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a  b  s  t  r  a  c  t

A  large  number  of computing  servers  and  personal  electronic  devices  waste  a  tremendous  amount
of  energy  and  emit  a considerable  amount  of  carbon  dioxide,  which  is  the major  contribution  to  the
greenhouse  effect.  Thus,  it is  necessary  to significantly  reduce  pollution  and substantially  lower  energy
usage.  Green  computing  techniques  are  utilized  in  a myriad  of applications  in  energy  conservation  and
environment  improvement.  New  green  task  scheduling  algorithms  for heterogeneous  computers  with
changeable  continuous  speeds  and  changeable  discrete  speeds  are  developed  to  reduce  energy  consump-
tion as much  as  possible  and finish  all tasks  before  a deadline.  A  newly  proven  theorem  can  determine
the  optimal  speed  for  tasks  assigned  to a computer  with  continuous  speeds.  This  project  seeks  to develop
ollution reduction innovative  green  task  scheduling  algorithms  that  have  two  main  steps:  heuristically  assigning  tasks  to
computers,  and  setting  optimal  or  near-optimal  speeds  for  all tasks assigned  to  each  computer.  Suffi-
cient simulation  results  indicate  that  the algorithm  with  the  best  task  schedule  varied.  Thus,  two  hybrid
algorithms  for  continuous  and  discrete  speeds  are  created  separately  to  obtain  the  best  task  schedule
among  candidate  task  schedules.  Potential  research  applications  include  incorporating  energy-efficient

ices,  s
software  into  mobile  dev

. Introduction

Green computing is an emergent technology that applies intelli-
ent optimization algorithms and advanced computing techniques
o minimize energy consumption and reduce pollution from com-
uting resources [1–6]. It is important for various applications

n power management, energy reduction, pollution control, and
nvironment enhancement [1–10]. Specifically, minimizing energy
onsumption on cloud servers and significantly reducing pollu-
ion produced by computers is an imperative research problem as
nergy costs are rising and the use of computers is increasing.

A typical personal computer with 17-in. LCD monitor requir-
ng 145 W,  if left on every day for one year, would use around
270 kilowatt hours (kWh) of electricity. In 2007, the Environ-
ental Protection Agency (EPA) predicted that the total energy

onsumed by U.S. data centers will double by 2012 [7].  In the

.S., about 61 billion kWh  were used to power data centers in
006 ($4.5 billion). For 2010, Google’s electricity consumption was
bout 2.26 million MWh  [25]. The EPA estimates that data centers

∗ Corresponding author. Tel.: +1 678 654 7090.
E-mail addresses: mingyiluna@yahoo.com, lmz22@cornell.edu (L.M. Zhang),

ik@newpaltz.edu (K. Li), clo@spsu.edu (D.C.-T. Lo), yzhang@cs.gsu.edu (Y. Zhang).
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ensor  networks,  data  centers,  and  cloud  computing  systems.
© 2013 Elsevier Inc. All rights reserved.

annually consume the output of 15 average-sized power plants.
Also, the EPA predicts that power consumption of data centers
will soon increase to 12 GW,  leading to the equivalent output of 25
power plants [9].

Computer usage accounts for 2% of anthropogenic CO2 emission.
Data center activities are estimated to release 62 million metric
tons of CO2 into the atmosphere [9].  For example, Google states
that one Google search may  generate about 0.2 g of carbon dioxide
[4]. In 2011, Google estimated that its total carbon emissions for
2010 were 1.46 million metric tons [25]. The use of 1270 kWh  of
electricity is enough to emit about 1720 pounds of CO2 into the
environment.

However, Google and General Electric (GE) have applied green
computing techniques to save power and reduce costs [4–6,25].
The energy used for each Google search was very small, which was
0.0003 kWh  [4].  Also, Google’s data centers use 50% less energy
than the typical data center [25]. GE saves $2.5 million a year by
implementing power control methods of Windows operating sys-
tem onto its computers [6].  Nonetheless, computers can be further
improved to become more energy-efficient, which is essential.

The fundamental reason for our research in task scheduling on
computers is to minimize computing energy consumption and
consequently substantially reduce pollution produced by comput-
ers. Therefore, it is important to develop effective green computing

dx.doi.org/10.1016/j.suscom.2013.01.002
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
mailto:mingyiluna@yahoo.com
mailto:lmz22@cornell.edu
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mailto:clo@spsu.edu
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echniques to considerably lower energy usage on heterogeneous
loud servers. Thus, this project is critical and beneficial for the
lobal community.

The problem of scheduling many independent tasks in a hetero-
eneous distributed computing system has been studied. A new
reen scheduling algorithm for saving energy in cloud computing
as proposed [11]. However, in some cases, energy consumption
as not considered as a factor that should be minimized [12]. In

13], the advantages for having task assignments were discussed,
nd the voltage level was considered as a factor instead of the
peed level for each processor. A linear combination of the min-
mum and maximum processor frequencies was used to decrease
nergy consumption [14] and optimal frequencies were analyzed
n [15]. In [16], variable processor speeds were considered, and
dle intervals were exploited for power minimization. The algo-
ithms incorporated dynamic voltage and frequency scaling to save
nergy [17]. Task scheduling algorithms were proposed to lower
nergy consumption by using shared slack reclamation on variable
oltage/speed processors for task sets with precedence constraints
nd those without precedence [18]. In [22], two  new heuristic
nergy-efficient task scheduling algorithms were proposed; tasks
re assigned from the front in a task queue to a computer with min-
mum energy in the computer queue and then each computer’s
peed, with constraints, is adjusted to reach an overall minimal
nergy usage. Conventional approaches utilize maximum speeds,
hich is not energy-efficient. In [23], six innovative green task

cheduling algorithms were developed; as many tasks as possible
re assigned to a cloud server with lowest energy and then the
peeds, with constraints, are lowered for all assigned tasks, assum-
ng that the speeds are continuous, not discrete. The minimum total
nergy consumption for a computer with multiple identical pro-
essors occurred when all independent tasks were executed with
he same power (or at the same speed) [1].

