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Abstract
Freight trains are one of the most important modes of transportation. The fault detection of freight train parts is crucial to

ensure the safety of train operation. Given the low detection efficiency and accuracy of traditional train fault detection

methods, a novel one-stage object detection method called the multi-scale spatial information fusion CNN network

(MSSIF-Net) based on YOLOv4 is proposed in this study. The adaptive spatial feature fusion method and multi-scale

channel attention mechanism are used to construct the multi-scale feature sharing network and consequently realize feature

information sharing at different levels and promote detection accuracy. The mean average precision values of MSSIF-Net

on the train image test set, PASCAL VOC 2007 test set, and surface defect detection dataset are 94.73%, 87.76%, and

75.54%, respectively, outperforming YOLOv4, Faster R-CNN, CenterNet, RetinaNet, and YOLOX-l. The detection speed

of MSSIF-Net is 33.10 FPS, achieving a good balance between detection accuracy and speed. In addition, the MSSIF-Net

performance is estimated after adding noise or rotating the train images at a slight angle to simulate a real scene.

Experimental results indicate that MSSIF-Net has favorable anti-interference ability.

Keywords Attention mechanism � Feature fusion � Freight train fault � Object detection

1 Introduction

1.1 Background and motivation

With the continuous development of the national economy,

the scale of train structures and the complexity of their

parts increase. Trains also have heavy-load and high-den-

sity characteristics. Traditional train fault detection relies

on manual detection, which has low efficiency despite the

required large manpower input. The large amount of

original images for freight train fault detection is con-

tributed by the trouble of moving freight car detection

system (TFDS). TFDS has changed train fault detection

from the traditional outdoor manual field detection to the

image analysis of indoor train inspectors, largely improv-

ing the train detection efficiency. High-speed cameras at a

single station can capture tens of millions of train images a

day, whereas experienced inspectors can examine only a

few thousand a day per person. With the requirements of

high reliability and efficiency, automatic train fault detec-

tion based on computer vision technology has become a hot

topic in the field of object detection.
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In recent years, with the development of modern tech-

nology, such as information technology, artificial intelli-

gence, and automatic detection, train fault detection has

shifted into automation and intelligence. Sun et al. [1]

designed the automatic fault recognition system (AFRS)

for freight trains based on the convolutional neural network

(CNN). Fu et al. [2] proposed a two-stage attention-aware

method based on the CNN for train bearing fault detection.

Tim et al. [3] used the long short-term memory (LSTM)

recurrent neural network to realize the fault diagnosis of

railway track circuits. Their comparison with the CNN

indicates that the LSTM architecture is more suitable for

the fault detection and recognition of railway track circuits.

Zhang et al. [4] developed an end-to-end lightweight

framework named LR FTI-FDet for the real-time fault

detection of freight train images. Most of the abovemen-

tioned methods use deep learning methods, in which

detection efficiency is greatly improved compared with the

current human–machine combination of train detection

methods. However, with the increasing demand to ensure

the accuracy of automatic train fault detection, improving

the accuracy of train fault detection remains to be the focus

of numerous research.

1.2 Our contributions

Train images taken by TFDS are mostly in grayscale, and

the proportion of train parts in the image is small. Inspired

by the multi-scale feature fusion and attention mechanism

method, this study proposes an object detection method

based on the improved attention mechanism and multi-

scale feature sharing network (MFSN). It is called multi-

scale spatial information fusion CNN network (MSSIF-

Net), which is intended to achieve high-detection accuracy.

The contributions of this study are as follows.

• An MFSN based on a one-stage object detector is

proposed.

• As the midpoint of the feature extraction, classification

and regression networks of the detector, MFSN can fuse

the high-level features with low resolution but rich

semantic information and the low-level features with

high resolution but rich location details to obtain feature

maps with rich semantic and location information at

different scales.

• A multi-scale channel attention (MCA) mechanism is

introduced by group convolutions, enabling the detector

to focus on the object to be detected. MCA, which is

embedded into the proposed MFSN, can automatically

learn and pay more attention to useful features within

the object areas.

• The proposed MSSIF-Net is evaluated on the Train

Image Test Set (TITS), and PASCAL VOC 2007 test

set and surface defect detection dataset from hot-rolled

steel sheets. The experimental results on these test sets

indicate that MSSIF-Net can effectively improve

detection in terms of the average precision and mean

average precision.

The remainder of this paper is organized as follows. Sec-

tion 2 presents the related work on object detection and

attention mechanism. The proposed MSSIF-Net detector is

introduced in Section 3. In Section 4, the implementation

details, evaluation metrics, and analysis of experimental

results of the MSSIF-Net are presented. Section 5 sum-

marizes this study and discusses the next research plan.

2 Related works

2.1 Object detection based on deep learning

Object detection based on deep learning can be divided into

anchor-based detection and anchor-free detection, i.e.,

whether anchor information is utilized. Anchor-based

detectors consist of two-stage detectors and one-stage

detectors depending on the extraction of region proposals

[5, 6]. Initially applied in natural language processing,

transformer has been introduced into object detection in

recent years.

In the two-stage detection of anchor-based detectors, the

region-based convolutional neural network (R-CNN) [7]

first applies deep learning to object detection. On this basis,

a number of improvement methods, such as Fast R-CNN

[8], Faster R-CNN [9], and Mask R-CNN [10], among

others, have been proposed. The original image in Fast

R-CNN [8] is directly convolved instead of each region

proposal, which improves computational efficiency. Simi-

lar to R-CNN, Fast R-CNN uses the selective search (SS)

[11] algorithm to extract region proposals, but its detection

speed is relatively low in scenes requiring high real-time

performance. Faster R-CNN [9] is based on the Fast

R-CNN, and the region proposal network (RPN) is used to

replace the SS algorithm. Thus, the final detection speed

and detection accuracy of Faster R-CNN [9] are improved.

In Mask R-CNN [10], region of interest (RoI) pooling in

Faster R-CNN is replaced by RoI alignment, and the

bilinear interpolation method is used to pad the pixels of

non-integer positions in the image. Hence, Mask R-CNN

has a good application prospect in object detection and

instance segmentation.

One-stage object detectors primarily involve You Only

Look Once (YOLOv1) [12], YOLOv2 [13], YOLOv3 [14],

YOLOv4 [15], single-shot multibox detector (SSD) [16],

RetinaNet [17], and so on. YOLOv1 [12] greatly improves

the detection speed by using a single network to complete
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the judgment of object categorization and regression of a

location, but the detection accuracy is relatively low.

