Sustainable Computing: Informatics and Systems 3 (2013) 109-118

C?usta{uable

Contents lists available at SciVerse ScienceDirect

Sustainable Computing: Informatics and Systems

journal homepage: www.elsevier.com/locate/suscom

Energy-efficient task scheduling algorithms on heterogeneous computers
with continuous and discrete speeds

Luna Mingyi Zhang?®*, Keqin Li¢, Dan Chia-Tien Lo®, Yanqing Zhang

a Department of Computer Science, College of Engineering, Cornell University, Ithaca, NY 14853, USA

b Department of Computer Science and Software Engineering, Southern Polytechnic State University, Marietta, GA 30060-2896, USA
¢ Department of Computer Science, State University of New York at New Paltz, New Paltz, NY 12561, USA

d Department of Computer Science, Georgia State University, Atlanta, GA 30302-3994, USA

ARTICLE INFO ABSTRACT

Article history: A large number of computing servers and personal electronic devices waste a tremendous amount

Received 10 July 2012 of energy and emit a considerable amount of carbon dioxide, which is the major contribution to the

Accepted 28 January 2013 greenhouse effect. Thus, it is necessary to significantly reduce pollution and substantially lower energy
usage. Green computing techniques are utilized in a myriad of applications in energy conservation and

Keywords: environment improvement. New green task scheduling algorithms for heterogeneous computers with

Green computing
Task scheduling
Energy reduction
Power-aware methods
Pollution reduction

changeable continuous speeds and changeable discrete speeds are developed to reduce energy consump-
tion as much as possible and finish all tasks before a deadline. A newly proven theorem can determine
the optimal speed for tasks assigned to a computer with continuous speeds. This project seeks to develop
innovative green task scheduling algorithms that have two main steps: heuristically assigning tasks to
computers, and setting optimal or near-optimal speeds for all tasks assigned to each computer. Suffi-
cient simulation results indicate that the algorithm with the best task schedule varied. Thus, two hybrid
algorithms for continuous and discrete speeds are created separately to obtain the best task schedule
among candidate task schedules. Potential research applications include incorporating energy-efficient
software into mobile devices, sensor networks, data centers, and cloud computing systems.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction annually consume the output of 15 average-sized power plants.
Also, the EPA predicts that power consumption of data centers
will soon increase to 12 GW, leading to the equivalent output of 25
power plants [9].

Computer usage accounts for 2% of anthropogenic CO, emission.
Data center activities are estimated to release 62 million metric
tons of CO, into the atmosphere [9]. For example, Google states

Green computing is an emergent technology that applies intelli-
gent optimization algorithms and advanced computing techniques
to minimize energy consumption and reduce pollution from com-
puting resources [1-6]. It is important for various applications
in power management, energy reduction, pollution control, and
environment enhancement [1-10]. Specifically, minimizing energy that one Google search may generate about 0.2 g of carbon dioxide

cpnsumption on cloud Servers an_d signiﬁcantly reducing pollu- [4]. In 2011, Google estimated that its total carbon emissions for
tion produced by computers is an imperative research problem as 2010 were 1.46 million metric tons [25]. The use of 1270 kWh of

energy costs are rising and the use of computers is increasing. electricity is enough to emit about 1720 pounds of CO, into the
A typical personal computer with 17-in. LCD monitor requir- environment

ng]4,5 W, if left on every day for one year, would use argund However, Google and General Electric (GE) have applied green

1270 kilowatt hours (kWh) of electrlgty. In 2007, the Environ- computing techniques to save power and reduce costs [4-6,25].

mental Protection Agency (EPA) p‘redlcted that the total energy The energy used for each Google search was very small, which was

consumed by U.S. data centers will double by 2012 [7]. In the 0.0003 kWh [4]. Also, Google’s data centers use 50% less energy

200 abomb'ﬁll' o o e llls’ed lto power data centers in than the typical data center [25]. GE saves $2.5 million a year by
2006 ($4.5 billion). For 2010, Google’s electricity consumption was implementing power control methods of Windows operating sys-

about 2.26 million MWh [25]. The EPA estimates that data centers tem onto its computers [6]. Nonetheless, computers can be further
improved to become more energy-efficient, which is essential.

The fundamental reason for our research in task scheduling on

* Corresponding author. Tel.: +1 678 654 7090, computers is to minimize computing energy consumption and

E-mail addresses: mingyiluna@yahoo.com, Imz22@cornell.edu (LM. Zhang), consequently substantially reduce pollution produced by comput-
lik@newpaltz.edu (K. Li), clo@spsu.edu (D.C.-T. Lo), yzhang@cs.gsu.edu (Y. Zhang). ers. Therefore, it is important to develop effective green computing

2210-5379/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.suscom.2013.01.002

dx.doi.org/10.1016/j.suscom.2013.01.002
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
mailto:mingyiluna@yahoo.com
mailto:lmz22@cornell.edu
mailto:lik@newpaltz.edu
mailto:clo@spsu.edu
mailto:yzhang@cs.gsu.edu
dx.doi.org/10.1016/j.suscom.2013.01.002

110 L.M. Zhang et al. / Sustainable Computing: Informatics and Systems 3 (2013) 109-118

techniques to considerably lower energy usage on heterogeneous
cloud servers. Thus, this project is critical and beneficial for the
global community.

The problem of scheduling many independent tasks in a hetero-
geneous distributed computing system has been studied. A new
green scheduling algorithm for saving energy in cloud computing
was proposed [11]. However, in some cases, energy consumption
was not considered as a factor that should be minimized [12]. In
[13], the advantages for having task assignments were discussed,
and the voltage level was considered as a factor instead of the
speed level for each processor. A linear combination of the min-
imum and maximum processor frequencies was used to decrease
energy consumption [14] and optimal frequencies were analyzed
in [15]. In [16], variable processor speeds were considered, and
idle intervals were exploited for power minimization. The algo-
rithms incorporated dynamic voltage and frequency scaling to save
energy [17]. Task scheduling algorithms were proposed to lower
energy consumption by using shared slack reclamation on variable
voltage/speed processors for task sets with precedence constraints
and those without precedence [18]. In [22], two new heuristic
energy-efficient task scheduling algorithms were proposed; tasks
are assigned from the front in a task queue to a computer with min-
imum energy in the computer queue and then each computer’s
speed, with constraints, is adjusted to reach an overall minimal
energy usage. Conventional approaches utilize maximum speeds,
which is not energy-efficient. In [23], six innovative green task
scheduling algorithms were developed; as many tasks as possible
are assigned to a cloud server with lowest energy and then the
speeds, with constraints, are lowered for all assigned tasks, assum-
ing that the speeds are continuous, not discrete. The minimum total
energy consumption for a computer with multiple identical pro-
cessors occurred when all independent tasks were executed with
the same power (or at the same speed) [1].

This paper focuses on developing novel green task sched-
uling algorithms for completing sequential tasks on heterogeneous
servers with variable continuous and discrete speeds to mini-
mize energy consumption via energy consumption parameters in
a cloud computing environment with a certain deadline. For con-
tinuous speeds, it focuses on real applications with heterogeneous
processors with different parameters. Also, speed constraints for
processors were not taken into account [1]. A new method in this
project uses various speed constraints for heterogeneous comput-
ers to better model real systems. For discrete speeds, it focuses
on real applications with heterogeneous processors with different
parameters using discrete speeds. For example, a microcontroller
such as MSP430 has discrete speeds (i.e. clock frequencies). To
better model real systems, new green task scheduling algorithms
for heterogeneous computers with variable discrete speeds and
energy consumption parameters are developed to reduce energy
consumption as much as possible and finish all tasks before a cer-
tain deadline.

