
7204 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 8, 15 APRIL 2023

An Optimal Image Storage Strategy for
Container-Based Edge Computing

in Smart Factory
Luxiu Yin , Juan Luo , Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—Edge computing provides efficient and low-latency
computing services for Internet of Things applications. Container
virtualization technology is widely used as an indispensable key
technology in edge computing. However, the creation of the con-
tainer requires reading the corresponding image file. If the image
file is not stored locally, it will take a lot of time to download,
which increases the user’s extremely high service delay. Aiming
at decreasing the download time of image files, we develop a
two-stage optimization storage strategy of image files to decrease
its download time based on edge computing. This strategy opti-
mizes the image file placement in the initialization stage and the
runtime stage, respectively. In the initialization stage, we propose
a pseudo-polynomial time algorithm to filter all image files and
select the image file combination, which best meets the capacity of
the edge node for placement. In the runtime stage, we continue to
optimize the local image repository based on the historical access
records of the edge node. This operation can reduce the number
of downloads of image files, thereby further reducing the user’s
service delay. In addition, we created a real data set according
to the service requirements and the structure of image files on
the smart factory and the access records on the DockerHub. A
large number of experiments are carried out based on the data
set. Experimental results show that the two-stage optimization
storage strategy can greatly reduce the download time of image
files, thus reducing the service delay of edge nodes and improving
the service quality of edge nodes.

Index Terms—Container, Docker, edge computing, resource
management, virtualization.

I. INTRODUCTION

A. Background

ACCORDING to the Cisco Internet Business Solutions
Group, 50 billion devices will be connected in 2025.

With the rapid development of Internet of Things (IoT), global
data center IP traffic will reach 15.3 ZB [1]. According to the
Cisco Global Cloud Index, 45% of the data need to be stored,
processed, and analyzed at the edge of the network by 2025.

Manuscript received 1 August 2022; revised 28 October 2022; accepted
9 December 2022. Date of publication 14 December 2022; date of current
version 7 April 2023. This work was supported in part by the National Natural
Science Foundation of China under Grant 61972140 and Grant 62002109.
(Corresponding author: Juan Luo.)

Luxiu Yin and Juan Luo are with the College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410012, Hunan, China
(e-mail: yinluxiu@hnu.edu.com; juanluo@hnu.edu.cn).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/JIOT.2022.3229206

TABLE I
CONTAINER VERSUS VIRTUAL MACHINE

Faced with such an ocean of data, the centralized comput-
ing model of the cloud data center can no longer meet the
requirement of delay-sensitive applications.

To address this issue, Cisco proposed the concept
of fog computing in 2012. In addition, the European
Telecommunications Standards Institute proposed the basic
framework for mobile-edge computing (MEC) in 2016 [2].
These computational models have the same features, which
are based on cloud computing and put part of computing
resources to the edge of the network, thereby reducing data
transmission delay. In this article, we will use edge computing
to express these similar concepts. Edge computing is similar
to cloud computing, which requires virtualization technology
to implement service requests for multiple users. However,
unlike cloud computing, edge computing needs to serve more
users and more delay-sensitive services, which proposes higher
demands on virtualization technology. The current virtualiza-
tion technologies are mainly divided into two types, namely,
virtual machine technology and lightweight container technol-
ogy. Compared with virtual machines, containers are more
suitable for edge computing [3]. Sollfrank et al. [4] eval-
uated the performance of Docker containers in industrial
automat and claimed that the container virtualization tech-
nology can meet the soft real-time requirements of industrial
automation. Containers are characterized by fast bootup speed,
dynamic resource quota adjustment, and low system over-
head. Containers are slightly weaker than virtual machines,
but the gap is only approximately 20 µs [5], the detail shows
in Table I.

B. Motivation

Currently, cloud service providers, such as Amazon and
Alibaba Cloud, provide containers as a basic service to users.

2327-4662 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4273-7492
https://orcid.org/0000-0002-0858-427X
https://orcid.org/0000-0001-5224-4048

YIN et al.: OPTIMAL IMAGE STORAGE STRATEGY FOR CONTAINER-BASED EDGE COMPUTING IN SMART FACTORY 7205

Fig. 1. Smart factory scenario.

A growing number of open-source projects are focused on
containers. Docker is currently the most popular application
container engine. Therefore, we use Docker as an example
in this article. Docker containers and virtual machines have
essential differences.

First, the isolation mechanism of Docker containers is dif-
ferent from that of virtual machines. Containers implement
user isolation through Cgroups rather than the hypervisor used
by virtual machines. Therefore, the allocated resource quota
of a container can be modified when it is running, which
means that containers can dynamically adjust the resource
quota according to the current resource loading.

Second, containers are strongly associated with image files.
An image file contains the required file system structure and
contents for the corresponding container to boot up. The cre-
ation of a container must depend on their image file. If no
corresponding image file exists, then Docker Daemon (a pro-
gram for managing Docker containers) cannot be created,
whereas virtual machines can be created without an image
file.

Owing to these differences, the service process of edge com-
puting based on containers (ECBCs) is also different from
that of edge computing based on virtual machines. Virtual
machines require higher overhead compared to containers. It
greatly reduces the performance of the server. And in practice,
smart factory application services require a specific execution
environment. Although virtual machines can be replicated by
virtual machine snapshots for the execution environment, but
the image files of containers occupy less storage space than
the environment replication of virtual machines, which makes
containers more suitable for deployment on the edge nodes.