YOLOv2 [13] uses the methods of batch normalization,

high-resolution classifier, and k-means algorithm to gen-

erate prior bounding boxes for solving the problem of low-

detection accuracy in YOLOv1. YOLOv3 [14] exploits

Darknet19, a new neural network structure, as the back-

bone network and is combined with the feature pyramid

network (FPN) [18] to complete the multi-scale prediction

and ultimately improve the detection accuracy. Boch-

kovskiy et al. [15] proposed YOLOv4 with high-detection

accuracy based on YOLOv3. The backbone network for the

feature extraction in YOLOv4 is replaced by CSPDar-

kNet53, and FPN is replaced by the path aggregation net-

work (PANet) [19]. YOLOv4 also utilizes the spatial

pyramid pooling network (SPPNet) [20] to expand the

receptive field range of the low-level feature map and the

Mosaic and other data enhancement methods to train the

detector. SSD [16] adopts the improved VGG16 as the

backbone network and adds four convolution operations of

different sizes to achieve multi-scale prediction and con-

sequently improve the detection accuracy and speed. Focal

loss is used in RetinaNet [17] to address the imbalance

problem of the positive and negative samples in the

images.

Anchor-free detectors ignore the generation stage of

prior bounding boxes and achieve object detection only

through the key point estimation of object positions.

Examples include CornerNet [21], CenterNet [22],

YOLOX [23], and so on. CornerNet [21] utilizes the corner

pooling strategy to generate the top-left and bottom-right

points for determining the location of objects. The peak

points of the heatmap are taken as the center points of the

objects by CenterNet [22], and then the center points are

utilized to conduct regression and classification of the

object. YOLOX [23] converts the YOLO series object

detectors, such as YOLOv3 and YOLOv4, into high-per-

formance and anchor-free forms, which benefits the

detection accuracy.

For the transformer-based detectors, detection trans-

former (DETR) [24] is an end-to-end object detection

method based on transformer and CNN. In DETR, object

detection task is regarded as a set of prediction problem

[24]. However, the detection effect on small objects is

poor, training the detector consumes much time. Deform-

able DETR [25] combines transformer and deformable

convolution to address the problems of slow training con-

vergence and high computational complexity in DETR.

Fang et al. [26] directly migrated the fine-tuned vision

transformer [27] model into the object detection task and

proposed YOLOS. In YOLOS, the network structure sim-

ilar to CNN is directly removed, and only the encoder part

in transformer can be used to achieve regression and

classification of candidate objects. However, to ensure the

detection accuracy, the detector training time inevitably

increases after transformer is applied into the object

detection task.

Here, the one-stage detection of the anchor-based

detector is selected as it can balance detection accuracy and

speed.

2.2 Attention mechanism

In essence, the purpose of the attention mechanism is to

achieve efficient allocation of information resources, and it

is widely used in object detection. Its attention domain

usually includes the spatial, channel, and hybrid domain.

Spatial transformer network (STN) [28] and spatial atten-

tion mechanism (SAM) [29] are typical forms of spatial

attention. Both use two different spaces for information

transformation, retain the key information of the image in

the transformation process, and assign the same feature

channel attention weight to the relevant spatial position.

Squeeze and excitation network (SENet) [30] is a typical

channel attention scheme, where weights are used to

highlight the importance of different feature channels.

Selective kernel network (SKNet) [31] introduces a

dynamic selection mechanism into the channel attention

mechanism in CNNs. Fast 1D convolution is used in effi-

cient channel attention (ECA) [32] to capture the interac-

tion information between the feature channels, effectively

improving the learning efficiency of the model. Frequency

channel attention network (FcaNet) [33] applies the idea of

frequency domain to the channel attention mechanism and

exploits the discrete cosine transform (DCT) to extract

more information from feature channels. convolutional

block attention module (CBAM) [34] is a hybrid attention

mechanism based on channel attention and spatial atten-

tion, and it relies on the feature map of an object at the

channel and space domains, respectively. Attention mech-

anism is generally embedded as a module in the object

detection model, and it avoids making changes on the

original structure of the model. The efficient pyramid split

attention (EPSA) proposed in Ref. [35] is innovative in its

use of the attention mechanism. The ordinary convolution

in the original network is replaced by the attention mech-

anism EPSA, thus realizing the effective utilization of

multi-scale context information.

3 Proposed method

This section introduces the overall architecture, internal

structure, and loss function of the proposed detector in this

study.

Neural Computing and Applications

123



3.1 Overall architecture

The detector proposed in this study is MSSIF-Net, which is

a one-stage object detection method. The architecture of

MSSIF-Net is shown in Fig. 1. MSSIF-Net can be divided

into four parts, namely feature extraction network (FEN),

spatial pyramid pooling (SPP), MFSN, and regression and

classification network (RCN). The working process of

MSSIF-Net can be described as follows. First, FEN module

is adopted by MSSIF-Net to extract the feature information

of parts in freight train images, and then FEN outputs the

three feature maps of M3, M4, and M5 for the subsequent

modules of SPP and MFSN. Second, the SPP module

enlarges the receptive field of feature map M5 and outputs

feature map P5. Third, the MFSN module obtains the fea-

ture maps with semantic information and object location

information at different scales, and it improves the detec-

tion accuracy by fusing the three feature maps P3, P4, and

P5. Finally, the RCN module regresses and classifies the

faulty train parts in the feature maps of P0003, P
000
4, and P0005.

3.2 FEN

The structure of the FEN module is shown in Fig. 2a. The

FEN module consists of one initialization block (IB) and

five residual bodies (RBs). The IB module contains a

convolution layer with a convolution kernel size of 3, a

batch normalization (BN) layer, and a Mish activation

function, which is used to transform the dimension of the

input image channel. The RB module is used for image

feature extraction. The input size of the train image is

defined as W � H � C, where W and H are the width and

height of the image, respectively, and C is the number of

channels in the image. FEN sets the input size of the image

to 416� 416� 3. When the input size of the image is

inconsistent with that set by FEN, the image size is

adjusted using a resizer operation. The workflow of FEN

can be divided into two steps. First, the input image uses

the IB module in FEN to obtain feature map M0. Second,

FEN successively uses the five RB modules with different

convolutional kernel sizes to obtain the output feature maps

M3, M3, and M5.

As shown in Fig. 2b, the RB module with the input size

of W � H � C is composed of two branches, each of them

stacked by Basic block (Bb) modules with different sizes of

convolution kernels. The Bb module includes a convolu-

tion layer, a BN layer, and a Mish activation function. The

first branch of the RB module adjusts the size of the feature

map into W � H � C=2ð Þ by using a Bb module with a

convolution kernel size of 1� 1. Similarly, the second

branch transforms the size of the feature map to

W � H � C=2ð Þ, which is composed of two Bb modules

with a convolution kernel size of 1� 1 and N Residual

blocks (Rb) in between them. An Rb module comprises

two Bb modules with convolution kernel sizes of 1� 1 and

3� 3 and a residual edge. An addition operation is used to

connect and fuse the input and output feature maps of the

two Bb modules. The final output result of the RB module

is combined using the feature maps generated by the two

branches through a concatenation operation. A Bb module

with a convolution kernel size of 1 is then used to adjust

the channel number of the final generated feature map to

ensure that the RB module can output a feature map with a

correct size.