The rest of the paper is organized as follows. In Section 2, all of
the definitions and parameters are given. In Section 3, the optimiza-
tion problem is given, and new energy-efficient task scheduling
algorithms with continuous speeds are proposed. In Section 4,
the optimization problem is given, and new energy-efficient task
scheduling algorithms with discrete speeds are proposed. In Sec-
tion 5, the simulations and performance analysis are discussed. In
Section 6, conclusions and future works are given.

2. Definitions and parameters

Let n computers be used to finish m tasks by the deadline time
T (s) where m >n. Assume that m; tasks P} for k=1, 2, ..., m; are

executed on computer i for m = ZL m;. A changeable speed (dis-

crete or continuous) for task P! is denoted as S} fori=1,2,...,n,and

k=1, 2, ..., m;. The speed is defined as the number of instructions
per second. The number of instructions of task P} is denoted as R, .

The execution time for task P, on computer i is R} /S}, so the total
execution time for m; tasks P’ on computer i is T = Zm‘ R;(/S;{l.
From [1], the energy (in]) for P’ on computer i is E =G Rl e[Sk i
where C;isaconstant,o; = 1 +(2/¢>,) > 3for0<<f>, <] 1—1 2
and k=1, 2, . m, The total energy is E = Z, 1 ;{"’ CR’ [S’]
Let y, = C,»[S;{] “~" Fora speed S' yk is called the energy slope (a
constant for each computer and task). Then, the total energy is

E= Zz le ViRl

3. Energy-efficient task scheduling algorithms with
continuous speeds

1

The problem is to minimize E = Zl 12 ke]ykR‘ with con-
straints: 1<m; <m-n+1, m_zi=lml, m' R’/S’ <T and
0<ag< S;'(< b;, where g; is the minimum speed and b; is the max-
imum speed of computer i, fori=1,2,...,n,and k=1,2,...,m

For a single computer case, the superscript i is omitted, so the
energy for one computer is then E = kazl CRk[Sk]“q, where R
denotes the number of instructions and S, denotes the execution
speed (the number of instructions executed per second) for the kth
task. Thus, the problem is to minimize E = ka=]CRk[Sk]"“1 sub-
jectto Z;?:]Rk/sk <TandO<a<S,<bfork=1,2,...,m where
a is the minimum speed and b is the maximum speed of the com-
puter [22,23]. The minimal E occurs when each of the computers
consumes energy at its minimal level to finish its tasks on time.

Theorem 1. Afterm tasks with the same speed Sfor0 < a < S < bare
successfully assigned to a computer for kalek/S < T, the minimal
total energy consumption is E = C[S*]"HZZL]R,(fora=1+2/¢p>
3 and 0 < ¢ < 1 when all tasks are executed with the same optimal
speed S* where S* = maximum (a, ZZ;]R,(/T) [22].

Proof. Because Z,"::]Rk/g < T, speeds Sy for 0 <a <S, <b and
k=1, 2, ..., m can be optimized to minimize the total energy con-
sumption E = ZT:]CRk[Sk]d_] [22].

The Lagrangian function [24] is

m — m
S iy CRISII® ™ = AT = 30 Re/Si).

3L/ 3S, = CRy(or — 1)[Sk]*™* — A(Ry/S?) = Ofork=1,2,...,m.The
first order equalities are A(T — ZZ;R,{/S,() =0fork=1,2,....m
Also, YU Re/Sp<T, 0<a<Sg<b, and A>0fork=1,2,...,
m. O

defined as L=

Case 1. When A>0, we have CRy(a—1)[S]* % — A(Ry/S?) =
0. Thus, S; = (A/C(a 1))1/“ =S where S is a constant speed
for k=1, 2, ..., m. Because 92L/3°S; S, =S = CRy(ax — 1)(e —
2)[S1973 + 2A(R/S3) > 0 for ¢ =1+2/¢ >3 and 0<¢p<1, we
obtain the minimum value of E;, = CRk[Sk] ~1 when Sk S. We

have T->"1" Re/S=0, so S=> ;" R/T. Since >°;" Ri/S <
T, Zk Ry/T <S <b.Hence,0 <S < S <bh.

Case 1.1. If 0 <a<S<S<b, then the optimal speed is S =
Z?:le/T'
Case 1.2. If 0<S<a, then 0<> " R/T<a. Thus, 0<

kalek/a < T, meaning that every task can be executed at the
minimum speed a so the optimal speed is S=a.

From Cases 1.1 and 1.2, the
maximum (a, ZZL]R,{/T).
Case 2. When A =0, we have CRy(e — 1)[S;]* 2 = 0. Thus, S, =0
which is invalid since 0 < a < S < b.

From Cases 1 and 2, the
maximum (a, ZZ;R,JT) [22].

optimal speed is

optimal speed is S*=

L.M. Zhang et al. / Sustainable Computing: Informatics and Systems 3 (2013) 109-118 111

Three green task scheduling algorithms, in which Theorem 1 is
used for speed optimization, are proposed: (1) Shortest Task First
for Computer with Minimum Energy (STF-CME) algorithm (shown
inFig. 1), (2) Longest Task First for Computer with Minimum Energy
(LTF-CME) algorithm, and (3) Random Task for Computer with
Minimum Energy (RT-CME) algorithm. The strategy for STF-CME
(LTF-CME) algorithm is to assign the shortest (longest) task to a
computer with the minimum energy slope. The strategy for RT-
CME algorithm is to randomly assign a task to a computer with the
minimum energy slope.

Similarly, three additional algorithms are proposed: (1) Short-
est Task First for Random Computer (STF-RC) algorithm, (2) Longest
Task First for Random Computer (LTF-RC) algorithm, and (3) Ran-
dom Task for Random Computer (RT-RC) algorithm. The new
strategy is to randomly select a computer to execute a task.

STF-CME algorithm is described below. N is the number of
speed levels between minimum speed and maximum speed
of all computers. t is the remaining time after finishing m; tasks
for computeri. M is the total number of successful task assignments.

STF-CME Algorithm [22,23]

Input: m tasks, n computers, deadline T, speeds S;'(

Output: the successful task assignment with E for each computer and its
optimal speed

Begin
Initially, all tasks in a task queue are sorted in an increasing order based on
their numbers of instructions. Assign values to a; and b;. j=0. M=0.
for each speed level g (0 to N—1) do
Step 1: Calculate SI‘; =a;+§8 b,’,ji fori=1,2,...,nand k=1,2,...,m;.
Step 2: For each computer i at S;;, if there is enough remaining time to hold
a task, calculate yi = Ci[S;'(]a‘fl. v
Step 3: Assign every task to the computer with the minimum y,.
Step 4: If all tasks are assigned, store successful task assignment, j=j+1,
M=M+1, and go to Step 5. Otherwise, there is no possible task assignment.
Step 5: Speed Optimization.
for each computeri(1ton)do

mj

i
=m0
k
k=1
for each task k (1 to m) do
if (t>0) then

mo
: PO
Si = max <a,-, kel k)

end if
end for

end for
n

ml
Step 6: Calculate E; = ZZ)/;R;; using optimized speed S} fori=1,2,
=1 k
...nandk=1,2,...,m;.

end for
Step 7: E = min(E}, E;, ..., Ey)).
Step 8: Output the successful task assignment with E for computer i and its
optimal speed S;< fori=1,2,...,n,and k=1,2,..., m.
End.