This paper focuses on developing novel green task sched-
ling algorithms for completing sequential tasks on heterogeneous
ervers with variable continuous and discrete speeds to mini-
ize energy consumption via energy consumption parameters in

 cloud computing environment with a certain deadline. For con-
inuous speeds, it focuses on real applications with heterogeneous
rocessors with different parameters. Also, speed constraints for
rocessors were not taken into account [1].  A new method in this
roject uses various speed constraints for heterogeneous comput-
rs to better model real systems. For discrete speeds, it focuses
n real applications with heterogeneous processors with different
arameters using discrete speeds. For example, a microcontroller
uch as MSP430 has discrete speeds (i.e. clock frequencies). To
etter model real systems, new green task scheduling algorithms
or heterogeneous computers with variable discrete speeds and
nergy consumption parameters are developed to reduce energy
onsumption as much as possible and finish all tasks before a cer-
ain deadline.

The rest of the paper is organized as follows. In Section 2, all of
he definitions and parameters are given. In Section 3, the optimiza-
ion problem is given, and new energy-efficient task scheduling
lgorithms with continuous speeds are proposed. In Section 4,
he optimization problem is given, and new energy-efficient task
cheduling algorithms with discrete speeds are proposed. In Sec-
ion 5, the simulations and performance analysis are discussed. In
ection 6, conclusions and future works are given.

. Definitions and parameters
Let n computers be used to finish m tasks by the deadline time
 (s) where m ≥ n. Assume that mi tasks Pi

k
for k = 1, 2, . . .,  mi are

xecuted on computer i for m =
∑n

i=1mi. A changeable speed (dis-
rete or continuous) for task Pi

k
is denoted as Si

k
for i = 1, 2, . . .,  n, and
rmatics and Systems 3 (2013) 109– 118

k = 1, 2, . . .,  mi. The speed is defined as the number of instructions
per second. The number of instructions of task Pi

k
is denoted as Ri

k
.

The execution time for task Pi
k

on computer i is Ri
k
/Si

k
, so the total

execution time for mi tasks Pi
k

on computer i is Ti =
∑mi

k=1Ri
k
/Si

k
.

From [1],  the energy (in J) for Pi
k

on computer i is Ei
k

= CiR
i
k
[Si

k
]
˛i−1

where Ci is a constant, ˛i = 1 + (2/�i) ≥ 3 for 0 < �i ≤ 1, i = 1, 2, . . .,  n,
and k = 1, 2, . . .,  mi. The total energy is E =

∑n
i=1

∑mi
k=1CiR

i
k
[Si

k
]
˛i−1

.
Let �i

k
= Ci[Si

k
]
˛i−1

. For a speed Si
k
, �i

k
is called the energy slope (a

constant for each computer and task). Then, the total energy is
E =

∑n
i=1

∑mi
k=1�i

k
Ri

k
.

3. Energy-efficient task scheduling algorithms with
continuous speeds

The problem is to minimize E = ∑n
i=1

∑mi
k=1�i

k
Ri

k
with con-

straints: 1 ≤ mi ≤ m − n + 1, m =
∑n

i=1mi,
∑mi

k=1Ri
k
/Si

k
≤ T and

0 < ai ≤ Si
k

≤ bi, where ai is the minimum speed and bi is the max-
imum speed of computer i, for i = 1, 2, . . .,  n, and k = 1, 2, . . .,  mi.

For a single computer case, the superscript i is omitted, so the
energy for one computer is then E = ∑m

k=1CRk[Sk]˛−1, where Rk
denotes the number of instructions and Sk denotes the execution
speed (the number of instructions executed per second) for the kth
task. Thus, the problem is to minimize E =

∑m
k=1CRk[Sk]˛−1 sub-

ject to
∑m

k=1Rk/Sk ≤ T and 0 < a ≤ Sk ≤ b for k = 1, 2, . . .,  m,  where
a is the minimum speed and b is the maximum speed of the com-
puter [22,23]. The minimal E occurs when each of the computers
consumes energy at its minimal level to finish its tasks on time.

Theorem 1. After m tasks with the same speed S for 0 < a ≤ S ≤ b are
successfully assigned to a computer for

∑m
k=1Rk/S < T , the minimal

total energy consumption is E = C[S∗]˛−1∑m
k=1Rk for  ̨ = 1 + 2/� ≥

3 and 0 < � ≤ 1 when all tasks are executed with the same optimal
speed S* where S∗ = maximum (a,

∑m
k=1Rk/T)  [22].

Proof. Because
∑m

k=1Rk/S̄ < T , speeds Sk for 0 < a ≤ Sk ≤ b and
k = 1, 2, . . .,  m can be optimized to minimize the total energy con-
sumption E =

∑m
k=1CRk[Sk]˛−1 [22].

The Lagrangian function [24] is defined as L =∑m
k=1CRk[Sk]˛−1 − �(T −

∑m
k=1Rk/Sk).

∂L/∂Sk = CRk(  ̨ − 1)[Sk]˛−2 − �(Rk/S2
k
) = 0 for k = 1, 2, . . .,  m.  The

first order equalities are �(T −
∑m

k=1Rk/Sk) = 0 for k = 1, 2, . . .,  m.
Also,

∑m
k=1Rk/Sk ≤ T, 0 < a ≤ Sk ≤ b, and � ≥ 0 for k = 1, 2, . . .,

m.  �

Case 1. When � > 0, we have CRk(  ̨ − 1)[Sk]˛−2 − �(Rk/S2
k
) =

0. Thus, Sk = (�/C(  ̨ − 1))1/˛ = S where S is a constant speed
for k = 1, 2, . . .,  m.  Because ∂2L/∂2Sk

∣∣Sk = S = CRk(  ̨ − 1)(˛ −
2)[S]˛−3 + 2�(Rk/S3) > 0 for  ̨ = 1 + 2/� ≥ 3 and 0 < � ≤ 1, we
obtain the minimum value of Ek = CRk[Sk]˛−1 when Sk = S. We
have T −

∑m
k=1Rk/S = 0, so S =

∑m
k=1Rk/T .  Since

∑m
k=1Rk/S <

T,
∑m

k=1Rk/T < S ≤ b. Hence, 0 < S < S ≤ b.