The final outputs of M3 ð52� 52� 256Þ,
M4 ð26� 26� 512Þ, and M5 ð13� 13� 1024Þ in FEN are

used in the subsequent SPP and MFSN modules, where M3

and M4 correspond to P3 and P4, and M5 applies the SPP

module to obtain the feature map P5 .

Fig. 1 Overall architecture of MSSIF-Net
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3.3 SPP

In MSSIF-Net, the SPP module is used to replace the fully

connected layer in traditional FEN. As shown in Fig. 3, the

SPP module is composed of four max pooling layers and a

concatenation operation. First, four max pooling layers are

utilized by SPP module on feature map M5 to expand its

range of receptive field and improve the detection accuracy

of small objects. In the max pooling layers, the convolution

kernel sizes are 1, 5, 9, and 13. Second, SPP applies a

concatenation operation to fuse the four feature maps

generated after the max pooling layer operation to obtain

the feature map P5 ð13� 13� 1024Þ, which will be used

in the subsequent MFSN model.

3.4 MFSN

The MFSN proposed in this study is based on the FPN and

attention mechanism. The three-layer structure of MFSN is

shown in Fig. 4b. The two feature maps of P3 and P4

(a) (b)

Fig. 2 FEN structure and RB

Fig. 3 Spatial pyramid pooling

Neural Computing and Applications

123



outputted by the FEN module and the feature map P5
outputted by SPP module serve as the input of MFSN.

First, upsampling, attention mechanism, concatenation, and

other operations are applied by MFSN to obtain the feature

maps P03, P
0
4, and P05. Second, MFSN performs a hierar-

chical feature fusion of P03, P
0
4, and P05 to obtain P003, P

00
4, and

P005 for subsequent spatial information sharing. Finally,

MFSN obtains the feature maps P0003, P
000
4, and P0005 for the RCN

module via downsampling, concatenation, and other

operations.

The MFSN is superior to the FPN in two main aspects.

On the one hand, at the midpoint of the three-layer struc-

ture, MFSN adopts ASFF [36] to fuse the feature maps of

each layer with the other two layers, thus achieving cross-

scale connection and spatial information fusion. On the

other hand, MFSN embeds the attention mechanism after

the upsampling operation to enhance the channel attention

effect for ensuring fine-detection accuracy. As the features

of train parts in train fault images are difficult to extract,

MCA is proposed on the basis of the fusion of different

scale receptive fields and ECA [32]. This scheme enables

the MSSIF-Net detector to focus on the fault parts in

freight train images.

3.4.1 Basic structure based on FPN

MFSN is based on FPN. The overall structure of FPN is

shown in Fig. 4a. In FPN, an addition operation is used for

feature fusion after the upsampling. By contrast, in MFSN,

a concatenation operation is used to merge the feature

channels of the two feature maps after upsampling and

downsampling.

3.4.2 MCA

As an important cognitive function of the human brain,

attention can selectively process external information,

allowing the brain to focus on key information and ignore

useless information. In object detection, the importance of

different features can be learned by detectors through the

attention mechanism. The P3, P4, and P5 is obtained by the

FEN and SPP modules, which contain rich semantic

information and object location details. However, the fea-

ture maps not only involve object feature information but

also include other feature information with interference. In

FPN, upsampling is employed to magnify the deep feature

images. However, upsampling only magnifies the lengths

and widths of feature images, but it does not obtain more

feature information. As shown in Fig. 4b, the MFSN

embeds MCA after the upsampling operation to enable the

detector to focus more on the object to be detected. The

structure of MCA is shown in Fig. 5.

The MFSN takes the feature map as the input of MCA

after the upsampling, as shown in Fig. 5. H, W, and C

represent the height, width, and channel number of the

feature map, respectively. First, the feature map F, which

contains multi-scale feature information, is obtained by the

multi-scale module (MS). Second, the channel weight v is

obtained using the feature map F, Global Average Pooling

(GAP), fast 1D convolution (Conv1D), and Sigmoid

function. Finally, an operation on the element-wise product

of the channel weight v and the original feature map f is

performed to obtain the weighted feature map ~F.

The MS module in MCA primarily realizes the extrac-

tion of multi-scale feature information. First, the MS

module splits the input feature map f into n parts, which are

denoted as f0; f1; . . .; fn�1½ �, according to channel dimension

(a) (b)

Fig. 4 Structures of FPN and MFSN
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C. For each feature map fi 2 RH�W�C0
, its channel number

is C0 ¼ C=n, where i ¼ 0; 1; . . .; n� 1. Second, the MS

module applies Group Convolutions (GCs) with different

sizes of convolution kernels in parallel to obtain the feature

map Fi containing the multi-scale feature information.

Finally, the MS module performs the concatenation oper-

ation to merge the results of the GCs, and it exploits a

residual edge and the addition operation to achieve feature

fusion.

During GC operation, the size of the feature map fi of

each group of convolution input is given by H �W � C0,
in which the size of the corresponding convolution kernel

is k � k. The relation between the convolution kernel size k

and group size g in a GC is calculated by

k ¼ log2gþ 1: ð1Þ

The feature map Fi with multi-scale information generated

by the GC can be expressed as

Fi ¼ Conv2DðfiÞ; i ¼ 0; 1; 2. . .; n� 1;Fi 2 RH�W�C0
;

ð2Þ

where ki is the size of the convolution kernel, and gi is the

group size. The feature map F can be obtained by the

concatenation operation, addition operation, and ReLU

activation function as follows:

F ¼ ReLU
�
catð½F0;F1; . . .Fn�1�Þ þ f

�
; ð3Þ

where F0;F1;. . .;Fn�1½ � is the result of Eq. (2), Fn�1 is the

result of the (n� 1)-th GC operation, and f is the original

feature map.

