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EFTR-HGNet: An Efficient Rescheduling Method
of Edge Service Tasks in Fault Scene
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Abstract—In edge computing environments, service reliability
is often threatened by the sudden failure of edge nodes due
to harsh deployment conditions, leading to task interruption
and performance degradation. To address this challenge, EFTR-
HGNet is proposed as a novel task rescheduling framework
tailored for edge-fault scenarios. It leverages heterogeneous
graph neural networks with a Transformer-based architecture
to achieve cost-efficient task migration and adaptive decision
making. Specifically, the rescheduling problem is formulated
as a Markov decision process (MDP), and a 3-D fault-aware
state representation that jointly encodes task attributes, resource
availability, and dynamic failure status is introduced. To model
the complex relationships between failed tasks and heteroge-
neous edge resources, a heterogeneous Transformer (HG-Trans)
network is designed, which performs two-stage embedding over
the constructed graph, enabling context-aware rescheduling
decisions to be made by the agent. By optimizing both the policy
and value functions within an Actor-Critic reinforcement learning
framework, our method achieves a favorable balance between
minimizing the overall Makespan and maximizing the task
rescheduling success rate. Evaluated against strong baselines like
heterogeneous earliest completion time first algorithm (HEFT),
task replication and cluster-based scheduling algorithm (TDCA),
and FixDoc, EFTR-HGNet demonstrated superior performance,
achieving a Makespan reduction of at least 11.11% and a 4.20%
increase in task rescheduling success. These results highlight its
robustness and practical potential for fault-prone edge computing
systems.

Index Terms—Edge computing, fault tolerance, heterogeneous
graph, task rescheduling.

I. INTRODUCTION

W ITH the rapid development of mobile edge computing
(MEC) technologies, computing tasks are moving from

centralized cloud processing to edge devices close to the
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data source [1] to reduce response times, data transmission
latency, and improve computing efficiency. However, edge
computing environments face many challenges due to their
inherently distributed and heterogeneous nature, especially
in terms of device failure and uncertainty [2]. Compared
with traditional centralized computing architecture, edge nodes
are often resource-constrained devices. These devices are
susceptible to problems, such as hardware damage, power
consumption limitations, and unstable network connections [3]
which will have an impact on the task being performed, and
even affect the stability of the entire system. Therefore, how
to effectively recover the interrupted task and minimize the
recovery cost becomes the key issue to ensure the performance
of MEC system in the fault scenario.

The previous scheduling methods mainly include static
scheduling and dynamic scheduling [4]. The static scheduling
method determines the scheduling scheme in advance before
the task starts to execute and does not consider the changes
during the run time [5], so it is difficult to deal with dynamic
faults. The dynamic scheduling method is adjusted according
to the actual situation of the running time and has better
adaptability [6]. However, how to migrate the interrupted task
to other nodes with minimal cost while maintaining the task
dependency after the failure in the MEC environment is still
an unsolved challenge. When the edge device fails, not only
the task execution success rate affected by the fault should
be considered, but also the task recovery time after the fault
should be minimized. In this case, it is necessary to develop
a rescheduling method that can sense task dependencies and
environment state when a fault occurs and migrate the failed
tasks to other edge devices for execution at minimal cost.

We propose an edge-fault scenario task rescheduling method
based on heterogeneous graph neural networks to solve
the dynamic task scheduling in edge-fault scenarios. Our
optimization goal is to maximize the efficiency and reliability
of the edge system for task processing. Specifically, our
strategy is designed to minimize Makespan and task response
delays while maximizing the success rate of fail-interrupt task
execution. The main contributions of this article are as follows.

1) Heterogeneous Information State Representation: A
heterogeneous graph structure is adopted for state
representation, effectively integrating multidimensional
heterogeneous information, such as task dependencies,
resource states, and fault information with low graph
density. A comprehensive state representation model
for capturing the complex nonlinear interactions among
tasks, resources and faults is constructed. A fault-tolerant
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mechanism is introduced in the state representation
to support the adaptive adjustment and recovery of
interrupted tasks, improving the intelligent decision-
making level and robustness of the scheduling system.

2) Neural Network Architecture Based on (HG-Trans):
A neural network architecture based on HG-Trans is
constructed. Information is extracted from the hetero-
geneous state graph through a two-stage embedding
process (node embedding and operation embedding).
The local and global feature relationships between het-
erogeneous nodes and edges are effectively handled to
provide a comprehensive state-aware basis for dynamic
online decision-making. Meanwhile, an optimization
objective based on the balance of dual functions of
strategy and value is designed, aiming to jointly mini-
mize task completion time and maximize rescheduling
success rate.

3) Comprehensive Experimental Validation: Through
extensive experiments in the edge simulation environ-
ment, the effectiveness of EFTR-HGNet is demonstrated
in comparison with other strong baseline scheduling
algorithms, particularly in terms of makespan, task
response delay, and task rescheduling success rate.

