
IE
EE

Pr
oo

f

IEEE SYSTEMS JOURNAL 1

SeDaSC: Secure Data Sharing in Clouds
Mazhar Ali, Student Member, IEEE, Revathi Dhamotharan, Eraj Khan, Samee U. Khan, Senior Member, IEEE,

Athanasios V. Vasilakos, Senior Member, IEEE, Keqin Li, Fellow, IEEE, and
Albert Y. Zomaya, Fellow, IEEE

Abstract—Cloud storage is an application of clouds that lib-
erates organizations from establishing in-house data storage sys-
tems. However, cloud storage gives rise to security concerns. In
case of group-shared data, the data face both cloud-specific and
conventional insider threats. Secure data sharing among a group
that counters insider threats of legitimate yet malicious users is
an important research issue. In this paper, we propose the Secure
Data Sharing in Clouds (SeDaSC) methodology that provides:
1) data confidentiality and integrity; 2) access control; 3) data
sharing (forwarding) without using compute-intensive reencryp-
tion; 4) insider threat security; and 5) forward and backward ac-
cess control. The SeDaSC methodology encrypts a file with a single
encryption key. Two different key shares for each of the users are
generated, with the user only getting one share. The possession of
a single share of a key allows the SeDaSC methodology to counter
the insider threats. The other key share is stored by a trusted
third party, which is called the cryptographic server. The SeDaSC
methodology is applicable to conventional and mobile cloud com-
puting environments. We implement a working prototype of the
SeDaSC methodology and evaluate its performance based on the
time consumed during various operations. We formally verify
the working of SeDaSC by using high-level Petri nets, the Sat-
isfiability Modulo Theories Library, and a Z3 solver. The results
proved to be encouraging and show that SeDaSC has the potential
to be effectively used for secure data sharing in the cloud.

Index Terms—Access control, cloud computing, high-level
Petri nets (HLPNs), modeling, Satisfiability Modulo Theory
(SMT), Scyther, verification.

I. INTRODUCTION

C LOUD computing is rapidly emerging due to the provi-
sioning of elastic, flexible, and on-demand storage and

computing services for customers [1]. Organizations with a low
budget can now utilize high computing and storage services
without heavily investing in infrastructure and maintenance [2],

Manuscript received September 24, 2014; revised November 13, 2014;
accepted November 30, 2014.

M. Ali, R. Dhamotharan, and S. U. Khan are with the Department of
Electrical and Computer Engineering, College of Engineering, North Dakota
State University, Fargo, ND 58108-6050 USA (e-mail: mazhar.ali@ndsu.edu;
revathi.dhamotharan@ndsu.edu; samee.khan@ndsu.edu).

E. Khan is with the Department of Computer Science, COMSATS Institute of
Information Technology, 22060 Abbottabad, Pakistan (e-mail: eraj@ciit.net.pk).

A. V. Vasilakos is with the Department of Computer Science, College of
Computer Science and Engineering, Kuwait University, 13060 Safat, Kuwait
(e-mail: vasilako@cs.ku.edu.kw).

K. Li is with the Department of Computer Science, School of Science and
Engineering, State University of New York, New Paltz, NY 12561-2443 USA
(e-mail: lik@newpaltz.edu).

A. Y. Zomaya is with the School of Information Technologies, The Univer-
sity of Sydney, Sydney, NSW 2006 Australia (e-mail: albert.zomaya@sydney.
edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2014.2379646

[3]. However, the loss of control over data and computation
raises many security concerns for organizations, thwarting the
wide adaptability of the public cloud. The loss of control over
data and the storage platform also motivates cloud customers
to maintain the access control over data (individual data and
the data shared among a group of users through the public
cloud) [4]. Moreover, the privacy and confidentiality of the
data is also recommended to be cared for by the customers [5].
The confidentiality management by a customer ensures that the
cloud does not learn any information about the customer data.
Cryptography is used as a typical tool to provide confidentiality
and privacy services to the data [5]. The data are usually
encrypted before storing to the cloud. The access control, key
management, encryption, and decryption processes are handled
by the customers to ensure data security [6]. However, when
the data are to be shared among a group, the cryptographic
services need to be flexible enough to handle different users,
exercise the access control, and manage the keys in an effective
manner to safeguard data confidentiality [7]. The data handling
among a group has certain additional characteristics as opposed
to two-party communication or the data handling belonging
to a single user. The existing, departing, and newly joining
group members can prove to be an insider threat violating data
confidentiality and privacy [7]. Insider threats can prove to be
more devastating due to the fact that they are generally launched
by trusted entities. Due to the fact that people trust insider
entities, the research community focuses more on outsider
attackers. Nevertheless, multiple security issues can arise due
to different users in a group. We discuss some of the issues in
the following discussion.

A single key shared between all group members will result in
the access of past data to a newly joining member. The aforesaid
situation violates the confidentiality and the principle of least
privilege [8]. Likewise, a departing member can access future
communication. Therefore, in group-shared data, the inside
members might generate the issue of backward access control
(a new user accessing past data) and forward access control (a
departing user accessing future data) [8]. The simple solution
of rekeying (generating a new key, decrypting all the data, and
reencrypting with the new key) does not prove to be scalable
for frequent changes in the group membership [7].

A separate key for every user is a cumbersome solution.
The data must be separately encrypted for every user in such a
scenario. The changes in the data require the decryption of all of
the copies of the users and encryption again with the modified
contents [7].

The existing and legitimate group members might show
illegitimate behavior to manipulate the data [3]. The presence
of the entire symmetric key with a user allows a malicious user

1932-8184 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

IE
EE

Pr
oo

f

2 IEEE SYSTEMS JOURNAL

to turn into an insider threat [3]. The data can be decrypted,
modified, and reencrypted by a malicious insider within a
group. Consequently, a legitimate user in the group may access
certain unauthorized files within the group [9]. On the other
hand, it is necessary for a user to possess a key to conduct
various operations on the data. The possession of the key also
implicitly proves the legitimacy of a user to operate on the
data [9]. Nevertheless, simultaneously dealing with both the
issues related to the key is an important issue that needs to be
addressed effectively.

In this paper, we propose a methodology named Secure Data
Sharing in Clouds (SeDaSC) that deals with the aforementioned
security requirements of shared group data within the cloud.
The SeDaSC methodology works with three entities as follows:
1) users; 2) a cryptographic server (CS); and 3) the cloud.
The data owner submits the data, the list of the users, and the
parameters required for generating an access control list (ACL)
to the CS. The CS is a trusted third party and is responsible for
key management, encryption, decryption, and access control.
The CS generates the symmetric key and encrypts the data
with the generated key. Subsequently, for each user in the
group, the CS divides the key into two parts such that a single
part alone cannot regenerate the key. Successively, the original
key is deleted through secure overwriting [10]. One part of
the key is transmitted to the corresponding user in the group,
whereas the other part is maintained by the CS within the
ACL related to the data file. The ACL is generated through the
parameter submitted by the data owner. The encrypted data are
subsequently uploaded to the cloud for storage on behalf of the
user. The user who wishes to access the data sends a download
request to the CS. The CS, after authenticating the requesting
user, receives the portion of the key from the user and sub-
sequently downloads the data file from the cloud. The key is
regenerated by operating on the user portion of the key, and the
corresponding CS maintained portion for that particular user.
The data are decrypted and sent back to the user. For a newly
joining member, the two portions of the key are generated, and
the user is added to the ACL. For a departing member, the
record is deleted from the ACL. The departing member cannot
decrypt the data on its own as he/she only possesses a portion
of the key. Similarly, no frequent decryption and reencryption
are needed in case of changes in the group membership. More-
over, SeDaSC can be used with the mobile cloud computing
paradigm in addition to conventional cloud computing due to
the fact that compute-intensive operations are performed by
the CS. The working of the SeDaSC methodology is shown in
Fig. 1, and the details are provided in Section III. Our major
contributions, as reported in this paper, are as follows.

• The proposed methodology ensures the confidentiality of
the data on the cloud by using symmetric encryption.

• The secure data sharing over the cloud among the group of
users is ensured without the elliptic curve or bilinear Diffie–
Hellman problem (BDH) cryptographic reencryption.

• The possession of a portion of the key secures the data
against malicious insiders within the group.

• The proposed SeDaSC methodology secures the data
against issues of forward and backward access control that
arise due to insider threats.

Fig. 1. Basic idea for the SeDaSC methodology.

• We perform formal modeling and verification of the
SeDaSC methodology by using high-level Petri nets
(HLPNs), the Satisfiability Modulo Theory Library (SMT-
Lib), and a Z3 solver.

The remainder of this paper is organized as follows. Section II
provides the overview of the related work in the field. In
Section III, we present the details of the proposed SeDaSC
methodology. Section IV provides the discussion on the ser-
vices provided by the proposed methodology. Formal mod-
eling and verification of SeDaSC are detailed in Section V.
Section VI explains the experimental results, and Section VII
concludes this paper.

II. RELATED WORK

Xu et al. [9] proposed a certificateless proxy reencryption
(CL-PRE) scheme for securely sharing the data within a group
in the public cloud. In the CL-PRE scheme, the data owner
encrypts the data with the symmetric key. Subsequently, the
symmetric key is encrypted with the public key of the data
owner. Both the encrypted data and the key are uploaded to the
cloud. The encrypted key is reencrypted by the cloud (that acts
as a proxy reencryption agent) that becomes decryptable by
the user’s private key. The public–private keys generated in the
proposed scheme are not based on the certificates. The user’s
identity is used to generate the public–private key pair. The
proxy reencryption is based on bilinear pairing and the BDH
that makes the CL-PRE scheme computationally intensive. The
computational cost of the bilinear pairing is high as compared
with the standard operations in finite fields.

To reduce the computational overhead of bilinear pairing,
Seo et al. [11] introduced a mediated certificateless encryption
approach for data sharing in the public cloud that avoids bi-
linear pairing. In the proposed scheme, the cloud generates the
public–private key pairs for all of the users and transmits the
public keys to all of the participating users. Partial decryption
is performed at the cloud. Due to the fact that key management
and partial decryption are handled by the cloud, user revocation
is easier to handle. However, the proposed scheme treats the
public cloud both as a trusted and untrusted entity at the same
time. From a security perspective, it is not recommended to
shift the key generation process to the shared multitenant public
cloud environment. Moreover, the decryption is performed
twice in the system that reduces the advantage of not pairing
to some extent.

IE
EE

Pr
oo

f

ALI et al.: SeDaSC 3

Khan et al. [7] also utilized the El-Gamal cryptosystem
and bilinear pairing for the sharing of sensitive information in
the cloud. Moreover, the proposed scheme in [7] utilized the
concept of incremental cryptography that divides the data into
blocks and incrementally encrypts the blocks. The proposed
scheme uses a trusted third party as a proxy that performs the
compute-intensive operations of key generation, reencryption,
and managing access to the data. However, the computational
complexities of bilinear pairing still exist in the system.