The feature map F outputted by the MS module serves

as the input of GAP, and the output result is F0. F00 is

obtained via Conv1D, F0 and F00 are calculated by

F0 ¼GAPðFÞ; ð4Þ

F00 ¼Conv1DðF0Þ; ð5Þ

where the convolution kernel size of Conv1D is denoted by

k0. Here, k0 is adaptively selected according to the number

of channels in the feature map, which is defined as

k0 ¼
$
log2C þ b

c

%

; ð6Þ

where c and b have the values of 2 and 1, respectively, and

C represent the channel numbers. F00 generates the feature

channel weight using the Sigmoid function. The feature

weight v can be expressed as

v ¼ SigmoidðF00Þ; ð7Þ

where v has a value in the range of 0 to 1. Finally, feature

map f, element-wise product �, and feature weight v are

used to yield the weighted feature map ~F, which is cal-

culated by

Fig. 5 MCA structure
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~F ¼ v� f : ð8Þ

3.4.3 Feature fusion in MFSN

MFSN not only performs addition and concatenation

operations to fuse features but also exploits the ASFF

method to fuse the feature maps of the current layer with

those of the other two layers. This method is proposed in

Ref. [36] to solve the problem of scale inconsistency

among FPNs by learning the weight parameters of different

feature layers. By introducing ASFF into MFSN, three

feature maps with different scales can be fused with the

network. Figure 4b shows the case of Level 2 in which

three-layer feature fusion is conducted. First, MFSN adopts

the ASFF method to adjust the size of the feature maps P05
and P03, and the size adjustment of these two feature maps is

consistent with the feature map P04 in Level 2. Subse-

quently, feature fusion is implemented according to Eq. (9)

as follows:

Xl ¼ alx1!l þ blx2!l þ hlx3!l; ð9Þ

where l is the feature layer and al, bl, and hl are the

adaptive weight parameters learned by this layer. Finally,

xn!l is used to adjust the size of the feature map in feature

layer n to that of layer l, where the value of n is f1; 2; 3g. Xl

represents the fusion result of the feature map in the l layer

and the feature maps of the other two layers. The fusion

result of Level 2 can then be expressed as

P004 ¼ X2 ¼ a2x1!2 þ b2x2!2 þ h2x3!2.

3.5 RCN

RCN can be divided into two steps. First, YOLO Head

(YH) is used to obtain prediction results. Second, the final

detection result is achieved after decoding the prediction

result output by using the YH module.

In MSSIF-Net, the MFSN outputs the feature maps

P0003 ð52� 52� 128Þ, P0004 ð26� 26� 256Þ, and

P0005 ð13� 13� 512Þ, which serve as the input of the YH

module. First, the YH module exploits the classification

number N, confidence, and coordinate parameters of the

four position offsets to process P0003, P
000
4, and P0005 respectively.

Then, the output feature maps
�P3

�
52� 52� ðN þ 1þ 4Þ

�
, �P4

�
26� 26� ðN þ 1þ 4Þ

�
,

and �P5
�
13� 13� ðN þ 1þ 4Þ

�
are obtained, where 1

indicates that the prior bounding box contains objects.

Thus, the confidence score is greater than the set score

threshold. In this study, a K-means algorithm is applied to

adaptively generate nine prior bounding boxes of different

sizes based on the freight train image dataset. Prior

bounding boxes are generally used to estimate the size and

location of objects. Second, �P3, �P4, and �P5 are divided into

52� 52, 26� 26, and 13� 13 grids according to their

width-to-height ratio. The feature map of each scale cor-

responds to three prior bounding boxes of different sizes,

and each bounding box corresponds to a specific object

category. In the decoding operation, the center coordinate

of the prediction bounding box is calculated using each

grid and the corresponding offset of the center point

coordinate. Following, the length and width of the pre-

diction bounding box are calculated by combining the

length and width of the prior bounding box. Finally, the

position of the prediction bounding box is determined

using the center point coordinate and the length and width

coordinate. In addition, the decoding operation judges each

category and filters the prediction bounding box based on

the bounding box position, category score, and non-maxi-

mum suppression [37] operation, subsequently drawing the

filtered prediction bounding box in the corresponding

position of the original image. The detection result is

obtained in the end.

3.6 Loss function

The loss function of the MSSIF-Net detector involves three

parts, namely regression loss Lciou, confidence loss Lconf ,

and classification loss Lcls.

The regression loss represents the error between the

ground-truth bounding box and the prediction bounding

box. MSSIF-Net adopts the Complete Intersection over

Union Loss (CIoU Loss) denoted by Lciou, which is cal-

culated by

Lciou ¼
XS2

i¼0

XB

j¼0

Iobjij

�
1� IoUþ d2ðb; bgtÞ

l2

þ 16

p4

�
arctan

wgt

hgt
� arctan

w

h

�2

�
�
1� IoUþ 4

p2

�
arctan

wgt

hgt
� arctan

w

h

���1
�
;

ð10Þ

where S2 represents the grid to be divided into the image

and B represents the prediction bounding box. Iobjij is usu-

ally set to 0 or 1, in which the value is used to judge

whether an object exists in the i-th grid and whether it can

be correctly predicted by the j-th prediction bounding box.

IoU refers to the ratio of intersection and union of ground-

truth bounding box A and prediction bounding box B, and it

represents the accuracy of the prediction bounding box.

IoU is defined as
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IoU ¼ A \ B

A [ B
: ð11Þ

Furthermore, d2 b; bgtð Þ represents the Euclidean distance

between the center point of the prediction bounding box

and the ground-truth bounding box, and l is the diagonal

distance of the smallest enclosing rectangle formed by the

ground-truth bounding box and the prediction bounding

box. w, h, wgt, and hgt represent the width and height of the

prediction bounding box and the width and height of the

ground-truth bounding box, respectively.

The confidence loss adopts the binary cross entropy loss,

which is divided into two parts, namely the confidence loss

items of the bounding box with objects and without an

object. Lconf is calculated by

Lconf ¼ �
XS2

i¼0

XB

j¼0

Iobjij

h
Ĉ

j

i logðC
j
i Þ þ ð1� Ĉ

j

i Þ logð1� C j
i Þ
i

� knoobj
XS2

i¼0

XB

j¼0

Inoobjij

h
Ĉ

j

i logðC
j
i Þ þ ð1� Ĉ

j

i Þ logð1� C j
i Þ
i
;

ð12Þ

where Cj
i ¼ PðobjectÞ � IoUtruth

pred is the confidence of the

prediction bounding box, which is calculated on the basis

of the product of the category probability P(object) of the

object and IoU. Ĉ
j

i is the confidence of the ground-truth

bounding box, which has a value of 0 or 1. knoobj and Inoobjij

are the hyperparameters used to calculate the confidence

loss when the bounding box does not contain an object. In

general, knoobj has a value of 0.5, I
noobj
ij has a value of 0 or 1,

and the value of Inoobjij is opposite to that of Iobjij .

The classification loss Lcls can be expressed as

Lcls ¼ �
XS2

i¼0

Iobjij

Xc

c2classes
½P̂j

i logðP
j
iÞ þ ð1� P̂

j

iÞ logð1� Pj
iÞ�;

ð13Þ

where P̂
j

i and Pj
i are the category probability of the ground-

truth bounding box and the prediction bounding box,

respectively.