Case 1.1. If 0 < a < S < S ≤ b, then the optimal speed is S =∑m
k=1Rk/T .

Case 1.2. If 0 < S ≤ a, then 0 <
∑m

k=1Rk/T ≤ a. Thus, 0 <∑m
k=1Rk/a ≤ T , meaning that every task can be executed at the

minimum speed a so the optimal speed is S = a.

From Cases 1.1 and 1.2, the optimal speed is
maximum (a,

∑m
k=1Rk/T).

˛−2
Case 2. When � = 0, we  have CRk(  ̨ − 1)[Sk] = 0. Thus, Sk = 0
which is invalid since 0 < a ≤ Sk ≤ b.

From Cases 1 and 2, the optimal speed is S∗ =
maximum (a,

∑m
k=1Rk/T)  [22].
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Three green task scheduling algorithms, in which Theorem 1 is
sed for speed optimization, are proposed: (1) Shortest Task First
or Computer with Minimum Energy (STF-CME) algorithm (shown
n Fig. 1), (2) Longest Task First for Computer with Minimum Energy
LTF-CME) algorithm, and (3) Random Task for Computer with

inimum Energy (RT-CME) algorithm. The strategy for STF-CME
LTF-CME) algorithm is to assign the shortest (longest) task to a
omputer with the minimum energy slope. The strategy for RT-
ME  algorithm is to randomly assign a task to a computer with the
inimum energy slope.
Similarly, three additional algorithms are proposed: (1) Short-

st Task First for Random Computer (STF-RC) algorithm, (2) Longest
ask First for Random Computer (LTF-RC) algorithm, and (3) Ran-
om Task for Random Computer (RT-RC) algorithm. The new
trategy is to randomly select a computer to execute a task.

STF-CME algorithm is described below. N is the number of
peed levels between minimum speed and maximum speed
f all computers. t is the remaining time after finishing mi tasks
or computer i. M is the total number of successful task assignments.

STF-CME Algorithm [22,23]
Input: m tasks, n computers, deadline T, speeds Si

k
Output: the successful task assignment with E for each computer and its
optimal speed

Begin
Initially, all tasks in a task queue are sorted in an increasing order based on

their numbers of instructions. Assign values to ai and bi . j = 0. M = 0.
for each speed level g (0 to N − 1) do

Step 1: Calculate Si
k

= ai + g
(

bi−ai
N−1

)
for i = 1, 2, . . .,  n and k = 1, 2, . . .,  mi .

Step 2: For each computer i at Si
k
, if there is enough remaining time to hold

a  task, calculate �i
k

= Ci[Si
k
]
˛i−1

.
Step 3: Assign every task to the computer with the minimum �i

k
.

Step 4: If all tasks are assigned, store successful task assignment, j = j + 1,
M  = M + 1, and go to Step 5. Otherwise, there is no possible task assignment.

Step 5: Speed Optimization.
for each computer i (1 to n) do

t = T −
mi∑

k=1

Ri
k

Si
k

for each task k (1 to m) do
if  (t > 0) then

Si
k

= max

(
ai,

∑m

k=1
Ri

k
T

)
end if

end for
end for

Step 6: Calculate E∗
j

=
n∑

i=1

mi∑
k

�i
k
Ri

k
using optimized speed Si

k
for i = 1, 2,

.  . .,  n, and k = 1, 2, . . .,  mi .
end for

Step 7: E = min(E∗
1, E∗

2, . . . , E∗
M

).
Step 8: Output the successful task assignment with E for computer i and its
optimal speed Si

k
for i = 1, 2, . . .,  n, and k = 1, 2, . . .,  mi .

End.

Different from STF-CME algorithm, LTF-CME algorithm initially
orts all tasks in a task queue in a decreasing order based on their
umbers of instructions (Ri

k
for i = 1, 2, . . .,  n and k = 1, 2, . . .,  mi)

nd performs the same functionality of Steps 1–8. Different from
TF-CME algorithm, RT-CME algorithm randomly assigns all tasks
n a task queue to computers and performs the same functionality
f Steps 1–8. STF-RC, LTF-RC and RT-RC algorithms have the same
odes as those of STF-CME, LTF-CME and RT-CME algorithms except
or Steps 2 and 3 since STF-RC, LTF-RC and RT-RC algorithms assign
ach task to a random computer.
. Energy-efficient task scheduling algorithms with
iscrete speeds

The problem is to minimize E =
∑n

i=1

∑mi
k=1�i

k
Ri

k
with con-

traints: 1 ≤ mi ≤ m − n + 1, m =
∑n

i=1mi,
∑mi

k=1Ri
k
/S-

i
k ≤ T and
rmatics and Systems 3 (2013) 109– 118 111

0 < ai ≤ Si
k ≤ bi where S-

i
k is a discrete speed, ai is the minimum

speed and bi is the maximum speed of computer i, S̄i
h

is a discrete
speed for computer i for a discrete speed level h, for h = 1, 2, . . .,  g,
i = 1, 2, . . .,  n, and k = 1, 2, . . .,  mi.