II. RELATED WORK

Task scheduling aims to assign tasks to appropriate comput-
ing nodes based on task dependencies and resource constraints
[7]. Currently, the scheduling of DAG tasks in distributed
heterogeneous computing environments has become a sig-
nificant area of research. Topcuoglu et al. [8] introduced
the heterogeneous earliest completion time first algorithm
(HEFT) algorithm, designed to allocate each subtask to the
server that ensures the minimum execution time. He et al. [9]
proposed a clustering algorithm based on task replication to
generate scheduling. Shen et al. [10] proposed a dependency-
aware task offloading and service caching method DTOSC
to perform DAG task offloading and service caching in
vehicle edge computing. Liu et al. [11] proposed an effective
algorithm that jointly considers task scheduling and the on-
demand functional configuration of servers to find the optimal
task scheduling. In addition to traditional heuristic DAG
scheduling methods, list-based scheduling algorithms have
been shown to be very effective in reducing Makespan under
task-dependent constraints. Hosseini Shirvani and Noorian
Talouki [12] proposed a new list scheduling algorithm based
on hybrid heuristics, which integrates critical path and priority
ranking strategies to achieve efficient task mapping in hetero-
geneous cloud computing. In order to consider the monetary
cost in scheduling, [13] transformed the workflow scheduling
problem into a two-objective optimization problem from the
perspective of maximum completion time and minimum cost.
In addition, Asghari Alaie et al. [14] realizes reliable workflow
execution by using a hybrid two-objective discrete cuckoo
search algorithm.

In contrast, learning-based algorithms, such as reinforce-
ment learning and deep learning can solve DAG scheduling
problems more efficiently. Yan et al. [15] proposed a method

based on DRL to learn optimal DAG subtask assignment. In
[16], a DAG task offloading method was proposed based on
meta-DRL. Goudarzi et al. [17] introduced the actor architec-
ture to the task assignment problem. In [18], a DRL based
joint optimization task scheduling algorithm was developed.
Geng et al. [19] proposed a multiagent network architecture
to schedule tasks. In order to effectively extract dependencies
among subtasks, Lee et al. [20] introduced graph convolu-
tional networks (GCN) for DAG task scheduling. In terms
of cloud-edge-device collaboration and intelligent scheduling,
Liang et al. [21] proposed a dynamic scheduling response
mechanism from the perspective of train control. Fan et al.
[22] considered resource heterogeneity to conduct hierarchical
collaboration on computing resources. Aiming at the load
difference problem between vehicles and roadside units, [23]
introduced deep reinforcement learning for strategy explo-
ration and resource allocation optimization. Chen et al. [24]
proposed a DAG task offloading algorithm named ACE, which
uses GCN to capture topological information of DAG subtasks.
These task scheduling methods fully consider the dependency
between tasks and the resource attributes in the distributed
environment, and can achieve a more efficient first scheduling
scheme.

However, in the actual process of task scheduling, fault
events will inevitably interrupt the execution of tasks. In this
case, if all the tasks are rescheduled without considering
existing tasks, it will inevitably waste lots of resources and
time. To deal with the situation, Lee and Gil [25] proposed a
clustering heuristic (CRCH)-based checkpoint and replication
to schedule jobs and tolerate faults in the cloud framework.
Malik et al. [26] used dynamic standby replication (LSR)
strategies to complete the fault scheduling and detection
mechanism. Du et al. [27] proposed an approach to effectively
discover fault-tolerant strategies. Reference [28] transforms
the rescheduling problem into binary nonlinear programming
and proposes a task rescheduling algorithm based on particle
swarm optimization (PSO). Du et al. [2] proposed both an
optimal approach and a heuristic method to maximize migrated
users while minimizing latency and deployment costs.

The above research provides many valuable methods for
task scheduling and fault recovery, but the heuristic method
is suitable for small-scale static scenarios, and it is easy to
fall into local optimization in dynamic environment. Although
the learning-based method can have better adaptability in
the dynamic changing environment, it often has problems,
such as high computational complexity and unstable training
process. In addition, most of the traditional fault-tolerant
scheduling methods focus on static backup or task replication
mechanism, ignoring the modeling of fault sensing state and
dynamic policy adjustment. To address the aforementioned
limitations, a heterogeneous graph neural network-based DAG
task rescheduling method for edge computing fault scenar-
ios (EFTR-HGNet) is proposed. Specifically, information is
extracted from the heterogeneous state space to achieve 3-D
representation learning of task attributes, resource states, and
fault features.By dynamically embedding fault features into the
heterogeneous graph, our method realizes coordinated repre-
sentations of task dependencies and resource states, providing
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Fig. 1. Edge network architecture.

a more comprehensive state representation for scheduling
decisions. Leveraging the online learning advantages of deep
reinforcement learning, EFTR-HGNet continuously adapts to
environmental changes to achieve adaptive task reschedul-
ing. This approach overcomes the limitations of traditional
scheduling methods in fault information fusion and dynamic
decision-making, effectively solving the problem of slow
response speed during fault recovery.