Chen and Tzeng [8] proposed a methodology based on the
shared key derivation method for securing data sharing among a
group. The methodology uses a binary tree for the computation
of keys. However, the computational cost of the proposed
scheme is high as the rekeying mechanism is heavily employed
in the proposed scheme. Moreover, the scheme is not tailored
for public cloud systems because certain operations require cen-
tralized mediations. A similar Rivest–Shamir–Adleman (RSA)-
based approach was also proposed in [12]. However, the scheme
was vulnerable against collusion attacks.

The SeDaSC methodology, which is proposed in this paper,
securely shares the data among a group without using the
El-Gamal cryptosystem, the BDH, and bilinear pairing. The
SeDaSC methodology is based on symmetric cryptography
without reencryption. The aforesaid properties avoid compu-
tationally intensive operations and make the SeDaSC method-
ology a lightweight methodology. Moreover, the forward and
backward access control is ensured by only allowing user
access to a portion of the key that prohibits insiders to launch
individual or coordinated attacks on the data.

III. SeDaSC

In this section, we present the design of our proposed
methodology SeDaSC that secures the sharing and forwarding
of data among a group without involving reencryption in the
cloud environment.

A. Entities

The SeDaSC methodology has the following entities.
Cloud: The cloud provides storage services to the user. The

data on the cloud need to be secured against privacy breaches.
The confidentiality of the data is ensured by storing encrypted
data over the cloud. The cloud in the SeDaSC methodology
only involves basic cloud operations of file upload and down-
load. Therefore, no changes at the protocol or implementation
level on the cloud are required.

CS: The CS is a trusted party and is responsible for security
operations, such as key management, encryption, decryption, the
management of the ACL for providing confidentiality, and se-
cure data forwarding among the group. The users of SeDaSC are
required to be registered with the CS to obtain the security ser-
vices. The CS is assumed to be a secure entity in the proposed
methodology. The CS can be maintained by an organization or
can be owned by a third-party provider. However, the CS main-
tained by an organization will generate more trust in the system.

Users: The users are the clients of the storage cloud. For
each data file, one user will be the owner of the file, whereas
the others in the group will be the data consumers. The owner

of the file decides the access rights of the other group members.
The access rights are granted and revoked based on the decision
of the owner. The access rights are managed by the CS in the
form of an ACL file. A separate ACL is maintained for each of
the data files.

B. Cryptographic Keys

The SeDaSC methodology maintains a single cryptographic
key for each of the data files. However, after encryption/
decryption, the whole key is not stored and possessed by any of
the involved parties. The key is partitioned into two constituent
parts and are possessed by different entities. The following are
the keys that are used within SeDaSC.

Symmetric Key K: K is a random secret generated by the
CS for each of the data files. The length of K in SeDaSC is
256 bits, as is recommended by most of the standards regarding
key length for symmetric key algorithms (SKAs). However, the
length of the key can be altered according to the requirements
of the underlying SKA. K is obtained in a two-step process.
In the first step, a random number R of length 256 bits is
generated such that R = {0, 1}256. In the next step, R is passed
through a hash function that could be any hash function with a
256-bit output. In our case, we used secure hash algorithm
256 (SHA-256). The second step completely randomizes the
initial user-derived random number R. The output of the hash
function is termed as K and is used in symmetric key en-
cryption [e.g., the Advanced Encryption Standard (AES)] for
securing the data.

CS Key Share Ki: For each of the users in the group, the
CS generates Ki, such that Ki = {0, 1}256. Ki serves as the
CS portion of the key and is used to compute K whenever an
encryption/decryption request is received by the CS. Moreover,
it is ensured by comparison that the distinct Ki is generated for
every file user.

User Key Share K ′
i: K ′

i is computed for each of the users in
the group as follows:

K ′
i = K ⊕Ki. (1)

Algorithm 1 Key Generation and Encryption

Input:
F , the ACL, the SKA, the 256-bit
hash function Hf

Compute:
R = {0, 1}256

K = Hf (R)
C = SKA(F, K)

for each user i in the ACL, do
Ki = {0, 1}256

Ki = K ⊕Ki

Add K ′
i for user i in the ACL

Send K ′
i for user i

end for
delete (K)
delete (K ′

i)
return C to the owner or upload to the cloud.

IE
EE

Pr
oo

f

4 IEEE SYSTEMS JOURNAL

K ′
i serves as the user portion of the key and is used to

compute K when needed.

C. SeDaSC Design

In this section, we present the design of SeDaSC. In particu-
lar, we propose several cryptographic key operations that enable
SeDaSC to achieve security goals.

1) File Upload: Whenever a need to share data among the
group arises, the owner of the file sends the encryption request
to the CS. The request is accompanied by the file (F) and a
list (L) of users that are to be granted access to the file. L also
contains the access rights for each of the users. The users may
have READ-only and/or READ–WRITE access to the file. Other
parameters can be also set to enforce fine-grained access control
over the data. L is used to generate the ACL for the data by the
CS. L is sent to the CS only if the data are to be shared with a
new proposed group. If the group already exists, the encryption
request will not contain L; rather, the group ID of the existing
group will be sent. The CS, after receiving the encryption
request for the file, generates the ACL from the list and creates
a group of the users. The ACL is separately maintained for
each file. The ACL contains information regarding the file
such as its unique ID, size, owner ID, the list of the user IDs
with whom the file is being shared, and other metadata. If the
group already existed, only the ACL for the file is created.
Next, the CS generates K according to the procedure defined
in Section III-B and encrypts the file with an appropriate
symmetric block cipher (we have used the AES for encryption
purposes). The result is an encrypted file (C). Subsequently,
the CS generates Ki and K ′

i for every user and deletes K by
secure overwriting. Secure overwriting is a concept in which
the bits in the memory are constantly flipped to make sure that
a memory cell never grips a charge for enough duration for it to
be remembered and recovered. The Ki for each user is inserted
into the ACL for later use. To protect the integrity of the file, the
CS also computes the hash-based message authentication code
(HMAC) signature on every encrypted file. A similar procedure
for the HMAC key is adopted. However, the HMAC key is
kept by the CS only. The encrypted data, the group ID (in the
case of a newly generated group), and the K ′

i for the owner
are sent to the requesting data owner. The group ID and the
K ′

i for the rest of the group users are directly sent to them
over a secure communication channel. The public keys of the
group users can be also used to transmit the user portion of
the key. We have used the public keys of the users to transmit
the key portions. The user, after receiving C, uploads it to the
cloud. K is deleted via secure overwriting from the CS after
the encryption process. Fig. 2 shows the file upload operation.
Algorithm 1 shows the key generation and encryption process
at the CS. It is noteworthy that the key generation process is
executed once when the group is initiated and the first file is
submitted for encryption. Moreover, a newly joining member
also activates the key generation but only for the new member.

It is important to note that, after the encryption of the data at
the CS, the uploading of the file to the cloud can be handled in
two possible ways. In the first option, the encrypted data can be
sent to the user who uploads it to the cloud, as explained earlier

Fig. 2. File upload.

in this section. In the second option, the CS can be delegated the
authority to upload the file to the cloud on behalf of the user. We
have used the second option in our implementation. The dashed
line in Fig. 2 depicts the second option.

Algorithm 2 Decryption Algorithm

Input:
C, the ACL, the SKA
Compute:
Get K ′

i from the requesting user
Get C from the requesting user or download from the cloud
Retrieve Ki from the ACL
If Ki does not exist in the ACL, then

return the access denied message to the user
else

K = Ki ⊕K ′
i

F = SKA(C, K)
send F to the user

end if
delete (K)
delete (K ′

i).

2) File Download: The authorized user sends a download
request to the CS or downloads the encrypted file (C) from
the cloud and sends the decryption request to the CS. The
cloud verifies the authorization of the user through a locally
maintained ACL. The decryption request is accompanied by the
user portion of the key, i.e., K ′

i, along with other authentication
credentials. The CS computes K by applying XOR operation
over K ′

i and the corresponding Ki from the ACL. As each of
the users correspond to a different pair of Ki and K ′

i, none
of the users can use other users’ K ′

i to masquerade identity.
Subsequently, the CS proceeds with the decryption process
after verifying the integrity of the file. If the correct K ′

i is
received by the CS, the result will be a successful decryption
process; otherwise, the decryption will fail. After successful
decryption, the file is sent to the requesting user through a
secure communication channel that could be Secure Sockets
Layer (SSL) or Internet Protocol Security (IPSec) channels. K
is deleted via secure overwriting from the CS after decryption.
The users are authenticated before the request processing ac-
cording to standard procedures. The process is highlighted in
Fig. 3. Algorithm 2 presents the decryption process.

IE
EE

Pr
oo

f

ALI et al.: SeDaSC 5

Fig. 3. File download.

Fig. 4. File download: A special case.

Fig. 5. File update.

Similar to the file upload process, the downloading of the file
can be also done by the CS on behalf of the user. In the aforesaid
case, the decryption request is sent to the CS along with the
group ID, the file ID, and K ′

i. The CS, after authenticating the
user, sends the download request to the cloud for the specified
file. The cloud sends the encrypted file (C) to the CS. The rest
of the process for the decryption is the same. The download
process in the second aforementioned case is shown in Fig. 4.

3) File Update: Updating the file has a similar procedure to
that of uploading the file. The difference is that, while updating,
all of the activities related to the creation of the ACL and key
generation are not carried out. The user, who has downloaded
the file and made any changes, sends an update request to
the CS. The request contains the group ID, the file ID, and
K ′

i, along with the file to be encrypted after changes. The CS
verifies that the user has the WRITE access to the file from the
corresponding ACL. In the case of a valid update request, the
CS computes K by XORing Ki and K ′

i, encrypts the file, and
performs the HMAC calculations. The encrypted file is sent to
the user or uploaded to the cloud. K is deleted afterward. Fig. 5
shows the update process in the SeDaSC methodology.

4) New Group User Inclusion: If a new user joins the group,
the addition of the user is made on the request of the file owner.
The request contains the user ID of the joining user, along
with the access control parameters to be included in the ACL,
and the group ID. The parameters include the IDs of the files for
which the user has been granted access rights. It also includes
the details indicating the READ and/or WRITE rights granted
to the user. Alternatively, the date can be mentioned from
which the access rights are valid for the user. This ensures
the backward access control for the joining member. The CS,
after receiving the joining request, updates the ACLs related
to the files for which the access is granted. The key shares are
generated, and the user shares are sent to the user along with
the corresponding file IDs.

5) Departing Group User: The CS is notified about a de-
parting member by the group owner. The CS removes all of
the records for the departing user from the ACLs of the related
files. As the whole key is not possessed by the group members,
the departing member (even being malicious) will be unable
to decrypt any of the group data files. Even the presence of
encrypted files with a malicious departing member will not
affect the privacy of the data. The malicious member will be
unable to construct the whole key for decryption. Therefore,
the forward access control is also ensured by the SeDaSC
methodology. The next section discusses how different security
services are achieved by the SeDaSC methodology.