Different from STF-CME algorithm, LTF-CME algorithm initially
sorts all tasks in a task queue in a decreasing order based on their
numbers of instructions (R;'< fori=1,2,...,nand k=1, 2, ..., m;)
and performs the same functionality of Steps 1-8. Different from
STF-CME algorithm, RT-CME algorithm randomly assigns all tasks
in a task queue to computers and performs the same functionality
of Steps 1-8. STF-RC, LTF-RC and RT-RC algorithms have the same
codes as those of STF-CME, LTF-CME and RT-CME algorithms except
for Steps 2 and 3 since STF-RC, LTF-RC and RT-RC algorithms assign
each task to a random computer.

4. Energy-efficient task scheduling algorithms with
discrete speeds
m;

The problem is to minimize E=3"" S/ yiRl with con-
straints: 1<m;<m—-n+1, m= Z?:1m,-, Z?;R;{/ﬂ; <T and

0<a< 5}; < b; where 5}; is a discrete speed, g; is the minimum
speed and b; is the maximum speed of computer i, 3;'1 is a discrete
speed for computer i for a discrete speed level h, for h=1,2, ..., g,
i=1,2,...,n,and k=1,2,...,m;.

Three green task scheduling algorithms using N discrete speeds
for each computer are proposed: (1) discrete STF-CME algorithm,
(2)discrete LTF-CME algorithm, and (3) discrete RT-CME algorithm.
The strategy for discrete STF-CME (discrete LTF-CME) algorithm is
to assign the shortest (longest) task to a computer with the mini-
mum energy slope. The strategy for discrete RT-CME algorithm is to
randomly assign a task to the computer. Similarly, three additional
algorithms using N discrete speeds are proposed: (1) discrete STF-
RC algorithm, (2) discrete LTF-RC algorithm, and (3) discrete RT-RC
algorithm. The new strategy is to randomly select a computer to
execute a task.

Discrete STF-CME algorithm is described below. Now, N is the
number of discrete speeds for each computer. t is the remaining
time after finishing m; tasks for computer i. M is the number of
successful task assignments.

Discrete STF-CME Algorithm

Input: m tasks, n computers, deadline T, discrete speeds S{

Output: the successful task assignment with E for each computer and its
optimal speed

Begin
Initially, all tasks in a task queue are sorted in an increasing order based on
their numbers of instructions. Assign values to a; and b;. j=0. M=0.
for each speed level g (0toN—1) do
Step 1: Calculate all discrete speeds S, = a; + g (l;\",:‘;") and §} = St fori=1,
2,..,nandk=1,2,...,m;.
Step 2: For each computer i at Si ,if there is enough remaining time to hold
a task, calculate yi = G[S} 1.
Step 3: Assign every task to the computer with the minimum y,.
Step 4: If all tasks are assigned, j=j+1, M=M+1, calculate
B = Z?:l ZT’ YiR., and go to Step 5. Otherwise, there is no possible task
assignment.
Step 5: Discrete Speed Adjustment
for each computeri (1 ton)do

k=1
for each task k (1 to m) do
if (t>0) then

it (S <_g) then
®/50
t=t—(R/ai —R/S})
S =ai
else
for each discrete speed level h (1 to g) do

if (5;I >= —k) then
(R /5},+0)
t=t—(R/S;, - R /%)
si=3
h=N
end if
end for
end if
end if
end for
end for
Step 6: Calculate £} = ZL] kaiyf(RL using discrete speed S. fori=1, 2,
..,nandk=1,2,...,m;.
end for
Step 7: E = min(E}, E;, ..., Ey))-
Step 8: Output the successful task assignment with E for computer i and its
discrete speed §L fori=1,2,...,n,and k=1,2,..., m.
End.

Different from discrete STF-CME algorithm, discrete LTF-CME algo-
rithm initially sorts all tasks in a task queue in a decreasing
order based on their numbers of instructions (R;{ fori=1,2, ...,
n and k=1, 2, ..., m;) and performs the same functionality of

112
S 250E+12
‘2 2.00E+12
;=
2 1.50E+12 STF-
E CME
] 1.00E+12 —— STF-
=]

RC

o
2. SO0E+l1
ol
S 0.00E+00
= 2500 3000 3500 4000 4500 5000 5500 6000

Deadline T (s)

Fig. 1. STF-CME vs. STF-RC (100 tasks).

Steps 1-8 in discrete STF-CME algorithm. Different from discrete
STF-CME algorithm, discrete RT-CME algorithm randomly assigns
all tasks to computers and performs the same functionality
of Steps 1-8 in discrete STF-CME algorithm. Discrete STF-RC,
discrete LTF-RC, and discrete RT-RC algorithms have the same
codes as those of discrete STF-CME, discrete LTF-CME, and dis-
crete RT-CME algorithms except for Steps 2 and 3 in discrete
STF-CME algorithm since discrete STF-RC, discrete LTF-RC, and
discrete RT-RC algorithms assign each task to a randomly selected
computer.

5. Simulations and performance analyses

Traditionally, computers use maximum speeds for real appli-
cations. Six conventional task scheduling algorithms, which
correspond to the six new green task scheduling algorithms by
using maximum speeds, are proposed: (1) Shortest Task First for
Computer with Minimum Energy and Maximum Speeds (STF-
CME-MS) algorithm, (2) Longest Task First for Computer with
Minimum Energy and Maximum Speeds (LTF-CME-MS) algo-
rithm, (3) Random Task for Computer with Minimum Energy
and Maximum Speeds (RT-CME-MS) algorithm, (4) Shortest Task
First for Random Computer and Maximum Speeds (STF-RC-
MS) algorithm, (5) Longest Task First for Random Computer
and Maximum Speeds (LTF-RC-MS) algorithm, and (6) Random
Task for Random Computer and Maximum Speeds (RT-RC-MS)
algorithm.

Similarly, six conventional task scheduling algorithms with dis-
crete speeds are proposed: (1) discrete STF-CME-MS algorithm,
(2) discrete LTF-CME-MS algorithm, (3) discrete RT-CME-MS algo-
rithm, (4) discrete STF-RC-MS algorithm, (5) discrete LTF-RC-MS
algorithm, and (6) discrete RT-RC-MS algorithm.

The energy reduction percentage is defined by S = ((Ems —
E)/Eps) x 100% where Eys is the energy generated by an algo-
rithm with maximum speeds (i.e. STF-CME-MS, LTF-CME-MS,
RT-CME-MS, STF-RC-MS, LTF-RC-MS, RT-RC-MS, or discrete STF-
CME-MS, discrete LTF-CME-MS, discrete RT-CME-MS, discrete
STF-RC-MS, discrete LTF-RC-MS, and discrete RT-RC-MS), and
where E is the energy calculated by an algorithm using opti-
mal continuous or discrete speeds (i.e. STF-CME, LTF-CME,
RT-CME, STF-RC, LTF-RC, RT-RC, or discrete STF-CME, discrete LTF-
CME, discrete RT-CME, discrete STF-RC, discrete LTF-RC, discrete
RT-RC).

All algorithms are implemented in Java. For every simulation,
the number of instructions for task k (I;), a;, b;, G;, and «; are ran-
domly generated. 1000 <[, <11,000 for k=1, 2, ..., m;, a;=10+pu
and b;=50+pu for p is a random number between 0 and 20k,
1000 <(; <1500, and 3 <a;<4 for i=1, 2, ..., n. For computer i,
N speed levels are calculated as S;'{ =a; + g((b; — a;)/(N — 1)) for
g=0,1, ..., N-1. N=10 for each simulation. In order to produce

L.M. Zhang et al. / Sustainable Computing: Informatics and Systems 3 (2013) 109-118

statistically reliable results, every result is an average of 100
random simulations [22,23].