III. SYSTEM MODEL

A. Edge Network Model

The edge network model is a distributed architecture that
shifts data processing and task analysis from cloud servers
to the edge. Its core components include edge servers,
intermediate switching devices, wireless access points (APs),
and communication links that interconnect these elements.
This architecture is illustrated in Fig. 1.

Edge Servers: Positioned at the network edge, handle the
processing and analysis of data collected from nearby sensors
or devices.

Intermediate Switching Devices: Responsible for data for-
warding and routing, ensure the efficient transmission of
information within the network.

Wireless APs: Provide wireless connectivity, enabling user
devices to access the edge network.

Communication Links: Facilitate data exchange between the
network’s components, comprising both wired and wireless
connections.

The edge network’s topology can be abstracted as Gnet =
(N, E), where N = NS ∪ND, NS is a collection of edge server
nodes, NS = [nS1 , nS2 , . . . , nSm ], m is the number of edge
servers. ND is the set of intermediate switching devices that
perform data forwarding function, ND = [nD1 , nD2 , . . . , nDk ],
k is the number of switching devices. eij ∈ E represents a
physical link connecting node ni and node nj, nij ∈ N, forming
a communication path. Each server’s computing capacity is
defined by the number of CPU/GPU cores.

B. Resource Fault Model

We design a centralized matrix representation of resources
to describes the allocation of resources and tasks. The timeline
is divided into equal-length time slots, represented on the
vertical axis, while the system’s computing resources are

Fig. 2. Time-slot resource matrix.

displayed along the horizontal axis. Each slot serves as the
smallest unit for resource allocation. A typical time-resource
matrix is shown in Fig. 2. The circles represent subtasks from
a DAG, and the dashed lines represent dependencies between
subtasks, each with a different execution timeline. In time slot
t, the number of available cores for resource Sk is represented
by ck(t). Suppose that at slot 3, computing resource S4 fails,
the execution of task υ3 is interrupted, and the execution
of task υ3 and its subsequent stepchildren υ4 need to be
rescheduled to other available compute resources.

A server in the edge network may fail due to configuration
errors or hardware failure [29]. All resources of this server
are unavailable during the restart time. Suppose that Sk fails
at time t, and take n time slots to recover. If the fault part is
unavailable for a long period of time, the service recovery time
can be considered infinite, that is, n tends to positive infinity.
The size of each time slot is τ , then

ck(t) =
⎧
⎨

⎩

0, t ∈ [t, t + nτ ]

b, otherwise
(1)

where ck(t) represents the number of cores Sk has available
in slot t, b represents normal value. The occurrence of a fault
event affects some subtasks that are or will be executed and
related dependent data. Therefore, the affected tasks must be
rescheduled to avoid task failure.

C. Task Computing Model

In the edge network, tasks offloaded by mobile devices
can connect to the network at any time through any available
wireless AP. A DAG task is represented by Gtask = (V, E),
Gtask represents task graph topology. V represents the subtask
in Gtask, V = [v1, v2, . . . , vn], n represents the number of
subtasks. E is the set of edges, representing the direct depen-
dencies of the subtasks. Tasks are assumed to be executed on
edge servers located near the wireless APs where the tasks
were initially offloaded. The delay costs associated with this
process include the following components.

Task Transmission Delay: When a task is offloaded, it will
exchange information with AP points, and the information
interaction process will generate a certain cost, that is, task
transmission delay. Assuming that the communication link
between a device and an AP point is set to a flat frequency
fast fading Rayleigh channel. According to Shannon’s formula,
THE transmission delays of the uplink Tuplink and downlink
Tdownlink are, respectively, expressed as
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Tuplink
i = ui

Wul
i log2

(

1+ pul
i hul

i
N0Wul

) (2)

Tdownlink
i = di

Wdl
i log2

(

1+ pdl
i hdl

i
N0Wdl

) (3)

where, ui indicates the amount of data in the uplink, di

indicates the amount of data in the downlink. hul
i and hdl

i
are channel parameters. N0 represents noise power spectral
density. Wul and Wdl are uplink and downlink bandwidth. The
transmission power are pul

i and pdl
i .

Task Execution Delay: It represents the processing time cost
of a task at the edge server. The calculation formula can be
expressed as

Texe
i = ci

f edge
j

(4)

where, ci denotes the CPU/GPU cycle required for the edge
server computing task υi, and f edge

j denotes CPU/GPU com-
puting frequency of edge server Sj.