IV. DISCUSSION ON SeDaSC

The SeDaSC methodology is proposed to provide the follow-
ing services to the outsourced data:

• confidentiality;
• secure data sharing among the group;
• secure data from unauthorized access of valid insiders

within the group; and
• forward and backward access control to counter insiders

and departing group users.
The following discussion briefly describes how the afore-

mentioned services are achieved.
We do not consider the cloud to be a secure and trustful entity

in the context of SeDaSC. Multitenancy, virtualization, and a
shared pool of resources may pose many forms of insider and
other threats to the data. Moreover, the cloud may also retain
copies of the file even after it is requested for deletion.

In the case of SeDaSC, the file is encrypted with K. K is
generated at the CS and is deleted right after utilization. The
CS or the user cannot reconstruct K alone. For confidentiality,
the data cannot be leaked unless the attacker gains access to K.
K in its entirety is not stored anywhere, and neither does it
travel on the communication channel. Therefore, the access to
K is a difficult task. Although an attacker gets hold of the
user share, i.e., K ′

i, he/she will have to guess the other share
correctly. The guess or random generation is to be made from a
total of 2256 − 1 possible shares. The probability of generating
the correct share is (1/(2256 − 1)) = 8.636× 10−78, which is
negligible. Moreover, if the insider within the cloud gets access
to the file, the absence of K will be a barrier to subvert the
confidentiality of the data.

IE
EE

Pr
oo

f

6 IEEE SYSTEMS JOURNAL

For secure data sharing, SeDaSC does not utilize the concept
of reencryption with multiple keys. The encryption is done
with a single symmetric key. However, the authorized users
are granted access on the basis of possession of the key share
and the typical authentication and authorization phenomenon.
The ACL lists the authorized users with their credentials and
corresponding CS key shares. After authentication, the user
share of the key is used, along with the CS share, to generate
K. As the user share is only possessed by a valid user, only
a valid user can lead to successful encryption/decryption of
the data.

The division and dispersal of the key also helps counter the
insider malicious users within the group. The ACL is separately
maintained for each group file. Therefore, a valid group user
cannot access the group file that is not shared with him/her. An
attempt to access an unauthorized file is also blocked by the fact
that the user will not have the key share for that file. Moreover,
the ACL of the unauthorized file will not contain any record for
the malicious user. Furthermore, the absence of the entire key
with the user and the ACL collectively ensures the forward and
backward access control for the data.

Most of the data forwarding schemes are dependent on the
El-Gamal cryptosystem and bilinear pairing [7]. The aforesaid
schemes require the reencryption of the data each time the
access to the data is requested by any user other than the
owner. The El-Gamal cryptosystem is computationally inten-
sive. Moreover, reencryption at each access adds to the over-
head. The SeDaSC methodology utilizes symmetric encryption,
and the access to multiple users is achieved through key man-
agement, as explained in the preceding section. Therefore, the
overhead of the SeDaSC methodology is fairly less as compared
with the traditional El-Gamal-based reencryption systems.

V. FORMAL ANALYSIS

Before going into the details of the formal analysis of the pro-
posed methodology, we provide a brief introduction to HLPNs,
the SMT-Lib, and a Z3 solver for better understanding of the
reader.

A. HLPNs

Petri nets are used for the graphical and mathematical rep-
resentation of the system. Petri nets can model a range of
systems, such as distributed, parallel, concurrent, nondeter-
ministic, stochastic, or asynchronous systems [13]. We have
used a variant of a conventional Petri net called an HLPN.
An HLPN is a seven-tuple structure represented as N =
(P, T, F, ϕ, R, L, M0), where P denotes the set of places,
and T refers to the set of transitions such that P ∩ T = ∅. The
flow relations are represented by F such that F ⊆ (P × T) ∪
(T ∪ P). The ϕ map places P to the data types. R defines the
set of rules for transitions. L is a label on F , and M0 represents
the initial marking [13]. The information about the structure
of the net is provided by (P, T, F), whereas (ϕ, R, L) pro-
vides the static semantics that means the information does not
change throughout the system.

Fig. 6. HLPN model for SeDaSC.

TABLE I
DATA TYPES FOR THE HLPN MODEL

TABLE II
MAPPING OF DATA TYPES AND PLACES

B. SMT-Lib and Z3 Solver

The SMT is used for validating the satisfiability of rules
over the theories under consideration. The SMT has roots in
Boolean Satisfiability Solvers (SAT) [14]. We use a Z3 solver
with the SMT-Lib that is not only theorem prover developed
at Microsoft Research but is also an automated satisfiability
checker. In addition, the Z3 solver determines whether the set
of formulas are satisfiable in the built-in theories of the SMT-
Lib. For the use of the SMT-Lib in the verification process,
see [15].

The HLPN model for SeDaSC is shown in Fig. 6. The data
types and mappings are shown in Tables I and II, respectively.

Whenever the data are to be shared among multiple users,
the data owner sends the data file, i.e., F , to the CS. The list of
the users is also sent along with F , along with other parameters
discussed in Section III. The following rule is mapped to the
transition Send_d of the HLPN:

R(Send_d) = ∀x1 ∈ X1, ∀x2 ∈ X2|x2[1] := x1[1] ∧ x2[2]

:= x1[2] ∧X ′
2 = X2 ∪ {x2}. (2)

IE
EE

Pr
oo

f

ALI et al.: SeDaSC 7

The CS generates a symmetric key, i.e., K, and other pa-
rameters according to the previously explained procedure. The
following formula operates on transition Gen_K to depict the
process:

R(Gen_K) = ∀x_3 ∈ X_3|x3[3] = gen_grpID(x3[3])

∧x3[4] := genK(·) ∧X ′
3 = X3 ∪ {x3}. (3)

The CS computes the hash of F and encrypts F with the
symmetric key, i.e., K. The result is cryptographic data C.
The process is carried out at transition Encrypt_F with the
following rule:

R(Encrypt_F) = ∀x4 ∈ X4|x4[8] = hash (x4[1])

∧x4[7] := encrypt (x4[1], x4[4]) ∧X ′
4 = X4 ∪ {x4}. (4)

The CS computes the two constituent shares of K, i.e.,
Ki and K ′

i, for each of the users in the ACL and deletes K
afterward. Transition Dvd_K depicts the procedure with the
following formula:

R(Dvd_K) = ∀x5 ∈ X5|x5[5] := gen_Ki() ∧ x5[6] := x5[4]

⊕x5[5] ∧ over_write(x5[4]) ∧X ′
5 = X5 ∪ {x5}. (5)

The encrypted data C, along with the hash value, the group
ID, and K ′

i, are sent to the data owner. The procedure is detailed
in Section III. The following formula at transition Snd_R shows
the following process:

R(Snd_R) = ∀x6 ∈ X6, ∀x7 ∈ X7|x7[3]

:=x6[6] ∧ x7[4] := x6[3] ∧ x7[5]

:=x6[7] ∧ x7[6]

:=x6[8] ∧ over_write(x6[6]) ∧X ′
6

=X6 ∪ {x6} ∧X ′
7 = X7 ∪ {x7}. (6)

The user uploads the encrypted data to the cloud. The follow-
ing rule maps to transition upload:

R(Upload) = ∀x8 ∈ X8, ∀x9 ∈ X9|x9[1] = x8[7] ∧ x9[2]

:= x8[8] ∧X ′
9 = X9 ∪ {x9}. (7)

The downloading user downloads the encrypted data from
the cloud. The following formula relates to transition download:

R(download) = ∀x10 ∈ X10, ∀x11 ∈ X11|x11[5] = x10[1]

∧x11[6] := x10[2] ∧X ′
11 = X11 ∪ {x11}. (8)

The user sends a decryption request to the CS along with C,
Ui, the group ID, and K ′

i. The following rule maps to transition
Decr_R:

R(Decr_R) = ∀x12 ∈ X12, ∀x13 ∈ X13|x13[2]

:=x12[2] ∧ x13[3] = x12[4] ∧ x13[6]

:=x12[3] ∧ x13[7] = x12[5] ∧X ′
13

=X13 ∪ {x13}. (9)

TABLE III
HARDWARE SPECIFICATIONS FOR CS AND USER CLIENT MACHINES

The CS, after verifying the authorization status of the user
from the ACL, computes K according to the procedure defined
in Section III. The following transition and rule shows the
process:

R(Cmpt_K) = ∀x14 ∈ X14|x14[4] = x14[5]⊕ x14[6]

∧X ′
14 = X14 ∪ {x14}. (10)

The CS decrypts the data and sends it back to the user. K
and K ′

i are deleted subsequently. Transition Decr_C shows the
process as follows:

R(Decr_C) = ∀x15 ∈ X15, ∀x16 ∈ X16|x16[1] := decrypt

(x15[7], x15[4]) ∧X ′
16 = X16 ∪ {x16}. (11)

C. Verification of Properties

The properties that are verified are the following.
• A valid user in the group cannot lead to the generation of a

valid K by pretending to be another user and contributing
a random Ki.

• A valid user in the group leads to the generation of a valid
K by contributing a valid K ′

i.
• A malicious user outside the group, if somehow gets

access to the encrypted file, cannot lead to its decryption.
The given model was translated to the SMT-Lib and verified

thorough the Z3 solver. The solver showed that the model is
workable and executes according to the specified properties.
The Z3 solver took 0.085 s to execute the working of the
proposed model.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate the performance of the proposed methodology,
we implemented the SeDaSC methodology in Visual Studio
2010 C# using the .Net 4 framework. As discussed earlier,
the proposed methodology consists of three entities, i.e., the
cloud, the CS, and the users. The Amazon Web Services’
software development kit and the .Net application programming
interfaces were used to communicate with Amazon S3, which
serves as the cloud server in our implementation. The CS is
implemented as a third party. The functionality required by the
user is implemented as a client application that connects with
the CS to receive the services. The hardware characteristics for
the CS and the user client are shown in Table III.

The communication between the entities was accomplished
using .Net libraries (System.Net.Security and System.Net.
Sockets). The classes TcpClient and TcpListener have been used

IE
EE

Pr
oo

f

8 IEEE SYSTEMS JOURNAL

Fig. 7. Time consumption for key generation.

to implement the Transmission Control Protocol (TCP). The
communication was then secured using the SSLStream class.
The scheme uses the SHA-256 hash function for generating
keys and the AES for encryption and decryption. The scheme
was implemented using a .Net library, i.e., System.Security.
Cryptography. The class SHA256CryptoServiceProvider within
the library was used to access all of the methods related to
SHA-256. All of the cryptographic operations, i.e., encryption
and decryption, were implemented using the AES class that
represents the base abstract class for the AES algorithm.

B. Results

The SeDaSC methodology has been evaluated for the follow-
ing three different cases.