5.1. Comparing algorithms based on energy consumption

5.1.1. Energy-efficient task scheduling algorithms with
continuous speeds

Tables 1-6 show the energy consumption (in J) for a deadline
T (in s). 100 tasks and 5 computers are used in Tables 1 and 2,
500 tasks and 10 computers are used in Tables 3 and 4, and
1000 tasks and 20 computers are used in Tables 5 and 6 [22].
Tables 7 and 8 show the overall average energy values calculated
by using Tables 1-6 based on the number of computers and the
number of tasks. From Table 7, STF-CME, LTF-CME, and RT-CME
algorithms are more effective than STF-RC, LTF-RC, and RT-RC algo-
rithms in terms of average energy consumption.

Table 1

Energy consumption (10'2) for STF-CME, LTF-CME, and RT-CME.
T(s) STE-CME (J) LTE-CME (J) RT-CME ()
2500 2.2413 2.2557 2.2534
3000 1.7027 1.7079 1.7081
3500 1.3479 1.3522 1.3526
4000 1.1608 1.1618 1.1619
4500 0.9525 0.9553 0.9547
5000 0.8993 0.9030 0.9027
5500 0.7542 0.7567 0.7571
6000 0.6863 0.6870 0.6875

Table 2

Energy consumption (10'?) for STF-RC, LTF-RC, and RT-RC.
T(s) STE-RC (J) LTF-RC (J) RT-RC (J)
2500 2.1408 2.1418 2.1428
3000 1.6622 1.6676 1.6647
3500 1.3655 1.3479 1.3615
4000 1.2349 1.2265 1.2296
4500 1.0506 1.0450 1.0482
5000 1.1001 1.1009 1.0990
5500 0.9879 0.9719 0.9810
6000 0.9455 0.9313 0.9396

Table 3

Energy consumption (10'3) for STF-CME, LTF-CME, and RT-CME.
T(s) STF-CME (J) LTF-CME (]) RT-CME (J)
4600 2.7597 2.7532 2.7553
4700 2.6952 2.6990 2.6994
4800 2.5361 2.5353 2.5367
4900 2.4745 2.4746 2.4751
5000 2.5805 2.5863 2.5864
5100 2.4153 2.4168 24175
5200 2.2796 2.2816 2.2816
5300 2.2389 2.2474 2.2472

Table 4

Energy consumption (10'3) for STF-RC, LTF-RC, and RT-RC.
T(s) STE-RC (J) LTE-RC (J) RT-RC (J)
4600 2.6648 2.6628 2.6598
4700 2.5886 2.5778 2.5842
4800 2.4979 2.4869 2.4854
4900 2.4877 2.4754 2.4790
5000 2.6166 2.6233 2.6219
5100 2.4895 2.4834 2.4885
5200 2.4429 2.4169 2.4222
5300 2.3293 2.3167 23173

L.M. Zhang et al. / Sustainable Computing: Informatics and Systems 3 (2013) 109-118 113

Table 5
Energy consumption (10'4) for STF-CME, LTF-CME, and RT-CME.

T(s) STF-CME (J) LTF-CME (]) RT-CME (J)

2800 1.9893 1.9873 1.9886

2900 1.9052 1.9001 1.9017

3000 1.7928 1.7931 1.7942

3100 1.6987 1.7021 1.7026

3200 1.5950 1.5968 1.5976

3300 1.5307 1.5309 1.5313

3400 1.4470 1.4475 1.4474

Table 6
Energy consumption (10'#) for STF-RC, LTF-RC, and RT-RC.

T(s) STF-RC (J) LTF-RC (]) RT-RC (J)

2800 2.1443 2.1192 2.1300

2900 2.0698 2.0560 2.0527

3000 1.9983 1.9889 1.9811

3100 1.9138 1.8999 1.8969

3200 1.8581 1.8448 1.8492

3300 1.7846 1.7706 1.7679

3400 1.7025 1.6988 1.7016

Table 7
Average energy consumption (10'?) for STF-CME, LTF-CME, and RT-CME.

No. of tasks STF-CME (J) LTF-CME (J) RT-CME (J)
100 1.2181 1.2224 1.2222
500 24.9748 24.9928 24.9990

1000 170.8386 170.8257 170.9057

Table 8
Average energy consumption (10'2) for STF-RC, LTF-RC, and RT-RC.

No. of tasks STF-RC (J) LTF-RC (J) RT-RC (J)
100 1.3109 1.3041 1.3083
500 25.1466 25.0540 25.0729

1000 192.4486 191.1171 191.1343

5.1.2. Energy-efficient task scheduling algorithms with discrete

speeds
Tables 9-14 show the energy consumption (in J) for a deadline

T (in s). 100 tasks and 5 computers are used in Tables 9 and 10,
500 tasks and 10 computers are used in Tables 11 and 12, and

Table 9
Energy consumption (10°) for Discrete STF-CME, Discrete LTF-CME, and Discrete
RT-CME.

T(s) Discrete STF-CME (J) Discrete LTF-CME (J) Discrete RT-CME (J)
3000 12.864 12.883 11.978
4000 11.365 11.457 10.725
5000 7.892 7.893 7.857
6000 6.590 6.574 6.536
7000 5323 5.273 5.276
8000 4.421 4.378 4.379
9000 3.712 3.687 3.687

10,000 3.206 3.186 3.186

Table 10

Energy consumption (10°) for Discrete STF-RC, Discrete LTF-RC, and Discrete RT-RC.

T(s) Discrete STF-RC (J) Discrete LTF-RC (]) Discrete RT-RC (J)
3000 12.911 12.201 12.925
4000 11.250 10.693 11.120
5000 8.732 8.367 8.672
6000 8.427 8.174 8.330
7000 7.823 7.727 7.806
8000 7.348 7.304 7.317
9000 6.527 6.558 6.508
10,000 6.740 6.871 6.959

Table 11
Energy consumption (10'") for Discrete STF-CME, Discrete LTF-CME, and Discrete
RT-CME.

T(s) Discrete STF-CME (J) Discrete LTF-CME (J) Discrete RT-CME (])
6000 2.260 2.245 2.185
7000 1.795 1.791 1.772
8000 1.435 1.427 1.424
9000 1.324 1.320 1.321
10,000 1.055 1.049 1.050
11,000 0.891 0.887 0.888
12,000 0.815 0.813 0.813
13,000 0.702 0.700 0.699

Table 12

Energy consumption (10'") for Discrete STF-RC, Discrete LTF-RC, and Discrete RT-RC.

T(s) Discrete STF-RC (J) Discrete LTF-RC (J) Discrete RT-RC (J)
6000 2.406 2.361 2.387
7000 2.052 2.032 2.027
8000 1.830 1.817 1.826
9000 1.804 1.797 1.795
10,000 1.663 1.673 1.678
11,000 1.539 1.530 1.538
12,000 1.584 1.581 1.572
13,000 1.525 1.509 1.529
Table 13

Energy consumption (10'2) for Discrete STF-CME, Discrete LTF-CME, and Discrete
RT-CME.

T(s) Discrete STF-CME (J) Discrete LTF-CME (]) Discrete RT-CME (J)

3000 2.130 2.125 2.101
4000 1.354 1.348 1.349
5000 0.966 0.964 0.965
6000 0.757 0.755 0.756
7000 0.569 0.568 0.568
8000 0.499 0.498 0.498
9000 0.418 0.417 0417
Table 14

Energy consumption (10'2) for Discrete STF-RC, Discrete LTF-RC, and Discrete RT-RC.