Fig. 1 shows the service process of the ECBC in smart fac-
tory scenarios. For reducing energy consumption and increas-
ing computing efficiency, some computing and storage tasks
need to be offloaded to powerful external computing devices,
that is, edge nodes. After receiving the task requests of these

devices, edge nodes will create isolated operating environ-
ments according to the requests on the basis of security and
efficiency considerations for ensuring parallel execution. As
mentioned before, the creation of containers must depend on
its image file. Therefore, if the corresponding image files are
not stored locally, then the edge node needs to download the
image file from the remote cloud image repository (CIR) or
DockerHub. The process of downloading image files causes
considerable delay. As a result, edge nodes will require several
storage resources for storing image files.

A large-scale analysis of the image repository was carried
out, and a total of 355 319 image files were analyzed, with a
total size of 167 TB [6]. The author found that only 3% of
the files in the image repository are unique, whereas other files
are redundant file copies. The storage of image files is related
to the storage structure of image files. Container’s image files
use another union file system (AUFS), which is a union FS
that combines different directories into one directory to make
a virtual file system. Two techniques are used by AUFS in
file management, which are stack-level management and copy-
on-write. Write-time replication uses sharing and replication
techniques, and only one copy is kept for the same image file.
All operations access this file. When an operation needs to
modify or add the file, the operating system will copy this
part of the data to a new place and then modify or add it.
By comparison, other operations still access the original file,
which saves the storage space of images and speeds up system
startup time.

However, although the AUFS can help edge nodes to save
some storage space, but DockerHub [7], which is the most
popular registry, currently storing almost 4 million public
image repositories comprising approximately 20 million lay-
ers. Even though edge nodes have stronger computing and
storage capabilities relative to IoT devices, their computing
and storage capacity is not comparable to that of the data
center, which is not possible to store all image files on the

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

7206 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 8, 15 APRIL 2023

edge node. Therefore, how to store image files of containers,
so as to reduce users image download time as much as pos-
sible, is a key problem in ECBC. Owing to the complexity
of the storage structure of image files, this problem is not
a simple combinatorial optimization problem. The traditional
combination optimization method is aimed at a single object,
and no association exists between individuals. When consider-
ing how to optimize the placement of image files, the storage
of image files also needs to consider the nesting relationship
of the image files to maximize the utility of storage resources
of edge nodes.

C. Contributions

This article aims to improve the resource utilization of edge
nodes in smart factory by solving the storage problem of image
files. The main contributions are listed as follows.

1) An image file usually needs to be backtracked up
multiple levels to calculate its size. By decoupling the
nested relationship between image nodes, we propose a
novel computing model for image file storage in edge
computing and verify the correctness of the comput-
ing model in a real scene. The computing model can
simplify the calculation process of image file size.

2) Considering the limited storage capacity of edge nodes,
we propose a two-stage optimization strategy of image
files for edge nodes. First, in the initialization stage,
we proposed a minimum transmission volume algorithm,
which is a pseudo-polynomial time algorithm to resolve
the optimal placement problem of image files at edge
nodes, the algorithm makes full use of the nested struc-
ture of image files and reduces the downloaded amount
of image files. Second, in the runtime stage, a run-
time update mechanism of LIR is proposed. Edge nodes
can adjust image files in LIR according to the number
of downloads, further optimize the file combination of
the image repository, and reduce the download time of
image files.

3) We have created test data of image files and service
request according to the real smart factory scenario.
We selected the most commonly used 37 image files
from DockerHub and analyzed the structure of them
by Microbagger. Simulation experiments based on the
data sets show that the two-stage optimization strategy
can reduce transmission volume and download time by
20%. We publicize the data set for research and objective
performance evaluation.

The remainder of this article is organized as follows.
Section II summarizes the related work. II Section III intro-
duces our system model. Section IV presents the optimal
image storage strategy. Section V discusses the conducted
experiments, the results of which verify the effectiveness of
our proposal. Finally, Section VI concludes our work.

II. RELATED WORK

There are many existing work on resource management and
task scheduling of edge computing. Zeng et al. [8] considered

a software-defined embedded system based on fog comput-
ing. They addressed task scheduling and resource management
problems in fog computing. Mao et al. [9] developed online
joint radio and computing resource management algorithms for
multiuser MEC systems with the goal of minimizing long-term
average weighting and power consumption of mobile devices
and MEC servers, subject to task buffer stability constraints.
In addition, Mao et al. [10] studied a green MEC system with
energy harvesting equipment, and an effective computational
offloading strategy was designed. A low-complexity online
algorithm, which was called dynamic computing unloading
algorithm based on Lyapunov optimization, was proposed.
Xiao et al. [11] proposed a framework called CAME to
enhance the computing power of the system, and they designed
workload scheduling to balance the tradeoff between system
delay and cost. Xiao and Krunz [12] proposed a new collabo-
ration strategy called offload forwarding. In this strategy, each
fog node did not always rely on the cloud data center to han-
dle the unprocessed workload; it can also handle some or all
of the unprocessed workload.

For the Docker container, a service placement algorithm
based on the location of the image file was proposed to
maximize the number of user services in [13]. Given that
the image file can be shared by multiple services, it can
be placed according to the location of the image file when
the service was placed, thereby reducing download time and
improving storage efficiency. However, the article did not
consider that the optimized placement of the image file has
been dynamically updated. To address the problem of task
scheduling and resource management for smart manufacturing,
a container-based task scheduling algorithm was proposed to
reduce service delay in [14]. In addition, the authors proposed
a resource redistribution algorithm that can dynamically update
the resource quota of the current task according to the task
number of the current node and improve the node utilization
rate. However, this article was aimed at the scheduling algo-
rithm of a single edge node and did not consider the task
scheduling of multinode cooperation.

The container as a highly efficient and lightweight virtu-
alization technology has been studied by a large number of
scholars [15], [16], [17]. For the resource management of con-
tainers, Bhimani et al. [15] developed a new docker controller
for scheduling containers of different types of applications.
The controller determined the best batch of containers run-
ning at the same time to minimize the total execution time
and maximize the utilization of resources. However, this arti-
cle did not consider the characteristics of container image files
on edge nodes.

