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 A B S T R A C T

The advantages of unmanned aerial vehicles (UAVs) in terms of maneuverability and line-of-sight com-
munication have made aerial edge computing (AEC) a promising solution for processing computationally 
intensive tasks. However, the constrained computational resources of UAVs and the complexity of multi-UAV 
coordination pose significant challenges in designing efficient trajectory optimization and power allocation 
strategies to enhance user service quality. To address this issue, we construct an AEC architecture assisted by 
non-orthogonal multiple access (NOMA) and a deep reinforcement learning (DRL) algorithm based on dynamic 
Gaussian mixture and sharing networks (DRL-DGSN). By leveraging the successive interference cancellation 
technology of NOMA, DRL-DGSN simultaneously optimizes user association, UAV power allocation, and 
trajectory design to maximize system throughput. First, DRL-DGSN employs a dynamic user association 
algorithm based on Gaussian mixture model, achieving capacity-aware uniform clustering through probabilistic 
modeling combined with cluster capacity constraints, effectively preventing UAV overload. Second, DRL-DGSN 
utilizes a multi-agent DRL framework with a dueling network architecture and double deep Q-network. By 
integrating a shared network, agents can efficiently share experiences, enabling simultaneous optimization of 
multi-UAV cooperative trajectories and power allocation, while reducing Q-value overestimation and enhancing 
training efficiency. Finally, extensive experiments validate the superiority and effectiveness of DRL-DGSN 
across various scenarios.
1. Introduction

The swift advancement of Internet of Things and wireless commu-
nication technologies has triggered a surge in latency-sensitive and 
computation-intensive tasks. Cloud servers can provide powerful com-
puting capabilities to effectively deal with computation-intensive tasks. 
However, these servers are frequently distant from end-users, which 
leads to high transmission latency and energy consumption. Given this 
background, mobile edge computing (MEC) [1] emerges as a crucial 
technology for addressing the transmission bottleneck in cloud centers. 
This technology extends the computing power from traditional cloud 
centers to the network edge. With this approach, computing tasks are 
offloaded by wireless devices to mobile edge servers at the network 
edge for processing, resulting in an increase in computing power [2]. 
However, in scenarios such as emergency response and remote areas, 
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the wireless coverage of MEC servers is limited, the communication 
quality is poor, and even the MEC servers may fail to provide services 
due to damage, which causes difficulty in ensuring a better service 
quality. Recently, unmanned aerial vehicles (UAVs) have experienced 
rapid development due to their maneuverability, flexibility, and ease 
of operation [3]. Thus, researchers have combined UAVs with MEC 
technology and designed aerial edge computing (AEC) assisted by 
UAVs. In the AEC architecture, UAV as the carrier of assisted edge 
computing can effectively solve the problem of coverage blindness. 
It can provide highly stable line-of-sight (LOS) communication by 
virtue of its positional advantage, which improves the efficiency of 
data transmission. Given the unpredictable mobility of users, static 
UAV deployment struggles to deliver efficient edge computing services. 
UAVs are required to precisely plan flight trajectories [4] and efficiently 
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 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
https://orcid.org/0000-0002-4413-9974
mailto:longxinzhang@hut.edu.cn
mailto:luxiaotong@stu.hut.edu.cn
mailto:luijing_cs@wust.edu.cn
mailto:yanfen.z@foxmail.com
mailto:chenjg33@mail.sysu.edu.cn
mailto:buqingcao@hut.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.sysarc.2025.103634
https://doi.org/10.1016/j.sysarc.2025.103634


L. Zhang et al. Journal of Systems Architecture 170 (2026) 103634 
allocate transmit power. Thus, research has focused on optimizing the 
flight trajectories of each UAV to expand the coverage of target user 
service areas. Moreover, flight safety and reasonable power allocation 
are guaranteed to maximize throughput and maintain user fairness. 
Considering the non-convex characteristics of the multi-variable and 
multi-constraint problems inherent in multi-UAV cooperation, tradi-
tional heuristic algorithms frequently demonstrate inefficiency and 
converge to local optima. This limitation complicates the rapid design 
of a safe and efficient cooperation scheme that incorporates power 
allocation within complex environments.

For the core requirement of throughput optimization under transmit 
power constraints in AEC, non-orthogonal multiple access (NOMA) 
demonstrates significant technical advantages. NOMA outperforms tra-
ditional multiple-access technologies by enhancing user fairness and 
spectral efficiency through power domain multiplexing and successive 
interference cancellation (SIC), resulting in higher throughput [5]. In 
practical AEC scenarios, sparse and scattered terrestrial users exacer-
bate the complexity of resource management. Therefore, performing 
reasonable NOMA clustering for users is needed to effectively man-
age power allocation and reduce inter-user interference. Most existing 
studies adopt K-means or K-means++ clustering algorithm [6]. How-
ever, the traditional K-means algorithm demonstrates limited capability 
in delineating non-spherical clusters [7]. Thus, it cannot handle the 
complex and variable user distribution in AEC scenarios effectively. 
The user count and single-user resource allocation demonstrate an 
inverse relationship, attributed to the constraints of UAV communi-
cation resources. Existing clustering algorithms are mostly based on 
partitioning, layering, density, or modeling. These algorithms also lack 
an explicit constraint mechanism for cluster capacity [8]. This leads 
to over-partitioning of resources in high-density regions, resulting in 
the inability to guarantee the transmission rate for individual users. 
Furthermore, the total throughput will decline further due to increased 
interference, ultimately impacting the overall communication quality 
of AEC.

Deep reinforcement learning (DRL) integrates the representational 
learning capabilities of neural networks with the sequential decision-
making benefits of reinforcement learning [9]. It learns through in-
teractions with the environment and can adapt to dynamic changes 
within that environment. In recent years, several studies have utilized 
DRL to address joint optimization problems in AEC, including the 
co-optimizing deployment of UAVs and the allocation of communi-
cation resources, and joint decision making in task offloading and 
UAV trajectory control [10]. The complexity of the AEC environment 
and the vast state and action spaces introduce significant demands on 
the convergence and generalization capabilities of the algorithm [11]. 
Furthermore, in a multi-UAV system, each UAV can be regarded as 
an independent agent when employing DRL technology. Effectively 
managing and coordinating interactions among these agents to ensure 
overall performance and synergistic efficiency has become an urgent 
research challenge.