In summary, the loss of MSSIF-Net can be calculated by

Loss ¼ Lciou þ Lconf þ Lcls: ð14Þ

4 Experiment and analysis

The implementation details of MSSIF-Net, the perfor-

mance evaluation metrics used in the experiments, and the

ablation experiments and robustness tests of MSSIF-Net on

TITS are discussed in this section. The state-of-the-art

detectors and MSSIF-Net test results on the TITS and

PASCAL VOC 2007 test set are also presented.

MSSIF-Net is implemented on the PyTorch deep

learning framework. The operating system used in the

experiment is Ubuntu 20.04 with a running memory of 64

GB. An NVIDIA GeForce GTX 1080 Ti graphics card is

used to accelerate the calculation. The versions of CUDA

and cuDNN are both 11.2.

4.1 Implementation details

We describe in this subsection the training and test datasets

and the skills utilized in the training.

4.1.1 Dataset description

The train image dataset used in this study is randomly

selected from the high-definition train images collected by

the TFDS of China Railway Guangzhou Group Company

Limited. The LabelImg tool is used to organize the dataset

into the PASCAL VOC format. As shown in Fig. 6, the

labels of the train image dataset can be divided into four

categories according to the train fault type, namely trun-

cated plug door handle (TPDH), upper lever (UL), locking

plate (LP), and normal, corresponding to the closing of the

truncated plug door handle, the jumping out of the upper

lever, the offsetting of the locking plate, and the above-

mentioned three train parts without fault, respectively. The

train image dataset contains 11,936 freight train images,

among which the number of images in TITS is 3580 (i.e.,

TITS3580). Owing to the influence of factors, such as

weather and camera angle, the freight train images in the

actual scene captured by the TFDS by using high-speed

cameras may have slight deformations and distortions.

Outdoor train images are more realistically simulated by

TITS3580 when producing a new robustness test set

(RTS3580). Thus, RTS3580 is used to test the robustness

of MSSIF-Net. The robustness test includes image-rotating

and artificially adding noise.

PASCAL VOC 2007 and PASCAL VOC 2012 are used

as the training set. In particular, PASCAL VOC 2007 is

used as the test set to further evaluate the performance of

MSSIF-Net and other well-known detectors. The PASCAL

VOC 2007 and PASCAL VOC 2012 datasets divide the

objects in an image into the following 20 categories:

aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair,
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cow, diningtable, dog, horses, motorbike, person, potted-

plant, sheep, sofa, train, and tvmonitor. The number of

images in the training set is 16,551, whereas that in the test

set is 4952. For simplicity, the test set is named Test4952.

As the aforementioned 20 categories have almost no sim-

ilarity with those in the train faults, the 20 categories in

Fig. 6 Examples of TITS

Fig. 7 Image of steel surface defect of NEU-DET dataset (Defects to be detected are in the orange box)
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Test4952 are also tested in the experiment to achieve a

comprehensive evaluation of MSSIF-Net performance.

In addition, a dataset for surface defect detection of hot-

rolled steel sheets (NEU-DET dataset) [38–40] is used to

evaluate the performance of different detector models. As

shown in Fig. 7, the defects to be detected include six

categories in the NEU-DET dataset, namely crazing,

inclusion, patches, pitted surface, rolled-in scale, and

scratches. There are 300 images in each category, and each

image to be detected has more than one possible number of

defects. In addition, more than 5000 ground truth boxes are

marked in the dataset, among which 1260 images are used

as NEU-DET training dataset for model pre-training and

network fine-tuning. Moreover, 540 images are used as

NEU-DET testing dataset (NDTest540) for performance

testing.

4.1.2 Training skills

MSSIF-Net mainly exploits the idea of transfer learning

during training. Deep CNNs perform well in object

detection. However, excellent detection results can only be

achieved if numerous data are used for CNN training. In

practical applications, the number of train fault images is

far from being sufficient in relation to the large amount of

train data required by detectors; thus, training a new CNN

method is inefficient. Under normal circumstances, the idea

of transfer learning can be adopted to reduce the training

time and training data to a certain extent, thereby

improving training efficiency and detector performance.

An illustration of this configuration is shown in Fig. 8. The

solid blue line is taken as the train path of the detectors,

whereas the red dashed line is taken as the test path of the

train images. First, the weight file obtained by FEN trained

on the ImageNet dataset is used as the pre-training weight,

and then the MSSIF-Net detector is trained using the train

dataset and the pre-training weight. Second, the weights

generated via detector training are used as the input

weights of the test. In this manner, the final object detection

result can be collected using the testing weights, test set,

and the presented MSSIF-Net. The detectors compared in

our experiments also utilize the same training skills.

The total number of iterations of the MSSIF-Net training

is 200, which is divided into two stages, namely freezing

training and thawing training. In the freezing training stage,

the backbone of the detector does not change but only fine-

tunes the network. The number of freezing training is 100,

the learning rate is 0.001, and the batch size is 8. In the

thawing training stage, the backbone of the detector is

thawed, and the feature extraction model is changed. The

learning rate of the thawing training is 0.0001, and the

batch size is 16. The confidence score is 0.5.

4.2 Evaluation metrics

The performance evaluation metrics of the object detection

adopted in this study include average precision (AP), mean

average precision (mAP), frame per second (FPS), and log-

average miss rate (LAMR).

4.2.1 AP and mAP

AP refers to the area under the precision-recall (P-R) curve.

The P-R curve represents the trade-off between precision

and recall on a classifier. In general, the higher the AP, the

better the performance of the object detector. AP is cal-

culated by

AP ¼
Z 1

0

PðrÞdr; ð15Þ

where P(r) denotes the P-R curve. We assume that the

number of positive samples correctly identified as positive

samples by the detector is a, the number of negative

samples incorrectly detected as positive samples is b, and

the number of positive samples incorrectly identified as

negative samples is c, i.e., P ¼ a=ðaþ bÞ, R ¼ a=ðaþ cÞ,
and PðrÞ ¼ P� R. On the TITS dataset, the APs of TPDH,

Fig. 8 Detector training and

testing process
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UL, LP, and normal are detected, as denoted by APT,

APU, APL, and APN, respectively.

mAP is the average value of AP for each category,

which represents the average effect of detection of all

object categories. It can be calculated as

mAP ¼
Pn

b¼0 APb

n
; ð16Þ

where n is the total number of categories andth APb is the

AP value of the b-th category.

4.2.2 FPS

FPS is the number of frames transmitted per second, and it

is used to evaluate the detection speed of detectors. A high

FPS indicates a high detection speed of the detector. FPS is

estimated by

FPS =
frameNum

elapsedTime
; ð17Þ

where frameNum is the number of frames and elapsedTime

is the consumed time. In this study, the fixed-time frame

method is adopted to calculate FPS. The fixed time is set to

1 second.