T(s) Discrete STF-RC (J) Discrete LTF-RC (J) Discrete RT-RC (J)
3000 2.286 2.245 2.264
4000 1.713 1.695 1.700
5000 1.478 1.474 1.469
6000 1.376 1.367 1.364
7000 1.268 1.264 1.265
8000 1.275 1.274 1.270
9000 1.272 1.268 1.270

1000 tasks and 20 computers are used in Tables 13 and 14.
Tables 15 and 16 show the overall average energy values calculated
by using Tables 9-14 based on the number of computers and the
number of tasks. From Tables 15 and 16, discrete STF-CME, discrete
LTF-CME, and discrete RT-CME algorithms are more effective than
discrete STF-RC, discrete LTF-RC, and discrete RT-RC algorithms in
terms of average energy consumption.

5.2. Comparing algorithms based on energy reduction
percentages

5.2.1. Energy-efficient task scheduling algorithms with
continuous speeds

Tables 17-20 show the energy reduction percentages for the
algorithms. When a; =10+ p and b; =50+ u for w is a random num-
ber between 0 and 20k for k=1, 2, ..., m;, Tables 17 and 18 show
that STF-CME, LTF-CME, RT-CME, STF-RC, LTF-RC, and RT-RC algo-
rithms using optimal continuous speeds are more effective than
conventional STF-CME-MS, LTF-CME-MS, RT-CME-MS, STF-RC-MS,

114 L.M. Zhang et al. / Sustainable Computing: Informatics and Systems 3 (2013) 109-118

Table 15
Average energy consumption (10°) for Discrete STF-CME, Discrete LTF-CME, and
Discrete RT-CME.

Table 21
Energy reduction percentages for discrete STF-CME, discrete LTF-CME, and discrete
RT-CME.

No. of Tasks Discrete Discrete Discrete
STF-CME (J) LTF-CME (J) RT-CME (J)
100 6.922 6.916 6.703
500 128.5 127.9 126.9
1000 956.1 953.6 950.6
Table 16

Average energy consumption (10%) for Discrete STR-RC, Discrete LTF-RC, and Dis-
crete RT-RC.

No. of tasks Discrete STF-RC (J) Discrete LTF-RC (J) Discrete RT-RC (J)
100 8.720 8.487 8.705
500 180.0 178.8 1794
1000 1524 1512 1515
Table 17

Energy reduction percentages for STF-CME, LTF-CME, and RT-CME using Optimal
Continuous Speeds.

No. of tasks T(s) STF-CME (%) LTF-CME (%) RT-CME (%)
100 2500 98.042 98.051 97.631
500 5000 98.570 99.227 98.969
1000 3000 98.414 99.235 98.924
Table 18

Energy reduction percentages for STF-RC, LTF-RC, and RT-RC using Optimal Contin-
uous Speeds.

No. of tasks T(s) STEF-RC (%) LTF-RC (%) RT-RC (%)
100 2500 97.605 97.818 97.624
500 5000 98.838 98.907 98.865

1000 3000 98.654 98.960 98.757

Table 19

Energy reduction percentages for STF-CME, LTF-CME, and RT-CME with a Speed
Difference of 10.

No. of tasks T(s) STF-CME (%) LTF-CME (%) RT-CME (%)
100 6500 96.362 96.762 96.601
500 15,000 98.279 98.476 98.408
1000 3000 98.120 98.390 98.287
Table 20

Energy reduction percentages for STF-RC, LTF-RC, and RT-RC with a Speed Difference
of 10.

No. of tasks T(s) STF-RC (%) LTF-RC (%) RT-RC (%)
100 6500 96.600 96.627 96.610
500 15,000 98.423 98.439 98.425

1000 3000 98.316 98.336 98.317

LTF-RC-MS, and RT-RC-MS algorithms using maximum speeds in
reducing energy consumptions [22].

When a;=10+7n and b;=20+n for n is a random number
between 0 and 5 for k=1, 2, ..., m;, Tables 19 and 20 with a
speed difference of 10 show energy reduction percentages of at
least 96%, which are very close to those of at least 97% shown in
Tables 17 and 18 with a speed difference of 40. This also indicates
that the new algorithms are more effective than the conventional
ones.

No. of tasks Discrete STF-CME (%) Discrete LTF-CME (%) Discrete RT-CME (%)

100 96.712 97.012 97.261

500 98.642 99.235 99.060

1000 98.765 99.376 99.172
Table 22

Energy reduction percentages for discrete STF-RC, discrete LTF-RC, and discrete RT-
RC.

No. of tasks Discrete STF-RC (%) Discrete LTF-RC (%) Discrete RT-RC (%)
100 96.775 96.295 96.639
500 98.573 98.670 98.620

1000 98.458 98.649 98.536

5.2.2. Energy-efficient task scheduling algorithms with discrete
speeds

Tables 21 and 22 show that discrete STF-CME, discrete LTF-CME,
discrete RT-CME, discrete STF-RC, discrete LTF-RC, and discrete
RT-RC algorithms are more effective than conventional discrete
STF-CME-MS, discrete LTF-CME-MS, discrete RT-CME-MS, discrete
STF-RC-MS, discrete LTF-RC-MS, and discrete RT-RC-MS algo-
rithms, which use maximum speeds.

5.3. Hybrid algorithms

5.3.1. Energy-efficient task scheduling algorithms with
continuous speeds
From Tables 1-6, the algorithm with the best task schedule

varies under different conditions. For example, Table 2 shows that
STF-RC is the best in two cases, LTF-RC is the best in five cases, and
RT-RC is the best in one case. Thus, a hybrid algorithm for contin-
uous speeds is developed to obtain the overall best task schedule
among the six heuristic task schedules. It is shown below.
Begin

Step 1: Perform RT-CME algorithm.

Step 2: Perform LTF-CME algorithm.

Step 3: Perform STF-CME algorithm.

Step 4: Perform LTF-RC algorithm.

Step 5: Perform RT-RC algorithm.

Step 6: Perform STF-RC algorithm.

Step 7: Output the final successful task assignment with the minimum

energy among six successful task assignments from Steps 1-6.
End

5.3.2. Energy-efficient task scheduling algorithms with discrete
speeds

From Tables 9-15, the algorithm with the best task schedule
varies under different conditions. Thus, a hybrid algorithm for dis-
crete speeds is developed to obtain the overall best task schedule.

It is shown below.
Begin
Step 1: Perform discrete RT-CME algorithm.
Step 2: Perform discrete LTF-CME algorithm.
Step 3: Perform discrete STF-CME algorithm.
Step 4: Perform discrete LTF-RC algorithm.
Step 5: Perform discrete RT-RC algorithm.
Step 6: Perform discrete STF-RC algorithm.
Step 7: Output the final successful task assignment with the minimum
energy among six successful task assignments from Steps 1-6.
End

5.4. Comparing algorithms based on deadline T (for
energy-efficient task scheduling algorithms with continuous
speeds)

From Fig. 1, STF-RC performs better than STF-CME when T is
less than about 3300. This observation is true for both LTF-RC from

L.M. Zhang et al. / Sustainable Computing: Informatics and Systems 3 (2013) 109-118

S 250E+12
= 2008412 N
£ TN
2. 1.50E+12 LTF-
B \A CME
E 1.00E+12 LTF-
S RC
O 5.00E+11
>
=]
5 0.00E+00 ! ! ! ! ! ! !
5 2500 3000 3500 4000 4500 5000 5500 6000
Deadline T (s)

Fig. 2. LTF-CME vs. LTF-RC (100 tasks).
= 250E+12
o 2.00E+12
= R +
‘g \ RT-
E. 1.50E+12 CME
2 100E+12 ————\————% ———RT
S 5.00E+11 RC
& 0.00E+00 I | 1l -
g 2500 3000 3500 4000 4500 5000 5500 6000
= Deadline 7 (s)

Fig. 3. RT-CME vs. RT-RC (100 tasks).
S 300E+13
Lg 2.50E+13
-% 2.00E+13 STF-
§ 1.50E+13 CME
£ 100E+13 STF-
&} RC
. S500E+12
20
8 0.00E+00 . . ! ! ! ! !
=) 4600 4700 4800 4900 5000 5100 5200 5300

Deadline T (s)

Fig. 4. STF-CME vs. STF-RC (500 tasks).

