network one-hop away from the data source 
(Akhlaqi and Mohd Hanapi, 2023). However, the wireless network and 
MEC computation resources are scarce and limited compared to wired 
networks and clouds. End-edge collaborative partial offloading is im-
portant (Peng et al., 2023; Chen et al., 2024), which partitions compu-
tation tasks into multiple subtasks and distributes them to distinct com-
puting nodes (such as computing-capable MEC servers and Internet of 
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Things (IoT) end devices) to perform distributed collaborative machine 
learning, such as federated learning and split learning (Lin et al., 2024). 
For example, with the split learning and MEC paradigm, amounts 
of intelligent applications, such as split learning-based convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs), can be 
deployed within an industrial environment to achieve better manufac-
turing efficiency and product quality (Jia et al., 2024). Since the latency 
of a task is affected by the latest completed subtask, how to partition a 
task and allocate communication and computation resources for subtasks 
deserve further study.

In an industrial environment, data sources (e.g., machines, IoT 
devices, productions) are located inside a factory, which is generally 
located in low-rise buildings. High-rise buildings and trees will severely 
obstruct the direct communication links between the data source and 
the MEC server (Tan et al., 2024; Zhi et al., 2022). Accordingly, a 
reconfigurable intelligent surface (RIS) must be placed between the 
data source and the MEC server to improve task upload efficiency to 
meet the low delay requirements of industrial tasks. RIS, also called 
intelligent reflecting surface (IRS), is a planar array composed of a 
large number of passive elements that reflect electromagnetic sig-
nals in a desired manner, thereby reconfiguring wireless transmission 
properties (Shi et al., 2023). Active RIS employs power amplifiers to 
actively amplify the reflected signals, aiming at enhancing the wireless 
propagation capability at the expense of consuming extra power.

Although RIS-assisted task offloading in MEC has been studied in 
recent years (Tan et al., 2024; Yu et al., 2023; Lv et al., 2024; Liu et al., 
2024), the joint active RIS and end-edge collaborative partial offloading 
in a multi-user industrial edge computing environment still faces con-
siderable challenges. Firstly, the partitioning and the offloading ratio of 
a task affects not only the delay performance and energy consumption 
of itself but also that of others by involving the workload competing 
for the shared wireless and computation resources. Secondly, since the 
incident angles from different SDs to the same reflecting element of RIS 
are distinct due to their particular positions, they expect to reconfigure 
the RIS in various ways to maximize their own wireless performance. 
It is a big challenge to optimize the phase shift matrices in a multi-user 
RIS environment to benefit as many SDs as possible (Tan et al., 2024). 
Thirdly, the delay performance and energy efficiency of the RIS-assisted 
MEC system are simultaneously affected by multiple types of decisions 
distributed in distinct network elements, e.g., the task partitioning and 
offloading decisions in smart devices, the reconfigured phase shift and 
amplification factors of the active RIS, and the computation resource 
allocation policies in MEC servers. These types of decisions affect each 
other, further complicating the problem (Zeng et al., 2024; Zhou et al., 
2025). In addition, since deep learning and reinforcement learning 
algorithms and their variants usually make one type of decision, it is 
challenging to collect distributed state information to make multiple 
types of decisions via deep learning or reinforcement learning.

Motivated by the above discussions, this paper studies an active RIS-
assisted task partitioning and offloading problem in an industrial MEC 
environment where an active RIS is deployed to assist partial task of-
floading. The goal is to energy efficiently satisfy the delay requirements 
of computation tasks by jointly optimizing (1) task partitioning and 
offloading decisions in distributed SDs, e.g., how to partition compu-
tation tasks, how much ratio will be offloaded; (b) the beamforming 
of the active RIS, including phase shift and amplification factor; (c) 
computation resource allocation decisions in MEC servers for partial 
offloaded tasks; (d) SDs’ transmission power for partial offloading. We 
propose a two-stage heuristic algorithm to solve the problem based on 
the results of the theoretical analysis.

Compared with existing heuristic and AI-based algorithms (Tan 
et al., 2024; Yu et al., 2023; Zhang et al., 2024b), we theoretically 
analyze the upper and lower bounds of offloading decisions, transmis-
sion powers, and computation resource allocation constrained to delay 
requirements and energy consumption, the joint decisions are based on 
the analytical results. Accordingly, the decisions in our proposal are 
2 
more interpretable. In addition, in our proposal, the joint decisions are 
from multiple partial decision makers (e.g., SDs, RIS controllers, MEC 
servers, etc.) based on the up-to-date decisions of others and analytical 
results. Our algorithm could run in an edge computing environment 
with low computing capability. Our main contributions include: 

• We formulate a joint computation offloading and active RIS op-
timization problem (JCORO) in an industrial MEC for the delay 
guarantee and energy efficiency.

• The problem is decomposed into two concatenated subproblems, 
task partitioning and offloading (PO), and joint active RIS op-
timization and MEC resource allocation (RORA). The properties 
of PO and RORA constrained to the delay guarantee and energy 
efficiency have been theoretically analyzed.

• A two-stage heuristic scheme (RISADA) has been proposed to 
solve JCORO based on the theoretical analysis. In particular, 
RISADA mainly consists of two concatenated stages; in stage A, 
the RORA subproblem is solved via three concatenated algo-
rithms, which yields the optimum phase shift and amplification 
factor, the achievable transmission rate, and the allocated MEC 
computation resource for offloading subtasks; then, in stage B, 
we update the task partitioning and offloading decisions with the 
DEEPO algorithm for the PO subproblem. The two stages repeat 
a few times and converge to a one-shot solution for the JCORO 
problem.

The rest of this paper is organized as follows. The related work 
is discussed in Section 2. Section 3 describes the system, active RIS, 
task partitioning, computing, energy consumption, and utility models. 
Then, we formulate and decompose the problem in Section 4. The 
problem is theoretically analyzed in Section 5. Section 6 describes 
the proposed RISADA. Section 7 evaluates the performance. Finally, 
Section 8 concludes the paper.

2. Related work

Industrial edge computing mainly studies how to develop edge 
computing in industrial IoT (IIoT) for improving industrial intelligence.

Edge computing without RIS. A number of edge computing algorithms 
have been explored for achieving various objectives (Guo et al., 2023b; 
Songhorabadi et al., 2023; Peng et al., 2024). The IIoT applications are 
usually computation-intensive and delay-sensitive. Delay performance 
has been a focus of attention since the birth of edge computing. To 
optimize the delay performance of computation tasks in an IIoT MEC 
system, an RL-based offloading scheme has been studied (Deng et al., 
2023). The proposal uses Q-learning to make offloading decisions while 
using deep deterministic policy gradient (DDPG) to optimize the system 
performance (Deng et al., 2023). Chen et al. released the assumptions of 
fixed communication time and arbitrarily splitting the workload. They 
proposed a computing model based on the pyramid to reduce latency in 
distributed edge computing (Chen et al., 2023). Energy consumption is 
another focus of attention in edge computing. To minimize the energy 
consumption of IoT devices constrained to latency requirements, Qian 
et al. have jointly optimized the computation offloading, nonorthogonal 
multiple access (NOMA) transmission, and computation resource allo-
cation in IIoT (Qian et al., 2021). To minimize the time consumption 
and energy consumption of the intelligent transportation system, Zhao 
et al. have jointly optimized the offloading decisions, caching strategies, 
computation resource allocation and transmission power allocation via 
a multi-task multi-objective optimization algorithm (Zhao et al., 2025). 
Moreover, cost-aware edge computing has been studied. Dai et al. have 
studied the task co-offloading problem in a device-to-device (D2D) 
assisted MEC in IIoT. The object is to minimize system cost by making 
offloading decisions on where to offload the tasks (Dai et al., 2023). 
The joint power control and computation resource allocation problem 
has been transformed into a Markov decision process (MDP), and solved 
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via a DRL-based dynamic resource management algorithm (Chen et al., 
2021). In a personalized MEC computation offloading environment, 
the welfare is a person’s focus; thus, Su et al. proposed a truthful 
combinatorial auction (TCA) mechanism to maximize the social welfare 
in such an environment (Su et al., 2023). Considering the dynamic 
arrival properties of offloading requests and workloads in servers, a 
modified generalized second price (GSP)-based algorithm has been 
proposed to make pricing and resource decisions for maximizing social 
welfare (Habiba et al., 2024). In addition, recently, some literature 
has focused on deploying distributed collaborative machine learning 
(e.g., federated learning, split learning) in edge networks to take full 
advantage of MEC (Lin et al., 2024; Jia et al., 2024).

Edge computing with RIS. In recent years, more and more researchers 
have focused on RIS/IRS-assisted edge computing to improve wireless 
performance. The IRS-aided computation offloading from two users to 
an edge cloud over NOMA and time-division multiple-access (TDMA) 
has been studied for minimizing the total delay of two users (Zhou 
et al., 2020). A dynamic task scheduling strategy involving joint pro-
cessor allocation and IRS optimization in IRS-aided vehicular networks 
has also been studied. The simulations illustrated the efficiency of the 
proposal in task offloading rate, computation rate, and finish rate (Zhu 
et al., 2022). Besides passive RIS-assisted MEC, joint computation of-
floading and transmission performance optimization in a hybrid active-
passive RIS-aided MEC have also been studied (Xie et al., 2024). The 
joint beamforming for RISs and base stations for reconstructing trans-
mission channels to improve system capacity has been studied in Zhang 
et al. (2024b). The problem of joint offloading, communication, and 
computation resource allocation in an IRS-assisted NOMA MEC have 
been explored in Yu et al. (2023). The authors designed a Lyapunov-
based mixed integer deep deterministic policy gradient scheme to 
determine the optimum solution. To minimize the consumed energy of 
smart terminals (STs), Sun et al. have jointly optimized the local CPU 
frequencies of STs and phase of IRS (Sun et al., 2022).

Discussions. AI algorithms, such as DDPG and DRL as well as their 
variants, have been explored in task offloading for achieving different 
goals (Peng et al., 2024; Zhang et al., 2024b; Yu et al., 2023; Tan 
et al., 2024). However, AI algorithms’ accuracy for finding optimum 
edge computing policies relies intensely on solid computing power and 
an extensive training set that can be difficult to obtain in resource-
constrained network edge and dynamic wireless environments. More-
over, the varying task generation properties and the dynamic nature 
of a wireless network may trigger new training processes frequently; 
the non-negligible training time would prolong the decision time. In 
addition, the RIS-assisted task offloading problem involves various 
types of decisions in various network elements (i.e., offloading de-
cisions in smart devices, reconfigurable phase shift matrices of the 
RIS, computation resource allocation in MEC servers, etc.), the existing 
AI-based algorithms, e.g., Tan et al. (2024), Zhang et al. (2024b), 
require to decompose the problem into at least two subproblems and 
use iterative methods to obtain optimum solutions. In particular, the 
previous proposals only use AI algorithms to solve partial decisions. 
Finally, due to data-driven, the decisions given by present AI-based 
algorithms are usually uninterpretable and might be unreliable due 
to the low quality of data samples. Therefore, a low-complex and 
interpretable solver deserves further study.