Therefore, the calculation model of the total delay for task
υi being offloaded to server Sj includes task transmission delay,
task execution delay and task wait time. Twait

i represents the
earliest start time of υi, that is, when all predecessor subtasks
of υi have been completed. The calculation formula can be
expressed as

T total
i = Tuplink

i + Texe
i + Tdownlink

i + Twait
i . (5)

In an edge service environment, where task scheduling is
performed in parallel, the total completion time for scheduling
a DAG task is defined as the duration from the start of
scheduling to the completion of all subtasks. The formula for
calculating this time span is as follows:

Makespan = max
i=1,...,n

{T total
i }. (6)

Considering the impact of fault events, we must ensure
that subtasks affected by fault events can respond quickly to
rescheduling. Therefore, the goal of rescheduling is to mini-
mize the task rescheduling completion time while maximizing
the rescheduling success rate. The optimization objective is
expressed as formula

min

(∑
viεV Xi

N
·Makespan

)

(7)

pul
min ≤ pul

i ≤ pul
max (7a)

pdl
min ≤ pdl

i ≤ pdl
max (7b)

∀i ∈ {1, 2, 3, . . . , N} (7c)

where, Xi is an variable that indicates whether the task
υi is successfully executed. If task υi fails, Xi = 1. N
indicates the total number of tasks. (

∑
viεV Xi/N) indicates the

task execution failure rate. Equation (7a) and (7b) represent
transmit power constraints of mobile devices and edge servers,
respectively. Equation (7c) represent the global constraints of
the task, ensuring that each node in {1, 2, 3, . . . , N} meets all
constraints.

Fig. 3. EFTR-HGNet working frame.

IV. NETWORK ARCHITECTURE BASED ON HG-TRANS

Task rescheduling is an iterative dynamic decision-making
process. At each step, tasks are assigned to available comput-
ing resources until all tasks are scheduled. Fault tolerance is
introduced in task scheduling and decision making. The mech-
anism interacts with reinforcement learning agents through
state representation and state transfer. When a resource failure
is detected, the state transition automatically reflects the
affected task to the next state statet+1. After the agent observes
this updated state containing fault information at t + 1, the
system will then determine subsequent actions based on this
updated state representation, dynamically reassigning inter-
rupted tasks to optimal compute nodes through its adaptive
scheduling policy. The working framework of the proposed
EFTR-HGNet method is shown in Fig. 3. The detailed work-
flow is as follows.

1) State Representation: At each scheduling iteration, the
system first captures the current scheduling environment
and resource states, constructing a heterogeneous graph
representation of the task-server relationships.

2) Heterogeneous Graph Embedding: The constructed
graph is then processed by the HG-Trans through a
clearly defined two-stage embedding process.

a) Node Embedding: Extract and encode the local fea-
tures of task nodes and server nodes, and capture
their individual attributes and structural roles in
heterogeneous graphs.

b) Operation Embedding: Aggregate and integrate the
node embeddings to generate a unified global rep-
resentation, reflecting the overall scheduling status
and task-resource relationships.

c) Action Generation: The embedded features are
subsequently fed into the decision network to
generate an action probability distribution.

d) Decision Execution: Scheduling actions are sam-
pled from this distribution, determining task
assignment and resource allocation.

e) State Update and Feedback: Once actions are
executed, the environment transitions into a new
state, restarting the iteration from step (1).

A. Task Scheduling Decision-Making Process

The dynamic task scheduling is modeled as a Markov
decision process (MDP). Through the agent’s continu-
ous interaction with the state environment, the appropriate
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available computing resources are selected. The decision
process of task scheduling can be defined as follows.

State: The combined reflection of all task schedules and
computing resource states at step t constitutes the statet.
We construct a simplified model that approximates the task
information at statet as a set of dependency information about
the running task and the ready task D(t) = {(vi, vj)|, i, j ∈
{1, 2, . . . , N}} where υj is the direct predecessor of υi. The
resource status of Sk is represented by a vector Rk(t) =
{(rk, ak(t), ck(t))|k ∈ {1, 2, . . . , M}}, where rk represents the
type of computing resource, ak(t) indicates the availability
status of the resource at time t, ck(t) represents the remaining
computing capacity at time t, specifically the number of
available CPU/GPU cores. In the state representation, we
introduce the state variable F(t) = {(Sk, fk)|Sk ∈ S, fk ∈ {0, 1}}
to represent fault state. fk = 1 indicates that the server is faulty,
and fk = 0 indicates that the server is normal. If the server to
which the task is bound is faulty, the task enters the interrupted
state. In statet, we recursively compute the execution time
of all scheduling operations from start to finish, denoted as
T(t). If the direct predecessor υj of task υi has already been
scheduled, then the actual completion time of υi is the sum of
its execution time and the actual completion time of υj, i.e.,
Ti(t) = Texe

i + Tj(t − 1). Therefore, the state set at time step
t can be represented as

S = {
statet =

(
D(t), Rk(t), F(t), T(t)

)|t ∈ T
}
. (8)

Action: In the definition of action, we consider task selection
and resource allocation as a compound decision. The action
actiont ∈ At is defined as a V-S pair (V, S) at time t. where
υi ∈ V, Sk ∈ S. If Sk is idle, υi can be executed directly in Sk.
Since each subtask can select up to one resource at a time,
therefore |At| ≤ n× m. n is the total number of subtasks, m
is the total number of computing resources. When a server
resource is available, the action set is the task that is selected
to run on this computing resource. When a server resource is
unavailable due to a failure, the RL agent quickly responds to
the task being executed on the failing server by putting it back
into the pending queue and clearing all computing resource
allocation information related to the task on the failed resource.
Therefore, the action set at time step can be represented as