4.2.3 LAMR

LAMR refers to the probability of objects being unde-

tected, which can be expressed as

LAMR ¼ exp
1

n

�Xn

i¼1

log2ai

	" #

; ai [ 0; ð18Þ

where ai is the probability of missing points in the n uni-

formly distributed false-positive per image. The lower the

LAMR value, the better the detection effect of the detector.

4.3 Ablation experiments on TITS

Ablation experiments are conducted to verify whether the

detector implemented with both MCA and MFSN is more

conducive to the improvement of detection accuracy.

Experimental detectors include the following types: (1)

original YOLOv4, (2) MCA-YOLO embedded with

attention mechanism MCA, (3) MFSN-YOLO that use

MFSN without embedding MCA, and (4) MSSIF-Net that

uses MFSN and embedded with MCA. The experiments

are implemented under the same conditions, and the

embedded position of MCA is either in PANet or MFSN.

Both MFSN and PANet are the unembedded attention

mechanism type, as shown in Table 1.

As can be seen from Table 1, the detection accuracy of

MCA-YOLO, MFSN-YOLO, and MSSIF-Net is higher

than that of original YOLOv4, but the detection speed is

slightly decreased. The effectiveness of MCA and MFSN is

verified by MCA-YOLO and MFSN-YOLO, respectively.

Compared MCA-YOLO with YOLOv4, MCA, as a chan-

nel attention mechanism, can effectively increase the

detector’s attention to the object region, enhance the ability

of feature representation, provide more useful feature

information for subsequent classification and regression

tasks. In this case, mAP is increased from 89.29% to

92.01%. For MCA, group convolution operations with

different convolution kernel sizes are used to obtain more

feature information of different scales. However, as the

computational amount of group convolution is lower than

that of ordinary convolution, the detection speed of MCA-

YOLO is almost unaffected when MCA is used alone,

reaching 35.28 FPS. For MFSN-YOLO, MFSN is used to

replace PANet in YOLOv4, and the effect of feature

extraction is further enhanced. Moreover, each layer in the

middle part of MFSN fuses the feature information of the

other two layers. The amount of feature information cap-

tured by the image channel is greatly increased, and the

mAP of MFSN-YOLO reaches 91.86%. MCA and MFSN

are adopted in MSSIF-Net at the same time, and the

semantic information of feature maps at different scales is

enriched. In addition, owing to the increased computational

complexity of MSSIF-Net, the final detection speed is

33.10 FPS, and mAP achieves 94.73%.

The visualization results of MSSIF-Net are shown in

Fig. 9, in which Fig. 9a is the original train image. The

class activation mapping (CAM) [41] method is used to

generate the visualization feature maps of Figs. 9b–d for

the confidence score, classification score, and confidence

score weighted with the classification score, respectively.

Table 1 Ablation experiments

on TITS3580
Methods MCA PANet MFSN mAPð%Þ APTð%Þ APUð%Þ APLð%Þ APNð%Þ FPS

YOLOv4 –
p

– 89.29 100.00 93.18 74.26 89.72 35.35

MCA-YOLO
p p

– 92.01 100.00 94.60 78.53 94.93 35.28

MFSN-YOLO – –
p

91.86 100.00 93.34 78.60 94.48 31.48

MSSIF-Net
p

–
p

94.73 100.00 98.60 88.87 91.45 33.10

Bold values indicate the best results obtained by the detector model in terms of current evaluation metric
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Figure 10 shows the LAMR comparisons of YOLOv4

and MSSIF-Net. The miss rates of LP and normal are low

in MSSIF-Net.

4.4 Comparisons with other approaches on TITS

To further verify the performance of MSSIF-Net, one-stage

detectors (YOLOv3, YOLOv4 and RetinaNet), two-stage

detector (Faster R-CNN), and anchor-free detectors (Cen-

terNet and YOLOX-l) are compared in the TITS

(TITS3580). Two-stage detectors generally adopt enu-

meration methods to generate and filter region proposals in

RPN, so their detection speed is slow. The regression and

classification of objects in the anchor-free detector rely on

key point estimation which usually has fast detection

speed. One-stage detector performs regression directly on

the bounding box and category probability of the object,

which can generally balance detection accuracy and speed

well by using prediction bounding box. The experimental

results of TITS3580 are reported in Table 2, in which the

second column is mAP, APT, APU, APL, and APN cor-

respond to AP values of the four train parts fault types. The

last column is the detection speed. Given the same exper-

imental conditions, the comprehensive performance of

MSSIF-Net is superior to those of the other detectors.

Table 2 shows that anchor-free detectors perform well in

terms of FPS. For example, the detection speed of Cen-

terNet can reach 55.47 FPS. One-stage detectors can reach

a balance between detection accuracy and speed. For

example, YOLOv3 achieves a mAP of 86.01% on

TITS3580, and the detection speed can reach 36.35 FPS.

Regardless whether one-stage or anchor-free detectors, the

detection accuracy is improved at the cost of increasing a

Fig. 9 Visualization examples of MSSIF-Net for train image fault detection

Fig. 10 LAMR results of YOLOv4 and MSSIF-Net
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certain amount of computation, such as RetinaNet,

YOLOv4, and YOLOX-l. The mAP of YOLOX-l can reach

91.73%. The Faster R-CNN of the two stage detector can

obtain a mAP of 86.98%, but its detection speed is lower

than the other two types of detectors.

The overall performance improvement values of

MSSIF-Net on TITS are 8.72%, 5.44%, 7.75%, 13.25%,

13.19%, and 3.00% better than those of YOLOv3,

YOLOv4, Faster R-CNN, RetinaNet, CenterNet, and

YOLOX-l in mAP, respectively. As train images are

grayscale images, feature extraction is difficult. The

MSSIF-Net proposed in this study belongs to the one-stage

detector. As more feature information of different scales is

obtained, the comprehensive performance of MSSIF-Net

better than other detectors. In particularly, MCA in MSSIF-

Net is used to increase the attention of the target fault

object to be detected, and MFSN is used to generate multi-

scale feature maps with rich semantic information. There-

fore, it can achieve excellent result in the detection accu-

racy of any train fault category, and the detection speed can

reach 33.10 FPS. The overall trend of the detection accu-

racy and speed results indicate MSSIF-Net is superior to

the other detectors on TITS3580. It can also balance

detection accuracy and speed.

4.5 Robustness tests on TITS

Aiming to further verify the anti-interference ability of

MSSIF-Net, robustness tests are conducted by adding noise

and rotating train images to RTS3580. After adding the

interference in the TITS, the AP and mAP of YOLOv4 and

MSSIF-Net are compared to further verify the reliability of

the MSSIF-Net detector.