1) Key Generation: As described in Section III, there is only
one symmetric key generated for each file. However, the key
shares are separately computed for every user in the group.
The shares are computed at the time of file submission. We
evaluated SeDaSC for time consumption in key generation.
The time is computed for different numbers of users. We set
the number of users to be 10, 20, 30, 40, 50, 60, 70, 80, 90,
and 100. The results are shown in Fig. 7. In general, the time
consumption for key generation increases with the increase in
the number of users. However, it may be noted that the increase
in the time consumption is not uniformly proportional to the
increase in the number of users. For example, key generation
takes 0.004 s for 10 users, and the time increases to 0.00512 s
in the case of 50 users. The time has not increased in the same
proportion as the number of users. Moreover, the jump in the
time consumption varies as the number of users increases from
20 to 50. This may be attributed to the variation in the amount of
time allotted to the application by the processor according to the
processing situation of the system. Nevertheless, the time for
key generation varies between 0.004 and 0.00697 s. The time
for key generation is a slight overhead that is only generated
once at the time of file submission in the group. A newly
joining member will only consume the time for the generation
of key shares that would be nominal as is computed for only a
single user.

2) Encryption and Decryption: We evaluated the time con-
sumption during the encryption and decryption of the file with
varying file sizes. The file sizes used were 0.1, 0.5, 1, 10, 50,

Fig. 8. Performance of file encryption for SeDaSC.

Fig. 9. Performance of file decryption for SeDaSC.

100, and 500 MB. We have observed in Section III that the CS
has to compute K before encryption and decryption. Therefore,
the time to compute K is also compared with the total encryp-
tion and decryption times. The purpose is to observe the time
overhead of the key computation over the total encryption and
decryption times. The results for encryption and decryption are
highlighted in Figs. 8 and 9, respectively.

Fig. 8 shows that, as expected, the time for encryption
increases with the increase in the file size. However, the time for
the computation of K almost remains constant with negligible
change that may be due to the processing conditions at that
point of time. This is because the time for the computation of K
is independent of the file size. The comparative analysis shows
that, with smaller file sizes, the percentage of the key computa-
tion time is high in comparison with the total encryption time.
However, with the increase in the file size, the proportion of
the key computation time in the total encryption time decreases
rapidly. In the case of the 100-KB file, the key computation
time constitutes 15% of the total encryption time. However, the
increase in the file size (1 MB) drops the proportion to 10%.
With further increase in the file size (10 MB), the percentage
of the key computation time falls to 4.3%. The trends continue,
and with a file size of 500 MB, the percentage remains merely
at 1.54%. It is also noteworthy that the total key computation
time ranges between 0.012 and 0.018 s.

Fig. 9 illustrates the results for decryption. The results show
the similar trend for decryption, as was the case with encryp-
tion. The key computation time makes a high proportion of

IE
EE

Pr
oo

f

ALI et al.: SeDaSC 9

Fig. 10. Performance of file uploads for SeDaSC.

the total decryption time with small file sizes. However, with
reasonably good file sizes, the key computation times makes a
negligible proportion of the total consumed time. In the case
of decryption, the percentage of the key computation ranges
between 16.66% in the case of the 100-KB file and 2.53% for a
file size of 500 MB.

3) File Upload/Download: We also evaluated the SeDaSC
methodology on the basis of the total time consumed to up-
load/download a file to/from the cloud. The total time is com-
posed of the time from the time of submission of request to the
CS to the point of time at which the file is uploaded/downloaded
to/from the cloud. The following times are included in the
total time:

1) the key computation time;
2) the encryption/decryption time;
3) the upload/download time; and
4) the time of request and other related data submission to

the CS and the cloud.

Fig. 10 shows the results for the upload time. All of the
constituent times are represented by separate line graphs. The
term “others” refers to the fourth constituent time discussed
previously. In general, the time to upload the data increased
with the increase in the file size. However, in some cases, the
marginal increase in the file upload time was small that may
be due to the network condition at various times. Nevertheless,
the file upload time was dependent on the network conditions.
Similar to the results in Section VI-B2, the key computation
time remained almost constant and was independent of the file
size. The encryption time increased with the increase in the file
size. The other times almost remained constant and were also
independent of the file size. It may be noted that the time for the
key computation is negligible as compared with the total time
consumed because it does not involve heavy computations.

Fig. 11 shows the results for the download operation involved
in downloading the file from the cloud and the subsequent
decryption process. The trend of results is similar as in the case
of file upload. However, the times in decryption and download
are changed.

We have compared the SeDaSC methodology with the
schemes presented in [7], [9], and [11]. The comparison is
based on the time consumption during key generation when
the group is created and on the turnaround time for encryption

Fig. 11. Performance of file downloads for SeDaSC.

TABLE IV
COMPARISON OF KEY GENERATION TIMES

TABLE V
COMPARISON OF TURNAROUND TIMES

and decryption. The comparison of key generation times is
provided in Table IV. Table V shows the turnaround times for
encryption and decryption. Both of these tables reveal that the
SeDaSC methodology outperforms the other techniques due to
the absence of heavy computations.

VII. CONCLUSION

We proposed the SeDaSC methodology, which is a cloud
storage security scheme for group data. The proposed method-
ology provides data confidentiality, secure data sharing with-
out reencryption, access control for malicious insiders, and
forward and backward access control. Moreover, the SeDaSC

IE
EE

Pr
oo

f

10 IEEE SYSTEMS JOURNAL

methodology provides assured deletion by deleting the param-
eters required to decrypt a file. The encryption and decryption
functionalities are performed at the CS that is a trusted third
party in the SeDaSC methodology. The proposed methodology
can be also employed to mobile cloud computing due to the
fact that compute-intensive tasks are performed at the CS. The
working of SeDaSC was formally analyzed using HLPNs, the
SMT-Lib, and a Z3 solver. The performance of the SeDaSC
methodology was evaluated based on the time consumption
during the key generation, file upload, and file download oper-
ations. The results revealed that the SeDaSC methodology can
be practically used in the cloud for secure data sharing among
the group.

In the future, the proposed methodology can be extended by
limiting the trust level in the CS. This will further enhance the
system to cope with insider threats. Moreover, the response of
the methodology with varying key sizes can be evaluated.

REFERENCES

[1] A. Abbas and S. U. Khan, “A review on the State-of-the-art privacy pre-
serving approaches in e-health clouds,” IEEE J. Biomed. Health Informat.,
vol. 18, no. 1, pp. 1431–1441, Jul. 2014.

[2] K. Alhamazani et al., “An overview of the commercial cloud monitoring
tools: Research dimensions, design issues, state-of-the-art,” Computing,
DOI: 10.1007/s00607-014-0398-5, 2014, to be published.

[3] A. N. Khan, M. L. M. Kiah, S. U. Khan, and S. A. Madani, “Towards
secure mobile cloud computing: A survey,” Future Gen. Comput. Syst.,
vol. 29, no. 5, pp. 1278–1299, Jul. 2013.

[4] L. Wei, H. Zhu, Z. Cao, Y. Chen, and A. V. Vasilakos, “Security and pri-
vacy for storage and computation in cloud computing,” Inf. Sci., vol. 258,
pp. 371–386, Feb. 2014.

[5] Cloud security Alliance, “Security guidelines for critical areas of focus
in cloud computing v3.0,” 2011.

[6] D. Chen et al., “Fast and scalable multi-way analysis of massive neural
data,” IEEE Trans. Comput., DOI: 10.1109/TC.2013.2295806, 2014, to
be published.

[7] A. N. Khan, M. M. Kiah, S. A. Madani, M. Ali, and S. Shamshir-band,
“Incremental proxy re-encryption scheme for mobile cloud computing
environment,” J. Supercomput., vol. 68, no. 2, pp. 624–651, May 2014.

[8] Y. Chen and W. Tzeng, “Efficient and provably-secure group key man-
agement scheme using key derivation,” in Proc. IEEE 11th Int. Conf.
TrustCom, 2012, pp. 295–302.

[9] L. Xu, X. Wu, and X. Zhang, “CL-PRE: A certificateless proxy re-
encryption scheme for secure data sharing with public cloud,” in Proc.
7th ACM Symp. Inf. , Comput. Commun. Security, 2012, pp. 87–88.

[10] P. Gutmann, “Secure deletion of data from magnetic and solid-state
memory,” in Proc. 6th USENIX Security Symp. Focusing Appl. Cryptog-
raphy, 1996, p. 8.

[11] S. Seo, M. Nabeel, X. Ding, and E. Bertino, “An Efficient Certificate-
less Encryption for Secure Data Sharing in Public Clouds,” IEEE Trans.
Knowl. Data Eng., vol. 26, no. 9, pp. 2107–2119, Sep. 2013.

[12] Y. Chen, J. D. Tygar, and W. Tzeng, “Secure group key management using
uni-directional proxy re-encryption schemes,” in Proc. IEEE INFOCOM,
pp. 1952–1960.

[13] T. Murata, “Petri Nets: Properties, analysis and applications,” Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[14] L. Moura and N. Bjrner, “Satisfiability modulo theories: An appetizer,”
in Proc. Formal Methods, Found. Appl., vol. 5902, Lecture Notes in
Computer Science, 2009, pp. 23–36.

[15] S. U. R. Malik, S. K. Srinivasan, S. U. Khan, and L. Wang, “A method-
ology for OSPF routing protocol verification,” in Proc. 12th Int. Conf.
ScalCom, Changzhou, China, Dec. 2012, pp. 1–5.

Mazhar Ali (S’14) is currently working toward the Ph.D. degree in the
Department of Electrical and Computer Engineering, College of Engineering,
North Dakota State University, Fargo, ND, USA.

His research interests include information security, formal verification, and
cloud computing systems.

Revathi Dhamotharan is currently working toward the M.S. degree in elec-
trical and computer engineering in the Department of Electrical and Computer
Engineering, College of Engineering, North Dakota State University, Fargo,
ND, USA.

Her research interests include cryptography and security.

Eraj Khan received the Ph.D. degree in communication security from
Lancaster University, Lancaster, U.K.

He is currently with the Department of Computer Science, COMSATS
Institute of Information Technology, Abbottabad, Pakistan. His main areas
of research interests include code-based cryptography and security in cloud
computing.

Samee U. Khan (S’02–M’07–SM’12) received the Ph.D. degree in computer
science from University of Texas, Arlington, USA.

He is currently an Associate Professor of electrical and computer engineering
with the Department of Electrical and Computer Engineering, College of
Engineering, North Dakota State University, Fargo, ND, USA. His research
interests include topics such as sustainable computing, social networking, and
reliability.

Athanasios V. Vasilakos (M’00–SM’11) received the Ph.D. degree in computer
engineering from the University of Patras, Patras, Greece.

He is currently a Professor with the Department of Computer Sci-
ence, College of Computer Science and Engineering, Kuwait University,
Safat, Kuwait. His research interests include robustness, security, computer
networks, and distributed systems.

Keqin Li (M’90–SM’96–F’15) is a Distinguished Professor with the De-
partment of Computer Science, School of Science and Engineering, State
University of New York, New Paltz, NY, USA. His research interests mainly
include the areas of design and analysis of algorithms, parallel and distributed
computing, and computer networking.

Albert Y. Zomaya (F’04) is currently the Chair Professor of high-performance
computing with the School of Information Technologies, The University of
Sydney, Sydney, Australia.

Mr. Zomaya is a Fellow of The Institution of Engineering and Technology
and of the American Association for the Advancement of Science.