Three green task scheduling algorithms using N discrete speeds
for each computer are proposed: (1) discrete STF-CME algorithm,
(2) discrete LTF-CME algorithm, and (3) discrete RT-CME algorithm.
The strategy for discrete STF-CME (discrete LTF-CME) algorithm is
to assign the shortest (longest) task to a computer with the mini-
mum energy slope. The strategy for discrete RT-CME algorithm is to
randomly assign a task to the computer. Similarly, three additional
algorithms using N discrete speeds are proposed: (1) discrete STF-
RC algorithm, (2) discrete LTF-RC algorithm, and (3) discrete RT-RC
algorithm. The new strategy is to randomly select a computer to
execute a task.

Discrete STF-CME algorithm is described below. Now, N is the
number of discrete speeds for each computer. t is the remaining
time after finishing mi tasks for computer i. M is the number of
successful task assignments.

Discrete STF-CME Algorithm
Input: m tasks, n computers, deadline T, discrete speeds Si

k

Output: the successful task assignment with E for each computer and its
optimal speed

Begin
Initially, all tasks in a task queue are sorted in an increasing order based on

their numbers of instructions. Assign values to ai and bi . j = 0. M = 0.
for each speed level g (0 to N − 1) do

Step 1: Calculate all discrete speeds S-
i
k = ai + g

(
bi−ai
N−1

)
and S̄i

h
= S-

i
k for i = 1,

2,  . . .,  n and k = 1, 2, . . .,  mi .
Step 2: For each computer i at S-

i
k , if there is enough remaining time to hold

a  task, calculate �i
k

= Ci[S-
i
k]

˛i−1
.

Step 3: Assign every task to the computer with the minimum �i
k
.

Step 4: If all tasks are assigned, j = j + 1, M = M + 1, calculate
Ej =

∑n

i=1

∑mi

k
�i

k
Ri

k
, and go to Step 5. Otherwise, there is no possible task

assignment.
Step 5: Discrete Speed Adjustment
for each computer i (1 to n) do

t = T −
mi∑

k=1

Ri
k

S-
i
k

for each task k (1 to m) do
if  (t > 0) then

if

(
Ri

k

(Ri
k

/S-
i
k
+t)

<= ai

)
then

t = t − (Ri
k
/ai − Ri

k
/S-

i
k)

S-
i
k = ai

else
for each discrete speed level h (1 to g) do

if

(
S̄i

h
>= Ri

k

(Ri
k

/S-
i
k
+t)

)
then

t = t − (Ri
k
/S̄i

h
− Ri

k
/S-

i
k)

S-
i
k = S̄i

h
h = N

end if
end for

end if
end if

end for
end for

Step 6: Calculate E∗
j

=
∑n

i=1

∑mi

k
�i

k
Ri

k
using discrete speed S-

i
k for i = 1, 2,

.  . .,  n, and k = 1, 2, . . .,  mi .
end for

Step 7: E = min(E∗
1, E∗

2, . . . , E∗
M

).
Step 8: Output the successful task assignment with E for computer i and its
discrete speed S-

i
k for i = 1, 2, . . .,  n, and k = 1, 2, . . .,  mi .

End.
Different from discrete STF-CME algorithm, discrete LTF-CME algo-
rithm initially sorts all tasks in a task queue in a decreasing
order based on their numbers of instructions (Ri

k
for i = 1, 2, . . .,

n and k = 1, 2, . . .,  mi) and performs the same functionality of
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algorithms are more effective than STF-RC, LTF-RC, and RT-RC algo-
rithms in terms of average energy consumption.

Table 1
Energy consumption (1012) for STF-CME, LTF-CME, and RT-CME.

T (s) STF-CME (J) LTF-CME (J) RT-CME (J)

2500 2.2413 2.2557 2.2534
3000 1.7027 1.7079 1.7081
3500 1.3479 1.3522 1.3526
4000 1.1608 1.1618 1.1619
4500 0.9525 0.9553 0.9547
5000 0.8993 0.9030 0.9027
5500 0.7542 0.7567 0.7571
6000 0.6863 0.6870 0.6875

Table 2
Energy consumption (1012) for STF-RC, LTF-RC, and RT-RC.

T (s) STF-RC (J) LTF-RC (J) RT-RC (J)

2500 2.1408 2.1418 2.1428
3000 1.6622 1.6676 1.6647
3500 1.3655 1.3479 1.3615
4000 1.2349 1.2265 1.2296
4500 1.0506 1.0450 1.0482
5000 1.1001 1.1009 1.0990
5500 0.9879 0.9719 0.9810
6000 0.9455 0.9313 0.9396

Table 3
Energy consumption (1013) for STF-CME, LTF-CME, and RT-CME.

T (s) STF-CME (J) LTF-CME (J) RT-CME (J)

4600 2.7597 2.7532 2.7553
4700 2.6952 2.6990 2.6994
4800 2.5361 2.5353 2.5367
4900 2.4745 2.4746 2.4751
5000 2.5805 2.5863 2.5864
5100 2.4153 2.4168 2.4175
5200 2.2796 2.2816 2.2816
5300 2.2389 2.2474 2.2472

Table 4
Energy consumption (1013) for STF-RC, LTF-RC, and RT-RC.

T (s) STF-RC (J) LTF-RC (J) RT-RC (J)

4600 2.6648 2.6628 2.6598
4700 2.5886 2.5778 2.5842
4800 2.4979 2.4869 2.4854
4900 2.4877 2.4754 2.4790
5000 2.6166 2.6233 2.6219
Fig. 1. STF-CME vs. STF-RC (100 tasks).

teps 1–8 in discrete STF-CME algorithm. Different from discrete
TF-CME algorithm, discrete RT-CME algorithm randomly assigns
ll tasks to computers and performs the same functionality
f Steps 1–8 in discrete STF-CME algorithm. Discrete STF-RC,
iscrete LTF-RC, and discrete RT-RC algorithms have the same
odes as those of discrete STF-CME, discrete LTF-CME, and dis-
rete RT-CME algorithms except for Steps 2 and 3 in discrete
TF-CME algorithm since discrete STF-RC, discrete LTF-RC, and
iscrete RT-RC algorithms assign each task to a randomly selected
omputer.