To tackle the challenges mentioned above, this study concentrates 
on resource allocation algorithms within NOMA-assisted AEC systems. 
Moreover, a DRL algorithm based on dynamic Gaussian mixture and 
shared network (DRL-DGSN) is proposed. DRL-DGSN employs a novel 
multi-agent DRL (MADRL) framework to optimize the user association 
strategy, UAV flight trajectories, and communication resource allo-
cation simultaneously. The framework is also used to maximize the 
system throughput under the premise of guaranteeing user fairness. The 
primary contributions of this study are highlighted below:

• We construct a NOMA-assisted AEC network architecture that uti-
lizes UAV clusters as low-altitude mobile base stations to provide 
cooperative communication services to mobile users. In addition, 
we implement the SIC technique to effectively reduce interference 
among cluster users. By formulating a mixed-integer optimization 
problem that integrates user-UAV association policies, UAV flight 
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trajectory control, and transmit power allocation, we maximize 
system throughput while ensuring the minimum transmission rate 
for users.

• We propose a dynamic user association algorithm based on the 
Gaussian mixture model (GMM) (DUA-GMM) to optimize the 
user-UAV association strategy. The DUA-GMM achieves accurate 
clustering of user groups by leveraging the advantages of GMM in 
modeling complex data distributions. Moreover, the upper limit 
on the number of service users due to UAV energy consumption 
constraints is addressed by adopting the uniform clustering algo-
rithm (UCA) to constrain cluster capacity, we effectively tackle 
the challenge of ensuring users’ transmission rates in high-density 
regions under transmit power constraints.

• We model the problem as a Markov decision process (MDP) and 
develop the DRL-DGSN algorithm to optimize the flight trajec-
tory control and transmit power allocation strategies of UAVs 
simultaneously. DRL-DGSN employs a double deep Q-network 
(DDQN) algorithm based on the dueling network architecture, 
which effectively reduces the overestimation problem in Q-value 
estimation. Unlike existing MADRL algorithm, the shared network 
is used among the agents. This way further promotes the informa-
tion sharing and collaboration among UAVs. Experimental results 
show that, compared with other state-of-the-art methods, DRL-
DGSN achieves an increase in system throughput ranging from 
10.06% to 238.04%.

The remainder of the study is organized as follows. Section 2 
reviews the related works. Section 3 introduces the system model and 
outlines the optimization problem. Section 4 outlines the problem to 
be addressed and provides a formal description. Section 5 discusses the 
DUA-GMM and DRL-DGSN algorithms in detail. Section 6 assesses and 
analyzes the performance of DRL-DGSN. Section 7 offers concluding 
remarks.

2. Related work

The deep integration of MEC and UAV technologies has caused dif-
ficulty in efficient resource allocation across dense and heterogeneous 
environments in the field of edge intelligence. This section offers a 
thorough overview of the latest advancements in research addressing 
this challenge.

In MEC, research has mainly focused on the resource optimization 
of terrestrial fixed servers, with the core objective of reducing terminal 
latency and energy consumption through computational offloading. 
Chen et al. [12] developed a three-tier energy consumption model 
of cloud–edge-end systems and introduced a particle swarm optimiza-
tion algorithm that incorporates self-adaptation capabilities, further 
enhanced by genetic algorithm operators. This model achieves efficient 
offloading decisions at each layer through layer partitioning operations, 
which effectively reduces coding dimensions and shortens execution 
times. Chen et al. [13] proposed a task offloading method in cloud–edge 
computing that is real-time and aware of task dependencies, utilizing 
Deep Q Networks (DQN) to facilitate parallel task offloading without 
predefined priority constraints. Liao et al. [14] created a task offloading 
algorithm that employs a double-layer DRL model, effectively minimiz-
ing latency and energy consumption by simultaneously optimizing task 
offloading decisions, transmission power, and CPU frequency. Sadiki 
et al. [15] investigated large-scale multiple-input multiple-output MEC 
systems within the context of computational offloading. They proposed 
two DRL algorithms, namely, DQN and proximal policy optimization, 
to minimize power consumption and offloading latency for mobile de-
vices. Pang et al. [16] designed an ultra-dense heterogeneous network 
scenario with MECs. Additionally, they proposed a distributed frame-
work for task offloading and wireless resource management, aimed at 
optimizing the task offloading process, scaling local computing frequen-
cies, assigning subchannels, and regulating transmit power. Saberikia 
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et al. [17] proposed a fault-tolerant scheduling algorithm that combines 
mixed-integer linear programming (MILP) with heuristics. This ap-
proach aims to optimize energy consumption, fault tolerance, and load 
balancing to effectively manage dynamic task loads in edge-fog-cloud 
multi-layer architectures. Wu et al. [18] addressed the deficiencies of 
traditional edge computing networks that rely on a single access point 
and the privacy concerns associated with the offloading process by 
presenting a privacy-preserving strategy grounded in stochastic game 
theory. They developed a framework for offloading tasks using multiple 
access points and created a model to evaluate the quality of service. 
These studies have laid a theoretical foundation for resource allocation. 
However, the static architecture of ground-based MEC faces challenges 
in adapting to the multi-machine collaboration demands of dynamic 
scenarios.