Fig. 2 and RT-RC from Fig. 3. The reason is that when T is very small,
computers with large energy and those with small energy have
similar chances of getting tasks by STF-CME, so it is possible for
STF-RC to be more effective because of better task assignments on
all computers than STF-CME. This reason also applies to LTF-RC and
RT-RC.

However, STC-CME performs much better than STF-RC when T
is larger than 3300. This observation is also true for both LTF-CME
from Fig. 2 and RT-CME from Fig. 3. As the deadline increases, STC-
CME assigns fewer tasks to the computer with high energy, but
STF-RC equally assigns tasks to all computers. This fact applies to
LTF-RC and RT-RC. Thus, total energy consumption when as many
tasks as possible are given to the computer with lowest energy is
much less than that when tasks are assigned to randomly selected
computers.

From Fig. 4, STF-RC performs better than STF-CME when T is
less than about 4880. This observation is true for LTF-RC from Fig. 5
and RT-RC from Fig. 6. However, from Fig. 7, STF-CME always per-
forms better than STF-RC. The reason may be that there is a very
small probability for STF-RC to assign tasks to computers with lower
energy as the number of computers is increased to 20 and the num-
ber of tasks is increased to 1000, respectively. This finding is true
for LTF-CME from Fig. 8 and RT-CME from Fig. 9.

The energy consumption difference between STF-RC and STF-
CME also increases as the deadline T increases, indicating that
STF-CME becomes increasingly more effective than STF-RC when
the deadline passes a certain point. This is also true for LTF-RC and

Energy Consumption E (J) Energy Consumption E (J)

Energy Consumption E (J)

Energy Consumption E (J)

Energy Consumption E (J)

115
3.00E+13
2.50E+13 ————
2.00E+13 LTF-
1.50E+13 CME
LTF-
1.00E+13 RC
5.00E+12
0.00E+00 T T T T T T 1
4600 4700 4800 4900 5000 5100 5200 5300
Deadline T (s)
Fig. 5. LTF-CME vs. LTF-RC (500 tasks).
3.00E+13
2.50E+13 e
2.00E+13
———RT-
1.50E+13 CME
1.00E+13 ———RT-
5.00E+12 RC
0.00E+00 T T T T T T 1
4600 4700 4800 4900 5000 5100 5200 5300
Deadline 7 (s)
Fig. 6. RT-CME vs. RT-RC (500 tasks).
2.50E+14
2.00E+14
1.50E+14 STF-
CME
1.00E+14
STF-
5.00E+13 RC
0.00E+00 T T T T T 1
2800 2900 3000 3100 3200 3300 3400
Deadline T (s)
Fig. 7. STF-CME vs. STF-RC (1000 tasks).
2.50E+14
2.00E+14
1.50E+14 LTF-
1.00E+14 CME
———— LTF-
5.00E+13 RC
0.00E+00 T T T T T 1
2800 2900 3000 3100 3200 3300 3400
Deadline T (s)
Fig. 8. LTF-CME vs. LTF-RC (1000 tasks).
2.50E+14
2.00E+14
1.50E+14 RT-
CME
1.00E+14 - RT-
RC
5.00E+13
0.00E+00 T T T T T 1
2800 2900 3000 3100 3200 3300 3400

Deadline T (s)

Fig. 9. RT-CME vs. RT-RC (1000 tasks).

116 L.M. Zhang et al. / Sustainable Computing: Informatics and Systems 3 (2013) 109-118

Table 23
Energy reduction percentages f3 for o; = 3.
S;/b; 0.1 0.3 0.5 0.7 0.9
99% 91% 75% 51% 19%

LTF-CME and RT-RC and RT-CME. Furthermore, each energy curve
generally slopes downward because as the deadline increases,
there is more time for each computer’s speed to be further
reduced.

5.5. Theoretical analysis (for energy-efficient task scheduling
algorithms with continuous speeds)

When the optimal speed is §; = maximum (a;, >, (RL/T) for
computer i, we have

Ems — Eos
B :MEi
Ms

n m; i1 m;
O LGRS S GRS

i i iRl by 1“‘*l

Hence, B = ([bil% " = 517)/ Ibi]% ! x 100% = (1 —
(Si/b;)a’ 1) x 100%. The minimum of B is 0% when S; = b;, and the
maximum of B is (1 — (a;/b;)* ') x 100% when §; = a;. Table 23
shows a few values for 8. From Table 23, the smaller S;/b; is, the
more energy is reduced. When S;/b; = 0.9, B = 19%, which is still
a significant percentage of energy reduction [22].

x 100%

5.6. Experimental analysis

5.6.1. Energy-efficient task scheduling algorithms with
continuous speeds

Fig. 10 summarizes all data in Tables 1-6 and includes the data
produced by the hybrid algorithm. These results are statistically
valid because each value in Tables 1-8 and 17-20 is an average
of 100 random simulation results, and different conditions (the
deadline, the number of tasks, and the number of computers) are
used for a sufficient number of simulations. It is clear that STF-CME,
LTF-CME, and RT-CME are more effective than STF-RC, LTF-RC, and
RT-RC. The method of assigning tasks to the computer with lower
energy reduces more energy consumption than that of assigning
tasks randomly to any computer. Fig. 10 shows the algorithms
ranked (best to worst) as Hybrid, RT-CME, LTF-CME, STF-CME, LTF-
RC, RT-RC, and STF-RC.

5.6.2. Energy-efficient task scheduling algorithms with discrete
speeds

Fig. 11 summarizes all data in Tables 9-14 and includes the data
produced by the discrete hybrid algorithm. These results are statis-
tically valid because each value in Tables 9-16 and 21 and 22 is an
average of 100 random simulation results, and different conditions
(the deadline, the number of tasks, and the number of computers)

1.7031E+12
1.6993E+12 1.7127E+12

1.0884E+12
1.0842E+12

’ 1.0915E+12
3 3560E+11 I I I

& & & &
3 ,c & & &' <¢'
AP & & TN A

Energy Consumption E ()

Fig. 10. Average energy consumption for Tables 1-6.

6.7335E+13
6.7774E+13 6.7341E+13

6.1105E+13

6.1136E+13
6.0953E+13 6.1109E+13
QCJ <

Energy Consumption E (J)

N ¢
z?z' & ‘\Q &Q \(} zQ. é
& %Q. N) x& & X%
& & o & s & &
R R R
9

Fig. 11. Average energy consumption for Tables 9-14.

are used for a sufficient number of simulations. It is clear that dis-
crete STF-CME, discrete LTF-CME, and discrete RT-CME can save
more energy on average than discrete STF-RC, discrete LTF-RC, and
discrete RT-RC. The method of assigning tasks to the computer
with lower energy reduces more energy consumption than that
of assigning tasks randomly to any computer. Fig. 11 shows the
algorithms ranked (best to worst) as discrete Hybrid, discrete RT-
CME, discrete LTF-CME, discrete STF-CME, discrete LTF-RC, discrete
RT-RC, and discrete STF-RC.