The novelties of this paper over existing work include: (1) The active 
RIS-assisted end-edge collaborative task partitioning and offloading 
are studied for delay-sensitive and computation-intensive industrial 
applications, where an active RIS is deployed between IoT users and 
MEC servers to enhance task partial offloading. (2) We theoretically 
analyze the delay-guaranteed and energy-efficient properties of the 
joint decisions, including task partitioning and offloading ratios, active 
RIS phase shift matrices and amplification factors, and MEC resource 
allocation, for the problem. (3) A low-complexity and interpretable 
scheme (termed RISADA) is proposed to solve the problem based on 
the theoretical analysis.
3 
Fig. 1. Active RIS-assisted industrial edge computing system (high-rise buildings and 
trees block direct links).

3. Model formulation

3.1. System model

This paper focuses on an active RIS-assisted industrial edge com-
puting system where SDs (e.g., machines, industrial terminals, sensor 
monitors) are located in an industrial factory. In contrast, MEC servers 
are located in the center of a wireless network. The MEC servers form a 
virtual pool of computing resources through virtualization technology 
to provide computing services for offloading tasks. SDs communicate 
with MEC servers via a base station (BS), as illustrated in Fig.  1. It is 
assumed that high-rise buildings and trees block the direct links from 
SDs to the base station. Therefore, an active RIS is placed between SDs 
and the BS to enhance communication efficiency via reconfiguring the 
phase shift matrices and amplifying the reflected signal (Zhang et al., 
2022; Zhi et al., 2022). Considering their different computation capa-
bilities, an SD only computes one task at a time, while the MEC servers 
can process multiple tasks in parallel via virtualization technologies.

Assume that time is slotted and the length of a slot is long enough 
for processing a large task/subtask. Assume that an SD at most gener-
ates one industrial computation task in a time slot. The number of SDs 
generating tasks varies with time slots. Each task could be partitioned 
into multiple subtasks, each with an independent data segment, which 
captures the industrial applications requiring objective recognition, 
such as factory environment monitoring, defective product detection, 
motion recognition for industrial robots, etc. In this application, multi-
media data taken by cameras and other sensors deployed in a factory 
can be partitioned into multiple data segments and processed in SDs 
and MEC servers, respectively. Therefore, for each task, the SD has 
to make a task partition decision, that is, to decide how to partition 
the task into subtasks and allocate them for edge computing and local 
computing.

Two other types of decisions need to be made for the subtasks 
determined to edge computing: (a) task upload-related decisions, which 
include the transmission power, the RIS’s phase shift matrices, and 
amplification factors, for energy-efficiently reducing the task upload 
delay; (b) MEC computation resource allocation, which decides how 
to allocate the MEC resource among offloaded subtasks to reduce the 
task computation delay.

The number of tasks from SDs to compete for the shared wireless 
and computation resources in a time slot is represented by 𝑀 .1 The 
corresponding set is defined as  = {1, 2,… ,𝑀}. The number of 
reflecting elements in the active RIS is represented by 𝑁 , and the 
corresponding set is represented by  . The channel coefficients from 

1 For simplicity, this paper considers the joint decisions within a time slot 
under the assumption that the length of a slot is long enough for processing 
a large task/subtask. We will consider time slot-continuous decisions in our 
future work.
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Table 1
Notations. 
 Symbols Definition  
  SD set  
  Reflecting element set in the active RIS  
 𝑀 SD number  
 𝑁 Reflecting element number  
 𝐡 Channel coefficient (from SDs to active RIS)  
 𝐠 Channel coefficient (from active RIS to BS)  
 𝑝𝑚 The 𝑚th SD’s transmission power  
 𝐵 The bandwidth of the wireless link  
 𝛩 The reflection matrix  
 𝜌 The amplification factor  
 𝛷 The RIS’s phase shift  
 𝜎𝑟 The noise power introduced by the active RIS  
 𝜎 The noise power of the wireless network  
 𝛾𝑚 SNR  
 𝑅𝑚 The 𝑚th SD’s transmission rate  
 𝐾𝑚 The multiples of basic unit  
 𝑆 The basic unit (in bits) of data  
 𝑊 The basic unit (in processing cycles) of data  
 for computing  
 𝛼𝑚 The ratio of the 𝑚th task for offloading  
 𝑓E The edge computing capability  
 𝑓E

𝑚 The computation rate allocated to the 𝑚th task 
 𝑓M

𝑚 The 𝑚th SD’s computing capability  
 𝐷O

𝑚 The offloading delay provided to the 𝑚th task  
 𝐷O, Tx

𝑚 The upload delay  
 𝐷O, CPU

𝑚 The MEC computation delay  
 𝐷L

𝑚 Local computation delay  
 𝐷𝑚 The latency of the 𝑚th task  
 𝑑Th𝑚 The delay bound of task 𝑚  
 𝐸𝑚 The energy consumed for processing task 𝑚  
 𝐸L

𝑚 The energy consumed by local computing  
 𝐸O, Tx 

𝑚 The energy consumed by subtask upload  
 𝐸O, RIS

𝑚 The energy consumed at the active RIS  
 𝐸O, CPU

𝑚 The energy consumed by MEC computing  
 𝐸 The system’s energy consumption  
 𝜌Th The maximum amplification of the active RIS  
 𝑝Th The maximum transmit power of an SD  

SDs to the active RIS, from the active RIS to the base station, are 
represented by 𝐡 ∈ C𝑁×𝑀  and 𝐠 ∈ 1×𝑁 , respectively. Let (⋅)𝐻  denote 
the conjugate transpose of (⋅). Since the channel state information (CSI) 
could be estimated through methods described in Zheng et al. (2022), 
Wei et al. (2021a,b), this paper assumes that the channel coefficients 
are perfectly known.

The main notations are listed in Table  1.

3.2. Active RIS communication model

Unlike passive RIS, an amplification device is integrated into an 
active RIS to amplify the signal, as shown in Fig.  1. An attached 
intelligent RIS controller controls the phase shift and amplification 
factor (Shi et al., 2023). This paper tries to improve the computation 
offloading efficiency by optimizing the phase shift matrix and amplifi-
cation factors. The optimum decisions are made by the policy controller 
and then distributed to the active RIS via the RIS controller.

Let 𝛩 = diag{𝜌1𝑒𝑗𝜃1 , 𝜌2𝑒𝑗𝜃2 ,… , 𝜌𝑁𝑒𝑗𝜃𝑁 } be the reflection matrix, 
where 𝜃𝑛 (𝑛 ∈ {1, 2,… , 𝑁}) represent the phase shift of the 𝑛th 
reflecting element, 𝜌𝑛 > 1 is the 𝑛th amplification factor. Similar 
to Zhi et al. (2022), we set 𝜌𝑛 = 𝜌, ∀𝑛 for simplicity. Let 𝛷 ≜
diag{𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 ,… , 𝑒𝑗𝜃𝑁 }. Then, we have 𝛩 = 𝜌diag{𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 ,… , 𝑒𝑗𝜃𝑁 } =
𝜌𝛷. Thus, considering the quasi-static Rayleigh fading channel, the 
received signal 𝑦𝑚 of BS from the 𝑚th SD could be modeled as 

𝑦𝑚 = 𝜌𝐠𝛷𝐡𝑚𝑤𝑚𝑥𝑚
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

+ 𝜌𝐠𝛷𝐯
⏟⏟⏟

+ 𝑛𝑚
⏟⏟⏟

, (1)
desired signal  noise introduced by active RIS AWGN noise
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where 𝑥𝑚 ∼  (0, 1) is the transmitted symbol from the 𝑚th SD with 
E(𝑥𝑚) = 1; 𝑤𝑚 is the beamforming from the 𝑚th SD for symbol 𝑥𝑚; 𝜌𝛷𝐯
represent the noise introduced by active RIS with 𝐯 for 𝐯 ∼  (0, 𝜎2𝑟 𝐈𝑁 ); 
𝑛𝑚 ∼  (0, 𝜎2) is the additive white Gaussian noise (AWGN) (Zhang 
et al., 2022).

Therefore, the signal-to-noise-ratio (SNR) is expressed by 

𝛾𝑚 =
𝑝𝑚𝜌2|𝐠𝛷ℎ𝑚|2

𝜌2𝜎2𝑟 ‖𝐠𝛷‖2 + 𝜎2

=
𝑝𝑚|𝐠𝛷ℎ𝑚|2

𝜎2𝑟 ‖𝐠𝛷‖2 + 𝜎2∕𝜌2
,

(2)

where 𝑝𝑚 represents the 𝑚th SD’s transmission power.
Accordingly, the achievable transmission rate of SD 𝑚 is expressed 

by 
𝑅𝑚 = 𝐵log2

(

1 + 𝛾𝑚
)

. (3)

In an active RIS-assisted communication model, each active RIS 
element has additional power consumption for the phase shift switch 
and control circuit. According to Zhi et al. (2022), the additional power 
consumed by the active RIS is expressed by 
𝑄RIS = 𝑁 × (𝑃sw + 𝑃dc), (4)

where 𝑃sw and 𝑃dc represent the power consumed by the phase shift 
switch and control circuit, respectively.

3.3. Task partitioning model

For reducing algorithm complexity, this paper assumes that each 
task could be represented by 𝐾𝑚𝑆 and 𝐾𝑚𝑊 , respectively, where 𝑆 (in 
bits) and 𝑊  (in processing cycles) are the base units of data for data 
transmission and computing respectively, e.g., 𝑊  is the batch size for 
a round of learning in objective recognition and 𝑆 is the corresponding 
data size in bits. 𝐾𝑚 ∈ 𝐑+ is the multiples of the basic unit. Accordingly, 
the 𝑚th (𝑚 ∈ ) task could be partitioned into 𝐾𝑚 subtasks at most. 
To fully exploit the impact of active RIS on end-edge collaborative 
computation offloading for latency reduction and energy efficiency, the 
subtasks from the same task could be, at most, grouped into two sets 
executed in local SD and MEC servers, respectively.

Let 𝛼𝑚 (0 ≤ 𝛼𝑚 ≤ 1) be the offload ratio of the 𝑚th task. Then, the 
ratio of the subtasks processed locally could be expressed by (1 − 𝛼𝑚). 
Accordingly, the task size of the 𝑚th task for offloading and local com-
puting could be respectively represented by 𝛼𝑚𝐾𝑚𝑊  and (1−𝛼𝑚𝐾𝑚𝑊 ), 
the data size requiring upload is expressed by 𝛼𝑚𝐾𝑚𝑆.

3.4. Computing model

3.4.1. MEC computing model
When 𝛼𝑚 > 0, a set of subtasks from the 𝑚th SD will be offloaded to 

MEC servers via the active RIS-assisted wireless network. In this case, 
we consider two types of delays: the task upload delay 𝐷O, tx𝑚  and the 
MEC computation delay 𝐷O, CPU𝑚 . Therefore, the offloading delay 𝐷O𝑚 of 
the subtask set from the 𝑚th SD could be expressed by 
𝐷O𝑚 = 𝐷O, Tx𝑚 +𝐷O, CPU𝑚 , (5)

where the upload delay is the time duration for transmitting the subtask 
set from the data source to MEC servers via the active RIS-assisted 
wireless network, which could be expressed by 

𝐷O,Tx𝑚 =
𝛼𝑚𝐾𝑚𝑆
𝑅𝑚

=
𝛼𝑚𝐾𝑚𝑆

𝐵log2
(

1 + 𝑝𝑚|𝐠𝛷ℎ𝑚|2

𝜎2𝑟 ‖𝐠𝛷‖2+𝜎2∕𝜌2

)
. (6)

The MEC computation delay could be expressed by 

𝐷O, CPU𝑚 =
𝛼𝑚𝐾𝑚𝑊

E , (7)

𝑓𝑚
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where 𝑓E𝑚 is the allocated central/graphics processing unit (PU) rate, 
which should satisfy 
∑

𝑚∈
𝑓E𝑚 ≤ 𝑓E, (8)

where 𝑓E is the total computation rate of the MEC servers provided to 
the factory.