Xie et al. [18] proposed a hybrid model by combination
ARIMA and triple exponential smoothing. It can accurately
predict the linear and nonlinear relationships in the container
resource load series. In order to handle the dynamic docker
container resource load, the weight values of two single mod-
els in the hybrid model were selected according to the sum of
squares of their prediction errors over a period of time. The
author also designed and implemented a real-time prediction
system, which included collecting, storing, and predicting
docker container resource load data, meanwhile scheduling

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: OPTIMAL IMAGE STORAGE STRATEGY FOR CONTAINER-BASED EDGE COMPUTING IN SMART FACTORY 7207

Fig. 2. System model.

and optimizing the usage of CPU and memory resources based
on the predicted value.

Abdullah et al. [19] presented a new method to automati-
cally allocate the best CPU resources to the container based
on deep learning. The author utilized the diminishing returns
to determine the optimal number of CPU pins of the container,
thus maximizing the number of concurrent jobs and obtaining
maximum performance. However, the author did not consider
the impact of image files on containers.

Despite several studies on container resource management,
knowledge on image placement and service migration is insuf-
ficient. Thus, this article proposes an optimized placement
strategy for the placement of image files in Docker containers
in edge computing. The strategy improves edge node utiliza-
tion and reduces service delays between terminal devices and
edge nodes.

III. SYSTEM MODEL

Fig. 2 shows the service model of a single edge node.
Multiple IoT devices send service requests to the edge node,
and the edge node creates a corresponding container after
accepting a request. The Docker, which is an application con-
tainer engine, runs in the edge node. Docker Daemon is a
process of Docker container, which receives requests from a
client on the server and is responsible for container creation
and resource management. When Docker Daemon accepts a
request, it retrieves the LIR first. If the corresponding image
file is not found in the LIR, then the edge node needs to access
the CIR to download the image file. The CIR is similar to
the Gits code repository for storing and managing image files
uploaded by developers. Currently, Docker’s official repository
is DockerHub [7] at present, which stores more than 1 000 000
of image files. In our system model, there are two image sets,
the CIR IC and the LIR IL, respectively. LIR is a subset of
CIR, that is, IL ⊆ IC.

A. Models of Image and LIR

In Dockers image storage mechanism, each image file con-
sists of multiple image layers. The layers are stacked from the
bottom to the top to form the root file system of the container.
Dockers storage driver is used to manage these image layers

Fig. 3. Image file structures of Redis and MySQL.

and provides a single file system to the outside. The size of a
single image file is the cumulative sum of the file size of each
layer. Other images can be created based on an image, and
their own files can be added. Fig. 3 shows the level file struc-
ture of Redis and MySQL. The total size of Redis is 33.6 MB.
The Debian, which is bottom-level, is the base image of Redis
and MySQL. The total size of Debian is 21.4 MB.

A single image file consists of three parts: 1) bootfs;
2) base_image; and 3) level_file. The size of an image file
Si can be calculated as

Si = bootfs+ base_imagei + level_filei (1)

where bootfs is the lowest boot file system of the Docker
image, including the bootloader and the operating system
kernel. Given that bootfs takes up a small amount of space, it
can be ignored in the calculation. The base_image is the base
image of the image i. An image can only have one base image
but it can be used as a base image by multiple images. The
level_file denotes the level files of the image i. The level files
of images cannot be stored separately, and it must be stored
as a complete image file. When calculating the storage space
of an image file, we use the base image and the file size other
than itself to calculate the size of the image file. This approach
simplifies the complexity of the model. The size Si of the ith
image can be calculated as

Si =
{

Li, if the imgi without base_image
Sj + Li, if the imgi based on imgj

(2)

where Li represents the size of the level files of the image
i. We can use the command “docker history 〈ImageID〉” to
view the content and corresponding size of each layer of an
image.

The LIR is used to store image files. Owing to the stack
layer management of AUFS, accumulating the storage space
of all image files is not a simple task when calculating the size
of the LIR. We test the LIR of the Docker container. The test
images in the LIR contain several base images and application
images, and some test images are created by ourselves. The
test images are composed of the five image files generated by
Ubuntu 16.04 and Ubuntu 14.04 and combined with a test.zip

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

7208 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 8, 15 APRIL 2023

TABLE II
INSTANCES OF IMAGE FILES

file. The image names are Test, Test 2, Test 3, Test 4, Test 5,
and Test 6. The size of test.zip is 210 MB. Table II shows the
structure and storage space of each image file.

As shown in Table II, regardless of whether the base image
is local or not, the size of a single image file in the image
repository is actually the size of its layer file. A single image
file in the LIR exists as a layer file. The nested structure of
these layer files is stored in an XML file. Docker reads the
XML file and then forms the entire image when creating the
container. When calculating the storage space of an image file,
the storage space is usually the layer file of the image file.
However, using the layer file to calculate the storage space of
the image repository is difficult to associate with the image.
Therefore, we build the image file into a tree structure, and the
value of each node is the actual occupied space of the image
file. Note that Si in (2) only indicates the size of the image
file and cannot represent the actual occupied storage space of
the image file i. The image repository of the edge node is a
forest that is composed of multiple trees. When calculating
the storage space of the image repository, it iterates the size
of all nodes.

The LIR consists of N image files, denoted by IL =
{img1, img2, img3, . . . , imgn}. We denote the storage space of
LIR of the edge node by C. The storage space of the image
repository in the edge node can be calculated as

C =
N∑

i=1

Si −
N∑

i=1

Chi × Si =
N∑

i=1

Li (3)

where Chi represents the number of all child nodes of the
node, including the child nodes of the child nodes.