Owing to their high maneuverability and advantages in LOS com-
munication, UAVs have gradually emerged as the core carriers of AEC 
to overcome the physical limitations of ground-based MEC. Li et al. [19] 
addressed the joint optimization challenge of energy efficiency and 
fairness in UAV-assisted MEC networks by proposing an optimization 
algorithm for joint trajectory planning and computational offloading 
strategy based on energy-saving, which integrates an optimization-
embedding multiagent DRL for autonomous decision making under 
dynamic demand. Hao et al. [20] explored computing offloading in 
multi-UAV collaborative MEC systems. They innovatively integrated 
embedding tables with variational autoencoders in a DRL framework 
to effectively resolve the co-optimization challenges in hybrid action 
spaces. Luo et al. [21] considered the difficulty for UAVs to achieve 
ideal search results during the search process due to the constraints of 
battery life and computational capability. They designed a framework 
for collaborative target search by multiple UAVs to optimize compu-
tational offloading and trajectory design simultaneously under energy 
and time constraints. Li et al. [22] developed a maximum clique with 
weighted graph algorithm to maximize the resource utilization of UAVs 
by simultaneously optimizing the communication range of user devices 
along with the latency and energy consumption of computational tasks. 
Ghosh et al. [23] designed a model utilizing a quantum-inspired grav-
itational search algorithm for the multi-UAV multi-user binary task 
offloading problem. This model employs quantum coding for decoding 
and optimizes this process using a hashing method. It incorporates a 
penalty mechanism to address the issue of violating decoding agents 
while ensuring polynomial time execution. Yan et al. [24] innovatively 
modeled the time interval from information generation to reception 
as the age of information (AoI) for dynamic scenarios involving UAV-
assisted vehicle edge computing. The twin delayed deep deterministic 
policy gradient method was proposed based on Actor-Critic networks, 
aiming to optimize AoI, energy consumption, and leasing costs. Despite 
significant advancements in dynamic resource scheduling for UAV-
assisted MEC, challenges such as spectrum resource competition and 
multi-user interference in dense UAV swarm scenarios continue to 
restrict further improvements in system performance. Traditional or-
thogonal multiple access (OMA) technologies can reduce interference 
through orthogonal resource allocation mechanisms. However, their 
limited spectrum efficiency fails to meet the demands of high-density 
user access.

To address the limitations of traditional OMA technologies, NOMA 
offers significant advantages in complex communication scenarios in-
volving dense UAV deployments by enhancing spectrum efficiency 
through non-orthogonal resource reuse. Hadi and Ghazizadeh [25] 
implemented user clustering and resource allocation using a three-stage 
heuristic algorithm in a NOMA framework. However, the clustering 
method fails to consider load balancing among UAVs. Umar et al. [26] 
utilized a NOMA clustering approach based on downlink channel gain 
and developed a pairing method based on the size of offloaded data in 
the uplink. They constructed an optimization framework using the La-
grangian function to reduce delays by optimizing power and computa-
tional resources. However, this approach only addresses scenarios with 
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a single device in each NOMA cluster, which does not accommodate 
account for multi-user interference. Lu et al. [27] carried out a secure 
communication scheme for flying eavesdroppers to tackle information 
security issues. The authors first derived mathematical expressions to 
clarify the worst-case security scenario. Then, they applied block co-
ordinate descent and successive convex approximation methods aimed 
at maximizing average secure computational power while ensuring 
minimum secure computational requirements for each ground user. Xu 
et al. [28] used secure computational power as the performance metric 
and introduced a block coordinate descent algorithm to tackle the 
task offloading decision-making problem. However, these schemes are 
limited to single-UAV scenarios and overlook the inter-cluster interfer-
ence caused by multi-computer coordination and the high-dimensional 
complexities of system modeling. Dai et al. [29] suggested a resource 
scheduling strategy for multi-UAV scenarios by combining the fuzzy C-
means (FCM) algorithm with the MADRL framework to jointly optimize 
channel allocation, trajectory control, and transmission power. This 
framework aims to maximize data rates and enhance communication 
fairness among UAVs while prioritizing ground base stations. FCM 
assumes implicit spherical clusters based on Euclidean distance, and 
the DQN algorithm employed in this framework struggles with Q-
value overestimation, which can lead UAV action decisions to deviate 
from the globally optimal solution. In contrast, the DUA-GMM mod-
ule integrated with the DRL-DGSN algorithm proposed in this study 
employs probabilistic distribution modeling to address the spherical 
assumption, accurately fitting the randomly dispersed characteristics of 
user distributions. Concurrently, it utilizes the DDQN algorithm based 
on the dueling network to effectively eliminate Q-value estimation 
bias and enhance the global optimality of multi-agent collaborative 
decision-making.

The aforementioned work highlights the potential of NOMA in AEC. 
However, the challenges of dynamic association and collaborative de-
cision making among multiple agents have not yet been systematically 
addressed. To this end, the DRL-DGSN algorithm is introduced, which 
integrates a fusion framework of GMM and DRL to tackle the dynamic 
association requirements of users and the global optimization problem 
of multi-agent collaboration in the AEC environment.

3. System model

This study constructs a multi-UAV-assisted AEC system based on 
NOMA technology to address the problem of ground base station 
service interruption in disaster environments. As shown in Fig.  1, 
the system provides communication services for multiple terrestrial 
mobile ground users in a cooperative manner by deploying several 
UAVs equipped with MEC servers as low-altitude mobile base stations. 
In this setup, each UAV operates on the same frequency band and 
employs SIC technology to effectively reduce signal interference within 
a multi-user clustering environment. Once the ground users are grouped 
into clusters using a clustering algorithm, each user cluster selects a 
suitable UAV for association. Then, the UAV allocates transmit power 
efficiently to the associated terrestrial ground users. The optimization 
goals of this system include realizing an association strategy between 
ground users and UAVs, controlling the 3D trajectory of the UAVs, and 
allocating transmit power, all with the aim of maximizing the total 
system throughput. The main symbols used in this study are presented 
in Table  1.

3.1. Mobile model

In this study, a communication network comprising 𝑀 users and 
𝑈 UAVs is examined, with 𝑀 > 𝑈 . The sets of users and UAVs are 
represented by  =