6. Conclusions and future works

For heterogeneous computers with continuous speeds, seven
new energy-efficient task scheduling algorithms are successfully
developed to substantially decrease energy usage and finish all
tasks before a deadline. Different results from simulations under
various conditions indicate that the overall best algorithm is the
hybrid algorithm.

For heterogeneous computers with discrete speeds, seven new
energy-efficient task scheduling algorithms are also successfully
developed to reduce energy consumption and finish all tasks before
a deadline. Various results from simulations under different condi-
tions indicate that the discrete hybrid algorithm is the overall best
algorithm.

This paper presents new energy-efficient task scheduling algo-
rithms for both continuous and discrete processor speeds with
detailed simulation and analyses. Based on the simulation results,
the hybrid algorithm outperforms others for both continuous and
discrete speeds.

In the future, a new energy-efficient task scheduling algorithm
using discrete speeds will generate all N" speed permutations if N"
is small in order to find the best discrete speed permutation or will
generate a large number of discrete speed permutations if N is too
large in order to effectively find a better discrete speed permutation
than the current discrete hybrid algorithm. In addition, a novel dis-
crete energy-efficient task scheduling algorithm for homogeneous
microcontrollers will be incorporated into embedded software to
increase the battery lifetime for mobile devices [19-21].

The future energy-efficient task scheduling algorithms with
intelligent heuristics will be integrated into a myriad of practical
applications ranging from a small scale such as mobile devices, to
a large scale such as data centers and cloud computing systems.
These new energy-efficient algorithms will have a globally posi-
tive impact on building a more energy-efficient society, making a
cleaner environment, and creating a greener world.

Further questions to be studied remain. The first is finding the
best task assignment among an enormous number of successful
task assignments. The second is finding the best speeds of all het-
erogeneous cloud servers among a huge number of speed levels.
The third is determining C; and «; for E = Zl 1 ;?' CRI [S‘]
through practical experiments and statistical data analy51s

L.M. Zhang et al. / Sustainable Computing: Informatics and Systems 3 (2013) 109-118 117

Moreover, new effective task scheduling algorithms with intel-
ligent heuristics will be developed for data centers and cloud
computing systems. Real simulations will be conducted to evaluate
the future energy-efficient task scheduling algorithms.

References

[1] K.Li, Performance analysis of power-aware task scheduling algorithms on mul-
tiprocessor computers with dynamic voltage and speed, IEEE Transactions on
Parallel and Distributed Systems 19 (11) (2008) 1484-1497.

[2] Technical Area of Green Computing, IEEE Technical Committee on
Scalable Computing (TCSC). Available: http://sites.google.com/site/
greencomputingproject/

[3] Report to Congress on Server and Data Center Energy Efficiency: Public Law
109-431, U.S. Environmental Protection Agency ENERGY STAR Program, August
2,2007.

[4] Efficilent Computing. Available: http://www.google.com/corporate/green/
datacenters/

[5] Save energy. Save money. Make a difference. Available: http://www.google.
com/powermeter/about/index.html

[6] S. Ryan, General Electric Saves nearly $6.5M with Computer Power Manage-
ment Features, US EPA ENERGY STAR, Program 202-343-9123.

[7] Green Computing: A CoSN Leadership Initiative. Available: http://www.cosn.
org/Initiatives/GreenComputing/InterestingFacts/tabid/4639/Default.aspx

[8] M. Nielsen, A. Kucera, P.B. Miltersen, C. Palamidessi, P. Tuma, F. Valencia (Eds.),
SOFSEM 2009: Theory and Practice of Computer Science 35th Conference on
Current Trends in Theory and Practice of Computer Science, Spindleruv Miyn,
Czech Republic, January 24-30, 2009. Proceedings, Springer, Berlin/Heidelberg,
2009.

[9] H. Cademartori, Green Computing Beyond the Data Center, 2007. Available:
http://www.powersavesoftware.com/Download/PS_-WP_GreenComputing_
EN.pdf

[10] S. Albers, Energy-efficient algorithms, Communications of the ACM 53 (May
(5)) (2010) 86-96.

[11] V.T.D. Truong, Y. Sato, Y. Inoguchi, Performance evaluation of a green sched-
uling algorithm for energy savings in cloud computing, in: Proc. 2010 IEEE
International Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), April, 2010, pp. 1-8.

[12] A.Kamthe, S.-Y. Lee, Stochastic approach to scheduling multiple divisible tasks
on a heterogeneous distributed computing system, in: Proc. IEEE International
Parallel and Distributed Processing Symposium, 2007, pp. 1-11.

[13] L.K.Goh,B.Veeravalli, S. Viswanathan, Design of fast and efficient energy-aware
gradient-based scheduling algorithms for heterogeneous embedded multipro-
cessor systems, IEEE Transactions on Parallel and Distributed Systems 20 (1)
(2009) 1-12.

[14] N.B. Rizvandi, J. Taheri, AY. Zomaya, Y.C. Lee, Linear combinations of
DVFS-enabled processor frequencies to modify the energy-aware scheduling
algorithms, in: Proc.10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, 2010, pp. 388-397.

[15] N.B.Rizvandi, J. Taheri, A.Y. Zomaya, Some observations on optimal frequency
selection in DVFS-based energy consumption minimization, Journal of Parallel
and Distributed Computing 71 (8) (2011) 1154-1164.

[16] Y. Shin, K. Chois, T. Sakurait, Power optimization of real-time embedded sys-
tems on variable speed processors, in: IEEE/ACM International Conference on
Computer Aided Design, 2000, pp. 365-368.

[17] Y.C. Lee, AY. Zomaya, On effective slack reclamation in task scheduling for
energy reduction, Journal of Information Processing Systems 5 (4) (2009)
175-186.

[18] D. Zhu, R. Melhem, B.R. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems, IEEE
Transactions on Parallel and Distributed Systems 14 (7) (2003) 686-700.

[19] Embedded Systems. Available: http://cse.spsu.edu/clo/gLab/
EmbeddedSystems.htm

[20] C.-O. Lee, M. Lee, D. Han, Energy-efficient location logging for mobile device,
in: Proc. 2010 10th [EEE/IPS] International Symposium on Applications and the
Internet (SAINT), 2010, pp. 84-90.

[21] J.E.M. Bernal, L. Ardito, M. Morisio, P. Falcarin, Towards an efficient context-
aware system: problems and suggestions to reduce energy consumption in
mobile devices, in: Proc. 2010 Ninth International Conference on Mobile Busi-
ness and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), 2010, pp.
510-514.

[22] L.M. Zhang, K. Li, Y.-Q. Zhang, Green task scheduling algorithms with speeds
optimization on heterogeneous cloud servers, in: Proc. of 2010 IEEE/ACM
International Conference on Green Computing and Communications (Green-
Com2010), Hangzhou, December 18-20, 2010, pp. 76-80.

[23] L.M. Zhang, K. Li, Y.-Q. Zhang, Green task scheduling algorithms with energy
reduction on heterogeneous computers, in: Proc. of 2010 International Con-
ference on Progress in Informatics and Computing (PIC-2010), Shanghai,
December 10-12, 2010, pp. 560-563.