B. Transmission Model

As shown in Fig. 2, when a user needs the service from an
edge node, it first sends a request to the edge node. The con-
tent of the request includes the service data, delay constraints,
and the image file needed by this service. After receiving the
request, the edge node retrieves its LIR. If the requested image
file is stored locally, then it immediately creates a container.
If the requested image file is not stored locally, the edge node
needs to download the image file from the CIR. When down-
loading the image file, the request needs to be suspended to
wait for the completion of the download. After the image file

is downloaded, the container is created by Docker Daemon.
The storage space of the LIR is allocated by the edge node
according to its own storage resources.

In this article, we conducted an extensive experiment to
build a container image transmission model. Ubuntu 14.04 was
not stored in the LIR at the beginning. When the user needs
to create the test container in which its image file is based on
Ubuntu 14.04, the LIR needs to download the basic image
of Ubuntu 14.04. After the download is complete, Docker
Daemon only starts to create the container. The transmission
size of a single image file is not equal to the size of the image
file. We assume that a service request corresponds to an image
file, then the size of the image file to be downloaded for a
request is the transmission size. The transmission size of image
i can be calculated by the following:

S̃i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if the base_image and level_files are
exist in the repository;

Li, if the base_image is exist in the repository
S̃j, if the level_files are exist in the repository
S̃j + Li, if the level_files and base_image are

not exist in the repository.

(4)

Correspondingly, the transmission time of a service request
can be calculated as follows:

T(i) = S̃i

BW
(5)

where BW represents the bandwidth allocated by the edge
node. Generally, the bandwidth between the edge node and
CIR is constant, therefore minimizing the transmission time is
to minimize the transmission size of an image file.

IV. PROBLEM FORMULATION AND ALGORITHMS

Containers are different from virtual machines. Virtual
machines can be created directly without operating system
images, whereas Docker containers must be created on the
basis of image files. If no image files exist, then Docker
Daemon cannot create containers. Edge nodes have limited
storage resources which cannot store all the image files. This
limitation will cause IoT devices to wait for the image to
download when accessing the local image, which will cause
service delay. Thus, the purpose of this article is to maximize
the utilization of storage resources at the edge node and
optimize the image storage solution. To reduce the transmis-
sion delay of an image file, we consider reducing service
completion time and improving the quality of service. We
divide the optimization storage problem of an image file into
two stages for optimization. The first stage is the initial place-
ment stage of image files. The second stage is the dynamic
update stage at run time.

A. Initial Placement Stage

In the initial placement stage, the optimal image file place-
ment combination is selected according to the storage capacity
of the edge node, thereby reducing the download time of the
image file. Generally, we hope that many image files can be

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: OPTIMAL IMAGE STORAGE STRATEGY FOR CONTAINER-BASED EDGE COMPUTING IN SMART FACTORY 7209

stored in the LIR as much as possible, which can reduce down-
load time substantially. By selecting the optimal combination,
the most commonly used image will be stored on the edge
node, which can effectively reduce the number of image file
downloads, thereby reducing the average download time in
the entire process. However, owing to the absence of a down-
load record in the initial placement stage, the frequency of
use of an image file cannot be obtained. Therefore, in this
stage, we assume that the access probability of all image files
is the same. Therefore, the higher the number of child nodes,
the higher the probability that the image is downloaded. If the
image file is downloaded in the LIR, then its parent node must
also be downloaded.

The download probability P(i) of the image i can be
calculated as

P(i) = Chi + 1∑
i∈IC Chi + 1

. (6)

However, when selecting image file placement, the edge
node cannot always choose the basic image to store, it needs
to take the size of the node itself and the number of child
nodes into account comprehensively. Therefore, we define a
scalar quantity called the expectation of transmission volume
of a service request. The expectation of transmission volume
of a service request represents the expectation amount of data
that needs to be transferred from the CIR to the LIR when the
edge node completes a request. The expectation of transmis-
sion volume E(R) of a service request R can be calculated by
the following:

E(R) =
∑
i∈IC

P(i)× S̃i. (7)

Owing to the limited storage space of the node, the edge
node may be overwritten by the newly downloaded image file.
Therefore, the worst case needs to be considered in the ini-
tial placement stage, which means that the image file will be
redownloaded each time when the image file is requested. As
shown in (4), the smaller the transmission size, the shorter the
average user waiting time.

In the initial placement stage, the optimization goal is to
minimize the expectation of transmission volume of service
requests. Let xi be a binary variable to indicate whether the
ith image file is selected and put into the LIR, that is

xi =
{

0, if imgi ∈ IL

1, if imgi /∈ IL.
(8)

The goal function can be expressed as follows:

P1 : min E(R)

s.t.
∑
i∈IC

xi × Li ≤ C. (9)

We can see from the optimization objective function that
P(i) is the download probability of each image in the CIR,
which is generally a fixed value. S̃i is the placement combi-
nation of image files. This problem is a bin packing problem,
which means that it is an NP-hard problem. To find the optimal
placement combination of the image file, we propose an algo-
rithm called image placement based on transmission volume,

which is a pseudo-polynomial time algorithm to solve the
problem. Given the nested structure between the image files
in the container image placement problem, when placed in an
image file, the operation will affect the value of other image
files which is based on this image file. Moreover, it causes the
image placement problem without optimal substructure.