. Simulations and performance analyses

Traditionally, computers use maximum speeds for real appli-
ations. Six conventional task scheduling algorithms, which
orrespond to the six new green task scheduling algorithms by
sing maximum speeds, are proposed: (1) Shortest Task First for
omputer with Minimum Energy and Maximum Speeds (STF-
ME-MS) algorithm, (2) Longest Task First for Computer with
inimum Energy and Maximum Speeds (LTF-CME-MS) algo-

ithm, (3) Random Task for Computer with Minimum Energy
nd Maximum Speeds (RT-CME-MS) algorithm, (4) Shortest Task
irst for Random Computer and Maximum Speeds (STF-RC-
S)  algorithm, (5) Longest Task First for Random Computer

nd Maximum Speeds (LTF-RC-MS) algorithm, and (6) Random
ask for Random Computer and Maximum Speeds (RT-RC-MS)
lgorithm.

Similarly, six conventional task scheduling algorithms with dis-
rete speeds are proposed: (1) discrete STF-CME-MS algorithm,
2) discrete LTF-CME-MS algorithm, (3) discrete RT-CME-MS algo-
ithm, (4) discrete STF-RC-MS algorithm, (5) discrete LTF-RC-MS
lgorithm, and (6) discrete RT-RC-MS algorithm.

The energy reduction percentage is defined by  ̌ = ((EMS −
)/EMS) × 100% where EMS is the energy generated by an algo-
ithm with maximum speeds (i.e. STF-CME-MS, LTF-CME-MS,
T-CME-MS, STF-RC-MS, LTF-RC-MS, RT-RC-MS, or discrete STF-
ME-MS, discrete LTF-CME-MS, discrete RT-CME-MS, discrete
TF-RC-MS, discrete LTF-RC-MS, and discrete RT-RC-MS), and
here E is the energy calculated by an algorithm using opti-
al  continuous or discrete speeds (i.e. STF-CME, LTF-CME,

T-CME, STF-RC, LTF-RC, RT-RC, or discrete STF-CME, discrete LTF-
ME, discrete RT-CME, discrete STF-RC, discrete LTF-RC, discrete
T-RC).

All algorithms are implemented in Java. For every simulation,
he number of instructions for task k (Ik), ai, bi, Ci, and ˛i are ran-
omly generated. 1000 ≤ Ik ≤ 11,000 for k = 1, 2, . . .,  mi, ai = 10 + �
nd bi = 50 + � for � is a random number between 0 and 20k,

000 ≤ Ci ≤ 1500, and 3 ≤ ˛i ≤4 for i = 1, 2, . . .,  n. For computer i,

 speed levels are calculated as Si
k

= ai + g((bi − ai)/(N − 1)) for
 = 0, 1, . . .,  N − 1. N = 10 for each simulation. In order to produce
rmatics and Systems 3 (2013) 109– 118

statistically reliable results, every result is an average of 100
random simulations [22,23].

5.1. Comparing algorithms based on energy consumption

5.1.1. Energy-efficient task scheduling algorithms with
continuous speeds

Tables 1–6 show the energy consumption (in J) for a deadline
T (in s). 100 tasks and 5 computers are used in Tables 1 and 2,
500 tasks and 10 computers are used in Tables 3 and 4, and
1000 tasks and 20 computers are used in Tables 5 and 6 [22].
Tables 7 and 8 show the overall average energy values calculated
by using Tables 1–6 based on the number of computers and the
number of tasks. From Table 7, STF-CME, LTF-CME, and RT-CME
5100 2.4895 2.4834 2.4885
5200 2.4429 2.4169 2.4222
5300 2.3293 2.3167 2.3173
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Table 5
Energy consumption (1014) for STF-CME, LTF-CME, and RT-CME.

T (s) STF-CME (J) LTF-CME (J) RT-CME (J)

2800 1.9893 1.9873 1.9886
2900 1.9052 1.9001 1.9017
3000 1.7928 1.7931 1.7942
3100 1.6987 1.7021 1.7026
3200 1.5950 1.5968 1.5976
3300 1.5307 1.5309 1.5313
3400 1.4470 1.4475 1.4474

Table 6
Energy consumption (1014) for STF-RC, LTF-RC, and RT-RC.

T (s) STF-RC (J) LTF-RC (J) RT-RC (J)

2800 2.1443 2.1192 2.1300
2900 2.0698 2.0560 2.0527
3000 1.9983 1.9889 1.9811
3100 1.9138 1.8999 1.8969
3200 1.8581 1.8448 1.8492
3300 1.7846 1.7706 1.7679
3400 1.7025 1.6988 1.7016

Table 7
Average energy consumption (1012) for STF-CME, LTF-CME, and RT-CME.

No. of tasks STF-CME (J) LTF-CME (J) RT-CME (J)

100 1.2181 1.2224 1.2222
500 24.9748 24.9928 24.9990

1000 170.8386 170.8257 170.9057

Table 8
Average energy consumption (1012) for STF-RC, LTF-RC, and RT-RC.

No. of tasks STF-RC (J) LTF-RC (J) RT-RC (J)

5
s

T
5

T
E
R

T
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Table 11
Energy consumption (1011) for Discrete STF-CME, Discrete LTF-CME, and Discrete
RT-CME.

T (s) Discrete STF-CME (J) Discrete LTF-CME (J) Discrete RT-CME (J)

6000 2.260 2.245 2.185
7000 1.795 1.791 1.772
8000 1.435 1.427 1.424
9000 1.324 1.320 1.321

10,000 1.055 1.049 1.050
11,000 0.891 0.887 0.888
12,000 0.815 0.813 0.813
13,000 0.702 0.700 0.699

Table 12
Energy consumption (1011) for Discrete STF-RC, Discrete LTF-RC, and Discrete RT-RC.