3.4.2. Local computing model
When (1 − 𝛼𝑚) > 0, a set of subtasks will be computed locally in 

the 𝑚th SD. For local computing, this set of subtasks only experiences 
local computation delay. Accordingly, the delay of the local computing 
at the 𝑚th SD could be expressed by 

𝐷L𝑚 =
(1 − 𝛼𝑚)𝐾𝑚𝑊

𝑓M𝑚
, (9)

where 𝑓M𝑚  is the computation capability of the 𝑚th SD.

3.4.3. Latency of the whole task
Generally, the relationship between the partitioned subtasks could 

be independent and dependent, respectively. In the independent case, 
the subtasks could be executed in parallel, which captures the scenario 
of an industrial video clip segmented into multiple episodes and sep-
arately executed in local SDs and MEC servers. In the latter case, the 
subtasks should be executed in sequence. For example, when a split 
learning-based CNN algorithm is used for product defect detection, the 
learning model (e.g., CNN) is partitioned into two or more parts, and 
each part consists of several consecutive CNN layers. Different parts 
will be offloaded to different computing nodes. Then, the associated 
computing nodes train the model parts in a sequential order (Lin et al., 
2024). Since this paper focuses on fully exploiting the communica-
tional and computational capabilities of an active RIS-assisted end-edge 
collaborative MEC system, we consider the independent case for the 
partitioned subtasks. In future work, we will extend to the dependent 
case.

Therefore, the latency of the whole task should be the latency of the 
latest completed subtask. Accordingly, for the 𝑚th task, the latency is 
expressed by 
𝐷𝑚 = max(𝐷L𝑚, 𝐷

O
𝑚). (10)

3.5. Energy consumption model

This paper considers four types of energy consumption, including 
the energy consumed in SDs for local task computing 𝐸L𝑚, energy 
consumed in SDs for transmitting the offloaded task 𝐸O, Tx𝑚 , energy 
consumed by phase-shift switches and control circuits on active RIS 
𝐸O, RIS𝑚 , and the energy consumed in MEC servers for edge computing 
𝐸O, CPU𝑚 . Notice that the latter three types of energy are consumed for 
edge computing. The total consumed energy for processing the 𝑚th task 
is expressed by 
𝐸𝑚 = 𝐸L𝑚 + 𝐸O, Tx𝑚 + 𝐸O, RIS𝑚 + 𝐸O, CPU𝑚 . (11)

The energy consumed by local computing is mainly determined 
by the task size and local computing capabilities; that is, it can be 
expressed by 
𝐸L𝑚 = 𝛽(1 − 𝛼𝑚)𝐾𝑚𝑊 𝑓M𝑚 = 𝛽𝐷L𝑚(𝑓

M
𝑚 )2, (12)

where 𝛽 is the energy factor for local computing.
The transmit power and duration determine the energy that the 

local SD consumes for transmitting the offloaded task. Accordingly, it 
is expressed by 
𝐸O, Tx𝑚 = 𝑝𝑚𝐷

O, Tx
𝑚 . (13)

Based on the discussions in Section 3.2, the energy consumed on an 
active RIS is expressed by 
𝐸O, RIS = 𝑄RIS𝐷O, Tx. (14)
𝑚 𝑚

5 
Similar to local computing, the energy consumed for edge comput-
ing is expressed by 
𝐸O, CPU𝑚 = 𝜐𝛼𝑚𝐾𝑚𝑊 𝑓E𝑚 = 𝜐𝐷O,CPU𝑚 (𝑓E𝑚)

2, (15)

where 𝜐 is the energy factor of edge computing.
Substituting (12)–(15) into (11) and with some calculus, we have 

𝐸𝑚 = 𝐾𝑚𝑊
(

𝛽𝑓M𝑚 + 𝛼𝑚
(

𝜔𝑚 − 𝛽𝑓M𝑚
))

, (16)

where 𝜔𝑚 ≜ (𝑝𝑚 +𝑄RIS)𝜒∕𝑅𝑚 + 𝑣𝑓E𝑚 and 𝜒 ≜ 𝑆∕𝑊 .

3.6. Utility model for delay guarantee and energy efficiency

Since delay performance and energy consumption are two focus 
areas in edge computing, this subsection introduces a system utility 
model to comprehensively evaluate the delay guarantee and energy 
consumption of task partitioning and offloading in industrial edge 
computing.

From an intelligent factory’s point of view, delay guarantee is a 
focus of attention. To evaluate the user satisfaction with delay per-
formance, we define the delay-based service satisfaction of SD 𝑚 for 
𝑚 ∈  as follows. 
𝜁𝑚 = 𝟏(𝐷𝑚 ≤ 𝐷Th𝑚 ), (17)

where 𝐷Th𝑚  is the delay bound of task 𝑚, 𝟏(𝐾) = 1 if 𝑘 is true; 𝟏(𝑘) =
0 otherwise. That is, if the latency 𝐷𝑚 of the task does not exceed 
the delay bound, the SD is satisfied with the task partitioning and 
offloading service; otherwise, the SD is not satisfied with the service.

From an edge computing service provider’s point of view, energy 
efficiency is a focus of attention.

Since the larger 𝜁𝑚 is, the more satisfactory the delay guarantee is, 
and the smaller 𝐸𝑚 is, the more satisfactory the energy efficiency is, we 
define the utility of processing task 𝑚 as follows. 
𝐺𝑚 = 𝜁𝑚 − 𝜑𝐸𝑚, (18)

where 𝜑 is a weighting factor to help uniformly evaluate delay perfor-
mance and energy consumption.

Accordingly, the system utility for processing all tasks is defined by 

𝐺 =
∑

𝑚∈
𝐺𝑚. (19)

4. Problem formulation

4.1. JCORO

This paper aims to maximize system utility through jointly optimiz-
ing (a) task partitioning and offloading decisions 𝜶 ≜ {𝛼𝑚 ∶ ∀𝑚 ∈ }, 
(b) phase shift and amplification factor (𝛷, 𝜌) of the active RIS, (c) 
transmission power 𝐩 ≜ {𝑝𝑚 ∶ ∀𝑚 ∈ }, and (d) computation resource 
allocation 𝐟 ≜ {𝑓E𝑚 ∶ ∀𝑚 ∈ } for offloaded subtasks. The above 
problem is called the joint computation offloading and active RIS
optimization (JCORO) problem, and is formulated as,

JCORO ∶ max
{𝛼,𝛷, 𝜌, 𝐩, 𝐟}

𝐺 (20a)

s.t. 0 ≤ 𝛼𝑚 ≤ 1,∀𝑚 ∈ , (20b)

0 ≤ 𝜃𝑛 ≤ 2𝜋,∀𝑛 ∈  , (20c)

1 < 𝜌 < 𝜌Th, (20d)

𝑝𝑚 ≤ 𝑝Th, (20e)
∑

𝑚∈
𝑓E𝑚 ≤ 𝑓E, (20f)

 where (20) follows (19); (20b) is the partitioning and offloading con-
straint; (20b) is the phase shift constraint; (20d) is the amplification fac-
tor constraint in active RIS; (20e) is the transmission power constraint; 
(20f) is the computing resource constraint in edge computing.
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4.2. Problem decomposition

The JCORO problem described in (20) involves end-user and edge 
computing network decision-making, e.g., task partitioning and offload-
ing decisions for multiple SDs, phase shift matrix and amplification 
factors in an active RIS, and computation resource allocation in MEC 
servers. To reduce algorithm complexity, this paper decomposes JCORO 
into two concatenated subproblems: the PO and RORA subproblems. 
The task partitioning and offloading decisions 𝛼∗ of PO are based on 
the latest results of RORA. The RORA solution will be affected by the 
task partitioning and offloading decisions from the PO. The details are 
described below.

Firstly, given the up-to-date {𝛷, 𝜌, 𝐩} of RORA, the current value of 
transmission rate 𝑅𝑚 (∀𝑚 ∈ ) could be estimated. Thus, the upload 
delay is determined. Similarly, given 𝐟 of the RORA subproblem, the 
computation delay could be estimated. Then, the latency of a task 𝐷𝑚
(∀𝑚 ∈ ) is determined. Therefore, from an SD’s point of view, JCORO 
is reduced to PO as follows. 
(PO) ∶ max𝛼∗ 𝐺 (21a)

s.t. (20b), (21b)

𝛷 = 𝛷∗, 𝜌 = 𝜌∗,𝐩 = 𝐩∗, 𝐟 = 𝐟∗, (21c)

 where (20c)–(20f) of JCORO are released given {𝛷∗, 𝜌∗,𝐩∗, 𝐟∗}; (21c) 
is the up-to-date solver of RORA.

Secondly, RORA’s objective is to improve SDs’ delay-based service 
satisfaction by jointly optimizing active RIS and MEC computation 
resource allocation, considering the latest results of PO. That is, the 
RORA subproblem is formulated as, 
(RORA) ∶ max

{𝛷∗, 𝜌∗,𝐩∗, 𝐟∗}
𝜁𝑚,∀𝑚 ∈  (22a)

s.t. (20c),(20d),(20e),(20f), (22b)

𝛼 = 𝛼∗, (22c)

 where (22c) is the solution of the PO subproblem.

5. Theoretical analysis

This section analyzes the properties of decision variables in PO 
and RORA subproblems, respectively, concerning delay guarantee and 
energy efficiency.

5.1. Task partitioning and offloading properties

According to (5), (6) and (7), for the 𝑚th task, the offloading delay 
could be expressed by 
𝐷O𝑚 = 𝛼𝑚𝐾𝑚𝑆∕𝑅𝑚 + 𝛼𝑚𝐾𝑚𝑊 ∕𝑓E𝑚

= 𝛼𝑚𝐾𝑚𝑊𝜓𝑚,
(23)

where 𝜓𝑚 ≜ 𝜒∕𝑅𝑚 + 1∕𝑓E𝑚 .
According to (10), the latency of the whole task is derived by 

𝐷𝑚 = max(𝐷L𝑚, 𝐷
O
𝑚)

= max
(

(1 − 𝛼𝑚)𝐾𝑚𝑊 ∕𝑓M𝑚 , 𝛼𝑚𝐾𝑚𝑊𝜓𝑚
)

= max
(

(1 − 𝛼𝑚)∕𝑓M𝑚 , 𝛼𝑚𝜓𝑚
)

⋅𝐾𝑚𝑊 .

(24)

Theorem 1. For any task 𝑚 ∈ , and under any delay-guaranteed 
partitioning and offloading policy, the offloading ratio of the task should 
satisfy 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼𝑚 ≥ 1 −
𝐷Th𝑚 𝑓

M
𝑚

𝐾𝑚𝑊
,

𝛼𝑚 ≤
𝐷Th𝑚

𝜓𝑚𝐾𝑚𝑊
.