To provide the optimal substructure characteristics for this
problem, we define the transmission function of an image file.
The nested structure of the image files is decoupled so as to
achieve the purpose of decoupling between image files. The
transmission function can be expressed as

Tran(i) = (Chi + 1)× Li. (10)

The transmission function takes into account the impact of
all child nodes. With Tran(i), whether the child node is placed
will not affect the value of its parent node. Therefore, we
can minimize the objective function by optimizing Tran(i).
The optimization objective function of this problem can be
transformed into the following:

P2 : min
∑
i∈IC

xi × Tran(i)

s.t.
∑
i∈IL

xi × Li ≤ C. (11)

To find the optimal substructure, let Tran(i) be the transmis-
sion volume of the ith image. When the node storage capacity
remains j, the all transmission volume corresponding to the
best combination of the first i images is V(i, j). At the begin-
ning of the calculation, V(i, j) is the total transmission volume
when all images are stored. At this point, two cases need to
be considered.

1) The remaining capacity of the LIR is smaller than the
image and cannot be stored. The total transmission vol-
ume at this time is the same as the transmission volume
of the first i− 1, that is

V(i, j) = V(i− 1, j). (12)

2) The capacity to store the image is not enough, but it does
not necessarily reach the current optimal value when
installed. Thus, the best strategy between storage and
nonstorage must be selected, that is

V(i, j) = min{V(i− 1, j), V(i− 1, j− Li)− Tran(i)}
(13)

where V(i− 1, j) indicates that the transmission volume
of image i is not stored, V(i−1, j−Li)−Tran(i) indicates
that the ith image is stored, the LIR capacity is reduced
by Li, but the transmission volume is reduced by Tran(i).
Therefore, its recursive expression is as follows:

V(i, j) = min{V(i− 1, j), V(i− 1, j− Li − Tran(i))}.
(14)

The pseudocode of the placement algorithm in the ini-
tialization stage is shown as follows. Obviously, the time
complexity of the initialization stage placement algorithm is
O(imageList.size× C).

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

7210 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 8, 15 APRIL 2023

Algorithm 1 Initialization Stage Placement Algorithm
Input: imageList, C;
Output: optImageList;

1: Initialize totalTransw[], v[], V[][];
2: Calculate the total transmission volume by using Eq. (3);
3: Set totalTrans← the value calculated by Eq. (3);
4: for k = C to 0 do
5: V[0][k]← totalTrans;
6: end for
7: for i = 0 to imageList.size do
8: V[i][0]← totalTrans;
9: end for

10: for k = C to 0 do
11: for i = 1 to imageList.size do
12: if k ≤ w[i] then
13: V[i][k]← V[i− 1][k];
14: else
15: V[i][k]← min{V[i− 1][k], V[i− 1][k−w[i]−

v[i])};
16: end if
17: end for
18: end for
19:

20: Use V[][] to find the best image combination
optImageList;

21: Return optImageList;

B. Runtime Optimization Stage

Owing to the diversity of users served by edge nodes, for
popular application services, the use frequency of the image
is bound to be higher. As a result, the placement frequency
of image files in the node image repository will also change.
The edge node needs to periodically analyze the access to the
previous period and update the image repository in real time,
thereby further reducing the download time of the image file.

In the runtime stage, the edge node periodically updates the
image file of the LIR according to the user request received
by the node and stores the commonly used image files locally.
For the optimization of the LIR in the runtime stage, designing
and updating its trigger mechanism first is necessary. In the
runtime stage, the edge node will be able to obtain the request
habits of the user of the node so that the usage of the image file
can be analyzed. Therefore, the edge node needs to calculate
the download volume of the current period after completing a
certain number of service requests, which is

downr =
I′∑

i=1

S̃i ×
⎛
⎝fi +

∑
fk∈CHi

fk

⎞
⎠ (15)

where I′ represents the image collection that has been down-
loaded and is not stored locally. r is the current round number,
the number of child nodes of image i, and CHi represents the
collection of child nodes of image i, fi represents the number
of downloads of image i in this round. Given that the base
image is also downloaded when the image is downloaded,

Fig. 4. Forest of the image repository.

counting the access times of all its child nodes is necessary
when calculating the transmission volume.

After obtaining the download volume of the current round,
the edge node compares the download volume of the current
round with the download volume of the previous round. If
the download volume of the previous round is less than the
download volume of the current round, that is downr−1 <

downr, then the LIR update is performed; otherwise no update
is made. When performing the update operation, the LIR is
updated while the edge node is providing services. If the LIR
needs to download a large number of image files, then it will
cause an excessive network burden. Thus, the LIR needs to
consider the download volume caused by updating.

After the update mechanism is triggered, the LIR needs to
select the deleted image and the newly added image file. When
updating the image file in the LIR, the LIR not only saves the
image file blindly with the highest download number; it also
needs to consider the cost of saving the image. Fig. 4 shows
the Ubuntu 16.04 subtree as an example. Assume that the num-
ber of downloads of node 1 is 2, the number of downloads
of node 2 is 10, the number of downloads of node 3 is 3,
and the number of downloads of node 4 is 5. The capacity of
nodes is 250 MB, if storage node 1, the download volume is
10×210+0×3+5×210 = 3150, if storage node 2, the down-
load volume is (2+10+3+5)×84+3×0+5×210 = 2730.
Obviously, node 2 should be selected. The download volume
is less than the download volume by stored node 1. Therefore,
for the image file replacement strategy at runtime, comprehen-
sively considering the number of downloads and the amount
of downloads are necessary to reduce the number of users
download time.