T (s) Discrete STF-RC (J) Discrete LTF-RC (J) Discrete RT-RC (J)

6000 2.406 2.361 2.387
7000 2.052 2.032 2.027
8000 1.830 1.817 1.826
9000 1.804 1.797 1.795

10,000 1.663 1.673 1.678
11,000 1.539 1.530 1.538
12,000 1.584 1.581 1.572
13,000 1.525 1.509 1.529

Table 13
Energy consumption (1012) for Discrete STF-CME, Discrete LTF-CME, and Discrete
RT-CME.

T (s) Discrete STF-CME (J) Discrete LTF-CME (J) Discrete RT-CME (J)

3000 2.130 2.125 2.101
4000 1.354 1.348 1.349
5000 0.966 0.964 0.965
6000 0.757 0.755 0.756
7000 0.569 0.568 0.568
8000 0.499 0.498 0.498
9000 0.418 0.417 0.417

Table 14
Energy consumption (1012) for Discrete STF-RC, Discrete LTF-RC, and Discrete RT-RC.

T (s) Discrete STF-RC (J) Discrete LTF-RC (J) Discrete RT-RC (J)
100 1.3109 1.3041 1.3083
500 25.1466 25.0540 25.0729

1000 192.4486 191.1171 191.1343

.1.2. Energy-efficient task scheduling algorithms with discrete
peeds
Tables 9–14 show the energy consumption (in J) for a deadline
 (in s). 100 tasks and 5 computers are used in Tables 9 and 10,
00 tasks and 10 computers are used in Tables 11 and 12,  and

able 9
nergy consumption (109) for Discrete STF-CME, Discrete LTF-CME, and Discrete
T-CME.

T (s) Discrete STF-CME (J) Discrete LTF-CME (J) Discrete RT-CME (J)

3000 12.864 12.883 11.978
4000 11.365 11.457 10.725
5000 7.892 7.893 7.857
6000 6.590 6.574 6.536
7000 5.323 5.273 5.276
8000 4.421 4.378 4.379
9000 3.712 3.687 3.687

10,000 3.206 3.186 3.186

able 10
nergy consumption (109) for Discrete STF-RC, Discrete LTF-RC, and Discrete RT-RC.

T (s) Discrete STF-RC (J) Discrete LTF-RC (J) Discrete RT-RC (J)

3000 12.911 12.201 12.925
4000 11.250 10.693 11.120
5000 8.732 8.367 8.672
6000 8.427 8.174 8.330
7000 7.823 7.727 7.806
8000 7.348 7.304 7.317
9000 6.527 6.558 6.508

10,000 6.740 6.871 6.959

3000 2.286 2.245 2.264
4000 1.713 1.695 1.700
5000 1.478 1.474 1.469
6000 1.376 1.367 1.364
7000 1.268 1.264 1.265

8000 1.275 1.274 1.270
9000 1.272 1.268 1.270

1000 tasks and 20 computers are used in Tables 13 and 14.
Tables 15 and 16 show the overall average energy values calculated
by using Tables 9–14 based on the number of computers and the
number of tasks. From Tables 15 and 16,  discrete STF-CME, discrete
LTF-CME, and discrete RT-CME algorithms are more effective than
discrete STF-RC, discrete LTF-RC, and discrete RT-RC algorithms in
terms of average energy consumption.

5.2. Comparing algorithms based on energy reduction
percentages

5.2.1. Energy-efficient task scheduling algorithms with
continuous speeds

Tables 17–20 show the energy reduction percentages for the
algorithms. When ai = 10 + � and bi = 50 + � for � is a random num-

ber between 0 and 20k for k = 1, 2, . . .,  mi, Tables 17 and 18 show
that STF-CME, LTF-CME, RT-CME, STF-RC, LTF-RC, and RT-RC algo-
rithms using optimal continuous speeds are more effective than
conventional STF-CME-MS, LTF-CME-MS, RT-CME-MS, STF-RC-MS,
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Table 15
Average energy consumption (109) for Discrete STF-CME, Discrete LTF-CME, and
Discrete RT-CME.

No. of Tasks Discrete
STF-CME (J)

Discrete
LTF-CME (J)

Discrete
RT-CME (J)

100 6.922 6.916 6.703
500 128.5 127.9 126.9

1000 956.1 953.6 950.6

Table 16
Average energy consumption (109) for Discrete STR-RC, Discrete LTF-RC, and Dis-
crete RT-RC.

No. of tasks Discrete STF-RC (J) Discrete LTF-RC (J) Discrete RT-RC (J)

100 8.720 8.487 8.705
500 180.0 178.8 179.4

1000 1524 1512 1515

Table 17
Energy reduction percentages for STF-CME, LTF-CME, and RT-CME using Optimal
Continuous Speeds.

No. of tasks T (s) STF-CME (%) LTF-CME (%) RT-CME (%)

100 2500 98.042 98.051 97.631
500 5000 98.570 99.227 98.969

1000 3000 98.414 99.235 98.924

Table 18
Energy reduction percentages for STF-RC, LTF-RC, and RT-RC using Optimal Contin-
uous Speeds.

No. of tasks T (s) STF-RC (%) LTF-RC (%) RT-RC (%)

100 2500 97.605 97.818 97.624
500 5000 98.838 98.907 98.865

1000 3000 98.654 98.960 98.757

Table 19
Energy reduction percentages for STF-CME, LTF-CME, and RT-CME with a Speed
Difference of 10.

No. of tasks T (s) STF-CME (%) LTF-CME (%) RT-CME (%)

100 6500 96.362 96.762 96.601
500 15,000 98.279 98.476 98.408

1000 3000 98.120 98.390 98.287

Table 20
Energy reduction percentages for STF-RC, LTF-RC, and RT-RC with a Speed Difference
of  10.