(25)
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The statement of Theorem  1 indicates that the offloading ratio of a 
task is affected by an SD’s computation capability 𝑓M𝑚 , the task’s tolera-
ble latency 𝐷Th𝑚  and computing amount 𝐾𝑚𝑊 , and the edge processing 
service provided to this task 𝜓𝑚, which is affected by the transmission 
rate and the allocated MEC computation resource (see (23)). The lower 
bound of 𝛼𝑚 in (25) indicates that the task amount that exceeds the 
local SD’s delay-based computation capability (e.g., 𝐷Th𝑚 𝑓M𝑚 ∕(𝐾𝑚𝑊 )) 
must be offloaded. In contrast, the upper bound of 𝛼𝑚 in (25) indicates 
that the offloading ratio could not exceed the allocated edge processing 
service.

The statement of Theorem  1 also indicates that if the task amount 
and local computation capability are given, there are tradeoffs between 
the task’s tolerable latency, transmission rate, and MEC computation 
resource allocation. The larger the tolerable latency, the smaller the 
transmission rate and MEC computation resource requirements, and 
vice versa. Once the delay bound is given, the smaller the transmission 
rate, the larger the MEC computation resource should be allocated for 
delay guarantee.

Lemma 1. For any task 𝑚 ∈ , and under any delay-guaranteed 
partitioning and offloading policy, if the latest completed subtask is from 
local computing, that is, If 𝐷𝑚 = 𝐷L𝑚, then the dominated task offloading 
ratio 𝛼∗𝑚 satisfies 
{

𝛼∗𝑚 ≥ 𝛼lb_l𝑚 , (26)
𝛼∗𝑚 ≤ 𝛼ub_l𝑚 , (27)

 where 𝛼lb_l𝑚 ≜ 1 − 𝐷Th𝑚 𝑓M𝑚
𝐾𝑚𝑊

, and 𝛼ub_l𝑚 ≜ min
(

𝐷Th𝑚
𝜓𝑚𝐾𝑚𝑊

, 1
1+𝜓𝑚𝑓M𝑚

)

.
The optimum system utility for processing the corresponding task satisfies 

𝐺∗
𝑚 ≤

{

𝜑 − 𝜑2𝐾𝑚𝑊
(

𝛽𝑓M𝑚 + 𝛼lb_l𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,𝜔𝑚 ≥ 𝛽𝑓M𝑚
𝜑 − 𝜑2𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼ub_l𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,otherwise.
(28)

where 𝜑2 =
(1−𝜑)
𝐸max .

Lemma 2. For any task 𝑚 ∈ , and under any delay-guaranteed 
partitioning and offloading policy, if the latest completed subtask is from 
MEC computing, that is, If 𝐷𝑚 = 𝐷O𝑚 holds, then the dominated task 
offloading ratio 𝛼∗𝑚 satisfies 
{

𝛼∗𝑚 ≥ 𝛼lb_o𝑚 , (29)
𝛼∗𝑚 ≤ 𝛼ub_o𝑚 , (30)

 where 𝛼lb_o𝑚 ≜ max
(

1 − 𝐷Th𝑚 𝑓M𝑚
𝐾𝑚𝑊

, 1
1+𝜓𝑚𝑓M𝑚

)

, and 𝛼ub_o𝑚 ≜ 𝐷Th𝑚
𝜓𝑚𝐾𝑚𝑊

.
The optimum utility for processing the corresponding task satisfies 

𝐺∗
𝑚 ≤

{

𝜑 − 𝜑2𝐾𝑚𝑊
(

𝛽𝑓M𝑚 + 𝛼lb_o𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,𝜔𝑚 ≥ 𝛽𝑓M𝑚
𝜑 − 𝜑2𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼ub_o𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,otherwise.
(31)

The statements of Theorem  1 and its extensions (e.g., Lemmas  1–2) 
are generalized to dynamic and heterogeneous network conditions; that 
is, the offloading ratio varies with varying computation amount, delay 
bound, transmission rate, and allocated computation resource.

Theorem 2. For any task from SD 𝑚 ∈ , and under any task partitioning 
and offloading policy, if 𝐷𝑚 ≥ 𝐷Th𝑚 , then the dominated partitioning and 
offloading decision satisfies 

𝛼∗𝑚 =

{

0, 𝜔𝑚 ≥ 𝛽𝑓M𝑚 (32)
1, otherwise. (33)

The optimum utility for processing the task satisfies 

𝐺∗
𝑚 = −(1 − 𝜑)𝐸∗

𝑚∕𝐸
max, (34)

where 𝐸∗ = 𝐾 𝑊
(

𝛽𝑓M + 𝛼∗ (𝜔 − 𝛽𝑓M)
)

.
𝑚 𝑚 𝑚 𝑚 𝑚 𝑚
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When system load is heavy, e.g., the total computation demand 
is close to or exceeds the system computation capacity (which is the 
sum of SDs’ and MEC servers’ computation resources), or the avail-
able bandwidth cannot satisfy the transmission rate requirement of 
offloading tasks, the latency of some task may exceeds its delay bound, 
i.e., 𝐷𝑚 ≥ 𝐷Th𝑚  for 𝑚 ∈ . In this case, from a utility optimization point 
of view, the statement of Theorem  2 indicates that it is better to process 
the whole task locally or in an edge server, depending on which action 
minimizes energy consumption.

5.2. Joint active RIS optimum and MEC computation resource allocation

Theorem 3. For any task 𝑚 ∈ , given 𝛼𝑚, then, under any delay-
guaranteed RIS optimum and MEC resource allocation policy, the transmis-
sion rate of the offloading subtasks should satisfy 

𝑅𝑚 ≥
𝜒

𝐷Th𝑚
𝐾𝑚𝑊 𝛼𝑚

− 1
𝑓E𝑚

, (35)

and the transmission power should satisfy 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝑚≥
⎛

⎜

⎜

⎜

⎝

ln
⎛

⎜

⎜

⎜

⎝

𝜒

𝐵( 𝐷Th𝑚
𝐾𝑚𝑊 𝛼𝑚

− 1
𝑓E𝑚

)

⎞

⎟

⎟

⎟

⎠

−1

⎞

⎟

⎟

⎟

⎠

𝜎2𝑟 ‖𝐠𝛷‖
2+𝜎2∕𝜌2

|𝐠𝛷ℎ𝑚|2
, (36)

𝑝𝑚 ≤ 𝑝Th. (37)

Theorem 4. For any task 𝑚 ∈ , given 𝛼𝑚 and 𝑅𝑚, then, under any delay-
guaranteed RIS optimum and MEC resource allocation policy, the allocated 
MEC computation resource should satisfy 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓E𝑚 ≥ 1
𝐷Th𝑚

𝐾𝑚𝑊 𝛼𝑚
− 𝜒

𝑅𝑚

, (38)

∑

𝑚∈
𝑓E𝑚 ≤ 𝑓E. (39)

Lemma 3. For any task 𝑚 ∈ , given 𝛼𝑚 and 𝑅𝑚, then, under any delay-
guaranteed RIS optimum and MEC resource allocation policy, if 𝜔𝑚 ≥ 𝛽𝑓M𝑚
holds, then the optimum allocated MEC computation resource 𝑓E∗𝑚  satisfies 

⎧

⎪

⎨

⎪

⎩

𝑓E∗𝑚 ≥ max(𝑓 lb_a𝑚 , 𝑓 lb_b𝑚 ), (40)
𝑓E∗𝑚 +

∑

𝑚′∈⧵{𝑚}
𝑓E𝑚′ ≤ 𝑓E. (41)

 where 𝑓 lb_a𝑚 = 1
𝐷Th𝑚

𝐾𝑚𝑊 𝛼𝑚
− 𝜒
𝑅𝑚

, 𝑓 lb_b𝑚 = 1
𝑣 (𝛽𝑓

M
𝑚 − (𝑝𝑚 +𝑄RIS)𝜒∕𝑅𝑚).

Otherwise, the optimum allocated MEC computation resource 𝑓E∗𝑚  satis-
fies 
⎧

⎪

⎨

⎪

⎩

𝑓E∗𝑚 ≥ 1
𝐷Th𝑚

𝐾𝑚𝑊 𝛼𝑚
− 𝜒

𝑅𝑚

, (42)

𝑓E∗𝑚 ≤ min(𝑓 lb_b𝑚 , 𝑓 ub𝑚 ). (43)

 where 𝑓 ub𝑚 = 𝑓E −
∑

𝑚′∈⧵{𝑚} 𝑓
E
𝑚′ , we get the optimum 𝐺∗

𝑚.

The proof of the above theorems and lemmas can be found in Ap-
pendix.

6. RISADA scheme

Based on the analytical results, this section designs an active RIS-
assisted delay-aware (RISADA) task partitioning and offloading scheme 
to address the JCORO problem described in (20). The details are as 
follows.
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6.1. Overview of RISADA

The analytical results in Lemmas  1–2 show that, for each task, 
the source of the latest completed subtask, e.g., from local computing 
or MEC computing, affects the task partition and offload decision. 
Since the latest completed subtask is affected by the active RIS (af-
fecting the transmission rate) and MEC resource allocation policies 
(affecting the MEC computation delay), once the active RIS and MEC 
resource allocation decisions are given, the optimum task partitioning 
and offloading decisions could be obtained via Lemmas  1–2. On the 
other hand, once the task partitioning and offloading decisions are 
given, the required transmission rate, transmission power, and MEC 
computation resource could be determined via Theorem  3 and Lemma 
3. Accordingly, we design a two-stage iterative RISADA scheme to solve 
the JCORO problem.

As shown in Algorithm 1, we initially set the task partitioning 
and offloading decision 𝛼 as a random vector. We find out the op-
timum strategy set ∗ = (𝛼∗, 𝛷∗, 𝜌∗,𝐩∗, 𝐟∗) with the following steps: 
(1) In stage-A, we solve the RORA subproblem. In particular, we 
use a stochastic initialized and gradually approximated sum-SNR-
maximization beamforming optimization (SIG) to find out optimum 
amplification factor and phase shift (𝜌,𝛷) based on the present of-
floading decision 𝛼 via Algorithm 2; Then, we adjust the transmission 
power and estimate the transmission rate (𝑝𝑚, 𝑅𝑚) adaptive to present 
offloading decision and RIS configuration; Next, we allocate the MEC 
computation resource 𝐟 to offloaded subtasks based on the present 
offloading decision and transmission rate; (2) In Stage-B, we solve PO 
and obtain the updated task partitioning and offloading decisions 𝛼
as well as estimate system utility 𝐺 with present transmission and 
computation resource allocation decisions; (3) If the estimated system 
utility 𝐺 is improved, then the task partitioning and offloading strategy 
will be updated. We repeat steps (1) to -(3) until no update happens or 
the repeat count reaches the threshold. After obtaining the optimum 
strategy, the tasks are processed based on the strategy.

6.2. SIG for beamforming optimization

The position of the RIS affects the communication efficiency be-
tween the SDs and the BS. Generally, the smaller the distance of 
the user-RIS or RIS-BS, the greater the communication improvement. 
Accordingly, this paper assumes that the RIS is deployed within the 
industrial factory close to SDs. However, due to distinct incident angles 
and positions of SDs, different SDs may yield different communication 
efficiencies in terms of transmission rate in a multi-user multi-reflecting 
element system.