IE
EE

Pr
oo

f

IEEE SYSTEMS JOURNAL 1

SeDaSC: Secure Data Sharing in Clouds
Mazhar Ali, Student Member, IEEE, Revathi Dhamotharan, Eraj Khan, Samee U. Khan, Senior Member, IEEE,

Athanasios V. Vasilakos, Senior Member, IEEE, Keqin Li, Fellow, IEEE, and
Albert Y. Zomaya, Fellow, IEEE

Abstract—Cloud storage is an application of clouds that lib-
erates organizations from establishing in-house data storage sys-
tems. However, cloud storage gives rise to security concerns. In
case of group-shared data, the data face both cloud-specific and
conventional insider threats. Secure data sharing among a group
that counters insider threats of legitimate yet malicious users is
an important research issue. In this paper, we propose the Secure
Data Sharing in Clouds (SeDaSC) methodology that provides:
1) data confidentiality and integrity; 2) access control; 3) data
sharing (forwarding) without using compute-intensive reencryp-
tion; 4) insider threat security; and 5) forward and backward ac-
cess control. The SeDaSC methodology encrypts a file with a single
encryption key. Two different key shares for each of the users are
generated, with the user only getting one share. The possession of
a single share of a key allows the SeDaSC methodology to counter
the insider threats. The other key share is stored by a trusted
third party, which is called the cryptographic server. The SeDaSC
methodology is applicable to conventional and mobile cloud com-
puting environments. We implement a working prototype of the
SeDaSC methodology and evaluate its performance based on the
time consumed during various operations. We formally verify
the working of SeDaSC by using high-level Petri nets, the Sat-
isfiability Modulo Theories Library, and a Z3 solver. The results
proved to be encouraging and show that SeDaSC has the potential
to be effectively used for secure data sharing in the cloud.

Index Terms—Access control, cloud computing, high-level
Petri nets (HLPNs), modeling, Satisfiability Modulo Theory
(SMT), Scyther, verification.

I. INTRODUCTION

C LOUD computing is rapidly emerging due to the provi-
sioning of elastic, flexible, and on-demand storage and

computing services for customers [1]. Organizations with a low
budget can now utilize high computing and storage services
without heavily investing in infrastructure and maintenance [2],

Manuscript received September 24, 2014; revised November 13, 2014;
accepted November 30, 2014.

M. Ali, R. Dhamotharan, and S. U. Khan are with the Department of
Electrical and Computer Engineering, College of Engineering, North Dakota
State University, Fargo, ND 58108-6050 USA (e-mail: mazhar.ali@ndsu.edu;
revathi.dhamotharan@ndsu.edu; samee.khan@ndsu.edu).

E. Khan is with the Department of Computer Science, COMSATS Institute of
Information Technology, 22060 Abbottabad, Pakistan (e-mail: eraj@ciit.net.pk).

A. V. Vasilakos is with the Department of Computer Science, College of
Computer Science and Engineering, Kuwait University, 13060 Safat, Kuwait
(e-mail: vasilako@cs.ku.edu.kw).

K. Li is with the Department of Computer Science, School of Science and
Engineering, State University of New York, New Paltz, NY 12561-2443 USA
(e-mail: lik@newpaltz.edu).

A. Y. Zomaya is with the School of Information Technologies, The Univer-
sity of Sydney, Sydney, NSW 2006 Australia (e-mail: albert.zomaya@sydney.
edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSYST.2014.2379646

[3]. However, the loss of control over data and computation
raises many security concerns for organizations, thwarting the
wide adaptability of the public cloud. The loss of control over
data and the storage platform also motivates cloud customers
to maintain the access control over data (individual data and
the data shared among a group of users through the public
cloud) [4]. Moreover, the privacy and confidentiality of the
data is also recommended to be cared for by the customers [5].
The confidentiality management by a customer ensures that the
cloud does not learn any information about the customer data.
Cryptography is used as a typical tool to provide confidentiality
and privacy services to the data [5]. The data are usually
encrypted before storing to the cloud. The access control, key
management, encryption, and decryption processes are handled
by the customers to ensure data security [6]. However, when
the data are to be shared among a group, the cryptographic
services need to be flexible enough to handle different users,
exercise the access control, and manage the keys in an effective
manner to safeguard data confidentiality [7]. The data handling
among a group has certain additional characteristics as opposed
to two-party communication or the data handling belonging
to a single user. The existing, departing, and newly joining
group members can prove to be an insider threat violating data
confidentiality and privacy [7]. Insider threats can prove to be
more devastating due to the fact that they are generally launched
by trusted entities. Due to the fact that people trust insider
entities, the research community focuses more on outsider
attackers. Nevertheless, multiple security issues can arise due
to different users in a group. We discuss some of the issues in
the following discussion.

A single key shared between all group members will result in
the access of past data to a newly joining member. The aforesaid
situation violates the confidentiality and the principle of least
privilege [8]. Likewise, a departing member can access future
communication. Therefore, in group-shared data, the inside
members might generate the issue of backward access control
(a new user accessing past data) and forward access control (a
departing user accessing future data) [8]. The simple solution
of rekeying (generating a new key, decrypting all the data, and
reencrypting with the new key) does not prove to be scalable
for frequent changes in the group membership [7].

A separate key for every user is a cumbersome solution.
The data must be separately encrypted for every user in such a
scenario. The changes in the data require the decryption of all of
the copies of the users and encryption again with the modified
contents [7].

The existing and legitimate group members might show
illegitimate behavior to manipulate the data [3]. The presence
of the entire symmetric key with a user allows a malicious user

1932-8184 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

IE
EE

Pr
oo

f

2 IEEE SYSTEMS JOURNAL

to turn into an insider threat [3]. The data can be decrypted,
modified, and reencrypted by a malicious insider within a
group. Consequently, a legitimate user in the group may access
certain unauthorized files within the group [9]. On the other
hand, it is necessary for a user to possess a key to conduct
various operations on the data. The possession of the key also
implicitly proves the legitimacy of a user to operate on the
data [9]. Nevertheless, simultaneously dealing with both the
issues related to the key is an important issue that needs to be
addressed effectively.

In this paper, we propose a methodology named Secure Data
Sharing in Clouds (SeDaSC) that deals with the aforementioned
security requirements of shared group data within the cloud.
The SeDaSC methodology works with three entities as follows:
1) users; 2) a cryptographic server (CS); and 3) the cloud.
The data owner submits the data, the list of the users, and the
parameters required for generating an access control list (ACL)
to the CS. The CS is a trusted third party and is responsible for
key management, encryption, decryption, and access control.
The CS generates the symmetric key and encrypts the data
with the generated key. Subsequently, for each user in the
group, the CS divides the key into two parts such that a single
part alone cannot regenerate the key. Successively, the original
key is deleted through secure overwriting [10]. One part of
the key is transmitted to the corresponding user in the group,
whereas the other part is maintained by the CS within the
ACL related to the data file. The ACL is generated through the
parameter submitted by the data owner. The encrypted data are
subsequently uploaded to the cloud for storage on behalf of the
user. The user who wishes to access the data sends a download
request to the CS. The CS, after authenticating the requesting
user, receives the portion of the key from the user and sub-
sequently downloads the data file from the cloud. The key is
regenerated by operating on the user portion of the key, and the
corresponding CS maintained portion for that particular user.
The data are decrypted and sent back to the user. For a newly
joining member, the two portions of the key are generated, and
the user is added to the ACL. For a departing member, the
record is deleted from the ACL. The departing member cannot
decrypt the data on its own as he/she only possesses a portion
of the key. Similarly, no frequent decryption and reencryption
are needed in case of changes in the group membership. More-
over, SeDaSC can be used with the mobile cloud computing
paradigm in addition to conventional cloud computing due to
the fact that compute-intensive operations are performed by
the CS. The working of the SeDaSC methodology is shown in
Fig. 1, and the details are provided in Section III. Our major
contributions, as reported in this paper, are as follows.

• The proposed methodology ensures the confidentiality of
the data on the cloud by using symmetric encryption.

• The secure data sharing over the cloud among the group of
users is ensured without the elliptic curve or bilinear Diffie–
Hellman problem (BDH) cryptographic reencryption.

• The possession of a portion of the key secures the data
against malicious insiders within the group.

• The proposed SeDaSC methodology secures the data
against issues of forward and backward access control that
arise due to insider threats.

Fig. 1. Basic idea for the SeDaSC methodology.

• We perform formal modeling and verification of the
SeDaSC methodology by using high-level Petri nets
(HLPNs), the Satisfiability Modulo Theory Library (SMT-
Lib), and a Z3 solver.

The remainder of this paper is organized as follows. Section II
provides the overview of the related work in the field. In
Section III, we present the details of the proposed SeDaSC
methodology. Section IV provides the discussion on the ser-
vices provided by the proposed methodology. Formal mod-
eling and verification of SeDaSC are detailed in Section V.
Section VI explains the experimental results, and Section VII
concludes this paper.

II. RELATED WORK

Xu et al. [9] proposed a certificateless proxy reencryption
(CL-PRE) scheme for securely sharing the data within a group
in the public cloud. In the CL-PRE scheme, the data owner
encrypts the data with the symmetric key. Subsequently, the
symmetric key is encrypted with the public key of the data
owner. Both the encrypted data and the key are uploaded to the
cloud. The encrypted key is reencrypted by the cloud (that acts
as a proxy reencryption agent) that becomes decryptable by
the user’s private key. The public–private keys generated in the
proposed scheme are not based on the certificates. The user’s
identity is used to generate the public–private key pair. The
proxy reencryption is based on bilinear pairing and the BDH
that makes the CL-PRE scheme computationally intensive. The
computational cost of the bilinear pairing is high as compared
with the standard operations in finite fields.

To reduce the computational overhead of bilinear pairing,
Seo et al. [11] introduced a mediated certificateless encryption
approach for data sharing in the public cloud that avoids bi-
linear pairing. In the proposed scheme, the cloud generates the
public–private key pairs for all of the users and transmits the
public keys to all of the participating users. Partial decryption
is performed at the cloud. Due to the fact that key management
and partial decryption are handled by the cloud, user revocation
is easier to handle. However, the proposed scheme treats the
public cloud both as a trusted and untrusted entity at the same
time. From a security perspective, it is not recommended to
shift the key generation process to the shared multitenant public
cloud environment. Moreover, the decryption is performed
twice in the system that reduces the advantage of not pairing
to some extent.

IE
EE

Pr
oo

f

ALI et al.: SeDaSC 3

Khan et al. [7] also utilized the El-Gamal cryptosystem
and bilinear pairing for the sharing of sensitive information in
the cloud. Moreover, the proposed scheme in [7] utilized the
concept of incremental cryptography that divides the data into
blocks and incrementally encrypts the blocks. The proposed
scheme uses a trusted third party as a proxy that performs the
compute-intensive operations of key generation, reencryption,
and managing access to the data. However, the computational
complexities of bilinear pairing still exist in the system.