{

1, 2,… ,𝑀
} and  =

{

1, 2,… , 𝑈
}

, respectively. 
The time series is segmented into 𝑇  time slots in this scenario. The 
motion of UAVs and users on the ground is modeled using the Cartesian 
coordinate system. At time slot 𝑡, the position of each UAV 𝑢 is denoted 
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Fig. 1. Multi-UAV assisted AEC system based on NOMA technology.
Table 1
Description of notations.
 Notation Definition  
 𝑈,𝑀, 𝑇 Number of UAVs, users and time slots  
  ,,  Sets of UAVs, users and time slots  
 𝑑𝑢(𝑡), 𝑑𝑚(𝑡) Coordinates of UAV 𝑢 and user 𝑚 at time slot 𝑡  
 𝐷𝑢,𝑚(𝑡) Linear distance between UAV 𝑢 and user 𝑚 at time slot 𝑡  
 𝑑min Minimum distance limit between UAVs  
 𝐿los(𝑡), 𝐿Nlos(𝑡) Line-of-sight and non-line-of-sight path loss at time slot 𝑡  
 𝐿avg(𝑡) Average path loss at time slot 𝑡  
 𝑓𝑐 Carrier frequency  
 𝑅(𝑡) Channel fading at time slot 𝑡  
 𝑔𝑢,𝑚(𝑡) Channel gain between UAV 𝑢 and user 𝑚 at time slot 𝑡  
 𝑢(𝑡) Set of channel gains between UAV 𝑢 and its associated users at time slot 𝑡  
 𝐼 intra𝑢,𝑚 (𝑡), 𝐼 inter𝑢,𝑚 (𝑡) Intra-cluster interference and inter-cluster interference experienced by user 𝑚 
 𝑃𝑢,𝑚(𝑡) Transmit power allocated by UAV 𝑢 to user 𝑚 at time slot 𝑡  
 𝑁 Noise power  
 𝜑1 , 𝜑2 ,… , 𝜑𝑁 Decoding sequence of users  
 𝑆𝐼𝑁𝑅sic

𝑢,𝜑𝑚
(𝑡) Signal-to-interference-and-noise ratio of the user 𝜑𝑚 at time slot 𝑡  

 𝐼 intra𝜑𝑛
(𝑡) Intra-cluster interference experienced by user 𝜑𝑚 at time slot 𝑡  

 𝜇𝑛 Mean vector of Gaussian components 𝑛  
 𝛴𝑛 Covariance matrix of Gaussian components 𝑛  
 𝜋𝑛 Mixing coefficients of Gaussian components 𝑛  
 𝛾𝑚𝑛 Posterior probability between user 𝑚 and Gaussian components 𝑛  
 𝑅𝑢,𝜑𝑚

(𝑡) Throughput of the user 𝜑𝑚 at time slot 𝑡  
  Total system throughput  
 𝐾max Maximum number of serviceable users per UAV  
 𝐾𝑢 Load of UAV 𝑢  
 𝑜𝑢 Movement direction of the UAV 𝑢  
as 𝑑𝑢(𝑡) =
(

𝑥𝑢(𝑡), 𝑦𝑢(𝑡), ℎ𝑢(𝑡)
)

, where 𝑥𝑢(𝑡), 𝑦𝑢(𝑡) and ℎ𝑢(𝑡) are the X, Y 
and Z coordinates of the UAV 𝑢. For user 𝑚, the position is 𝑑𝑚(𝑡) =
(𝑥𝑚(𝑡), 𝑦𝑚(𝑡), ℎ𝑚(𝑡)), where 𝑥𝑚(𝑡) and 𝑦𝑚(𝑡) are the horizontal coordinates, 
and the Z coordinate ℎ𝑚(𝑡) = 0 because the user is positioned on the 
ground.

At time slot 𝑡, the linear distance 𝐷𝑢,𝑚(𝑡) and the horizontal distance 
𝐷ℎ

𝑢,𝑚(𝑡) between the UAV 𝑢 and the user 𝑚 are denoted as 

𝐷𝑢,𝑚(𝑡) =
‖

‖

‖

𝑑𝑢(𝑡) − 𝑑𝑚(𝑡)
‖

‖

‖2
, (1)

𝐷ℎ
𝑢,𝑚(𝑡) =

‖

‖

‖

(

𝑥𝑢(𝑡) − 𝑥𝑚(𝑡), 𝑦𝑢(𝑡) − 𝑦𝑚(𝑡)
)

‖

‖

‖2
. (2)
4 
To prevent UAV collisions between UAVs, it must be ensured that 
the distance between any two UAVs, 𝑢 and 𝑢′, is not less than the safe 
distance, which is expressed by 
‖

‖

‖

𝑑𝑢(𝑡) − 𝑑𝑢′ (𝑡)
‖

‖

‖2
≥ 𝑑min,∀𝑢, 𝑢′ ∈  , 𝑢 ≠ 𝑢′, (3)

where 𝑑min is the minimum distance limit between UAVs.

3.2. NOMA-based communication models

During signal transmission, the link transmission loss is influenced 
by LOS and non-line-of-sight (NLOS) propagation. The LOS path loss 
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𝐿LoS and the NLOS path loss 𝐿NLoS between the UAV 𝑢 and the user 𝑚
are modeled as follows [30]: 
𝐿Los(𝑡) = 30.9 +

(

22.25 − 0.5 ⋅ lg
(

ℎ𝑢(𝑡)
))

⋅ lg
(

𝐷𝑢,𝑚(𝑡)
)

+ 20 ⋅ lg
(

𝑓𝑐
)

, (4)

𝐿NLos(𝑡) = max
{

𝐿Los (𝑡) , 32.4+
(

43.2−7.6 ⋅ lg
(

ℎ𝑢(𝑡)
))

⋅ lg
(

𝐷𝑢,𝑚(𝑡)
)

+20 ⋅ lg
(

𝑓𝑐
)

}

,

(5)

where 𝑓𝑐 is the carrier frequency.
Let 𝑃Los(𝑡) and 𝑃NLos(𝑡) denote the probabilities of LOS and NLOS 

propagation, respectively. Their expressions are given as follows: 

𝑃Los(𝑡) =

⎧

⎪

⎨

⎪

⎩

1, 𝐷ℎ
𝑢,𝑚(𝑡) ≤ 𝑑𝑐 (𝑡);

𝑑𝑐 (𝑡)
𝐷ℎ
𝑢,𝑚(𝑡)

+ exp
{

−
𝐷ℎ
𝑢,𝑚(𝑡)

𝑃𝑙𝑜𝑠𝑠(𝑡)
×
(

1 − 𝑑𝑐 (𝑡)
𝐷ℎ
𝑢,𝑚(𝑡)

)}

, 𝐷ℎ
𝑢,𝑚(𝑡) > 𝑑𝑐 (𝑡),

(6)

𝑃NLos(𝑡) = 1 − 𝑃Los(𝑡), (7)

where 𝑑𝑐 (𝑡) = max
{

294.05×lg
(

ℎ𝑢(𝑡)
)

−432.94, 18
} is the critical distance, 

and 𝑝𝑙𝑜𝑠𝑠(𝑡) = 233.98×lg
(

ℎu(𝑡)
)

−0.95 is the parameter that regulates the 
attenuation of 𝑃Los(𝑡) [30].