Since the distances of user-RIS and RIS-BS are constant in a decision 
epoch, the transmission rate is affected by the phase shift, amplification 
factor of the active RIS, and the transmit power of an SD, as illus-
trated in (2) and (3). Each SD could improve its transmission rate by 
increasing the active RIS’s transmission power and amplification factor 
at the cost of energy consumption. However, each reflecting element in 
RIS could be reconfigured with one phase shift value at the moment, 
leading to distinct signal reflecting strength provided to different SDs 
due to their distinct incident angles. Therefore, releasing transmission 
power and amplification factor, the beamforming optimization could 
be transferred to a sum SNR maximization problem by re-configuring 
the phase shift (called PhaseOpt), which is formulated as, 
PhaseOpt ∶ max

𝛷∗
𝛾 =

∑

𝑚∈O
𝛾𝑚 (44a)

s.t. 𝛾𝑚 = |𝐠𝛷ℎ𝑚|2, (44b)

0 ≤ 𝜃𝑛 ≤ 2𝜋,∀𝑛 ∈  (44c)

 where (44b) follows (2), (44c) follows ((20c)).
For any 𝑚 ∈ O, to maximize 𝛾𝑚 is equivalent to maximize |𝐠𝛷ℎ𝑚|2. 

Let v = (𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 ,… , 𝑒𝑗𝜃𝑁 )𝐻 , then we have 𝐠𝛷ℎ = v𝐻diag(𝐠)ℎ . 
𝑚 𝑚
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Algorithm 1 RISADA
Initialization: 𝛼𝑚 = 𝜖, 𝐺opt = 0,𝑓E𝑚 = 𝑓E∕𝑀 , 𝑓M𝑚 = 𝑓M for 𝑚 ∈ , 
where 𝜖 is a random number range from 0 to 1.

Finding out optimum policy:

1. Stage-A: Solve the RORA subproblem using the following steps:

a. Determine (𝜌,𝛷) using Algorithm 2.
b. Determine (p,) for offloading subtasks based on Theo-
rem  3.

c. Allocate computation resource 𝑓E𝑚 ,∀𝑚 ∈ O to offloading 
subtasks based on Lemma  3, set 𝑓E𝑚 = 0 for 𝑚 ∈  ⧵O, 
set f = {𝑓E𝑚 ∶ ∀𝑚 ∈ }.

2. Stage-B: Solve the PO subproblem to obtain 𝛼 = {𝛼𝑚 ∶ ∀𝑚 ∈ }
using Algorithm 3 and calculate system utility 𝐺 with present 
(, f) via (19).

3. Policy update: If 𝐺 > 𝐺opt, then set the latest  = (𝛼,𝛷, 𝜌,p, f)
as ∗ = (𝛼∗, 𝛷∗, 𝜌∗,p∗, f∗), set 𝐺opt = 𝐺.

4. Repeat steps 1)-3) until no updated  = (𝛼,𝛷, 𝜌,p, f) could 
improve 𝐺 or the repeat count reaches the threshold.

5. output: ∗ = (𝛼∗, 𝛷∗, 𝜌∗,p∗, f∗).

Processing:

1. Set the phase shift and amplification factor of the active RIS with 
(𝛷∗, 𝜌∗).

2. Partition tasks with 𝛼∗;
3. Perform local computing based on 𝛼∗ and 𝑓M*𝑚  for 𝑚 ∈ .
4. Offload the partitioned tasks to the network edge for MEC 
computing with p∗ and f∗.

Accordingly, the problem described in (44) could be transformed into 

maxv
∑

𝑚∈O
|v𝐻diag(𝐠)ℎ𝑚|2 (45a)

s.t. |𝑣𝑛| = 1,∀𝑛 = 1, 2,… , 𝑁, (45b)

arg(v𝐻diag(𝐠)ℎ𝑚) = 0,∀𝑚 ∈ O, (45c)

 where the right-hand side of (45c) indicates that when the equivalent 
link of a reflecting path equals a direct link, we get the strongest 
reflecting signal.

For 𝑚 ∈ O, the optimum |v𝐻diag(𝐠)ℎ𝑚|2 is yielded by v∗𝑚 =
𝑒𝑗(− arg(diag(𝐠)ℎ𝑚)). Thus, considering the user-specific channel quality, the 
𝑛th phase shift is given by 
𝜃𝑚,𝑛 = −arg(𝑔𝑛ℎ𝑛,𝑚) = −arg(𝑔𝑛) − arg(ℎ𝑛,𝑚), (46)

where 𝑔𝑛 is the 𝑛th element of 𝐠, ℎ𝑛,𝑚 is the channel coefficient.
Based on the above discussions, we propose SIG to determine the 

optimum 𝜌 and 𝛷. The detail is shown in Algorithm 2.

6.3. Delay-aware power allocation

To guarantee the delay requirement, the transmission rate of the of-
floading subtasks should be no less than the lower bound, as illustrated 
in Theorem  3. In addition, to satisfy the transmission rate requirement, 
the required transmission power should satisfy (36). Accordingly, in 
Stage-A.b of Algorithm 1, given the up-to-date (𝜌, 𝛷, 𝛼𝑚, 𝑓E𝑚), the 
transmission power of the 𝑚th (∀𝑚 ∈ ) subtask is set to 
𝑝 = min

(

𝑝min + 𝜖, 𝑝Th
)

, (50)
𝑚 𝑚

8 
Algorithm 2 SIG for beamforming optimization
Input: 𝑁 , ℎO, g, O, 𝜌Th.
Output: 𝜌∗, 𝛷∗.
Initiate: set 𝜌∗ = 𝜌Th.
For 𝐿 = 1 to 𝐿max, do

1. Set 𝜃𝑛 = 𝜖𝜋 for 𝑛 ∈  , where 𝜖𝜋 is a random value range from 0 
to 2𝜋, set 𝑤𝑚 = (g𝛷ℎ𝑚)𝐻

‖ℎ𝑚‖
 for 𝑚 ∈ O, where g is a 1 ×𝑁 vector, 

𝛷 = diag(𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 ,… , 𝑒𝑗𝜃𝑁 ), ℎ𝑚 is a 𝑁 × 1 vector.
2. For 𝑛 ∈  , do

(a) Calculate h𝑛 with h𝑛 = ℎ𝑛𝑤, where ℎ𝑛 is a 1×𝑀O vector, 
𝑤 = (𝑤𝑚 ∶ ∀𝑚 ∈ O) is a 𝑀O × 1 vector.

(b) Calculate 𝜃h with 𝜃h = arg(h𝑛), where arg(⋅) represents the 
phase of (⋅).

(c) Calculate 𝜃g with 𝜃g = arg(𝑔𝑛).
(d) Calculate the 𝑛th phase shift using (47). 

𝜃′𝑛 = −𝜃h − 𝜃g. (47)

(e) Calculate 𝛷′  using (48). 

𝛷
′
= diag(𝑒𝑗𝜃1 , 𝑒𝑗𝜃2 ,… , 𝑒𝑗𝜃

′
𝑛 ,… , 𝑒𝑗𝜃𝑁 ). (48)

In (48), the phase shift 𝜃𝑛′  of the 𝑛′th (for 𝑛′ ∈  ⧵ {𝑛}) 
element is the phase shift in the previous round.

(f) Update 𝜃𝑛, 𝛷 and 𝐻𝑚 for all 𝑚 ∈ O as follows.

⎧

⎪

⎨

⎪

⎩

𝜃𝑛 = 𝜃′𝑛,
𝛷 = 𝛷′ ,

𝑤𝑚 = (g𝛷ℎ𝑚)𝐻
‖g𝛷ℎ𝑚‖

.
(49)

3. Calculate 𝛾 ′ ≜ ∑

𝑚∈O |g𝛷ℎ𝑚|2 according to (2).
4. If 𝛾 ′ > 𝛾, then set 𝛷∗ = 𝛷 and 𝛾 = 𝛾 ′ .

where 𝐿max ≤𝑀O is a repeat threshold.

where 𝑝min𝑚 =
⎛

⎜

⎜

⎝

ln
⎛

⎜

⎜

⎝

𝜒

𝐵( 𝐷Th𝑚
𝐾𝑚𝑊 𝛼𝑚

− 1
𝑓E𝑚

)

⎞

⎟

⎟

⎠

− 1
⎞

⎟

⎟

⎠

𝜎2𝑟 ‖𝐠𝛷‖
2+𝜎2∕𝜌2

|𝐠𝛷ℎ𝑚|2
 according to (36), 

𝜖 > 0 is a random number. Once 𝜌, 𝛷 and 𝑝𝑚 are determined, the 
optimum transmission rate 𝑅𝑚 could be yielded via (3). Set 𝐩 = {𝑝𝑚 ∶
∀𝑚 ∈ } and  = {𝑅𝑚 ∶ ∀𝑚 ∈ }, then we obtain optimum (𝐩,) for 
offloading subtasks.

6.4. DEEPO for task partitioning and offloading

The analytical results in Theorem  1 show that, given the transmis-
sion rate and MEC computation resource (e.g., 𝜓𝑚, 𝑓𝑚 for 𝑚 ∈ ), 
for guaranteeing the delay, the offloading ratio of the task should 
satisfy (25). Moreover, for achieving optimum system utility, that is, 
for energy-efficiently guaranteeing the delay, the offloading ratio is 
further constrained by the latest completed subtask, as illustrated in 
Lemmas  1–2. In addition, if the network and computation resource 
cannot satisfy a task’s delay requirement, then the offloading ratio 
is different from Lemmas  1–2, as illustrated in Theorem  2. Based on 
the above analysis, we design the Delay-aware energy-efficient task
partitioning and offloading (DEEPO) algorithm in stage-B to determine 
the optimum policy.

The detail is shown in Algorithm 3.

6.5. Algorithm complexity

This paper decomposes the JCORO problem into two concatenated 
subproblems: the PO and RORA subproblems. The proposed RISADA 
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Algorithm 3 DEEPO for the PO subproblem
Input: 𝑅𝑚, 𝑓E𝑚 , 𝑓M𝑚 , 𝛼𝑚 for 𝑚 ∈ .
Output: 𝛼∗𝑚 for 𝑚 ∈ .
Initiate: Calculate 𝐺 with input (𝛼,, f).
Repeat

1. Find out a set of tasks, named ′, whose task partitioning and 
offloading ratio is overflow, that is, the present 𝛼𝑚 for 𝑚 ∈ ′

does not satisfy Lemmas  1–2.
2. Find out the task 𝑚∗ whose task partitioning and offloading 
decision update could significantly improve the system utility 
from the overflow set ′, which further includes the following 
steps.

• Initial: Let 𝛥𝐺 = 0, 𝑚∗ = {}, 𝛼𝑚∗ = 0.
• For 𝑚 ∈ ′, do

(a) Calculate 𝐷L𝑚 and 𝐷O𝑚 with (9) and (5), respectively.
(b) Update 𝛼′𝑚. In special, if 𝐷L𝑚 > 𝐷O𝑚 , then, according 

to Lemma  1, update 𝛼′𝑚 with (51). 

𝛼′𝑚 = 𝛼lb_l𝑚 + (𝛼ub_l𝑚 − 𝛼lb_l𝑚 )𝜖, (51)

else, according to Lemma  2, update 𝛼′𝑚 with (52).