When choosing to update the image, first, we calculate the
download volume Dr

i of each image file in I′ in the current
round, that is, the download volume that may be reduced when
storing the image

Dr
i = S̃i ×

⎛
⎝fi +

∑
fk∈CHi

fk

⎞
⎠ ∀i ∈ I′. (16)

When selecting the deleted image file, for minimizing the
impact on other images after deleting the image, only the layer

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: OPTIMAL IMAGE STORAGE STRATEGY FOR CONTAINER-BASED EDGE COMPUTING IN SMART FACTORY 7211

Algorithm 2 Runtime Update Algorithm
Input: downedImageList;
Output: optImageList;

1: Calculate the transfer volume of each image file in this
round of request;

2: Generate two sets, one sets is a sets of images stored
locally imgLocal and the other is a sets of images that
have been downloaded but not stored locally imgCloud;

3: Initialize optImageList = {},il ← imgLocal.size, ic ←
imgCloud.size

4: Sort the two sets from large to small;
5: for i = 0 to il do
6: for j = ic to 0 do
7: Replace the first image that is not stored locally

with the last image collection locally;
8: if The transmission volume after replacement is

smaller than that of the previous round and can be put in
then

9: Update the transmission volume of the last
round to the one after replacement;

10: else
11: Break;
12: end if
13: end for
14: end for
15: Output the LIR of the next round optImageList;
16: Return optImageList;

file of the image will be deleted, and the basic image will
not be deleted. As for the image stored locally, calculating
the number of downloads that may increase after deletion is
necessary, that is

Dr
j = Lj ×

⎛
⎝fj +

∑
fk∈CHi

fk

⎞
⎠ ∀j ∈ I. (17)

Given that only the layer file of the image file is deleted,
the download times of other image files based on the image
need to be counted. When choosing to replace, we also need
to consider the replacement income. The replacement income
refers to the reduction ratio of download volume to reduced
storage capacity

revenuer
i,j =

Dr
i − Dr

j

S̃i − Lj
∀i ∈ I′ ∀j ∈ I. (18)

This means how many units of download volume will be
reduced for each additional unit of storage capacity.

V. SIMULATION EXPERIMENTS

In this section, we use the Java development simulation
environment to test the proposed image file placement strategy.
The data set used in the test comes from DockerHub, which
is currently the world’s largest image file library. This arti-
cle makes a statistical analysis of the most commonly used
image files in DockerHub, collects the 37 most commonly
used image files, and uses MicroBadger [20] to analyze the

Fig. 5. Transmission volume during initialization with 500 MB of Data 1.

Fig. 6. Transmission volume during initialization with 1000 MB of Data 1.

image file hierarchy. Among them, 12 basic images and a
maximum of four layers of embedded images set of struc-
tures are selected. In addition, this article uses two sets of
user request data sets, including the generation of 1100 user
requests. Data 1 allocated 1100 requests to an average of 37
images, whereas Data 2 allocated 1100 requests according to
the real user data on DockerHub.

A. Initial Placement Stage

This article uses the image file transmission volume and the
number of image file downloads to judge the performance of
different placement strategies. In the initialization placement
stage, the comparison of placement strategies is as follows.

1) Max-Image: Place as many images as possible.
2) Max-CH-Image: Select the images with the most child

nodes to place.
3) Max-Size: Select the images with the largest storage

space to place.
We first use data set Data 1 to compare the image transfer

volume when the nodes LIR capacity is 500 and 1000 MB.
Fig. 5 shows the experimental result of the LIR with a capac-
ity of 500 MB, and Fig. 6 shows the experimental result of
the LIR with a capacity of 1000 MB. As shown in the fig-
ure, whether the capacity is 500 or 1000 MB, the algorithm

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

7212 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 8, 15 APRIL 2023

Fig. 7. Transmission volume during initialization with 500 MB of Data 2.

proposed in this article can significantly reduce the trans-
mission volume compared with other algorithms. Although
the Max-Image strategy selects the most image file place-
ment, it can reduce the download probability of the image
file. However, most of the stored images are images with
less resource overhead, and those images that take up more
resources need to be downloaded. As a result, for some of the
images, the base image is downloaded more times, leading to
increased transmission volume.

The Max-CH-Image strategy has less transmission than
Max-Image and Max-Size, because Max-CH-Image consid-
ers the nested structure of the image file and stores the basic
image file with a large download probability locally to avoid
too many repeated downloads. Thus, its transmission volume
is better than that of Max-Image and Max-Size. Moreover, the
nested structure is important for the placement of the image
file, and the selection of the image file needs to be combined
with its basic image for screening. However, the Max-CH-
Image strategy does not consider that when the occupied space
of the basic image is small, the transmission volume will not
be increased too much. As a result, the transmission volume
is greater than the strategy proposed in our strategy.

The Max-Size strategy has the largest transmission volume,
because the Max-Size strategy only stores images with the
largest resource consumption locally, that is, it does not con-
sider that the download probability of the base image is greater
than that of the nonbase image, nor does it consider how to
reduce the number of downloads. This feature leads to an
excessively high throughput.

Compared with the other three strategies, the proposed strat-
egy has the lowest transmission volume. This is because the
strategy proposed in this article looks for the optimal combi-
nation of transmission volume and fully considers the impact
of the nested structure of the image file. This feature provides
several advantages. First, the repeated downloading caused by
not storing the basic image is avoided. Second, the strategy
fully considers how high the basic image with less resource
consumption will not affect the transmission volume.

Similarly, we use data set Data 2 to compare the amount
of the transmission when the LIR capacity of the node is 500

Fig. 8. Transmission volume during initialization with 1000 MB of Data 2.

and 1000 MB. The results are shown in Figs. 7 and 8. A com-
parison of the results of Data 1 and Data 2 shows that when
the LIR capacity is 500 MB, the gaps between the strate-
gies proposed in this article, Max-Image, Max-CH-Image, and
Max-Size are 18.934, 9.675, 14.392, and 6.649 MB, respec-
tively. When the LIR capacity is 1000 MB, the gaps between
the strategies proposed in this article, Max-Image, Max-CH-
Image, and Max-Size are 12.32, 11.575, 8.744, and 12.315
MB, respectively. After analysis, the transmission volume of
Data 2 is smaller than the transmission volume of Data 1,
because Data 2 is smaller than Data 1 in the total transmis-
sion volume. However, the gap between Data 1 and Data 2 is
not large, because the optimal image placement combination
is selected on the premise that the access probability of all
image files is the same in the initialization stage. Moreover,
whether the number of image requests is evenly distributed
has little effect on the experimental results.