4.5.1 Robustness to noise

Noise is also manually added to the images on RTS3580.

The three types of noise are random noise, Gaussian noise,

and salt and pepper noise.

The experimental results of the noise robustness tests of

YOLOv4 and MSSIF-Net are shown in Table 3. For ran-

dom noise, MSSIF-Net clearly surpasses YOLOv4 by

3.00% in mAP and by -0.79%, 1.48%, 12.51%, and

-0.91% in APT, APU, APL, and APN, respectively.

These results indicate that random noise has almost no

effect on the train image, further suggesting that MSSIF-

Net maintaines its high accuracy. For Gaussian noise, the

mAP of MSSIF-Net is slightly decreased. With respect to

APT, APU, APL, and APN, the MSSIF-Net has a mar-

ginally lower performance (3.70%, 8.06%, -5.01%, and

-0.91%, respectively) compared with YOLOv4. However,

Table 2 The experimental

results of different detection

methods on TITS3580

Methods mAPð%Þ APTð%Þ APUð%Þ APLð%Þ APNð%Þ FPS

YOLOv3 [14] 86.01 90.48 83.19 79.33 91.03 36.35

YOLOv4 [15] 89.29 100.00 93.18 74.26 89.72 35.35

Faster R-CNN [9] 86.98 88.64 89.97 82.74 86.58 13.08

RetinaNet [17] 81.48 73.11 86.39 76.68 89.75 25.36

CenterNet [22] 81.54 77.51 75.54 84.46 88.63 55.47

YOLOX-l [23] 91.73 100.00 97.73 75.33 93.88 23.23

MSSIF-Net 94.73 100.00 98.60 88.87 91.45 33.10

Bold values indicate the best results obtained by the detector model in terms of current evaluation metric

Table 3 Noise test results on RTS3580

Methods mAP(%) APTð%Þ APUð%Þ APLð%Þ APNð%Þ

YOLOv4 MSSIF-

Net

YOLOv4 MSSIF-

Net

YOLOv4 MSSIF-

Net

YOLOv4 MSSIF-

Net

YOLOv4 MSSIF-

Net

None 89.29 94.73 100.00 100.00 93.18 98.60 74.26 88.87 89.72 91.45

Random noise 91.96 94.96 96.92 95.83 91.73 93.21 83.59 96.10 95.61 94.70

Gaussian noise 88.46 87.31 98.15 95.45 70.71 62.65 89.33 94.34 95.65 96.81

Salt and pepper

noise

88.48 89.21 97.31 92.58 69.98 75.29 90.95 94.24 95.69 94.70

Neural Computing and Applications

123



MSSIF-Net has shown good anti-interference ability for LP

and normal detection in the Gaussian noise experiment. For

the salt and pepper noise, the performance improvement of

MSSIF-Net is 0.73% better than YOLOv4 in mAP. For

APT, APU, APL, and APN, the performance improvement

of MSSIF-Net is -4.73%, 5.31%, 3.29%, and -0.96%,

respectively, compared with that of YOLOv4. The trend

can be attributed to Gaussian noise and salt and pepper

noise greatly influencing the train image quality and

interfere with the object features details.

Figures 11a–c shows the increasing LAMRs of MSSIF-

Net and YOLOv4 for the three types of noise, especially

the UL. Under the interference of noise, the detection

accuracy of MSSIF-Net is affected to a certain extent.

Nonetheless, the MSSIF-Net continues to have high-

(a) (b) (c)

(d) (e) (f)

(g) (i)(h)

Fig. 11 LAMR results for robustness tests on RTS3580

Table 4 Rotation test results of RTS3580

Methods mAP(%) APTð%Þ APUð%Þ APLð%Þ APNð%Þ

YOLOv4 MSSIF-Net YOLOv4 MSSIF-Net YOLOv4 MSSIF-Net YOLOv4 MSSIF-Net YOLOv4 MSSIF-Net

�2� 83.24 84.41 92.34 95.45 81.56 82.45 81.70 82.07 77.36 77.66

�5� 80.85 82.95 86.37 91.46 78.18 80.56 81.72 82.72 77.14 77.05

�8� 77.13 79.66 84.80 89.76 64.85 70.82 81.34 80.68 77.55 77.41

þ2� 81.53 83.92 88.20 93.48 79.04 82.45 81.13 82.07 77.75 77.66

þ5� 79.73 82.70 83.57 91.08 75.80 79.96 82.21 82.40 77.35 77.36

þ8� 74.54 80.25 80.11 89.98 59.04 71.71 81.73 81.94 77.16 77.37
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detection accuracy on the average, further suggesting its

good anti-interference ability.

4.5.2 Robustness to rotation

For this phase of the robustness test, the images in

RTS3580 are rotated counterclockwise (�2�, �5�, and

�8�) and clockwise (þ2�, þ5�, and þ8�).
The experimental results of the image rotation test are

shown in Table 4. For the image rotation of �2�, �5�, �8�,
þ2�, þ5�, and þ8� on RTS3580, the MSSIF-Net exceeds

YOLOv4 as follows: by 1.17%, 2.1%, 2.53%, 2.39%,

2.97%, and 5.71% in mAP, respectively; by 3.11%, 50.9%,

4.96%, 5.28%, 7.51%, and 9.87% in APT, respectively; by

0.98%, 2.38%, 6.01%, 3.41%, 4.16%, and 13.13% in APU,

respectively; by 0.37%, 1.00%, -0.66%, 0.94%, 0.19%,

and 0.21% in APL, respectively; and by 0.30%, -0.09%,

-0.14%, -0.09%, 0.01%, and 0.21% in APN, respec-

tively. As the angle of rotation increases, the accuracy of

the detector decreases. We suspect that the rotated train

images manifest as different features, affecting the judg-

ment of the detectors. However, the MFSN uses the ASFF

method to adaptively fuse the three-layer spatial features.

The MSSIF-Net is expected to be more reliable and still

offer excellent detection accuracy.

As shown in Figs. 11d–i, MSSIF-Net outperforms

YOLOv4 in terms of LAMR. Image rotation has a great

impact on all categories of LAMR. However, for MSSIF-

Net, the LAMR of the four fault types is generally lower

than those of YOLOv4. Although detection accuracy is

affected greatly by the image rotation, MSSIF-Net con-

tinues to show great detection performance and robustness.