Chen and Tzeng [8] proposed a methodology based on the
shared key derivation method for securing data sharing among a
group. The methodology uses a binary tree for the computation
of keys. However, the computational cost of the proposed
scheme is high as the rekeying mechanism is heavily employed
in the proposed scheme. Moreover, the scheme is not tailored
for public cloud systems because certain operations require cen-
tralized mediations. A similar Rivest–Shamir–Adleman (RSA)-
based approach was also proposed in [12]. However, the scheme
was vulnerable against collusion attacks.

The SeDaSC methodology, which is proposed in this paper,
securely shares the data among a group without using the
El-Gamal cryptosystem, the BDH, and bilinear pairing. The
SeDaSC methodology is based on symmetric cryptography
without reencryption. The aforesaid properties avoid compu-
tationally intensive operations and make the SeDaSC method-
ology a lightweight methodology. Moreover, the forward and
backward access control is ensured by only allowing user
access to a portion of the key that prohibits insiders to launch
individual or coordinated attacks on the data.

III. SeDaSC

In this section, we present the design of our proposed
methodology SeDaSC that secures the sharing and forwarding
of data among a group without involving reencryption in the
cloud environment.

A. Entities

The SeDaSC methodology has the following entities.
Cloud: The cloud provides storage services to the user. The

data on the cloud need to be secured against privacy breaches.
The confidentiality of the data is ensured by storing encrypted
data over the cloud. The cloud in the SeDaSC methodology
only involves basic cloud operations of file upload and down-
load. Therefore, no changes at the protocol or implementation
level on the cloud are required.

CS: The CS is a trusted party and is responsible for security
operations, such as key management, encryption, decryption, the
management of the ACL for providing confidentiality, and se-
cure data forwarding among the group. The users of SeDaSC are
required to be registered with the CS to obtain the security ser-
vices. The CS is assumed to be a secure entity in the proposed
methodology. The CS can be maintained by an organization or
can be owned by a third-party provider. However, the CS main-
tained by an organization will generate more trust in the system.

Users: The users are the clients of the storage cloud. For
each data file, one user will be the owner of the file, whereas
the others in the group will be the data consumers. The owner

of the file decides the access rights of the other group members.
The access rights are granted and revoked based on the decision
of the owner. The access rights are managed by the CS in the
form of an ACL file. A separate ACL is maintained for each of
the data files.

B. Cryptographic Keys

The SeDaSC methodology maintains a single cryptographic
key for each of the data files. However, after encryption/
decryption, the whole key is not stored and possessed by any of
the involved parties. The key is partitioned into two constituent
parts and are possessed by different entities. The following are
the keys that are used within SeDaSC.

Symmetric Key K: K is a random secret generated by the
CS for each of the data files. The length of K in SeDaSC is
256 bits, as is recommended by most of the standards regarding
key length for symmetric key algorithms (SKAs). However, the
length of the key can be altered according to the requirements
of the underlying SKA. K is obtained in a two-step process.
In the first step, a random number R of length 256 bits is
generated such that R = {0, 1}256. In the next step, R is passed
through a hash function that could be any hash function with a
256-bit output. In our case, we used secure hash algorithm
256 (SHA-256). The second step completely randomizes the
initial user-derived random number R. The output of the hash
function is termed as K and is used in symmetric key en-
cryption [e.g., the Advanced Encryption Standard (AES)] for
securing the data.

CS Key Share Ki: For each of the users in the group, the
CS generates Ki, such that Ki = {0, 1}256. Ki serves as the
CS portion of the key and is used to compute K whenever an
encryption/decryption request is received by the CS. Moreover,
it is ensured by comparison that the distinct Ki is generated for
every file user.

User Key Share K ′
i: K ′

i is computed for each of the users in
the group as follows:

K ′
i = K ⊕Ki. (1)

Algorithm 1 Key Generation and Encryption

Input:
F , the ACL, the SKA, the 256-bit
hash function Hf

Compute:
R = {0, 1}256

K = Hf (R)
C = SKA(F, K)

for each user i in the ACL, do
Ki = {0, 1}256

Ki = K ⊕Ki

Add K ′
i for user i in the ACL

Send K ′
i for user i

end for
delete (K)
delete (K ′

i)
return C to the owner or upload to the cloud.

IE
EE

Pr
oo

f

4 IEEE SYSTEMS JOURNAL

K ′
i serves as the user portion of the key and is used to

compute K when needed.

C. SeDaSC Design

In this section, we present the design of SeDaSC. In particu-
lar, we propose several cryptographic key operations that enable
SeDaSC to achieve security goals.

1) File Upload: Whenever a need to share data among the
group arises, the owner of the file sends the encryption request
to the CS. The request is accompanied by the file (F) and a
list (L) of users that are to be granted access to the file. L also
contains the access rights for each of the users. The users may
have READ-only and/or READ–WRITE access to the file. Other
parameters can be also set to enforce fine-grained access control
over the data. L is used to generate the ACL for the data by the
CS. L is sent to the CS only if the data are to be shared with a
new proposed group. If the group already exists, the encryption
request will not contain L; rather, the group ID of the existing
group will be sent. The CS, after receiving the encryption
request for the file, generates the ACL from the list and creates
a group of the users. The ACL is separately maintained for
each file. The ACL contains information regarding the file
such as its unique ID, size, owner ID, the list of the user IDs
with whom the file is being shared, and other metadata. If the
group already existed, only the ACL for the file is created.
Next, the CS generates K according to the procedure defined
in Section III-B and encrypts the file with an appropriate
symmetric block cipher (we have used the AES for encryption
purposes). The result is an encrypted file (C). Subsequently,
the CS generates Ki and K ′

i for every user and deletes K by
secure overwriting. Secure overwriting is a concept in which
the bits in the memory are constantly flipped to make sure that
a memory cell never grips a charge for enough duration for it to
be remembered and recovered. The Ki for each user is inserted
into the ACL for later use. To protect the integrity of the file, the
CS also computes the hash-based message authentication code
(HMAC) signature on every encrypted file. A similar procedure
for the HMAC key is adopted. However, the HMAC key is
kept by the CS only. The encrypted data, the group ID (in the
case of a newly generated group), and the K ′

i for the owner
are sent to the requesting data owner. The group ID and the
K ′

i for the rest of the group users are directly sent to them
over a secure communication channel. The public keys of the
group users can be also used to transmit the user portion of
the key. We have used the public keys of the users to transmit
the key portions. The user, after receiving C, uploads it to the
cloud. K is deleted via secure overwriting from the CS after
the encryption process. Fig. 2 shows the file upload operation.
Algorithm 1 shows the key generation and encryption process
at the CS. It is noteworthy that the key generation process is
executed once when the group is initiated and the first file is
submitted for encryption. Moreover, a newly joining member
also activates the key generation but only for the new member.

It is important to note that, after the encryption of the data at
the CS, the uploading of the file to the cloud can be handled in
two possible ways. In the first option, the encrypted data can be
sent to the user who uploads it to the cloud, as explained earlier

Fig. 2. File upload.

in this section. In the second option, the CS can be delegated the
authority to upload the file to the cloud on behalf of the user. We
have used the second option in our implementation. The dashed
line in Fig. 2 depicts the second option.

Algorithm 2 Decryption Algorithm

Input:
C, the ACL, the SKA
Compute:
Get K ′

i from the requesting user
Get C from the requesting user or download from the cloud
Retrieve Ki from the ACL
If Ki does not exist in the ACL, then

return the access denied message to the user
else

K = Ki ⊕K ′
i

F = SKA(C, K)
send F to the user

end if
delete (K)
delete (K ′

i).

2) File Download: The authorized user sends a download
request to the CS or downloads the encrypted file (C) from
the cloud and sends the decryption request to the CS. The
cloud verifies the authorization of the user through a locally
maintained ACL. The decryption request is accompanied by the
user portion of the key, i.e., K ′

i, along with other authentication
credentials. The CS computes K by applying XOR operation
over K ′

i and the corresponding Ki from the ACL. As each of
the users correspond to a different pair of Ki and K ′

i, none
of the users can use other users’ K ′

i to masquerade identity.
Subsequently, the CS proceeds with the decryption process
after verifying the integrity of the file. If the correct K ′

i is
received by the CS, the result will be a successful decryption
process; otherwise, the decryption will fail. After successful
decryption, the file is sent to the requesting user through a
secure communication channel that could be Secure Sockets
Layer (SSL) or Internet Protocol Security (IPSec) channels. K
is deleted via secure overwriting from the CS after decryption.
The users are authenticated before the request processing ac-
cording to standard procedures. The process is highlighted in
Fig. 3. Algorithm 2 presents the decryption process.

IE
EE

Pr
oo

f

ALI et al.: SeDaSC 5

Fig. 3. File download.

Fig. 4. File download: A special case.

Fig. 5. File update.

Similar to the file upload process, the downloading of the file
can be also done by the CS on behalf of the user. In the aforesaid
case, the decryption request is sent to the CS along with the
group ID, the file ID, and K ′

i. The CS, after authenticating the
user, sends the download request to the cloud for the specified
file. The cloud sends the encrypted file (C) to the CS. The rest
of the process for the decryption is the same. The download
process in the second aforementioned case is shown in Fig. 4.

3) File Update: Updating the file has a similar procedure to
that of uploading the file. The difference is that, while updating,
all of the activities related to the creation of the ACL and key
generation are not carried out. The user, who has downloaded
the file and made any changes, sends an update request to
the CS. The request contains the group ID, the file ID, and
K ′

i, along with the file to be encrypted after changes. The CS
verifies that the user has the WRITE access to the file from the
corresponding ACL. In the case of a valid update request, the
CS computes K by XORing Ki and K ′

i, encrypts the file, and
performs the HMAC calculations. The encrypted file is sent to
the user or uploaded to the cloud. K is deleted afterward. Fig. 5
shows the update process in the SeDaSC methodology.

4) New Group User Inclusion: If a new user joins the group,
the addition of the user is made on the request of the file owner.
The request contains the user ID of the joining user, along
with the access control parameters to be included in the ACL,
and the group ID. The parameters include the IDs of the files for
which the user has been granted access rights. It also includes
the details indicating the READ and/or WRITE rights granted
to the user. Alternatively, the date can be mentioned from
which the access rights are valid for the user. This ensures
the backward access control for the joining member. The CS,
after receiving the joining request, updates the ACLs related
to the files for which the access is granted. The key shares are
generated, and the user shares are sent to the user along with
the corresponding file IDs.

5) Departing Group User: The CS is notified about a de-
parting member by the group owner. The CS removes all of
the records for the departing user from the ACLs of the related
files. As the whole key is not possessed by the group members,
the departing member (even being malicious) will be unable
to decrypt any of the group data files. Even the presence of
encrypted files with a malicious departing member will not
affect the privacy of the data. The malicious member will be
unable to construct the whole key for decryption. Therefore,
the forward access control is also ensured by the SeDaSC
methodology. The next section discusses how different security
services are achieved by the SeDaSC methodology.