Based on the propagation of LOS and NLOS, the average path loss 
between the UAV 𝑢 and the user 𝑚 is given by [31] 
𝐿𝑎𝑣𝑔(𝑡) = 𝑃Los(𝑡) ⋅ 𝐿Los(𝑡) + 𝑃NLos(𝑡) ⋅ 𝐿NLos(𝑡)

= 𝑃Los(𝑡) ⋅ 𝐿Los(𝑡) +
(

1 − 𝑃Los(𝑡)
)

⋅ 𝐿NLos(𝑡).
(8)

The channel gain resulting from random loss 𝑔𝑢,𝑚(𝑡) can be evaluated 
as 

𝑔𝑢,𝑚 (𝑡) = 𝑅(𝑡) × 10

(

−
𝐿𝑎𝑣𝑔 (𝑡)

10

)

, (9)

where 𝑅(𝑡) represents the channel fading caused by multipath ef-
fects [30].

Let 𝑎𝑢,𝑚(𝑡) ∈ {0, 1} be a binary variable indicating the association of 
UAV 𝑢 with user 𝑚. Specifically, 𝑎𝑢,𝑚(𝑡) = 1 if UAV 𝑢 is associated with 
user 𝑚 at the time slot 𝑡, and 𝑎𝑢,𝑚(𝑡) = 0 otherwise. Given that each user 
can be associated with a maximum of one UAV at any time slots, the 
following constraint must be satisfied: 
𝑈
∑

𝑢=1
𝑎𝑢,𝑚 (𝑡) = 1,∀𝑚 ∈ , 𝑡 ∈  . (10)

The signal power 𝑃 signal
𝑢,𝑚 (𝑡) transmitted by the UAV 𝑢 to the user 𝑚

is given by [32] 
𝑃 signal
𝑢,𝑚 (𝑡) = 𝑎𝑢,𝑚(𝑡) × 𝑃𝑢,𝑚(𝑡) × 𝑔𝑢,𝑚(𝑡), (11)

where 𝑃𝑢,𝑚(𝑡) represents the power allocated by the UAV 𝑢 to the user 𝑚, 
satisfying 0 < 𝑃𝑢,𝑚(𝑡) < 𝑃max𝑢  (with 𝑃max𝑢  denoting the maximum trans-
mit power of UAV 𝑢). Meanwhile, the total transmit power allocated 
by UAV 𝑢 to its associated users must satisfy ∑𝑀

𝑚=1 𝑎𝑢,𝑚(𝑡)𝑃𝑢,𝑚 ≤ 𝑃 total𝑢 , 
where 𝑃 total𝑢  is the total transmit power of the UAV 𝑢.

The intra-cluster interference 𝐼 intra𝑢,𝑚  experienced by user 𝑚 from other 
users with the UAV 𝑢 is given by [33] 

𝐼 intra𝑢,𝑚 (𝑡) =
𝑀
∑

𝑚𝑢=1,𝑚𝑢≠𝑚
𝑎𝑢,𝑚𝑢

(𝑡) × 𝑃𝑢,𝑚𝑢
(𝑡) × 𝑔𝑢,𝑚𝑢

(𝑡) . (12)

The signal interference (inter-cluster interference) 𝐼 inter𝑢,𝑚 (𝑡) experi-
enced by user 𝑚 from users served by other UAVs can be expressed 
as [33] 

𝐼 inter𝑢,𝑚 (𝑡) =
𝑈
∑

𝑢𝑜=1,𝑢𝑜≠𝑢

𝑀
∑

𝑚𝑜=1
𝑎𝑢𝑜 ,𝑚𝑜

(𝑡) × 𝑃𝑢𝑜 ,𝑚𝑜
(𝑡) × 𝑔𝑢𝑜 ,𝑚𝑜

(𝑡). (13)

The signal-to-interference-and-noise ratio (SINR) for the user 𝑚 can 
be calculated by [34]
5 
𝑆𝐼𝑁𝑅𝑢,𝑚 (𝑡) =
𝑃 signal
𝑢,𝑚 (𝑡)

𝐼 intra𝑢,𝑚 (𝑡) + 𝐼 inter𝑢,𝑚 (𝑡) +𝑁
, (14)

where 𝑁 is the noise power.
In this system architecture, multiple users transmit their requests 

to the UAV via the uplink channel, which may result in inter-signal 
interference due to variations in channel conditions and signal strength 
between the UAV and the users. We implement the SIC technique to 
address this challenge. This technique can significantly enhance signal 
reception quality, optimize spectrum utilization, and adapt to differ-
ences in signal strengths of users by progressively decoding stronger 
signals and mitigating their interference with weaker signals.

Based on a comprehensive consideration of channel gain, inter-
ference factors, and noise levels, we adopt SINR as the core metric 
for determining the decoding order. Specifically, by calculating the 
SINR, the UAV can accurately assess the strength of the request signal 
of each user and optimize the processing order accordingly. In this 
process, received signals are decoded based on SINR priority; that is, 
user requests with the highest SINR are prioritized, and the interference 
caused by the decoded requests is gradually mitigated during the 
decoding process. For the UAV 𝑢, when multiple users transmit signals, 
the SINR ordering can be evaluated by 
𝑆𝐼𝑁𝑅𝑢,𝜑1

(𝑡) ≥ 𝑆𝐼𝑁𝑅𝑢,𝜑2
(𝑡) ≥ ⋯ ≥ 𝑆𝐼𝑁𝑅𝑢,𝜑N

(𝑡) . (15)

Therefore, the decoding sequence is 𝜑1, 𝜑2,… , 𝜑N. When user 𝜑1
to user 𝜑𝑚−1 have been decoded sequentially, all decoded signals from 
user 𝜑1, 𝜑2,… , 𝜑m−1 are also removed according to the SIC decoding 
principle. At this point, the intra-cluster interference 𝐼 intra𝜑𝑚