At = {actiont = (vi, Sk)|vi ∈ V, Sk ∈ S}. (9)

Transition: The transfer function represents the probabil-
ity that action actiont transitions from state statet to state
statet+1. In the process of state transition, fault tolerance and
adaptive adjustment mechanisms are introduced, which are
formalized as

Pi(t + 1) =
{ {(vi, Sk)|t}, fk = 1&&vi on Sk{(

vi, Sj
)|t}, otherwise

(10)

where, Sk indicates the faulty server and Sj indicates another
available server.

Reward: At each time t, rewrardt is rewarded for the
optimization goal when the RL agent providing a reschedul-
ing policy. We targeted Makespan for optimization, and the
smaller the value, the greater the reward

R(Makespan) = e−Makespan(t). (11)

Fig. 4. HG-trans network architecture.

The RL agent performs actions based on the state accessed
and the current policy, interacting with the problem to be
solved and gradually adjusting the policy to optimize the
objective function.

B. HG-Trans Network Architecture

We define a new heterogeneous graph structure
Ht = (V, S, εt) to represent the complex relationship between
tasks and servers in the scheduling state, where V is the set of
task node, S is the set of server node, εt represents the arc set
of V-S, each task node corresponds to a server. When action
(vi, Sk) is taken at t, only eikεεt is retained, and the other V-S
arcs of υi are removed to obtain Ht+1.

When dealing with heterogeneous graphs, most of the
traditional models based on neighborhood aggregation can
only transfer information in a local scope, and can not fully
reflect the characteristics of the global interaction between
tasks and servers. In order to effectively extract information
from heterogeneous graphs, we introduce a heterogeneous
graph neural network based on Transformer. Then a two-stage
embedding process is adopted to map the nodes in hetero-
geneous graphs into D-dimensional embedding, considering
the graph topology and node characteristics. The first stage
updates the node embedding, and the second stage updates the
operation embedding. The network architecture is shown in
Fig. 4. Heterogeneous graphs contain different types of nodes
(tasks and servers) and edges (V-S). In order to distinguish
these heterogeneous information, the model introduces special
type coding for each node and edge, so that the information
aggregation strategy can be automatically adjusted according
to the type of node and edge in self-attention computation.
By stacking multiple Transformer layers, the model can
aggregate information layer by layer, effectively capturing
everything from initial local features to global state. Our two-
stage embedding is based on this hierarchical information
integration. The first stage focuses on local structure and node
characteristics, and the second stage further integrates the
influence of scheduling operations to form a more decision-
guiding embedded representation.

Node Embedding: The graph convolution layer updates
the embedding of each node by aggregating the information
of neighbor nodes, thus realizing the feature extraction of
graph data. We design a TransformerConv network with
self-attention to aggregate nodes and their neighbors. First,
the input node features are transformed linearly, and then
the attention weight of each node to its neighbor nodes is
calculated. The attention coefficient Aij between node υi and
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every node υj in the first-order field N (i) is

Aij =
(

Qi · KT
j

)

√
dk

(12)

where Aij is the attention weight of node υi to node υj. Qi

is the query vector. Kj is the key vector. dk is the dimension
of the key vector and is used to scale the dot product result
to avoid large values. The coefficients are normalized by the
Softmax function in the neighborhood

αij = exp
(
Aij

)

∑
q∈N(i) exp

(
Aiq

) ∀j ∈ N (i). (13)

In order to update the features of the nodes, the information
of the neighbor nodes is weighted and aggregated using
attention weights

H(l+1)
i = σ

⎛

⎝
∑

jεN (i)

αijVj

⎞

⎠ (14)

where H(l+1)
i is the feature representation of node υi at layer

l, and σ is the nonlinear activation function. Vj is embedded
representation of node υj. The aggregated information is
nonlinear transformed through the feedforward network

H(l+1)
i = ReLU

(
Wf · H(l+1)

i + bf

)
(15)

where, Wf and bf , respectively, represent the weight and
bias parameters of the linear transformation, and finally over-
lay the multilayer Transformer update task and server node
embedding.

Operation Embedding: The node embedding generated in
the first stage is extracted by multilayer perceptron (MLP)
and the probability distribution of the actions is generated.
First, all node embedding are summarized by means pooling,
and the state value V(statet) is estimated by 1-D projection.
Assuming that the projection matrix is Wv ∈ Rd×1, according
to the formula

V = WT
v ·

1

N

N∑

i=1

hi (16)

where hi represents the eigenvector of the ith node.
(1/N)

∑N
i=1 hi is the global eigenvector after mean pooling.