B. Runtime Stage

This section mainly compares the experimental results at
the runtime stage. Given that the Max-Image, Max-CH-Image,
and Max-Size strategies only select the image file to be placed
during the initialization stage, the performance of the runtime
stage is not affected. Therefore, no comparison is made at
runtime, and the optimal placement strategy proposed in this
article is used by default. This article takes the LIR capacity
of 500 MB as an example and checks whether an update is
required every 100 requests in the runtime stage.

Figs. 9 and 10 are the transmission volume and download
times, respectively, generated by Data 1 in the runtime stage
after each round of update of the requested data set. First, we
compare the amount of transmission per round in Fig. 9. In
the experimental results of Data 1, in the first round and the
second round, the transmission volume of the two is the same,
that is, 9.5 and 10.4 MB, respectively. In the next round, in
rounds 3, 9, and 10, the update mechanism is slightly higher
than the transfer volume by approximately 100–300 kB with-
out the update mechanism. In the 4th, 5th, 6th, 7th, 8th, and
11th rounds, the update mechanism is lower than the transfer

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: OPTIMAL IMAGE STORAGE STRATEGY FOR CONTAINER-BASED EDGE COMPUTING IN SMART FACTORY 7213

Fig. 9. Each round of Data 1 transmission volume during runtime.

Fig. 10. Number of downloads per round of Data 1 at runtime.

volume by approximately 100–500 kB without the update
mechanism.

Fig. 10 shows the total number of downloads per round in
the runtime stage. According to the analysis of the results, the
update mechanism can only slightly reduce the transmission
volume and the number of downloads for the evenly distributed
data set. This is due to the fact that in the placement algo-
rithm in the initialization stage, the transmission volume of
the image file is calculated according to the consistent access
probability of all images. Therefore, in the runtime stage, when
the number of requests for each image is the same, the update
mechanism cannot bring about a large change. Thus, compared
with the nonupdate mechanism, the transmission volume and
the number of downloads are not much different.

The previous paragraph compares the transmission volume
and download times of the evenly distributed data set Data 1
in the runtime stage. The experimental results show that the
effect of the update mechanism is not significant when the
number of requests for each image is the same. However,
the experimental results of Data 2 show that the effect of
the update mechanism is due to the nonupdate mechanism.
Fig. 11 shows the transmission volume of Data 2 in each
round. In the first round, the update mechanism is not trig-
gered; thus, the transmission volume of the update mechanism

Fig. 11. Each round of Data 2 transmission volume during runtime.

Fig. 12. Number of downloads per round of Data 2 at runtime.

and that of the nonupdate mechanism are 7.8 MB. In the sec-
ond round, the difference between the two is approximately
400 kB. In the third round, the gap between the update mech-
anism and the nonupdate mechanism has gradually increased,
and the maximum gap is approximately 1200 kB.

Fig. 12 shows the total number of downloads for each round
of data set Data 2 during the runtime stage. According to the
result analysis, when using DockerHubs request data set, the
transmission volume difference in the previous update round
is not large. However, in the later rounds, the update mecha-
nism can greatly reduce the required transmission volume and
download times with continuous optimization. This is because
when the users request reaches a certain amount, the update
mechanism can well identify the user habits of the node.
Storing frequently used image files in LIR can avoid many
unnecessary downloads efficiently. Edge nodes without the
update mechanism increase the average transmission volume
by approximately 20% per round. The result of this experi-
ment proves that the dynamic optimization strategy proposed
in the runtime stage can effectively reduce the transmission
volume of image files.

VI. CONCLUSION

This article deeply analyzes the container image file stor-
age mechanism and constructs the image file storage model

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

7214 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 8, 15 APRIL 2023

on the basis of edge computing. According to the hierarchi-
cal structure of the image file, a two-stage storage strategy
of the image file is designed. In the initialization stage, the
optimal image file combination that meets the storage space
of the node is selected. In the runtime stage, the file combina-
tion of the local image repository is constantly adjusted. The
simulation results show that the two-stage storage strategy of
image file proposed in this article can make efficient use of
the storage space of nodes and improve the utilization of stor-
age resources. In the runtime stage, the update mechanism can
continuously optimize the image storage strategy according to
the service characteristics of different nodes and user habits,
so as to reduce the download delay of image files.

However, we only optimize the image file storage for a sin-
gle edge node in this article, which has some limitations. It is
usually stored collaboratively by multiple nodes in real scenar-
ios, and this approach can better improve the storage efficiency
of image files. In the future, we will optimize the collaborative
storage of multiple edge nodes using multiintelligent reinforce-
ment learning methods. Moreover, we will further optimize the
image file storage updated strategy in the runtime stage.

REFERENCES

[1] Cisco Global Cloud Index: Forecast and Methodology, 2020–2025,
Cisco, San Jose, CA, USA, 2020.

[2] “Mobile-edge computing-introductory technical white paper,”
ETSI, Sophia Antipolis, France, White Paper, 2012. [Online].
Available: https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-
edge_Computing_Introductory_Technical_White_Paper_%2018-09-14.
pdf

[3] B. I. Ismail et al., “Evaluation of Docker as edge computing platform,”
in Proc. IEEE Conf. Open Syst. (ICOS), 2016, pp. 130–135.