[24] MATH2640 Introduction to Optimisation: 4. Inequality Constraints,
Complementary slackness condition, Maximisation and Minimisation,
Kuhn-Tucker method: summary, http://www.maths.leeds.ac.uk/~cajones/
math2640/notes4.pdf

[25] Google green: big picture. Available: http://www.google.com/green/

Luna Mingyi Zhang, a John McMullen Dean’s Scholar,
is a 2nd year undergraduate student studying Computer
Science in the College of Engineering at Cornell Univer-
sity. Already, she has 4 paper publications at international
conferences; many of them have been cited by at least
10 other researchers. Currently, she serves as a reviewer
for the Elsevier journal Sustainable Computing: Informat-
ics and Systems and also an editor of The Research Paper
(Cornell’s Undergraduate Research Magazine). At Cornell,
she is a member of the Cornell Undergraduate Research
Board (CURB), the Cornell Student Section of the Society
of Women Engineers (Cornell SWE), and the Association
of Computer Science Undergraduates (Cornell ACSU). Fur-
thermore, she was honored as an individual semifinalist in the 2010-11 Siemens
Competition in Math, Science & Technology for her research on green computing.
She conducted research at Georgia State University for about 3 years (2009-2012)
and also completed a 5-month research internship at Southern Polytechnic State
University in 2010. Her current research interests include green computing, arti-
ficial intelligence, data mining, and optimization; however, she is always open to
new fields of interest in computer science. She plans to attend graduate school and
hopes to then become a university professor in computer science in addition to
encourage more women to pursue professional careers in computer science and
engineering.

Keqin Li is a SUNY Distinguished Professor of computer
science and an Intellectual Ventures endowed visiting
chair professor at the National Laboratory for Informa-
tion Science and Technology, Tsinghua University, Beijing,
China. His research interests are mainly in design and
analysis of algorithms, parallel and distributed computing,
and computer networking. He has contributed exten-
sively to processor allocation and resource management;
design and analysis of sequential/parallel, determinis-
tic/probabilistic, and approximation algorithms; parallel
and distributed computing systems performance analysis,
prediction, and evaluation; job scheduling, task dispatch-
ing, and load balancing in heterogeneous distributed
systems; dynamic tree embedding and randomized load distribution in static
networks; parallel computing using optical interconnections; dynamic location
management in wireless communication networks; routing and wavelength assign-
ment in optical networks; energy-efficient computing and communication. Dr. Li has
published over 245 journal articles, book chapters, and research papers in refereed
international conference proceedings. He has received several Best Paper Awards for
his highest quality work. He is currently or has served on the editorial board of IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Comput-
ers, Journal of Parallel and Distributed Computing, International Journal of Parallel,
Emergent and Distributed Systems, International Journal of High Performance Com-
puting and Networking, and Optimization Letters.

== Dan Chia-Tien Lo received the Ph.D. degree in computer
science from Illinois Institute of Technology, Chicago,
the M.S. degree in Electrical Engineering from National
Taiwan University, Taiwan and the B.S. degree in Applied
Mathematics from National Chung-Hsing University,
Taiwan in 2001, 1992 and 1990, respectively. In 2002, he
joined the department of computer science at University
of Texas at San Antonio, San Antonio, Texas, as an assistant
professor. After 2009, he has been with Southern Polytech-
nic State University. He started his teaching career in 1999
and courses he has taught include the Unix Systems Pro-
gramming, Computer Architecture, Computer Network,
Algorithms, and Programming Languages. His research
interests include VLSI Design, Operating Systems, Neural Networks, Concurrent
Algorithms, Computer Networks, Computer Architecture, and Computing Theory.
His current research thrusts are Reconfigurable Computing, Computer Science Edu-
cation, FPGA-Based Computation, Hardware-Based Network Intrusion Detection,
and Low-power Embedded Systems.

Yanqing Zhang is Professor of the Computer Science
Department at Georgia State University, Atlanta, USA.
He received B.S. and M.S. in computer science from
Tianjin University in China in 1983 and 1986, respec-
tively, and Ph.D. in computer science from the University
of South Florida in USA in 1997. His research inter-
ests include hybrid intelligent systems, green computing,
computational intelligence, machine learning, data min-
ing, bioinformatics, health informatics, computational
Web intelligence, Yin-Yang computation, nature-inspired
computing, security, game theory and cloud computing.
He has co-authored two books, co-edited two books and
four conference proceedings. He published 18 book chap-
ters, 77 journal papers and 147 conference/workshop papers. He is Managing Editor
of International Journal of Functional Informatics and Personalised Medicine. He is
Program Co-Chair of the 2013 IEEE/ACM/WIC International Conference on Web

http://sites.google.com/site/greencomputingproject/
http://sites.google.com/site/greencomputingproject/
http://www.google.com/corporate/green/datacenters/
http://www.google.com/corporate/green/datacenters/
http://www.google.com/powermeter/about/index.html
http://www.google.com/powermeter/about/index.html
http://www.cosn.org/Initiatives/GreenComputing/InterestingFacts/tabid/4639/Default.aspx
http://www.cosn.org/Initiatives/GreenComputing/InterestingFacts/tabid/4639/Default.aspx
http://www.powersavesoftware.com/Download/PS_WP_GreenComputing_EN.pdf
http://www.powersavesoftware.com/Download/PS_WP_GreenComputing_EN.pdf
http://cse.spsu.edu/clo/gLab/EmbeddedSystems.htm
http://cse.spsu.edu/clo/gLab/EmbeddedSystems.htm
http://www.maths.leeds.ac.uk/~cajones/math2640/notes4.pdf
http://www.maths.leeds.ac.uk/~cajones/math2640/notes4.pdf
http://www.google.com/green/

118 L.M. Zhang et al. / Sustainable Computing: Informatics and Systems 3 (2013) 109-118

Intelligence. He was Program Co-Chair of 2009 International Symposium on Bioin-
formatics Research and Applications, Program Co-Chair and Bioinformatics Track
Chair of IEEE 7th International Conference on Bioinformatics & Bioengineering and
Program Co-Chair of 2006 IEEE International Conference on Granular Computing.

He received Outstanding Academic Service Award at IEEE 7th International Confer-
ence on Bioinformatics & Bioengineering, Achievement Award of the 2007 World
Congress in Computer Science, Computer Engineering and Applied Computing, and
2005 IEEE-Granular Computing Outstanding Service Award at 2005 IEEE Interna-
tional Conference on Granular Computing.

	Energy-efficient task scheduling algorithms on heterogeneous computers with continuous and discrete speeds
	1 Introduction
	2 Definitions and parameters
	3 Energy-efficient task scheduling algorithms with continuous speeds
	4 Energy-efficient task scheduling algorithms with discrete speeds
	5 Simulations and performance analyses
	5.1 Comparing algorithms based on energy consumption
	5.1.1 Energy-efficient task scheduling algorithms with continuous speeds
	5.1.2 Energy-efficient task scheduling algorithms with discrete speeds

	5.2 Comparing algorithms based on energy reduction percentages
	5.2.1 Energy-efficient task scheduling algorithms with continuous speeds
	5.2.2 Energy-efficient task scheduling algorithms with discrete speeds

	5.3 Hybrid algorithms
	5.3.1 Energy-efficient task scheduling algorithms with continuous speeds
	5.3.2 Energy-efficient task scheduling algorithms with discrete speeds

	5.4 Comparing algorithms based on deadline T (for energy-efficient task scheduling algorithms with continuous speeds)
	5.5 Theoretical analysis (for energy-efficient task scheduling algorithms with continuous speeds)
	5.6 Experimental analysis
	5.6.1 Energy-efficient task scheduling algorithms with continuous speeds
	5.6.2 Energy-efficient task scheduling algorithms with discrete speeds

	6 Conclusions and future works
	References