IV. DISCUSSION ON SeDaSC

The SeDaSC methodology is proposed to provide the follow-
ing services to the outsourced data:

• confidentiality;
• secure data sharing among the group;
• secure data from unauthorized access of valid insiders

within the group; and
• forward and backward access control to counter insiders

and departing group users.
The following discussion briefly describes how the afore-

mentioned services are achieved.
We do not consider the cloud to be a secure and trustful entity

in the context of SeDaSC. Multitenancy, virtualization, and a
shared pool of resources may pose many forms of insider and
other threats to the data. Moreover, the cloud may also retain
copies of the file even after it is requested for deletion.

In the case of SeDaSC, the file is encrypted with K. K is
generated at the CS and is deleted right after utilization. The
CS or the user cannot reconstruct K alone. For confidentiality,
the data cannot be leaked unless the attacker gains access to K.
K in its entirety is not stored anywhere, and neither does it
travel on the communication channel. Therefore, the access to
K is a difficult task. Although an attacker gets hold of the
user share, i.e., K ′

i, he/she will have to guess the other share
correctly. The guess or random generation is to be made from a
total of 2256 − 1 possible shares. The probability of generating
the correct share is (1/(2256 − 1)) = 8.636× 10−78, which is
negligible. Moreover, if the insider within the cloud gets access
to the file, the absence of K will be a barrier to subvert the
confidentiality of the data.

IE
EE

Pr
oo

f

6 IEEE SYSTEMS JOURNAL

For secure data sharing, SeDaSC does not utilize the concept
of reencryption with multiple keys. The encryption is done
with a single symmetric key. However, the authorized users
are granted access on the basis of possession of the key share
and the typical authentication and authorization phenomenon.
The ACL lists the authorized users with their credentials and
corresponding CS key shares. After authentication, the user
share of the key is used, along with the CS share, to generate
K. As the user share is only possessed by a valid user, only
a valid user can lead to successful encryption/decryption of
the data.

The division and dispersal of the key also helps counter the
insider malicious users within the group. The ACL is separately
maintained for each group file. Therefore, a valid group user
cannot access the group file that is not shared with him/her. An
attempt to access an unauthorized file is also blocked by the fact
that the user will not have the key share for that file. Moreover,
the ACL of the unauthorized file will not contain any record for
the malicious user. Furthermore, the absence of the entire key
with the user and the ACL collectively ensures the forward and
backward access control for the data.

Most of the data forwarding schemes are dependent on the
El-Gamal cryptosystem and bilinear pairing [7]. The aforesaid
schemes require the reencryption of the data each time the
access to the data is requested by any user other than the
owner. The El-Gamal cryptosystem is computationally inten-
sive. Moreover, reencryption at each access adds to the over-
head. The SeDaSC methodology utilizes symmetric encryption,
and the access to multiple users is achieved through key man-
agement, as explained in the preceding section. Therefore, the
overhead of the SeDaSC methodology is fairly less as compared
with the traditional El-Gamal-based reencryption systems.

V. FORMAL ANALYSIS

Before going into the details of the formal analysis of the pro-
posed methodology, we provide a brief introduction to HLPNs,
the SMT-Lib, and a Z3 solver for better understanding of the
reader.

A. HLPNs

Petri nets are used for the graphical and mathematical rep-
resentation of the system. Petri nets can model a range of
systems, such as distributed, parallel, concurrent, nondeter-
ministic, stochastic, or asynchronous systems [13]. We have
used a variant of a conventional Petri net called an HLPN.
An HLPN is a seven-tuple structure represented as N =
(P, T, F, ϕ, R, L, M0), where P denotes the set of places,
and T refers to the set of transitions such that P ∩ T = ∅. The
flow relations are represented by F such that F ⊆ (P × T) ∪
(T ∪ P). The ϕ map places P to the data types. R defines the
set of rules for transitions. L is a label on F , and M0 represents
the initial marking [13]. The information about the structure
of the net is provided by (P, T, F), whereas (ϕ, R, L) pro-
vides the static semantics that means the information does not
change throughout the system.

Fig. 6. HLPN model for SeDaSC.

TABLE I
DATA TYPES FOR THE HLPN MODEL

TABLE II
MAPPING OF DATA TYPES AND PLACES

B. SMT-Lib and Z3 Solver

The SMT is used for validating the satisfiability of rules
over the theories under consideration. The SMT has roots in
Boolean Satisfiability Solvers (SAT) [14]. We use a Z3 solver
with the SMT-Lib that is not only theorem prover developed
at Microsoft Research but is also an automated satisfiability
checker. In addition, the Z3 solver determines whether the set
of formulas are satisfiable in the built-in theories of the SMT-
Lib. For the use of the SMT-Lib in the verification process,
see [15].

The HLPN model for SeDaSC is shown in Fig. 6. The data
types and mappings are shown in Tables I and II, respectively.

Whenever the data are to be shared among multiple users,
the data owner sends the data file, i.e., F , to the CS. The list of
the users is also sent along with F , along with other parameters
discussed in Section III. The following rule is mapped to the
transition Send_d of the HLPN:

R(Send_d) = ∀x1 ∈ X1, ∀x2 ∈ X2|x2[1] := x1[1] ∧ x2[2]

:= x1[2] ∧X ′
2 = X2 ∪ {x2}. (2)

IE
EE

Pr
oo

f

ALI et al.: SeDaSC 7

The CS generates a symmetric key, i.e., K, and other pa-
rameters according to the previously explained procedure. The
following formula operates on transition Gen_K to depict the
process:

R(Gen_K) = ∀x_3 ∈ X_3|x3[3] = gen_grpID(x3[3])

∧x3[4] := genK(·) ∧X ′
3 = X3 ∪ {x3}. (3)

The CS computes the hash of F and encrypts F with the
symmetric key, i.e., K. The result is cryptographic data C.
The process is carried out at transition Encrypt_F with the
following rule:

R(Encrypt_F) = ∀x4 ∈ X4|x4[8] = hash (x4[1])

∧x4[7] := encrypt (x4[1], x4[4]) ∧X ′
4 = X4 ∪ {x4}. (4)

The CS computes the two constituent shares of K, i.e.,
Ki and K ′

i, for each of the users in the ACL and deletes K
afterward. Transition Dvd_K depicts the procedure with the
following formula:

R(Dvd_K) = ∀x5 ∈ X5|x5[5] := gen_Ki() ∧ x5[6] := x5[4]

⊕x5[5] ∧ over_write(x5[4]) ∧X ′
5 = X5 ∪ {x5}. (5)

The encrypted data C, along with the hash value, the group
ID, and K ′

i, are sent to the data owner. The procedure is detailed
in Section III. The following formula at transition Snd_R shows
the following process:

R(Snd_R) = ∀x6 ∈ X6, ∀x7 ∈ X7|x7[3]

:=x6[6] ∧ x7[4] := x6[3] ∧ x7[5]

:=x6[7] ∧ x7[6]

:=x6[8] ∧ over_write(x6[6]) ∧X ′
6

=X6 ∪ {x6} ∧X ′
7 = X7 ∪ {x7}. (6)

The user uploads the encrypted data to the cloud. The follow-
ing rule maps to transition upload:

R(Upload) = ∀x8 ∈ X8, ∀x9 ∈ X9|x9[1] = x8[7] ∧ x9[2]

:= x8[8] ∧X ′
9 = X9 ∪ {x9}. (7)

The downloading user downloads the encrypted data from
the cloud. The following formula relates to transition download:

R(download) = ∀x10 ∈ X10, ∀x11 ∈ X11|x11[5] = x10[1]

∧x11[6] := x10[2] ∧X ′
11 = X11 ∪ {x11}. (8)

The user sends a decryption request to the CS along with C,
Ui, the group ID, and K ′

i. The following rule maps to transition
Decr_R:

R(Decr_R) = ∀x12 ∈ X12, ∀x13 ∈ X13|x13[2]

:=x12[2] ∧ x13[3] = x12[4] ∧ x13[6]

:=x12[3] ∧ x13[7] = x12[5] ∧X ′
13

=X13 ∪ {x13}. (9)

TABLE III
HARDWARE SPECIFICATIONS FOR CS AND USER CLIENT MACHINES

The CS, after verifying the authorization status of the user
from the ACL, computes K according to the procedure defined
in Section III. The following transition and rule shows the
process:

R(Cmpt_K) = ∀x14 ∈ X14|x14[4] = x14[5]⊕ x14[6]

∧X ′
14 = X14 ∪ {x14}. (10)

The CS decrypts the data and sends it back to the user. K
and K ′

i are deleted subsequently. Transition Decr_C shows the
process as follows:

R(Decr_C) = ∀x15 ∈ X15, ∀x16 ∈ X16|x16[1] := decrypt

(x15[7], x15[4]) ∧X ′
16 = X16 ∪ {x16}. (11)

C. Verification of Properties

The properties that are verified are the following.
• A valid user in the group cannot lead to the generation of a

valid K by pretending to be another user and contributing
a random Ki.

• A valid user in the group leads to the generation of a valid
K by contributing a valid K ′

i.
• A malicious user outside the group, if somehow gets

access to the encrypted file, cannot lead to its decryption.
The given model was translated to the SMT-Lib and verified

thorough the Z3 solver. The solver showed that the model is
workable and executes according to the specified properties.
The Z3 solver took 0.085 s to execute the working of the
proposed model.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate the performance of the proposed methodology,
we implemented the SeDaSC methodology in Visual Studio
2010 C# using the .Net 4 framework. As discussed earlier,
the proposed methodology consists of three entities, i.e., the
cloud, the CS, and the users. The Amazon Web Services’
software development kit and the .Net application programming
interfaces were used to communicate with Amazon S3, which
serves as the cloud server in our implementation. The CS is
implemented as a third party. The functionality required by the
user is implemented as a client application that connects with
the CS to receive the services. The hardware characteristics for
the CS and the user client are shown in Table III.

The communication between the entities was accomplished
using .Net libraries (System.Net.Security and System.Net.
Sockets). The classes TcpClient and TcpListener have been used

IE
EE

Pr
oo

f

8 IEEE SYSTEMS JOURNAL

Fig. 7. Time consumption for key generation.

to implement the Transmission Control Protocol (TCP). The
communication was then secured using the SSLStream class.
The scheme uses the SHA-256 hash function for generating
keys and the AES for encryption and decryption. The scheme
was implemented using a .Net library, i.e., System.Security.
Cryptography. The class SHA256CryptoServiceProvider within
the library was used to access all of the methods related to
SHA-256. All of the cryptographic operations, i.e., encryption
and decryption, were implemented using the AES class that
represents the base abstract class for the AES algorithm.

B. Results

The SeDaSC methodology has been evaluated for the follow-
ing three different cases.