No. of tasks T (s) STF-RC (%) LTF-RC (%) RT-RC (%)

100 6500 96.600 96.627 96.610
500 15,000 98.423 98.439 98.425

1000 3000 98.316 98.336 98.317
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Table 21
Energy reduction percentages for discrete STF-CME, discrete LTF-CME, and discrete
RT-CME.

No. of tasks Discrete STF-CME (%) Discrete LTF-CME (%) Discrete RT-CME (%)

100 96.712 97.012 97.261
500 98.642 99.235 99.060

1000 98.765 99.376 99.172

Table 22
Energy reduction percentages for discrete STF-RC, discrete LTF-RC, and discrete RT-
RC.

No. of tasks Discrete STF-RC (%) Discrete LTF-RC (%) Discrete RT-RC (%)

speeds)
TF-RC-MS, and RT-RC-MS algorithms using maximum speeds in
educing energy consumptions [22].

When ai = 10 + � and bi = 20 + � for � is a random number
etween 0 and 5 for k = 1, 2, . . .,  mi, Tables 19 and 20 with a
peed difference of 10 show energy reduction percentages of at
east 96%, which are very close to those of at least 97% shown in
ables 17 and 18 with a speed difference of 40. This also indicates

hat the new algorithms are more effective than the conventional
nes.
100 96.775 96.295 96.639
500 98.573 98.670 98.620

1000 98.458 98.649 98.536

5.2.2. Energy-efficient task scheduling algorithms with discrete
speeds

Tables 21 and 22 show that discrete STF-CME, discrete LTF-CME,
discrete RT-CME, discrete STF-RC, discrete LTF-RC, and discrete
RT-RC algorithms are more effective than conventional discrete
STF-CME-MS, discrete LTF-CME-MS, discrete RT-CME-MS, discrete
STF-RC-MS, discrete LTF-RC-MS, and discrete RT-RC-MS algo-
rithms, which use maximum speeds.

5.3. Hybrid algorithms

5.3.1. Energy-efficient task scheduling algorithms with
continuous speeds

From Tables 1–6,  the algorithm with the best task schedule
varies under different conditions. For example, Table 2 shows that
STF-RC is the best in two cases, LTF-RC is the best in five cases, and
RT-RC is the best in one case. Thus, a hybrid algorithm for contin-
uous speeds is developed to obtain the overall best task schedule
among the six heuristic task schedules. It is shown below.
Begin

Step 1: Perform RT-CME algorithm.
Step 2: Perform LTF-CME algorithm.
Step 3: Perform STF-CME algorithm.
Step 4: Perform LTF-RC algorithm.
Step 5: Perform RT-RC algorithm.
Step 6: Perform STF-RC algorithm.
Step 7: Output the final successful task assignment with the minimum
energy among six successful task assignments from Steps 1–6.

End

5.3.2. Energy-efficient task scheduling algorithms with discrete
speeds

From Tables 9–15, the algorithm with the best task schedule
varies under different conditions. Thus, a hybrid algorithm for dis-
crete speeds is developed to obtain the overall best task schedule.
It is shown below.
Begin

Step 1: Perform discrete RT-CME algorithm.
Step 2: Perform discrete LTF-CME algorithm.
Step 3: Perform discrete STF-CME algorithm.
Step 4: Perform discrete LTF-RC algorithm.
Step 5: Perform discrete RT-RC algorithm.
Step 6: Perform discrete STF-RC algorithm.
Step 7: Output the final successful task assignment with the minimum
energy among six successful task assignments from Steps 1–6.

End

5.4. Comparing algorithms based on deadline T (for
energy-efficient task scheduling algorithms with continuous
From Fig. 1, STF-RC performs better than STF-CME when T is
less than about 3300. This observation is true for both LTF-RC from
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Fig. 2. LTF-CME vs. LTF-RC (100 tasks).
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Fig. 3. RT-CME vs. RT-RC (100 tasks).
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Fig. 5. LTF-CME vs. LTF-RC (500 tasks).
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Fig. 6. RT-CME vs. RT-RC (500 tasks).
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Fig. 7. STF-CME vs. STF-RC (1000 tasks).
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Fig. 8. LTF-CME vs. LTF-RC (1000 tasks).
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Fig. 4. STF-CME vs. STF-RC (500 tasks).

ig. 2 and RT-RC from Fig. 3. The reason is that when T is very small,
omputers with large energy and those with small energy have
imilar chances of getting tasks by STF-CME, so it is possible for
TF-RC to be more effective because of better task assignments on
ll computers than STF-CME. This reason also applies to LTF-RC and
T-RC.

However, STC-CME performs much better than STF-RC when T
s larger than 3300. This observation is also true for both LTF-CME
rom Fig. 2 and RT-CME from Fig. 3. As the deadline increases, STC-
ME  assigns fewer tasks to the computer with high energy, but
TF-RC equally assigns tasks to all computers. This fact applies to
TF-RC and RT-RC. Thus, total energy consumption when as many
asks as possible are given to the computer with lowest energy is

uch less than that when tasks are assigned to randomly selected
omputers.

From Fig. 4, STF-RC performs better than STF-CME when T is
ess than about 4880. This observation is true for LTF-RC from Fig. 5
nd RT-RC from Fig. 6. However, from Fig. 7, STF-CME always per-
orms better than STF-RC. The reason may  be that there is a very
mall probability for STF-RC to assign tasks to computers with lower
nergy as the number of computers is increased to 20 and the num-
er of tasks is increased to 1000, respectively. This finding is true
or LTF-CME from Fig. 8 and RT-CME from Fig. 9.