(𝑡) for user 
𝜑m can be further described as follows: 

𝐼 intra𝜑𝑚
(𝑡) =

𝑀
∑

𝑗=𝑚
𝑎𝑢,𝜑𝑗

(𝑡) × 𝑃𝜑𝑗
(𝑡) × 𝑔𝑢,𝜑𝑗

(𝑡). (16)

The SINR for user 𝜑𝑚 is represented as follows: 

𝑆𝐼𝑁𝑅sic
𝑢,𝜑𝑚

(𝑡) =
𝑃 signal
𝑢,𝜑𝑚

(𝑡)

𝐼 intra𝑢,𝜑𝑚
(𝑡) + 𝐼 inter𝑢,𝜑𝑚

(𝑡) +𝑁
. (17)

The data offloading transmission throughput 𝑅𝑢,𝜑𝑚
(𝑡) for the user 𝜑𝑚

is calculated based on Shannon’s theorem [35], and it is formulated as 
follows: 
𝑅𝑢,𝜑𝑚

(𝑡) = 𝐵 ⋅ log2
(

1 + 𝑆𝐼𝑁𝑅sic
𝑢,𝜑𝑚

(𝑡)
)

, (18)

where 𝐵 is the bandwidth of the UAV 𝑢.

4. Problem formulation

The objective of this study, denoted as P1, is to maximize the total 
network throughput by jointly optimizing the user association policy, 
UAV trajectory planning and transmit power allocation, expressed as: 

P1 ∶ max =
𝑇
∑

𝑡=0

𝑈
∑

𝑢=1

𝑁
∑

𝑚=1
𝑅𝑢,𝜑𝑚

(𝑡),

s.t. 𝑥𝑢 ∈ [𝑥min, 𝑥max],∀𝑢, (19a)

𝑦𝑢 ∈ [𝑦min, 𝑦max],∀𝑢, (19b)

ℎ𝑢 ∈ [ℎmin, ℎmax],∀𝑢, (19c)
‖

‖

‖

𝑑𝑢(𝑡) − 𝑑𝑢′ (𝑡)
‖

‖

‖2
≥ 𝑑min,∀𝑢, 𝑢′, 𝑢 ≠ 𝑢′,∀𝑡, (19d)

𝑎𝑢,𝑚(𝑡) ∈ {0, 1},∀𝑢,∀𝑚,∀𝑡, (19e)
𝑈
∑

𝑢=1
𝑎𝑢,𝑚(𝑡) = 1,∀𝑢,∀𝑚,∀𝑡, (19f)

𝑀
∑

𝑚=1
𝑎𝑢,𝑚(𝑡) × 𝑝𝑢,𝑚 ≤ 𝑝max

𝑢 ,∀𝑢,∀𝑚,∀𝑡, (19g)

𝑅 (𝑡) ≥ 𝑅 ,∀𝑢,∀𝑚,∀𝑡, (19h)
𝑢,𝑚 min
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where Eqs. (19a) to (19c) define the physical spatial boundaries for 
UAV flights. Eq.  (19d) addresses the requirement for safe distances 
between UAVs to prevent airborne collisions. Eqs.  (19e) and (19f) 
ensure that each user can and must associate with only one UAV at any 
given time slot. Eq.  (19g) establishes an upper limit on the maximum 
transmit power of the UAVs, and Eq.  (19h) specifies the minimum 
throughput requirement per user.

5. Algorithm design

In this section, we first introduce the DUA-GMM algorithm for user-
UAV association. Next, we present the DRL-DGSN joint optimization 
approach for UAV trajectory and transmit power allocation. Finally, we 
analyze the complexity of the proposed algorithms.

5.1. The DUA-GMM algorithm

In AEC scenarios, the dynamic changes in user mobility and dis-
tribution introduce challenges for the association between UAVs and 
users. In this section, the DUA-GMM algorithm is proposed and com-
bined with the UCA algorithm to achieve dynamic association between 
UAVs and users while ensuring UAV load balancing.

In this study, GMM is utilized to cluster the user population. No-
tably, each UAV corresponds to a specific cluster. In this mechanism, 
user requests within the current cluster are offloaded to the assigned 
UAV for processing, which ensures that the number of clusters matches 
the number of UAVs.

Specifically, we first randomly initialize the mean vector 𝜇𝑛 and 
covariance matrix 𝛴𝑛, with an equal number of Gaussian components 
as UAVs. In addition, we assign mixing coefficients 𝜋𝑛 for each Gaussian 
component, with verification that they sum to 1, as described below: 
𝑈
∑

𝑛=1
𝜋𝑛 = 1. (20)

Subsequently, the expectation–maximization (EM) algorithm is iter-
ated until the parameters converge. The EM algorithm comprises two 
primary phases: the expectation step (E-step) and the maximization step 
(M-step).

5.1.1. E-step
In the E-step of the EM algorithm, the posterior probability 𝛾𝑚𝑛

(i.e., the degree of responsibility) that each user 𝑚 belongs to each 
Gaussian component 𝑛 is computed, which is expressed as 

𝛾𝑚𝑛 =
𝜋𝑛 ⋅

(

𝑑𝑚 ∣ 𝜇𝑛, 𝛴𝑛
)

∑𝑈
𝑗=1 𝜋𝑗 ⋅

(

𝑑𝑚 ∣ 𝜇𝑗 , 𝛴𝑗
)
, (21)

where  (

𝑑𝑚 ∣ 𝜇𝑛, 𝛴𝑛
) is the probability density function that follows a 

Gaussian distribution, with 𝜇𝑛 representing the mean and 𝛴𝑛 denoting 
the covariance. 𝛾𝑚𝑛 ∈ [0, 1] represents the conditional probability of 
user 𝑚 belonging to cluster 𝑛. Unlike the hard assignment of the K-
means algorithm (i.e., each user can only belong to a single cluster), Eq. 
(21) adopts a soft assignment mechanism. This mechanism allows each 
user to be associated to multiple clusters with different probabilities, 
thereby quantifying the strength of user-cluster associations.