[4] M. Sollfrank, F. Loch, S. Denteneer, and B. Vogel-Heuser, “Evaluating
Docker for lightweight virtualization of distributed and time-sensitive
applications in industrial automation,” IEEE Trans. Ind. Informat.,
vol. 17, no. 5, pp. 3566–3576, May 2021.

[5] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and Linux containers,”
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), 2015,
pp. 171–172.

[6] N. Zhao et al., “Large-scale analysis of Docker images and performance
implications for container storage systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 4, pp. 918–930, Apr. 2021.

[7] “DockerHub.” Accessed: Feb. 10, 2021. [Online]. Available: https://hub.
docker.com/

[8] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization
of task scheduling and image placement in fog computing supported
software-defined embedded system,” IEEE Trans. Comput., vol. 65,
no. 12, pp. 3702–3712, Dec. 2016.

[9] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user mobile-
edge computing systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, Sep. 2017.

[10] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[11] M. Xiao, S. Zhang, W. Li, P. Zhang, C. Lin, and X. S. Shen,
“Cost-efficient workload scheduling in cloud assisted mobile edge com-
puting,” in Proc. IEEE/ACM 25th Int. Symp. Qual. Serv. (IWQoS), 2017,
pp. 1–10.

[12] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in Proc. IEEE Conf.
Comput. Commun.(INFOCOM), 2017, pp. 1–9.

[13] P. Smet, B. Dhoedt, and P. Simoens, “Docker layer placement for on-
demand provisioning of services on edge clouds,” IEEE Trans. Netw.
Service Manage., vol. 15, no. 3, pp. 1161–1174, Sep. 2018.

[14] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation
in fog computing based on containers for smart manufacturing,” IEEE
Trans. Ind. Informat., vol. 14, no. 10, pp. 4712–4721, Oct. 2018.

[15] J. Bhimani et al., “Docker container scheduler for I/O intensive applica-
tions running on NVMe SSDs,” IEEE Trans. Multi-Scale Comput. Syst.,
vol. 4, no. 3, pp. 313–326, Jul.–Sep. 2018.

[16] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, “A container-based
edge cloud PaaS architecture based on raspberry Pi clusters,” in Proc. 4th
Int. Conf. Future Internet Things Cloud Workshops, 2016, pp. 117–124.

[17] F. Ramalho and A. Neto, “Virtualization at the network edge: A
performance comparison,” in Proc. IEEE 17th Int. Symp. World Wireless
Mobile Multimedia Netw. (WoWMoM), 2016, pp. 1–6.

[18] Y. Xie et al., “Real-time prediction of Docker container resource load
based on a hybrid model of ARIMA and triple exponential smooth-
ing,” IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 1386–1401,
Apr.–Jun. 2022.

[19] M. Abdullah, W. Iqbal, F. Bukhari, and A. Erradi, “Diminishing returns
and deep learning for adaptive CPU resource allocation of contain-
ers,” IEEE Trans. Netw. Service Manag., vol. 17, no. 4, pp. 2052–2063,
Dec. 2020.

[20] “MicroBadger.” Accessed: Apr. 15, 2021. [Online]. Available: https://
microbadger.com/

Luxiu Yin received the bachelor’s degree in computer science and technology
from Changsha University, Changsha, Hunan, China, in 2011, and the mas-
ter’s degree in computer software and theory from Hunan Normal University,
Changsha, in 2015. He is currently pursuing the Ph.D. degree with the College
of Information Science and Engineering, Hunan University, Changsha.

His research is focused on cloud computing, fog computing, and wireless
virtual network.

Juan Luo (Member, IEEE) received the bachelor’s degree in electronic
engineering from the National University of Defense Technology, Changsha,
Hunan, China, in 1997, and the master’s and Ph.D. degrees in communica-
tion and information system from Wuhan University, Wuhan, Hubei, China,
in 2000 and 2005, respectively.

From 2008 to 2009, she was a Visiting Scholar with the University of
California at Irvine, Irvine, CA, USA. She is currently a Professor and a
Doctoral Supervisor with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha. She has published more than 80
papers. Her research interests are focused on the Internet of Things, cloud
computing, and middleware.

Prof. Luo is a member of ACM and SIGCOM. She is also a Distinguished
Member of CCF.

Keqin Li (Fellow, IEEE) received the bachelor’s and master’s degrees in
computer science from Tsinghua Unversity, Beijing, China, in 1985 and 1987,
respectively, and the Ph.D. degree from the University of Houston, Houston,
TX, USA, in 1990.

He is a SUNY Distinguished Professor of Computer Science with the
State University of New York, New Paltz, NY, USA. He is also a National
Distinguished Professor with Hunan University, Changsha, China. He has
authored or coauthored over 870 journal articles, book chapters, and refereed
conference papers. He holds nearly 70 patents announced or authorized by the
Chinese National Intellectual Property Administration. His current research
interests include cloud computing, fog computing and mobile-edge computing,
energy-efficient computing and communication, embedded systems and cyber–
physical systems, heterogeneous computing systems, big data computing,
high-performance computing, CPU–GPU hybrid and cooperative computing,
computer architectures and systems, computer networking, machine learning,
and intelligent and soft computing.

Dr. Li has received several best paper awards. He is among the world’s
top 5 most influential scientists in parallel and distributed computing in terms
of both single-year impact and career-long impact based on a composite
indicator of Scopus citation database. He has chaired many international
conferences. He is currently an Associate Editor of the ACM Computing
Surveys and the CCF Transactions on High Performance Computing. He
has served on the editorial boards of the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON

COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE
TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING. He is an AAIA Fellow. He is also a member
of Academia Europaea (Academician of the Academy of Europe).

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 07,2023 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