The energy consumption difference between STF-RC and STF-

ME  also increases as the deadline T increases, indicating that
TF-CME becomes increasingly more effective than STF-RC when
he deadline passes a certain point. This is also true for LTF-RC and

Deadline T (s)

Fig. 9. RT-CME vs. RT-RC (1000 tasks).
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Table 23
Energy reduction percentages  ̌ for ˛i = 3.
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S̄i/bi 0.1 0.3 0.5 0.7 0.9
ˇ  99% 91% 75% 51% 19%

TF-CME and RT-RC and RT-CME. Furthermore, each energy curve
enerally slopes downward because as the deadline increases,
here is more time for each computer’s speed to be further
educed.

.5. Theoretical analysis (for energy-efficient task scheduling
lgorithms with continuous speeds)

When the optimal speed is S̄i = maximum (ai,
∑mi

k=1Ri
k
/T)  for

omputer i, we have

 ̌ = EMS − EOS

EMS
× 100%

=
∑n

i=1

∑mi
k=1CiR

i
k
[bi]

˛i−1 −
∑n

i=1

∑mi
k=1CiR

i
k
[S̄i]

˛i−1

∑n
i=1

∑mi
k=1CiR

i
k
[bi]

˛i−1
× 100%.

ence,  ̌ = ([bi]
˛i−1 − [S̄i]

˛i−1
)/[bi]

˛i−1 × 100% = (1 −
S̄i/bi)

˛i−1
) × 100%. The minimum of  ̌ is 0% when S̄i = bi, and the

aximum of ˇ is (1 − (ai/bi)
˛i−1) × 100% when S̄i = ai. Table 23

hows a few values for ˇ. From Table 23,  the smaller S̄i/bi is, the
ore energy is reduced. When S̄i/bi = 0.9,  ̌ = 19%, which is still

 significant percentage of energy reduction [22].

.6. Experimental analysis

.6.1. Energy-efficient task scheduling algorithms with
ontinuous speeds

Fig. 10 summarizes all data in Tables 1–6 and includes the data
roduced by the hybrid algorithm. These results are statistically
alid because each value in Tables 1–8 and 17–20 is an average
f 100 random simulation results, and different conditions (the
eadline, the number of tasks, and the number of computers) are
sed for a sufficient number of simulations. It is clear that STF-CME,
TF-CME, and RT-CME are more effective than STF-RC, LTF-RC, and
T-RC. The method of assigning tasks to the computer with lower
nergy reduces more energy consumption than that of assigning
asks randomly to any computer. Fig. 10 shows the algorithms
anked (best to worst) as Hybrid, RT-CME, LTF-CME, STF-CME, LTF-
C, RT-RC, and STF-RC.

.6.2. Energy-efficient task scheduling algorithms with discrete
peeds

Fig. 11 summarizes all data in Tables 9–14 and includes the data

roduced by the discrete hybrid algorithm. These results are statis-
ically valid because each value in Tables 9–16 and 21 and 22 is an
verage of 100 random simulation results, and different conditions
the deadline, the number of tasks, and the number of computers)
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Fig. 10. Average energy consumption for Tables 1–6.
Fig. 11. Average energy consumption for Tables 9–14.

are used for a sufficient number of simulations. It is clear that dis-
crete STF-CME, discrete LTF-CME, and discrete RT-CME can save
more energy on average than discrete STF-RC, discrete LTF-RC, and
discrete RT-RC. The method of assigning tasks to the computer
with lower energy reduces more energy consumption than that
of assigning tasks randomly to any computer. Fig. 11 shows the
algorithms ranked (best to worst) as discrete Hybrid, discrete RT-
CME, discrete LTF-CME, discrete STF-CME, discrete LTF-RC, discrete
RT-RC, and discrete STF-RC.

6. Conclusions and future works

For heterogeneous computers with continuous speeds, seven
new energy-efficient task scheduling algorithms are successfully
developed to substantially decrease energy usage and finish all
tasks before a deadline. Different results from simulations under
various conditions indicate that the overall best algorithm is the
hybrid algorithm.

For heterogeneous computers with discrete speeds, seven new
energy-efficient task scheduling algorithms are also successfully
developed to reduce energy consumption and finish all tasks before
a deadline. Various results from simulations under different condi-
tions indicate that the discrete hybrid algorithm is the overall best
algorithm.

This paper presents new energy-efficient task scheduling algo-
rithms for both continuous and discrete processor speeds with
detailed simulation and analyses. Based on the simulation results,
the hybrid algorithm outperforms others for both continuous and
discrete speeds.

In the future, a new energy-efficient task scheduling algorithm
using discrete speeds will generate all Nn speed permutations if Nn

is small in order to find the best discrete speed permutation or will
generate a large number of discrete speed permutations if Nn is too
large in order to effectively find a better discrete speed permutation
than the current discrete hybrid algorithm. In addition, a novel dis-
crete energy-efficient task scheduling algorithm for homogeneous
microcontrollers will be incorporated into embedded software to
increase the battery lifetime for mobile devices [19–21].

The future energy-efficient task scheduling algorithms with
intelligent heuristics will be integrated into a myriad of practical
applications ranging from a small scale such as mobile devices, to
a large scale such as data centers and cloud computing systems.
These new energy-efficient algorithms will have a globally posi-
tive impact on building a more energy-efficient society, making a
cleaner environment, and creating a greener world.

Further questions to be studied remain. The first is finding the
best task assignment among an enormous number of successful

task assignments. The second is finding the best speeds of all het-
erogeneous cloud servers among a huge number of speed levels.
The third is determining Ci and ˛i for E =

∑n
i=1

∑mi
k=1CiR

i
k
[Si

k
]
˛i−1

through practical experiments and statistical data analysis.
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Moreover, new effective task scheduling algorithms with intel-
igent heuristics will be developed for data centers and cloud
omputing systems. Real simulations will be conducted to evaluate
he future energy-efficient task scheduling algorithms.
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