The embedding of the available tasks are then aggregated into
a batch matrix, where each row corresponds to an embedding
vector of a task node

HT = [h1, h2, . . . , hM]T ∈ RM×d. (17)

Aggregate the embedding representations of the currently
available tasks, and then map these embedding representations
into a 1-D vector space to generate a score for each task. The
probability distribution of the generated action is normalized
by the Softmax function of the fully connected layer

πi = exp(oi)
∑

j exp
(
oj

) (18)

where πi is the probability of the ith action and oi is the ith
component in the output vector o.

C. Architecture of the RL Agent

To optimize decision-making, we enhance the two neural
networks used in the Actor-Critic (A2C) algorithm.

Policy Network (Actor): Represented as πθ (actiont|statet)

with parameters θ , it generates a probability distribution over
possible actions.

Value Network (Critic): Parameterized by θϑ , it estimates
the value of a state Vθϑ (statet), which reflects the desirability
of being in state statet to achieve the optimization goal.

The state value V(state) measures how beneficial a given
state statet is for maximizing the objective function. We
optimize the value function by minimizing the gap between
the state-value function or action-value function estimated by
the Bellman equation and the actual value. At the same time,
the cumulative reward maximization problem is transformed
into a joint optimization problem of strategy network gradient
and dominance function. That is

∇θ J(θ) = Et
[∇θ log πθ (actiont|statet) · A(statet, actiont)

]
.

(19)

Here, A(statet, actiont) stands for advantage function.It is
used to measure the quality of action actiont relative to
the average performance of the current strategy, and then
guide the optimization direction of the strategy. The advantage
A is derived using the current estimates of the quadruple
(statet, actiont, rewardt, statet+1) and the value function V . In
the training process, as the strategy gradually converges, the
strategy will be more inclined to deterministically select the
action with higher reward, resulting in premature convergence
or falling into the local optimal solution. In order to encourage
the strategy to maintain some exploration capability, we
add entropy to the objective function. So the final objective
function is

∇θ J(θ) = Et
[∇θ log πθ (actiont | statet) · A(statet, actiont)

]

+ βEt[∇θH(πθ (· | statet))] (20)

where H(πθ (·|statet)) represents the entropy function of the
probability distribution, and β is the hyperparameter that
controls the effect of entropy regularization. RL agents update
the Critic and Actor networks by constantly interacting with
the environment, collecting data and computing dominance
functions. Ultimately, the strategy is optimized so that the
agent gets the maximum long-term reward for a given task.
In each round of training, the agent will adjust its strategy
so that in the same state, the selected action will gradually
become more reasonable, so as to gradually approach the
optimal strategy.

D. Algorithm

We designed an edge-fault scenario task rescheduling
method based on heterogeneous graph neural networks
(EFTR-HGNet), as shown in Algorithm 1.

In the algorithm, we initialize the Actor-Critic network
with the given parameters. For each turn, a batch containing
B instances is sampled from the environment, and for each
instance in the batch, the simulation is run until the termination
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Algorithm 1 EFTR-HGNet Algorithm
1: Input: Environment env, Actor-Critic network with

Transformer network. Trainable parameters θ and ϑ ,
Number of episodes N, batch size B.

2: Output: Actor network πθ (actiont|statet), Critic network
Vϑ(statet) and Makespan of task rescheduling.

3: Initialize network with parameters θ and ϑ

4: for episode = 1, 2, . . . , N do
5: for b = 1, 2, . . . , B do
6: Initialize statet based on instance bi

7: while statet is not terminal do
8: zt = Transformer(statet)

9: Sample action actiont ∼ πθ (·|statet)

10: rewardt, statet+1 ← (statet, actiont)

11: Score (statet, actiont, rewardt, statet+1)

12: end while
13: end for
14: At = rewardt + γ Vϑ(statet+1)− Vϑ(statet)

15: Vtarget
t = rewardt + γ Vϑ(statet+1)

16: Compute the A2C loss L
17: θ, ω← Optimizer(L, θ, ϑ)

18: Update network parameters
19: if episode mod m = 0 then
20: Validate the policy
21: end if
22: if episode mod n = 0 then
23: Simple a new batch of B instances
24: end if
25: end for
26: return

state is reached. Line 7–12 extract the embedding vector
through the Transformer network and sample actions, store
state transitions, and rewards based on the current policy. Line
14 and 17 use Critic networks to calculate strengths and value
objectives, calculate A2C losses and optimize parameters for
multiple iterations. Repeat the above process until the prede-
termined training rounds are reached, and return to the trained
network. Finally, output the optimal action set of rescheduling
decision and Makespan. The total time complexity is estimated
as O(n(n + m)2d)). n indicates the number of task nodes, m
indicates the number of server resources, and d indicates the
Transformer embedding dimension.

V. EXPERIMENTS

A. Experimental Settings

To verify the effectiveness of our model, we have developed
an edge scheduling simulation environment. The software
environment is Python. The core algorithm was developed
on the PyTorch 1.12.1 framework and ran on a workstation
configured with an Intel i7-11700 CPU and 16 GB of memory.