𝛼′𝑚 = 𝛼lb_o𝑚 + (𝛼ub_o𝑚 − 𝛼lb_o𝑚 )𝜖, (52)

where 𝜖 is a random number between 0 and 1.
(c) Let 𝛼′ = (𝛼1,… , 𝛼𝑚−1, 𝛼′𝑚, 𝛼𝑚+1,…), calculate 𝐺′

based on 𝛼′ with (18).
(d) Calculate 𝛥𝐺′ with 𝛥𝐺′ = 𝐺′ − 𝐺.
(e) If 𝛥𝐺′ > 𝛥𝐺, then update 𝐺, 𝛥𝐺, 𝑚∗ and 𝛼𝑚∗ as 

follows 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐺 = 𝐺′,
𝛥𝐺 = 𝛥𝐺′,
𝑚∗ = 𝑚,
𝛼𝑚∗ = 𝛼′𝑚.

(53)

Until no update can improve 𝐺 or reaches the repeat count.

scheme solves these two subproblems with two iterative stages. In 
stage-A, we solve the RORA subproblem by (1) using SIG (Algo-
rithm 2) to find out the optimum amplification factor and phase shift 
(𝜌,𝛷), where the algorithm complexity of SIG is 𝑂(𝑀O × 𝑁); (2) 
determining (𝐩,) based on Theorem  3, the algorithm complexity 
is 𝑂(1); (3) allocating computation resource to offloading subtasks, 
the corresponding algorithm complexity is 𝑂(O). Since SIG runs 
in an RIS controller, the determining of transmission rate runs in a 
wireless network, and computation resource allocation performs in 
MEC servers, the algorithm complexity in stage-A for solving RORA is 
max

(

𝑂(𝑀O ×𝑁), 𝑂(1), 𝑂(O)
)

, which equals to 𝑂(𝑀O×𝑁). In stage-B, 
as shown in Algorithm 3, the algorithm complexity for solving the PO 
subproblem is 𝑂(𝑀). Therefore, the algorithm complexity of RISADA 
is 𝑂(𝑀O ×𝑁 ×𝑀).

It is noted that optimizing the amplification factor and phase shift 
(𝜌,𝛷) of an RIS with multiple users is complex (Liu et al., 2024; Lv 
et al., 2024; Wu and Zhang, 2019). For example, using semidefinite 
relaxation (SDR) (Wu and Zhang, 2019), the algorithm complexity is 
𝑂(𝑁2) for a single-user system. For a multi-user system, under a two-
stage alternating optimization-based algorithm (Wu and Zhang, 2019), 
the algorithm complexity is 𝑂(𝑀 × 𝑁). With the gradient descent 
method (Liu et al., 2024), the algorithm complexity is 𝑂(𝑀 × 𝑁). 
The above analysis shows that the algorithm complexity for finding 
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Fig. 2. Simulation setup (top view).

out an optimizing phase shift of an RIS is at least a function of the 
user and reflecting element numbers. The joint optimization of the 
amplification factor and phase shift of an RIS, task partitioning and 
offloading, and the computation resource allocation is more complex. 
In addition, the algorithm complexity of a resource allocation policy 
with 𝑀 users/tasks is generally a function of 𝑀 . Since industrial com-
putation tasks are typically generated on timescales of hours or days 
and processor power continues to increase, our algorithm is feasible 
for real-time or near-real-time applications. Accordingly, our algorithm 
complexity is acceptable, and the proposed algorithm is scalable.

7. Performance evaluation

This section evaluates the effectiveness of our proposal for ac-
tive RIS-assisted task partitioning and offloading in industrial-edge 
computing.

7.1. Parameter setting

Consider the production scale and site size of a medium-sized 
factory, the number of SDs and active RIS reflecting elements are set 
to 𝑀 = 20 and 𝑁 = 400, respectively. As illustrated in Fig.  2, the 
positions of the base station and RIS are set to (0,0,0)m and (50,0,10)m, 
respectively (Wu and Zhang, 2019). SDs are distributed in a circular 
area with minimum and maximum horizontal (x-axis) distances from 
the base station are 𝑑min = 60 m and 𝑑max = 80 m, respectively. The 
radius of the circular area is set to 𝑟d = (𝑑max − 𝑑min)∕2. The vertical 
(z-axis) distance from the base station is set to 𝑑v = −3 m. It is assumed 
that there are obstacles between the SD area and the base station so that 
direct communication between SDs and the base station is blocked.

The computing resources of the MEC servers and SDs are set to 
𝑓E = 50 GHz and 𝑓M𝑚 = 1.2 GHz for 𝑚 ∈ , respectively. Each 
SD generates one task per epoch; task sizes are randomly distributed 
between 1 to 20 times the basic unit, where the basic unit of task 
size and computing amount for task partition are set to 𝑆 = 0.4
Mb and 𝑊 = 0.84 GHz, respectively, which captures the scenario of 
industrial image recognition, where the data generated per SD is about 
0.7Mb/task (Navarro-Ortiz et al., 2020). The basic parameter settings 
are listed in Table  2.

7.2. Evaluation of active RIS for transmission rate improvement

This subsection evaluates the efficiency of active RIS for task upload 
from local SDs to MEC servers for MEC computing. We compare the per-
formance of our proposed beamforming solver for active RIS (e.g., SIG) 
with sum-rate max, SDR, and MMSE in terms of the transmission rate.



M. Guo et al. Journal of Network and Computer Applications 242 (2025) 104215 
Table 2
The basic parameter settings. 
 Channel parameters
 𝐶0 The reference strength for the channel (dB) −30  
 𝑎𝑢𝑟 fading factor from SD to RIS (Guo et al., 2023a) 2.8  
 𝑎𝑟𝑏 fading factor from RIS to BS (Guo et al., 2023a) 2  
 𝜎2 Noise power (dBm) −70  
 𝐵 Bandwidth (MHz) 5  
 Active RIS parameters
 𝑁 Number of reflecting elements 400  
 𝑃dc Power consumed by control circuit (dBm) −5  
 𝑃sw Power consumed by phase shift switch (dBm) −10  
 𝜎2𝑟 The noise power introduced by RIS (dBm) −70  
 Task parameters
 𝑆 The basic unit of task size (Mb) 0.4  
 𝑊 The basic unit of computing amount (GHz) 0.84  
 𝐾𝑚 The multiples of the basic unit [1, 20]  
 𝐷Th

𝑚 The delay bound(ms) 10  
 Computing parameters
 𝑀 Number of SDs 20  
 𝑓M Computing resource of an SD (GHz) 1.2  
 𝑓E Computing resource of MEC servers (GHz) 50  
 Energy parameters
 𝑝Th The maximum transmit power (w) 0.1  
 𝛽 The energy factor for local computing 0.25×10−18 
 𝑣 The energy factor for MEC computing 10×10−28  

Fig. 3. RIS-assisted transmission rate improvement.

Sum-rate max (Guo et al., 2023b; Xu et al., 2022): Choosing the RIS’s 
phase shift to maximize the sum of transmission rate at each iteration.

SDR (Wu and Zhang, 2019; Sun et al., 2022): Finding out the phase 
shift of the active RIS by semidefinite relaxation (SDR).

MMSE (Nadeem et al., 2019): The minimum mean square error-
based channel estimation combined with a project gradient ascent 
method determines the optimum phase shift.

As illustrated in Fig.  3, the average transmission rate of all the 
investigated active RIS beamforming solvers increases with the number 
of RIS elements. The efficiency of our proposed SIG is demonstrated 
by giving the highest average transmission rate under various RIS 
elements.

Since additional steps with random values are needed to construct a 
rank-one solution from the obtained higher-rank solution under SDR in 
a multiple-user multiple-RIS element environment, the average trans-
mission rate given by SDR is worse than other iterative beamforming 
methods, such as sum-rate max, MMSE and SIG, as demonstrated in Fig. 
3.

The impact of amplification factor 𝜌 on transmission power reduc-
tion is demonstrated in Fig.  4. With increasing 𝜌, the transmission 
power required by each SD to achieve the same transmission decreases, 
as shown in Fig.  4. Take SD 𝑚 = 5 as an example; for achieving the 
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Fig. 4. The impact of 𝜌 on transmission power reduction.

transmission rate of 4.8 Mbps, when the amplification factor 𝜌 = 0.8, 
the user is required to transmit the offloading task with transmit power 
of 0.266 W; however, when 𝜌 = 1.2, he needs to do that with a 
transmission power of 0.118 W. Note that the channel gain is different 
for each SD due to the dynamic nature of the wireless environment. 
Thus, each SD’s achievable transmission rate differs from that of others. 
Therefore, the transmission rate varies among SDs, as illustrated in Fig. 
4.

7.3. Evaluation of delay guarantee and energy efficiency

This subsection evaluates the efficiency of the proposed RISADA for 
the JCORO problem by comparing it with the following four benchmark 
schemes.

• Local greedy:  Each task is computed locally on the local SD (Mao 
et al., 2021).

• Active RIS-assisted MEC greedy:  All tasks are offloaded to the 
MEC server via the active RIS-assisted cellular network for edge 
computing (Yue et al., 2022). The active RIS’s optimum phase 
shift and amplification factor are solved via the sum-rate max 
method described in Guo et al. (2023b), Xu et al. (2022). At the 
same time, the computing resources at the MEC servers are dis-
tributed among offloaded tasks through the RIS-assisted weighted 
fair (WFEC) policy described in Guo et al. (2023a).

• Active RIS-assisted delay-constrained task partition and offloading 
(DTPO): Making task partitioning and offloading decisions based 
on the delay requirements of tasks. In particular, for each SD, a 
task partition and offloading policy that minimizes its task latency 
is chosen (Yue et al., 2022; Guo et al., 2023b). Similar to MEC 
greedy, the active RIS’s optimum phase shift and amplification 
factor are solved via sum-rate-max. At the same time, the compu-
tation resource allocation at the MEC server is addressed through 
WFEC.

• Active RIS-assisted energy-efficient task partition and offloading 
(ETPO): The task partition and offloading decisions are made for 
achieving energy efficiency while trying to reduce the latency of 
tasks, which is a variant of Mahenge et al. (2022). In addition, 
the active RIS’s optimum phase shift and amplification factor are 
solved by the sum-rate max method.

Since the delay-based service satisfaction reflects the satisfaction 
level of the user to delay guarantee, we use percentage to evaluate it 
by setting 𝜁 = 𝜁 × 100%. Similarly, since the system utility reflects the 
integrated performance of delay guarantee and energy efficiency, we 
also use percentage to evaluate it by setting 𝐺 = 𝐺−𝐺min

𝐺max−𝐺min
× 100%, 

where 𝐺min and 𝐺max are the minimum and maximum value of 𝐺 in 
the simulation scenario.
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Fig. 5. System utility under various user numbers.

Fig. 6. Delay-based service satisfaction under various user numbers.

7.3.1. Adaptive to user number
First, we investigate the impact of the number of SDs on system 

utility and delay-based service satisfaction. As illustrated in Fig.  5, 
the system utilities given by MEC greedy, DTPO, ETPO, and RISADA 
decrease with the number of SDs. The reason is that as the number 
of SDs continues to increase, so do the computation tasks competing 
for shared RIS-assisted wireless and MEC computing resources. Thus, 
per-user service degrades in end-edge collaborative computation of-
floading schemes, such as MEC greedy, DTPO, ETPO, and RISADA. 
In other words, the delay-based service satisfaction given by the end-
edge collaborative schemes decreases, as illustrated in Fig.  6, while 
energy consumption increases, as shown in Table  3. Therefore, it is 
unsurprising that the system utility (i.e., the weighted sum of delay-
based service satisfaction and energy consumption) given by end-edge 
collaborative schemes, such as MEC greedy, DTPO, ETPO, and RISADA, 
decreases as SDs increase.