5.1.2. M-step
The responsibility 𝛾𝑚𝑛 is used to update the critical parameters of 

the Gaussian component: the mean vector 𝜇𝑛 iteratively refines the 
center of Gaussian component 𝑛 by computing a weighted average of all 
users’ positions. The covariance matrix 𝜎𝑛 characterizes the dispersion 
and spatial distribution of users around their centers 𝜇𝑛. The mixing 
coefficients 𝜋  indicate the expected proportion of users associated with 
𝑛

6 
Gaussian component 𝑛 by averaging the responsibility 𝛾𝑚𝑛 of each user. 
The update formulas are expressed as follows: 

𝜇𝑛 =
∑𝑀

𝑚=1 𝛾𝑚𝑛𝑑𝑚
∑𝑀

𝑚=1 𝛾𝑚𝑛
(22)

𝛴𝑛 =
∑𝑀

𝑚=1 𝛾𝑚𝑛
(

𝑑𝑚 − 𝜇𝑛
)(

𝑑𝑚 − 𝜇𝑛
)𝑇

∑𝑀
𝑚=1 𝛾𝑚𝑛

, (23)

𝜋𝑛 =
∑𝑀

𝑚=1 𝛾𝑚𝑛
𝑀

. (24)

The abovementioned steps are iteratively repeated until the param-
eters converge, which leads to the final assignments of each user to 
their respective clusters.

UAVs are constrained by limited battery capacity and power when 
performing tasks. Thus, we address the potential for a sudden drop 
in endurance due to overloading by setting an upper limit on the 
maximum number of serviceable users 𝐾max or each UAV. This setting 
satisfies the condition 𝐾max = 𝑀

𝑈 , which ensures fairness in resource 
allocation among clusters. The load 𝐾𝑢 of each UAV 𝑢 should converge 
to 𝐾max to maximize the satisfaction rate of user requests. However, 
traditional GMM clustering approaches only assign users to the nearest 
cluster centers, ignoring the capacity limitations of those clusters. This 
approach may result in some UAVs becoming overloaded while others 
remain idle. To address this issue, we propose the UCA. After users 
complete GMM clustering, the UCA achieves load balancing between 
clusters. The UCA iteratively selects an unsaturated cluster 𝑛 (i.e., 𝐾𝑛 <
𝐾max), calculates the distance between its center 𝜇𝑛 and all users 
exceeding the capacity limit, and reassigns the nearest users to cluster 
𝑛. This process repeats until all clusters meet the capacity constraint. 
Ultimately, each balanced cluster is assigned to a UAV, ensuring that 
the UAV’s load equals 𝐾max.

The UCA algorithm is designed to overcome this limitation, and its 
implementation steps are detailed in Algorithm 1. 𝑢2𝑐[ ] represents the 
list of user-cluster associations, 𝑢2𝑐[𝑚] indicates the cluster associated 
with user 𝑚, and the mean vector of Gaussian components serves as the 
cluster center. First, the number of users in each cluster is calculated 
(lines 1–5). Second, for each cluster 𝑛 that has not yet reached the 
capacity limit 𝐾max, the distance of all users in the large-scale clusters 
from the center 𝜇𝑛 of cluster 𝑛 are calculated (lines 6–13). Finally, the 
user 𝑚min closest to 𝜇𝑛 is selected and re-associate to cluster 𝑛, followed 
by an update of the cluster size (lines 14–19).

Although the UCA employs a greedy algorithm for local adjust-
ments to address load imbalance, which may lead to local optima, 
it effectively mitigates the combinatorial explosion issue associated 
with global optimization. Global optimization requires traversing all 
user-cluster assignment combinations that satisfy the 𝐾max constraint, 
resulting in a computational complexity of 𝑂(

𝑈𝑀)

. This significantly 
increases decision latency for UAVs, which fails to meet user demands 
for low-latency responses. In contrast, UCA reduces complexity to 
𝑂(𝐾max ⋅ 𝑀 ⋅ 𝑈 ) by locally redistributing overloaded users. Further-
more, UCA prioritizes users that are closest to the target cluster center 
during redistribution, thereby maximizing the preservation of spatial 
probability distribution information within GMM.

Given that the mobility characteristics of users are modeled as 
random wandering, the initially established cluster structure becomes 
less effective over time when traditional one-shot clustering methods 
are applied. To overcome this challenge, we recalculate the cluster 
structure by activating the DUA-GMM algorithm at the start of each 
time slot by using the newly obtained user location data. This method 
effectively reduces the risk of cluster structure failure due to mobility 
by periodically clustering and associating users. Algorithm 2 presents 
the pseudo-code for the DUA-GMM algorithm. Here, 𝑐2𝑢[ ] and 𝑢2𝑢[ ]
denote the association lists of users with clusters and clusters with 
UAVs, respectively; 𝑐2𝑢[𝑛] represents the UAV associated with cluster 
𝑛; and 𝑢2𝑢[𝑚] denotes the UAV associated with user 𝑚.
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Algorithm 1 UCA
Input: user location 𝑑𝑚, maximum cluster capacity 𝐾max, cluster center 

𝜇𝑛, GMM’s clustering result 𝑢2𝑐[ ].
Output: optimized user uniform clustering decision 𝑢2𝑐[ ]. 
1: for 𝑚 ← 1 to 𝑀 do 
2: 𝑛_𝑜𝑟𝑖𝑔 ← 𝑢2𝑐[𝑚]; // Obtain the original cluster 𝑛_𝑜𝑟𝑖𝑔 associated 

with user 𝑚; 
3: 𝐾𝑛_𝑜𝑟𝑖𝑔 ← 𝐾𝑛_𝑜𝑟𝑖𝑔 + 1;
4: end for
5: for 𝑛 ← 1 to 𝑈 do 
6: while 𝐾𝑛 < 𝐾max do 
7: for 𝑚 ← 1 to 𝑀 do 
8: 𝑛′ ← 𝑢2𝑐[𝑚]; 
9: if 𝐾𝑛′ > 𝐾max then 
10: 𝐷𝑛,𝑚 ← ‖

‖

‖

𝜇𝑛 − 𝑑𝑚
‖

‖

‖2
;

11: end if
12: end for
13: Obtain the cluster 𝑛̃ associated with 𝑚min, where 𝑛̃ = 𝑢2𝑐[𝑚min]; 