4.6 Experiments on PASCAL VOC 2007

MSSIF-Net is also compared with the other five well-

known detectors by using the PASCAL VOC 2007 test set

of Test4952. The experimental results are shown in

Tables 5 and 6. MSSIF-Net has the best comprehensive

performance in terms of accuracy and speed. In Table 5,

each column from left to right is detector, feature extrac-

tion backbone, input image size, mAP, and FPS. Table 6

Table 5 The experimental results of different detection methods on

Test4952

Methods Backbone Input Size mAPð%Þ FPS

YOLOv4 [15] CSPDarkNet53 416�416 82.06 33.76

Faster R-CNN [9] ResNet50 600�600 84.29 13.30

RetinaNet [17] ResNet50 600�600 82.46 17.03

CenterNet [22] ResNet50 512�512 83.13 55.30

YOLOX-l [23] CSPDarkNet 640�640 86.46 25.13

MSSIF-Net CSPDarkNet53 416�416 87.76 29.89

Bold values indicate the best results obtained by the detector model in

terms of current evaluation metric

Table 6 Detection precision

results of single category on

Test4952

APð%Þ YOLOv4 Faster R-CNN RetinaNet CenterNet YOLOX-l MSSIF-Net

Aaeroplane 91.69 81.56 63.62 82.08 94.23 92.33

Bicycle 90.16 91.17 86.86 90.78 91.88 91.23

Bird 82.23 83.10 71.94 80.91 85.32 88.61

Boat 72.91 81.37 70.01 78.73 81.66 79.68

Bottle 71.80 66.72 69.00 61.64 81.80 81.80

Bus 92.49 92.71 90.06 86.56 93.80 93.23

Car 91.51 91.35 90.17 84.46 95.00 95.02

Cat 88.46 92.92 96.90 94.77 90.64 91.06

Chair 63.58 69.97 58.95 66.22 74.21 76.69

Cow 86.16 91.78 88.26 87.94 88.76 95.11

Diningtable 66.71 77.36 86.74 69.72 81.34 80.25

Dog 89.05 91.84 95.70 91.64 87.92 92.54

Horses 92.00 92.66 95.30 88.75 91.23 95.36

Motorbike 91.50 89.40 95.57 88.93 89.99 93.32

Person 89.76 87.80 84.48 83.13 92.13 92.00

Pottedplant 58.80 61.30 58.21 59.12 62.55 64.61

Sheep 79.88 89.35 88.41 87.45 86.82 88.54

Sofa 75.48 80.58 84.80 81.74 83.94 82.11

Train 86.38 91.04 92.44 90.95 90.10 93.25

Tvmonitor 80.73 81.86 85.07 87.02 85.80 88.45

Bold values indicate the best results obtained by the detector model in terms of current evaluation metric
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compares the AP values of 20 categories in Test4952

between MSSIF-Net and other five detectors.

In mAP, the overall performance improvement of

MSSIF-Net on Test4952 is 5.70%, 3.47%, 5.00%, 4.63%,

and 1.30% better than those of YOLOv4, Faster R-CNN,

RetinaNet, CenterNet, and YOLOX-l, respectively. The

detection speed of MSSIF-Net is 29.89 FPS on Test4952,

which is higher than Faster R-CNN, RetinaNet, and

YOLOX-l. Two tricks (MCA and MFSN) of increasing

feature extraction are used in MSSIF-Net, which effec-

tively improve the ability of the detector model to obtain

effective feature information. Thus, the detection perfor-

mance evaluation of MSSIF-Net on the Test4952 dataset is

better than other detectors. In particularly, with the multi-

scale prediction feature maps generated by MFSN and the

improvement of MCA’s focus on small objects, the

detection accuracy of MSSIF-Net for small objects, such as

bottle and chair, are greatly improved, reaching APs of

81.80% and 76.69%, respectively. These trends depict the

good detection of MSSIF-Net on small objects.

4.7 Experiments on NEU-DET dataset

The NEU-DET training dataset and NDTest540 are used to

train and evaluate MSSIF-Net, respectively. As all the

images to be detected from the NEU-DET dataset are

Table 7 Experimental results of different detection methods on NDTest540

Mothods mAP(%) AP(%)

Crazing Inclusion Patches Pitted surface Rolled-in scale Scratches FPS

YOLOv4 [14] 72.44 39.38 79.09 88.30 75.06 60.37 92.19 34.56

Faster R-CNN [9] 73.22 44.82 71.63 95.30 65.85 71.67 90.05 13.14

RetinaNet [17] 64.32 39.92 75.40 90.49 72.25 72.65 35.18 28.03

CenterNet [22] 71.58 33.52 82.45 91.31 65.55 65.04 91.58 59.36

YOLOX-l [23] 73.75 34.85 80.77 92.17 70.50 73.66 90.52 21.16

MSSIF-Net 75.54 45.26 81.16 91.73 76.89 65.85 92.38 30.14

Fig. 12 Results of surface defect detection
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grayscale images, and it is not easy to detect defects in the

images to be detected. The feature extraction of defects is

hard. As shown in Table 7, performance comparison is

made between MSSIF-Net and two-stage object detector

(Faster R-CNN), one-stage object detectors (YOLOv4 and

RetinaNet), and anchor-free detectors (CenterNet and

YOLOX-l). MSSIF-Net can still maintain excellent

detection performance on grayscale images that are diffi-

cult to be detected. The mAP of MSSIF-Net can reach

75.54% and detection speed can reach 30.14 FPS. Com-

pared with other detectors, MSSIF-Net has excellent

detection performance and can balance detection accuracy

and speed. The detection results of MSSIF-Net are shown

in Fig. 12, which can accurately detect the defect part.

5 Conclusion

We propose in this study a train fault image detection

method called the MSSIF-Net based on MCA and MFSN

to improve the detection accuracy of freight train images.

MSSIF-Net encompasses the FEN, SPP, MFSN, and RCN

modules. The FEN module extracts image feature infor-

mation, the SPP module expands the receptive field of the

high-level feature map, the MFSN module fuses multi-

scale feature information, and the RCN module classifies

and regresses the prediction results. MSSIF-Net performs

well on the TITS and PASCAL VOC 2007 test set. The

overall performance improvement of MSSIF-Net on TITS

is 5.44%, 7.75%, 13.25%, 13.19%, and 3.00% better than

those of YOLOv4, Faster R-CNN, RetinaNet, CenterNet,

and YOLOX-l, respectively, in mAP. On the VOC 2007

test set, the corresponding mAP values of MSSIF-Net are

higher by 5.7%, 3.47%, 4.63%, 5.3%, and 1.3% than those

of the other five object detection methods. To test the

generalization ability of MSSIF-Net, NEU-DET dataset is

used to train the detector and evaluate its performance.

MSSIF-Net achieves a mAP of 75.54%. In addition, the

train image is simulated under real conditions, and the

robustness of MSSIF-Net on noisy or rotated train image

datasets is tested. Extensive experimental results demon-

strate that the proposed MSSIF-Net method can signifi-

cantly surpass the other detection methods in terms of

accuracy and stability. In the next plan of work, we intend

to promote the object detection speed while maintaining

the original detection accuracy.
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