The efficiency of the proposed RISADA is demonstrated by always 
giving the highest system utility and delay-based service satisfaction 
as well as the lowest energy consumption compared to other inves-
tigated schemes, e.g., local greedy, MEC greedy, DTPO, and ETPO, 
as illustrated in Figs.  5–6 and Table  3, respectively. For example, 
when 𝑀 reaches 100, the delay-based service satisfaction given by 
MEC greedy has reduced to about 10%. However, the delay-based 
service satisfaction given by RISADA could still be greater than 90%, 
as illustrated in Fig.  6.

Since all tasks are computed in SDs, the increase in the number 
of SDs has little impact on the local greedy scheme’s offloading and 
resource allocation decisions. Therefore, as the number of SDs changes, 
local greedy gives roughly constant performance in terms of system 
utility, delay-based service satisfaction, and energy consumption, as 
illustrated in Figs.  5–6 and Table  3, respectively. The fluctuation of the 
performance is due to the varying task sizes.
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Table 3
Energy consumption (J/task). 
 𝑀 Local MEC DTPO ETPO RISADA 
 greedy greedy  
 10 0.25 1.34 1.02 0.87 0.04  
 20 0.28 1.56 0.99 0.97 0.08  
 30 0.26 1.75 1.30 1.0 0.10  
 40 0.26 1.80 1.42 1.02 0.14  
 50 0.26 2.03 1.34 1.10 0.16  
 60 0.27 2.20 1.45 1.14 0.20  
 70 0.27 2.47 1.74 1.41 0.21  
 80 0.26 2.60 1.81 1.26 0.22  
 90 0.26 2.60 1.77 1.35 0.22  
 100 0.26 2.81 1.92 1.48 0.23  

Fig. 7. System utility under various RIS element scale.

Fig. 8. Delay-based service satisfaction under various RIS element scales.

7.3.2. Adaptive to RIS scale
This subsection further observes the performance by varying the 

number of RIS elements. The system utility, delay-based service satis-
faction, and energy consumption of the investigated schemes are shown 
in Figs.  7–8 and Table  4, respectively.

Since the transmission rate increases with the number of active 
RIS elements, it is not surprising that delay-based service satisfaction 
provided by end-edge collaborative schemes (e.g., MEC greedy, DTPO, 
ETPO and RISADA) increase with 𝑁 , as illustrated in Fig.  8.

However, under the sum-rate max solver for phase shift and am-
plification factor of the active RIS, the energy consumptions given by 
MEC greedy, DTPO, and ETPO do not significantly decrease with 𝑁 , 
as illustrated in Table  4. The reason is that, for pursuing transmission 
rate maximization, some SDs in the above schemes would transmit 
their tasks with their maximum available power. This leads to their 
energy consumption having little benefit from increasing 𝑁 . Thus, the 
system utilities given by MEC greedy, DTPO, and ETPO do not increase 
significantly as 𝑁 increases, as shown in Fig.  7.



M. Guo et al. Journal of Network and Computer Applications 242 (2025) 104215 
Table 4
Energy consumption (J/task). 
 𝑁 Local MEC DTPO ETPO RISADA 
 greedy greedy  
 100 0.26 2.38 1.46 1.13 0.23  
 200 0.25 2.28 1.40 1.26 0.14  
 300 0.25 1.86 1.18 1.10 0.10  
 400 0.26 1.99 1.13 0.94 0.09  
 500 0.27 2.47 1.46 1.54 0.08  
 600 0.27 2.34 1.16 1.29 0.06  
 700 0.25 2.02 1.0 1.21 0.05  
 800 0.27 1.9 1.19 1.20 0.05  

The effectiveness of the proposed RISADA is again validated by 
giving the highest delay-based service satisfaction (see Fig.  8) and 
lowest energy consumption (see Table  4), thus the highest system 
utility (see Fig.  7). This is because RISADA can dynamically adjust the 
transmission power and MEC computation resource allocation policy 
to adapt to the varying RIS scales and quality of wireless reflecting 
paths between offloading users and MEC servers to reduce energy 
consumption, considering the delay requirements of tasks. For example, 
when 𝑁 reaches 800, the delay-based service satisfaction given by 
RISADA exceeds 90%, while that provided by MEC greedy only approxi-
mates 20%, as illustrated in Fig.  8. Meanwhile, the energy consumption 
reduces to 0.05 J/task in RISADA while that given by MEC greedy 
reaches 1.9 J/task, as shown in Table  4.

Since local computation is not affected by changes in 𝑁 in the 
wireless transmission environment, the delay-based service satisfaction, 
energy consumption, and system utility given by local greedy is again 
stable under various 𝑁 .

MEC greedy again performs the worst compared to other investi-
gated schemes by giving the lowest system utility, delay-based service 
satisfaction, and highest energy consumption, as illustrated in Figs.  7–8 
and Table  4, respectively. Although the increasing 𝑁 could increase the 
transmission rate of the offloading tasks in MEC greedy, thus increasing 
the delay-based service satisfaction (see Fig.  8), the workload compet-
ing for the wireless transmission and MEC computation resources are 
still higher in MEC greedy (all tasks are offloaded) in comparison with 
distributed and end-edge collaborative computation schemes (e.g., local 
greedy, DTPO, ETPO and RISADA). Accordingly, MEC greedy gives the 
worst delay guarantee and energy consumption performance.

7.4. Convergence evaluation

This subsection investigates the convergence of RISADA. We ob-
serve the dynamics of the system utility of RISADA under various SD 
numbers. As shown in Fig.  9, the system utility under various 𝑀 can 
converge to a stable value within a limited iteration. For example, when 
𝑀 = 20, the system utility reaches a constant after two iterations.

The number of iterations to converge increases with increasing 𝑀 . 
For example, the number of iterations for convergence at 𝑀 = 20, 
𝑀 = 40, 𝑀 = 60 and 𝑀 = 80 are 2, 10−, 60− and about 100, 
respectively where 𝑋− means less than 𝑋, which is accordance with 
our intuition. This is because the competition for the wireless reflecting 
path and computation resources in computation offloading schemes 
increases with the increasing SD number.

8. Conclusion

This paper has proposed an active RIS-assisted end-edge collab-
orative task partitioning and offloading scheme, termed RISADA, to 
address the joint computation offloading and active RIS optimization 
problem in industrial edge computing to achieve a low-delay guarantee 
while reducing energy consumption. In particular, the task partitioning 
and offloading properties, considering the delay requirements and en-
ergy consumption, have been theoretically analyzed. The joint active 
12 
Fig. 9. Convergence rate.

RIS optimum and MEC computation resource allocation properties have 
also been theoretically investigated. Based on the analytical results, a 
RISADA scheme was proposed to solve this problem. The simulation 
results have shown our scheme’s performance advantages over the 
benchmark schemes regarding delay guarantee and energy efficiency.
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Appendix

A.1. Proof of Theorem  1

Proof. For delay guarantee, 𝐷𝑚 ≤ 𝐷Th𝑚  should hold, thus we have
{

𝐷L𝑚 ≤ 𝐷Th𝑚 ,

𝐷O𝑚 ≤ 𝐷Th𝑚 .

Substituting (9) and (23) into the above formula, and with some 
calculus, we have
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼𝑚 ≥ 1 −
𝐷Th𝑚 𝑓M𝑚
𝐾𝑚𝑊

,

𝛼𝑚 ≤
𝐷Th𝑚

𝜓𝑚𝐾𝑚𝑊
.

which ends the proof.
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A.2. Proof of Lemma  1

Proof. If 𝐷𝑚 = 𝐷L𝑚, then we have 𝐷L𝑚 ≥ 𝐷O𝑚 . According to (24), we have 
(1 − 𝛼𝑚)∕𝑓M𝑚 ≥ 𝛼𝑚𝜓𝑚, that is, we have 

𝛼𝑚 ≤ 1
1 + 𝜓𝑚𝑓M𝑚

. (54)

Combining (54) and (25), we have 
{

𝛼∗𝑚 ≥ 𝛼lb_l𝑚 , (55)
𝛼∗𝑚 ≤ 𝛼ub_l𝑚 , (56)

 where 𝛼lb_l𝑚 ≜ 1 − 𝐷Th𝑚 𝑓M𝑚
𝐾𝑚𝑊

, and 𝛼ub_l𝑚 ≜ min
(

𝐷Th𝑚
𝜓𝑚𝐾𝑚𝑊

, 1
1+𝜓𝑚𝑓M𝑚

)

.

According to (16), if 𝜔𝑚 ≥ 𝛽𝑓M𝑚 , then when 𝛼∗𝑚 = 𝛼lb_l𝑚 , we could 
obtain the lower bound of the delay guaranteed energy consumption, 
that is
𝐸∗
𝑚 ≥ 𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼lb_l𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

.

However, if 𝜔𝑚 < 𝛽𝑓M𝑚  holds, the lower bound of the delay guaranteed 
energy consumption is yielded when 𝛼∗𝑚 = 𝛼ub_l𝑚 , that is
𝐸∗
𝑚 ≥ 𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼ub_l𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

.

Therefore, we have 

𝐸∗
𝑚 ≥

{

𝐾𝑚𝑊
(

𝛽𝑓M𝑚 + 𝛼lb_l𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,𝜔𝑚 ≥ 𝛽𝑓M𝑚
𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼ub_l𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,otherwise.
(57)

Substituting (56) into (17), and replacing 𝐷𝑚 with 𝐷L𝑚, we have 
𝜁∗𝑚 = 𝟏(𝐷∗

𝑚 ≤ 𝐷Th𝑚 )

= 𝟏(𝐷∗
𝑚 ≤ 𝐷Th𝑚 )

= 𝟏
( (1 − 𝛼𝑚)𝐾𝑚𝑊

𝑓M𝑚
≤ 𝐷Th𝑚

)

≤ 𝟏
( (1 − 𝛼ub_l𝑚 )𝐾𝑚𝑊

𝑓M𝑚
≤ 𝐷Th𝑚

)

.

(58)

According to (18), we have 
𝐺∗
𝑚 = 𝜑𝜁∗𝑚 − (1 − 𝜑)𝐸∗

𝑚∕𝐸
max. (59)

Let 𝜑2 =
(1−𝜑)
𝐸max , and substituting (57) and (58) into (59), then

𝐺∗
𝑚 =𝜑𝜁∗𝑚 − 𝜑2𝐸

∗
𝑚

≤𝜑𝟏
( (1 − 𝛼ub_l𝑚 )𝐾𝑚𝑊

𝑓M𝑚
≤ 𝐷Th𝑚

)

− 𝜑2𝐾𝑚𝑊
(

𝛽𝑓M𝑚 + 𝛼lb_l𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

.

Since 𝟏
(

(1−𝛼lb_l𝑚 )𝐾𝑚𝑊
𝑓M𝑚

≤ 𝐷Th𝑚
)

= 𝟏
(

(1−𝛼ub_l𝑚 )𝐾𝑚𝑊
𝑓M𝑚

≤ 𝐷Th𝑚
)

= 1 holds, we 
have

𝐺∗
𝑚 ≤

{

𝜑 − 𝜑2𝐾𝑚𝑊
(

𝛽𝑓M𝑚 + 𝛼lb_l𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,𝜔𝑚 ≥ 𝛽𝑓M𝑚
𝜑 − 𝜑2𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼ub_l𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,otherwise.

Then the statement follows.