In this section, we construct a simulation environment to
simulate the task rescheduling process of edge server failure
in a harsh environment. We set up some edge servers and
each server is distributed on different work surfaces to support
various tasks. Each edge server is configured with limited

TABLE I
PARAMETER FOR SIMULATION

computing resources, including CPUs and GPUs. It can handle
different types of tasks. Communication between servers is
implemented through a wireless network.We randomly gen-
erate DAG tasks with different topologies in the simulator,
and each subtask corresponds to different task attributes
and resource requirements. Specific simulation parameters are
given in Table I.

In task scheduling system, Makespan, speedup and schedule
length ratio (SLR) are three key performance evaluation
indexes, which measure the efficiency and effect of scheduling
system from different angles [30].

Makespan refers to the maximum time required to complete
all tasks, usually the time elapsed from the start of scheduling
until all tasks are completed. If Makespan is large, it means
that resource allocation during task scheduling is not optimized
enough, some processor resources may be idle, or tasks may
be delayed due to resource conflicts. Therefore, minimizing
Makespan is often a major goal of optimizing scheduling
algorithms.

Scheduling length ratio (SLR) is the ratio of the actual
schedule completion time to the ideal schedule completion
time. The ideal scheduling completion time refers to the time
when the task should be completed without any resource
conflict or scheduling delay. The calculation formula is as
follows:

SLR = Makespan
∑

piεPmin
minqjεQ ei,j

. (21)

The closer SLR is to 1, the smaller the gap between the
actual scheduling scheme and the ideal scheme, and the higher
the efficiency of the scheduling system [31]. The lower SLR
value indicates that the scheduling system can approach the
optimal ideal scheduling scheme well without too much delay
or waste of resources.

Speedup is used to measure the parallelization effect of
scheduling algorithms in multicore or distributed environ-
ments. It reflects the performance improvement of multicore
processing or distributed computing over serial computing.
The calculation formula is as follows:

Speedup =
minqjεQ

{∑
piεV ei,j

}

Makespan
(22)

when the Speedup value is high, it indicates that task schedul-
ing can efficiently distribute tasks to multiple processors. Tasks
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Fig. 5. Performance and improvement comparison based on Makespan.

are more evenly distributed among processors, significantly
reducing overall execution time.

We use the following four scheduling algorithms as com-
parative baselines to evaluate the proposed task rescheduling
algorithm (EFTR-HGNet).

1) Based on HEFT [8]: It is an efficient heuristic schedul-
ing algorithm in nonrepetitive and batch processing
mode.

2) Task Replication And Cluster-Based Scheduling
Algorithm (TDCA) [9]: Use task replication and
clustering techniques to minimize task completion time
in batch mode.

3) Scheduling Algorithm Based on Task Replication and
Greedy Policy (FixDoc) [11]: By copying the precursor
task to multiple processors, the task can be directly
executed locally and select the current optimal solution,
eventually approaching the global optimal solution.

4) Random policy-based Task Scheduling algorithm
(RAN): Randomly select the computing resources of
the execution server for each subtask to schedule.

B. Experimental Results and Analysis

In the EFTR-HGNet method proposed in this article, several
key hyperparameters are involved, including the learning rate
lr, embedding dimension d, entropy regularization coefficient
β, and batch size B. Currently, these hyperparameters have
been determined through extensive experimentation, with spe-
cific parameter configurations as follows. lr = 1 × 10−3,
d = 128, β = 0.01 and B = 32.

Experiment 1 aims to compare the variations in the maxi-
mum completion time (Makespan) of EFTR-HGNet and four
baseline algorithms as the number of tasks N increases in the
range [100, 150, 200, 250, 300]. The experimental results are
shown in Fig. 5. As can be observed from the figure, with
the increase in task quantity, the Makespan of all algorithms
shows an upward trend. However, the growth rate of EFTR-
HGNet is noticeably slower, and its overall performance
consistently outperforms the other baseline methods. In partic-
ular, the Makespan of FixDoc and RAN is significantly higher.

TABLE II
PERFORMANCE AND IMPROVEMENT COMPARISON BASED ON SLR

This is because FixDoc allows each subtask to be executed
concurrently on multiple computing nodes, which introduces
redundancy and prolongs task completion time. On the other
hand, RAN suffers from poor scheduling efficiency due to
its inherent randomness and lack of strategy. We enhance
the statistical reliability of the experimental conclusions by
plotting 95% confidence interval (CI) error bars for all bars in
the figure, calculated from multiple independent experiments
using different random seeds. It can be seen that EFTR-HGNet
consistently maintains a narrow CI range across all task scales,
indicating that it achieves more stable and robust scheduling
results. When the number of tasks N = 200, the maximum
completion time of EFTR-HGNet algorithm is increased by
11.11%, 14.67%, 37.25% and 20.99%, respectively, compared
with HEFT, TDCA, RAN, and FixDoc. Therefore, under
the same fault condition, our proposed EFTR-HGNet algo-
rithm can balance short-term benefits and long-term rewards,
maximize the overall scheduling performance through pol-
icy optimization and show higher execution efficiency in
rescheduling.