1) Key Generation: As described in Section III, there is only
one symmetric key generated for each file. However, the key
shares are separately computed for every user in the group.
The shares are computed at the time of file submission. We
evaluated SeDaSC for time consumption in key generation.
The time is computed for different numbers of users. We set
the number of users to be 10, 20, 30, 40, 50, 60, 70, 80, 90,
and 100. The results are shown in Fig. 7. In general, the time
consumption for key generation increases with the increase in
the number of users. However, it may be noted that the increase
in the time consumption is not uniformly proportional to the
increase in the number of users. For example, key generation
takes 0.004 s for 10 users, and the time increases to 0.00512 s
in the case of 50 users. The time has not increased in the same
proportion as the number of users. Moreover, the jump in the
time consumption varies as the number of users increases from
20 to 50. This may be attributed to the variation in the amount of
time allotted to the application by the processor according to the
processing situation of the system. Nevertheless, the time for
key generation varies between 0.004 and 0.00697 s. The time
for key generation is a slight overhead that is only generated
once at the time of file submission in the group. A newly
joining member will only consume the time for the generation
of key shares that would be nominal as is computed for only a
single user.

2) Encryption and Decryption: We evaluated the time con-
sumption during the encryption and decryption of the file with
varying file sizes. The file sizes used were 0.1, 0.5, 1, 10, 50,

Fig. 8. Performance of file encryption for SeDaSC.

Fig. 9. Performance of file decryption for SeDaSC.

100, and 500 MB. We have observed in Section III that the CS
has to compute K before encryption and decryption. Therefore,
the time to compute K is also compared with the total encryp-
tion and decryption times. The purpose is to observe the time
overhead of the key computation over the total encryption and
decryption times. The results for encryption and decryption are
highlighted in Figs. 8 and 9, respectively.

Fig. 8 shows that, as expected, the time for encryption
increases with the increase in the file size. However, the time for
the computation of K almost remains constant with negligible
change that may be due to the processing conditions at that
point of time. This is because the time for the computation of K
is independent of the file size. The comparative analysis shows
that, with smaller file sizes, the percentage of the key computa-
tion time is high in comparison with the total encryption time.
However, with the increase in the file size, the proportion of
the key computation time in the total encryption time decreases
rapidly. In the case of the 100-KB file, the key computation
time constitutes 15% of the total encryption time. However, the
increase in the file size (1 MB) drops the proportion to 10%.
With further increase in the file size (10 MB), the percentage
of the key computation time falls to 4.3%. The trends continue,
and with a file size of 500 MB, the percentage remains merely
at 1.54%. It is also noteworthy that the total key computation
time ranges between 0.012 and 0.018 s.

Fig. 9 illustrates the results for decryption. The results show
the similar trend for decryption, as was the case with encryp-
tion. The key computation time makes a high proportion of

IE
EE

Pr
oo

f

ALI et al.: SeDaSC 9

Fig. 10. Performance of file uploads for SeDaSC.

the total decryption time with small file sizes. However, with
reasonably good file sizes, the key computation times makes a
negligible proportion of the total consumed time. In the case
of decryption, the percentage of the key computation ranges
between 16.66% in the case of the 100-KB file and 2.53% for a
file size of 500 MB.

3) File Upload/Download: We also evaluated the SeDaSC
methodology on the basis of the total time consumed to up-
load/download a file to/from the cloud. The total time is com-
posed of the time from the time of submission of request to the
CS to the point of time at which the file is uploaded/downloaded
to/from the cloud. The following times are included in the
total time:

1) the key computation time;
2) the encryption/decryption time;
3) the upload/download time; and
4) the time of request and other related data submission to

the CS and the cloud.

Fig. 10 shows the results for the upload time. All of the
constituent times are represented by separate line graphs. The
term “others” refers to the fourth constituent time discussed
previously. In general, the time to upload the data increased
with the increase in the file size. However, in some cases, the
marginal increase in the file upload time was small that may
be due to the network condition at various times. Nevertheless,
the file upload time was dependent on the network conditions.
Similar to the results in Section VI-B2, the key computation
time remained almost constant and was independent of the file
size. The encryption time increased with the increase in the file
size. The other times almost remained constant and were also
independent of the file size. It may be noted that the time for the
key computation is negligible as compared with the total time
consumed because it does not involve heavy computations.

Fig. 11 shows the results for the download operation involved
in downloading the file from the cloud and the subsequent
decryption process. The trend of results is similar as in the case
of file upload. However, the times in decryption and download
are changed.

We have compared the SeDaSC methodology with the
schemes presented in [7], [9], and [11]. The comparison is
based on the time consumption during key generation when
the group is created and on the turnaround time for encryption

Fig. 11. Performance of file downloads for SeDaSC.

TABLE IV
COMPARISON OF KEY GENERATION TIMES

TABLE V
COMPARISON OF TURNAROUND TIMES

and decryption. The comparison of key generation times is
provided in Table IV. Table V shows the turnaround times for
encryption and decryption. Both of these tables reveal that the
SeDaSC methodology outperforms the other techniques due to
the absence of heavy computations.

VII. CONCLUSION

We proposed the SeDaSC methodology, which is a cloud
storage security scheme for group data. The proposed method-
ology provides data confidentiality, secure data sharing with-
out reencryption, access control for malicious insiders, and
forward and backward access control. Moreover, the SeDaSC

IE
EE

Pr
oo

f

10 IEEE SYSTEMS JOURNAL

methodology provides assured deletion by deleting the param-
eters required to decrypt a file. The encryption and decryption
functionalities are performed at the CS that is a trusted third
party in the SeDaSC methodology. The proposed methodology
can be also employed to mobile cloud computing due to the
fact that compute-intensive tasks are performed at the CS. The
working of SeDaSC was formally analyzed using HLPNs, the
SMT-Lib, and a Z3 solver. The performance of the SeDaSC
methodology was evaluated based on the time consumption
during the key generation, file upload, and file download oper-
ations. The results revealed that the SeDaSC methodology can
be practically used in the cloud for secure data sharing among
the group.

In the future, the proposed methodology can be extended by
limiting the trust level in the CS. This will further enhance the
system to cope with insider threats. Moreover, the response of
the methodology with varying key sizes can be evaluated.

REFERENCES

[1] A. Abbas and S. U. Khan, “A review on the State-of-the-art privacy pre-
serving approaches in e-health clouds,” IEEE J. Biomed. Health Informat.,
vol. 18, no. 1, pp. 1431–1441, Jul. 2014.

[2] K. Alhamazani et al., “An overview of the commercial cloud monitoring
tools: Research dimensions, design issues, state-of-the-art,” Computing,
DOI: 10.1007/s00607-014-0398-5, 2014, to be published.

[3] A. N. Khan, M. L. M. Kiah, S. U. Khan, and S. A. Madani, “Towards
secure mobile cloud computing: A survey,” Future Gen. Comput. Syst.,
vol. 29, no. 5, pp. 1278–1299, Jul. 2013.

[4] L. Wei, H. Zhu, Z. Cao, Y. Chen, and A. V. Vasilakos, “Security and pri-
vacy for storage and computation in cloud computing,” Inf. Sci., vol. 258,
pp. 371–386, Feb. 2014.

[5] Cloud security Alliance, “Security guidelines for critical areas of focus
in cloud computing v3.0,” 2011.

[6] D. Chen et al., “Fast and scalable multi-way analysis of massive neural
data,” IEEE Trans. Comput., DOI: 10.1109/TC.2013.2295806, 2014, to
be published.

[7] A. N. Khan, M. M. Kiah, S. A. Madani, M. Ali, and S. Shamshir-band,
“Incremental proxy re-encryption scheme for mobile cloud computing
environment,” J. Supercomput., vol. 68, no. 2, pp. 624–651, May 2014.

[8] Y. Chen and W. Tzeng, “Efficient and provably-secure group key man-
agement scheme using key derivation,” in Proc. IEEE 11th Int. Conf.
TrustCom, 2012, pp. 295–302.

[9] L. Xu, X. Wu, and X. Zhang, “CL-PRE: A certificateless proxy re-
encryption scheme for secure data sharing with public cloud,” in Proc.
7th ACM Symp. Inf. , Comput. Commun. Security, 2012, pp. 87–88.

[10] P. Gutmann, “Secure deletion of data from magnetic and solid-state
memory,” in Proc. 6th USENIX Security Symp. Focusing Appl. Cryptog-
raphy, 1996, p. 8.

[11] S. Seo, M. Nabeel, X. Ding, and E. Bertino, “An Efficient Certificate-
less Encryption for Secure Data Sharing in Public Clouds,” IEEE Trans.
Knowl. Data Eng., vol. 26, no. 9, pp. 2107–2119, Sep. 2013.

[12] Y. Chen, J. D. Tygar, and W. Tzeng, “Secure group key management using
uni-directional proxy re-encryption schemes,” in Proc. IEEE INFOCOM,
pp. 1952–1960.

[13] T. Murata, “Petri Nets: Properties, analysis and applications,” Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[14] L. Moura and N. Bjrner, “Satisfiability modulo theories: An appetizer,”
in Proc. Formal Methods, Found. Appl., vol. 5902, Lecture Notes in
Computer Science, 2009, pp. 23–36.

[15] S. U. R. Malik, S. K. Srinivasan, S. U. Khan, and L. Wang, “A method-
ology for OSPF routing protocol verification,” in Proc. 12th Int. Conf.
ScalCom, Changzhou, China, Dec. 2012, pp. 1–5.

Mazhar Ali (S’14) is currently working toward the Ph.D. degree in the
Department of Electrical and Computer Engineering, College of Engineering,
North Dakota State University, Fargo, ND, USA.

His research interests include information security, formal verification, and
cloud computing systems.

Revathi Dhamotharan is currently working toward the M.S. degree in elec-
trical and computer engineering in the Department of Electrical and Computer
Engineering, College of Engineering, North Dakota State University, Fargo,
ND, USA.

Her research interests include cryptography and security.

Eraj Khan received the Ph.D. degree in communication security from
Lancaster University, Lancaster, U.K.

He is currently with the Department of Computer Science, COMSATS
Institute of Information Technology, Abbottabad, Pakistan. His main areas
of research interests include code-based cryptography and security in cloud
computing.

Samee U. Khan (S’02–M’07–SM’12) received the Ph.D. degree in computer
science from University of Texas, Arlington, USA.

He is currently an Associate Professor of electrical and computer engineering
with the Department of Electrical and Computer Engineering, College of
Engineering, North Dakota State University, Fargo, ND, USA. His research
interests include topics such as sustainable computing, social networking, and
reliability.

Athanasios V. Vasilakos (M’00–SM’11) received the Ph.D. degree in computer
engineering from the University of Patras, Patras, Greece.

He is currently a Professor with the Department of Computer Sci-
ence, College of Computer Science and Engineering, Kuwait University,
Safat, Kuwait. His research interests include robustness, security, computer
networks, and distributed systems.

Keqin Li (M’90–SM’96–F’15) is a Distinguished Professor with the De-
partment of Computer Science, School of Science and Engineering, State
University of New York, New Paltz, NY, USA. His research interests mainly
include the areas of design and analysis of algorithms, parallel and distributed
computing, and computer networking.

Albert Y. Zomaya (F’04) is currently the Chair Professor of high-performance
computing with the School of Information Technologies, The University of
Sydney, Sydney, Australia.

Mr. Zomaya is a Fellow of The Institution of Engineering and Technology
and of the American Association for the Advancement of Science.