A.3. Proof of Lemma  2

Proof. If 𝐷𝑚 = 𝐷O𝑚 , then we have 𝐷L𝑚 ≤ 𝐷O𝑚 . According to (24), we have 
(1 − 𝛼𝑚)∕𝑓M𝑚 ≤ 𝛼𝑚𝜓𝑚, that is, we have 

𝛼𝑚 ≥ 1
1 + 𝜓𝑚𝑓M𝑚

. (60)

Combining (25) and (60), we have 
{

𝛼∗𝑚 ≥ 𝛼lb_o𝑚 , (61)
𝛼∗𝑚 ≤ 𝛼ub_o𝑚 , (62)

 where 𝛼lb_o ≜ max
(

1 − 𝐷Th𝑚 𝑓M𝑚 , 1
)

, and 𝛼ub_o ≜ 𝐷Th𝑚 .
𝑚 𝐾𝑚𝑊 1+𝜓𝑚𝑓M𝑚
𝑚 𝜓𝑚𝐾𝑚𝑊
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According to (16), if 𝜔𝑚 ≥ 𝛽𝑓M𝑚 , then when 𝛼∗𝑚 = 𝛼lb_o𝑚 , we could 
obtain the lower bound of the delay guaranteed energy consumption, 
that is

𝐸∗
𝑚 ≥ 𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼lb_o𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

.

However, if 𝜔𝑚 < 𝛽𝑓M𝑚  holds, the lower bound of the delay guaranteed 
energy consumption is yielded when 𝛼∗𝑚 = 𝛼ub_o𝑚 , that is

𝐸∗
𝑚 ≥ 𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼ub_o𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

.

Therefore, we have 

𝐸∗
𝑚 ≥

{

𝐾𝑚𝑊
(

𝛽𝑓M𝑚 + 𝛼lb_o𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,𝜔𝑚 ≥ 𝛽𝑓M𝑚
𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼ub_o𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,otherwise.
(63)

Substituting (61) into (17), and replacing 𝐷𝑚 with 𝐷O𝑚 , we have 

𝜁∗𝑚 = 𝟏(𝐷O𝑚 ≤ 𝐷Th𝑚 )

= 𝟏(𝛼𝑚𝐾𝑚𝑊𝜓𝑚 ≤ 𝐷Th𝑚 )

≤ 𝟏(𝛼ub_o𝑚 𝐾𝑚𝑊𝜓𝑚 ≤ 𝐷Th𝑚 ).

(64)

Since 𝟏(𝛼lb_o𝑚 𝐾𝑚𝑊𝜓𝑚 ≤ 𝐷Th𝑚 ) = 𝟏(𝛼ub_o𝑚 𝐾𝑚𝑊𝜓𝑚 ≤ 𝐷Th𝑚 ) = 1 holds, 
substituting (63) and (64) into (18), we have

𝐺∗
𝑚 ≤

{

𝜑 − 𝜑2𝐾𝑚𝑊
(

𝛽𝑓M𝑚 + 𝛼lb_o𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,𝜔𝑚 ≥ 𝛽𝑓M𝑚
𝜑 − 𝜑2𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼ub_o𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

,otherwise.

Then the statement follows.

A.4. Proof of Theorem  2

Proof. Since 𝐷𝑚 ≥ 𝐷Th𝑚 , according to (17), we have 𝜁𝑚 = 0, thus, 
according to (18), we have 

𝐺𝑚 = −(1 − 𝜑)𝐸𝑚∕𝐸max, (65)

which monotonically decreases with 𝐸𝑚.
Furthermore, based on (16), we have
Case a: If 𝜔𝑚 ≥ 𝛽𝑓M𝑚 , then 𝐸𝑚 monotonically increases with 𝛼𝑚, ac-

cordingly, 𝛼∗𝑚 = 0 is a dominated offloading decision, which minimizes 
𝐸𝑚 thus maximizes 𝐺𝑚.

Case b:If 𝜔𝑚 ≤ 𝛽𝑓M𝑚 , then 𝐸𝑚 monotonically decreases with 𝛼𝑚, ac-
cordingly, 𝛼∗𝑚 = 1 is a dominated offloading decision, which minimizes 
𝐸𝑚 thus maximizes 𝐺𝑚.

Therefore, substituting 𝛼∗𝑚 into (16), we yield 𝐸∗
𝑚 = 𝐾𝑚𝑊

(

𝛽𝑓M𝑚 + 𝛼∗𝑚(𝜔𝑚 − 𝛽𝑓M𝑚 )
)

, and further substituting 𝐸∗
𝑚 into (65), we have 

𝐺∗
𝑚 = −(1 − 𝜑)𝐸∗

𝑚∕𝐸
max.

Then the statement follows.

A.5. Proof of Theorem  3

Proof. Under any delay-guaranteed RIS optimum and MEC resource 
allocation policy, we have 𝐷O𝑚 ≤ 𝐷Th𝑚 , substituting into (23), we have 
𝛼𝑚𝐾𝑚𝑊 ( 𝜒

𝑅𝑚
+ 1

𝑓E𝑚
) ≤ 𝐷Th𝑚 , accordingly, we have

𝑅𝑚 ≥
𝜒

𝐷Th𝑚
𝛼𝑚𝐾𝑚𝑊

− 1
𝑓E𝑚

.

Substituting 𝑅𝑚 into (3) and further combining with (2), we have

𝐵log2(1 +
𝑝𝑚|𝐠𝛷ℎ𝑚|2

𝜎2𝑟 ‖𝐠𝛷‖2 + 𝜎2∕𝜌2
) ≥

𝜒
𝐷Th𝑚

𝐾𝑚𝑊 𝛼𝑚
− 1

𝑓E𝑚

⟹𝑝𝑚 ≥
⎛

⎜

⎜

⎜

⎝

ln
⎛

⎜

⎜

⎜

⎝

𝜒

𝐵( 𝐷Th𝑚
𝐾𝑚𝑊 𝛼𝑚

− 1
𝑓E𝑚

)

⎞

⎟

⎟

⎟

⎠

−1

⎞

⎟

⎟

⎟

⎠

𝜎2𝑟 ‖𝐠𝛷‖
2 + 𝜎2∕𝜌2

|𝐠𝛷ℎ𝑚|2
.
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Accordingly, for delay constraints, the transmission power should 
satisfy

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝑚≥
⎛

⎜

⎜

⎜

⎝

ln
⎛

⎜

⎜

⎜

⎝

𝜒

𝐵( 𝐷Th𝑚
𝐾𝑚𝑊 𝛼𝑚

− 1
𝑓E𝑚

)

⎞

⎟

⎟

⎟

⎠

−1

⎞

⎟

⎟

⎟

⎠

𝜎2𝑟 ‖𝐠𝛷‖
2+𝜎2∕𝜌2

|𝐠𝛷ℎ𝑚|2
,

𝑝𝑚 ≤ 𝑝Th.

The statement then follows.

A.6. Proof of Theorem  4

Proof. Under any delay-guaranteed RIS optimum and MEC resource 
allocation policy, we have 𝐷O𝑚 ≤ 𝐷Th𝑚 , substituting into (23), we have 
𝛼𝑚𝐾𝑚𝑊 ( 𝜒

𝑅𝑚
+ 1

𝑓E𝑚
) ≤ 𝐷Th𝑚 , accordingly, we have

𝑓E𝑚 ≥ 1
𝐷Th𝑚

𝐾𝑚𝑊 𝛼𝑚
− 𝜒

𝑅𝑚

.

On the other hand, according to the computation resource con-
straints of the MEC server (see (20f)), the computation resource allo-
cated to offloaded subtasks from the 𝑚th IoT user is upper bounded by 
∑

𝑚∈ 𝑓E𝑚 ≤ 𝑓E.
Therefore, for satisfying the delay requirement, the computation 

resource allocation at MEC server for the subtasks from the 𝑚th (∀𝑚 ∈
) IoT user should satisfy
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓E𝑚 ≥ 1
𝐷Th𝑚

𝐾𝑚𝑊 𝛼𝑚
− 𝜒

𝑅𝑚

,

∑

𝑚∈
𝑓E𝑚 ≤ 𝑓E.

Then the statement follows.

A.7. Proof of Lemma  3

Proof. According to (31), we have 

𝐺∗
𝑚 ≤𝜑

log
(

1 + max(0, (𝐷Th𝑚 − 𝛼ub_o𝑚 𝐾𝑚𝑊𝜓𝑚))
)

log(1 +𝐷Th𝑚 )

− 𝜑2𝐾𝑚𝑊
(

𝛽𝑓M𝑚 + 𝛼lb_o𝑚 (𝜔𝑚 − 𝛽𝑓M𝑚 )
)

.

(66)

Given 𝛼𝑚, 𝑅𝑚, since 𝜓𝑚 = 𝜒
𝑅𝑚

+ 1
𝑓E𝑚
, 𝜔𝑚 = (𝑝𝑚 +𝑄RIS)𝜒∕𝑅𝑚 + 𝑣𝑓E𝑚 , 𝜁𝑚

monitonically increases with 𝑓E𝑚 , 𝜔𝑚 increases with 𝑓E𝑚 .
Case I: If 𝜔𝑚 ≥ 𝛽𝑓M𝑚 , then according to the definition of 𝜔𝑚, we have 

𝑓E𝑚 ≥ 1
𝑣
(𝛽𝑓M𝑚 − (𝑝𝑚 +𝑄RIS)𝜒∕𝑅𝑚). (67)

In this case, 𝐸𝑚 increases with 𝑓E𝑚 , thus 𝐺𝑚 decreases with 𝑓E𝑚 . There-
fore, when 𝑓E∗𝑚  satisfies
⎧

⎪

⎨

⎪

⎩

𝑓E∗𝑚 ≥ max(𝑓 lb_a𝑚 , 𝑓 lb_b𝑚 )

𝑓E∗𝑚 +
∑

𝑚′∈⧵{𝑚}
𝑓E𝑚′ ≤ 𝑓E.

where 𝑓 lb_a𝑚 = 1
𝐷Th𝑚

𝐾𝑚𝑊 𝛼𝑚
− 𝜒
𝑅𝑚

, 𝑓 lb_b𝑚 = 1
𝑣 (𝛽𝑓

M
𝑚 − (𝑝𝑚 + 𝑄RIS)𝜒∕𝑅𝑚), we get 

the optimum 𝐺∗
𝑚.

Case II: If 𝜔𝑚 ≤ 𝛽𝑓M𝑚 , then according to the definition of 𝜔𝑚, we 
have 
𝑓E𝑚 ≤ 1

𝑣
(𝛽𝑓M𝑚 − (𝑝𝑚 +𝑄RIS)𝜒∕𝑅𝑚). (68)

In this case, 𝐸𝑚 decreases with 𝑓E𝑚 , thus 𝐺𝑚 increases with 𝑓E𝑚 . There-
fore, when 𝑓E∗𝑚  satisfies
⎧

⎪

⎨

⎪

𝑓E∗𝑚 ≥ 1
𝐷Th𝑚

𝐾𝑚𝑊 𝛼𝑚
− 𝜒

𝑅𝑚
E∗ lb_b ub
⎩𝑓𝑚 ≤ min(𝑓𝑚 , 𝑓𝑚 ).

14 
where 𝑓ub𝑚 = 𝑓E −
∑

𝑚′∈⧵{𝑚} 𝑓
E
𝑚′ .

Then the statement follows.

Data availability

Data will be made available on request.
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