Experiment 2 was used to compare the SLR of EFTR-
HGNet algorithm with the other four baseline algorithms as
the number of tasks changes. The experimental results are
shown in Table II. In Table II, the SLR value of EFTR-
HGNet is all between [1, 1.6], while the SLR value of other
algorithms is higher than the SLR value of EFTR-HGNet,
indicating that EFTR-HGNet algorithm is closer to the ideal
scheduling length. When N = 200, the SLR of EFTR-HGNet
algorithm increased by 8.03%, 13.70%, 19.75% and 22.22%,
respectively, compared with HEFT, TDCA, FixDoc and RAN.
Therefore, under the same fault condition, our proposed
EFTR-HGNet algorithm performs better in rescheduling algo-
rithm performance and is closer to the ideal condition.

Experiment 3 was used to compare Speedup of EFTR-
HGNet algorithm with the other four baseline algorithms as the
number of tasks changes. The experimental results are shown
in Table III. In Table III, the Speedup value of EFTR-HGNet
is significantly higher than that of other algorithms. When
the number of tasks N = 200, the Speedup of EFTR-HGNet
algorithm increased by 36.5%, 39.94%, 28.99% and 44.01%
compared with HEFT, TDCA, FixDoc and RAN, respectively.
Therefore, EFTR-DRL algorithm has a higher degree of task
parallelization and higher resource utilization.
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TABLE III
PERFORMANCE AND IMPROVEMENT COMPARISON BASED ON SPEEDUP

Fig. 6. Performance and improvement comparison based on success rate.

Experiment 4 compares the task success rate of the EFTR-
HGNet algorithm with four baseline algorithms under varying
task quantities. We set the maximum response delay threshold
to 5ms. If a task’s waiting time exceeds this threshold, it is
considered a failure. The experimental results are shown in
Fig. 6. As observed in the figure, the task success rate of
EFTR-HGNet consistently falls within the range of 90% to
100%, outperforming all baseline algorithms across all task
scales. When the number of tasks N = 200, the average
task success rate of EFTR-HGNet improves by 6.3%, 9.4%,
14.6%, and 4.2% compared to HEFT, TDCA, RAN, and
FixDoc. The results demonstrate that EFTR-HGNet achieves
statistically significant performance superiority compared to
baseline algorithms, eliminating stochastic fluctuations as
a contributing factor. Consequently, the framework main-
tains operational efficiency in task failure scenarios under
identical fault conditions while optimizing task success
rates.

Experiment 5 analyzed the performance of different algo-
rithms on task response delay by comparing the cumulative
distribution function (CDF) on response delay under the con-
dition of the same number of tasks. The experimental results
are shown in Fig. 7. The horizontal coordinate represents
the delay time (in milliseconds) of the task response, and
the vertical coordinate represents the proportion of tasks that
have been completed within a certain delay time. When the
CDF curve is more left and steeper, it is able to complete

Fig. 7. CDF of task response delay of different algorithms.

more tasks in less time, and the performance is better. As
can be seen from the figure, the CDF curve of EFTR-HGNet
is farthest to the left and the curve slope is the largest,
which indicates that it completes most tasks in the shortest
delay time. At around 20ms, more than 90% of the task
had been completed. Compared with other algorithms, EFTR-
HGNet shows obvious advantages in different task delay
periods.

We evaluate the impact of task quantity on rescheduling
performance, and results show that EFTR-HGNet consistently
outperforms baselines across multiple metrics and maintains
strong environmental adaptability and robustness under diverse
and dynamic edge computing conditions.

VI. CONCLUSION AND FUTURE DIRECTION

This article presents a DAG task rescheduling method
(EFTR-HGNet) based on heterogeneous graph neural networks
for edge computing in fault scenarios to minimize the impact
of failures with intelligent decision making. In the process
of task scheduling and decision-making, heterogeneous graph
structures is used for state representation and a fault-tolerant
mechanism is introduced to achieve adaptive task migration
under resource failures. By constructing a neural network
based on HG-Trans and adopting the A2C algorithm to
optimize the strategy, efficient task resscheduling decisions is
achieved. Experimental results show that compared with other
baseline algorithms, the response delay of the task is signif-
icantly reduced. The current method is specifically designed
for Internet of Vehicles scenarios characterized by three core
challenges: time-sensitive vehicular computing tasks requiring
low-latency processing, heterogeneous resource distribution
across network nodes, and dynamic environments prone to
frequent system failures. Both the task scheduling mechanisms
and system state representations have been fundamentally
architected around the unique operational constraints and
topological features inherent to vehicular network system.
In future work, we will consider the model’s adaptabil-
ity in complex scenarios, such as concurrent failures of
multiple nodes, Byzantine failures, and intermittent network
interruptions.
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