14: 𝑢2𝑐[𝑚min] ← 𝑛; // Update the cluster associated with user 𝑚min
to 𝑛; 

15: 𝐾𝑛 ← 𝐾𝑛 + 1, 𝐾𝑛̃ ← 𝐾𝑛̃ + 1;
16: end while
17: end for

The DUA-GMM algorithm starts by initializing the mixing coeffi-
cients 𝜋𝑛, the mean vector 𝜇𝑛, and the covariance matrix 𝛴𝑛 (lines 1–2). 
Next, the degree of responsibility 𝛾𝑚𝑛 is calculated between each user 
𝑚 and each Gaussian component 𝑛, with user 𝑚 being associated with 
the Gaussian component that has the highest degree of responsibility 
(lines 3–10). Following this, the algorithm iterates through all Gaussian 
components to update the mean vector 𝜇𝑛, the covariance matrix 𝛴𝑛
and the mixing coefficients 𝜋𝑛, refining the Gaussian model to better 
capture the distribution of the user (lines 11–15). After completing 
the GMM clustering, Algorithm 1 is executed to uniformly cluster the 
users (line 16). Finally, each UAV is assigned to the nearest cluster 
in succession, ensuring that every UAV is matched with the closest 
cluster, thereby establishing the association between UAVs and users 
(lines 17–23).

5.2. Resource allocation algorithm based on DRL-DGSN

It is widely acknowledged that the mixed-integer nonlinear pro-
gramming problem examined is NP-hard [36]. Consequently, tradi-
tional convex optimization methods encounter great challenges when 
addressing such complex problems. To solve the problem P1, it is first 
formulated as a MDP, and the DRL-DGSN algorithm is developed to 
simultaneously optimize the power allocation and trajectory control 
strategies for the UAV.

5.2.1. MDP formulation
In this section, the resource allocation process is modeled within 

an MDP framework to optimize decision making for UAV agents in 
communication tasks. During interactions with the environment, the 
current state is perceived by UAV agents, actions are selected based 
on their decision-making strategies, and the environmental feedback 
(i.e., reward) obtained after executing an action is utilized as the 
basis for learning. This iterative process allows for the continuous 
refinement of their decision-making strategies. Three key components 
of the MDP–state 𝑠, action 𝑎, and reward 𝑟–are defined as follows.

(1) State: The UAV agent can sense the following information: the 
position of the current UAV relative to other UAVs, as well as the 
channel gains between the current UAV and other UAVs in conjunction 
7 
Algorithm 2 DUA-GMM
Input: UAV location 𝑑𝑢, user location 𝑑𝑚, maximum cluster capacity 

𝐾max.
Output: UAV and user association decisions 𝑢2𝑢[ ]. 
1: Initialize the mixing coefficients 𝜋𝑛 by using Eq. (20); 
2: Initialize the mean vector 𝜇𝑛 and the covariance matrix 𝛴𝑛; 
3: for 𝑖 ← 1 to 𝑖max do 
4: Initialize the array 𝑢2𝑐[ ]; 
5: for 𝑚 ← 1 to 𝑀 do 
6: for 𝑛 ← 1 to 𝑈 do 
7: Calculate 𝛾𝑚𝑛 by using Eq.  (21);
8: end for
9: 𝑢2𝑐[𝑚] ← argmax𝑛 𝑟𝑛𝑚;
10: end for
11: for 𝑛 ← 1 to 𝑈 do 
12: Calculate 𝜇𝑛 and 𝛴𝑛 by using Eqs. (22) and (23); 
13: Update 𝜋𝑛 by using Eq.  (24);
14: end for
15: end for
16: Call Algorithm 1; 
17: for 𝑛 ← 1 to 𝑈 do 
18: 𝑐2𝑢[𝑛] ← argmax𝑢

‖

‖

‖

𝑑𝑢 − 𝜇𝑛
‖

‖

‖

;
19: end for
20: for 𝑚 ← 1 to 𝑀 do 
21: 𝑛′ ← 𝑢2𝑐[𝑚] // Obtain the cluster 𝑛′ associated with user 𝑚; 
22: 𝑢2𝑢[𝑚] ← 𝑐2𝑢

[

𝑛′
]

;
23: end for

with their associated users. Based on this information, the state of the 
UAV agent is characterized as 

𝑠 =
{

𝑑𝑢(𝑡), {𝑑𝑣(𝑡)}𝑣∈ ⧵{𝑢},𝑢(𝑡),
{

𝑣(𝑡)
}

𝑣∈ ⧵{𝑢}
}

, (25)

where  ⧵ {𝑢} denotes the set of UAVs   except UAV 𝑢. 𝑢(𝑡) =
{

𝑔𝑢,𝑚
}

𝑚∈ represents the set of channel gains between UAV 𝑢 and its 
associated users.

(2) Action: The UAV must determine its current direction of move-
ment and the transmit power assignment for the associated user within 
each time slot. The transmit power is selected from a predefined set 
of discrete levels  = {𝑃1, 𝑃2,… , 𝑃𝐿}, where 𝐿 is the total number of 
discrete transmit power levels. Therefore, the action of the UAV agent 
is described by 

𝑎 =
{

𝑜𝑢, 𝑃𝑢,1,… , 𝑃𝑢,𝐾max

}

,∀𝑢 ∈  , (26)

where 𝑜𝑢 indicates the direction of movement of the UAV 𝑢.
(3) Reward: The reward function is designed as a combination 

of system throughput and a penalty mechanism. When the transmis-
sion rate of the worst-performing user does not meet the minimum 
requirement, the system imposes a fixed penalty value 𝜂 to ensure dual 
optimization of system performance and fairness. The reward function 
for the UAV is defined as follows: 

𝑟 =

{

−𝜂,  if the minimum rate is below the threshold;
∑𝐾max

𝑚=1 𝑅𝑢,𝑚 (𝑡) ,  otherwise.
(27)

5.2.2. Network architecture of DRL-DGSN
DRL-DGSN is based on the DQN framework for algorithmic improve-

ment. It combines the overestimation suppression mechanism of DDQN 
with the state–action decoupling idea of dueling network. The Q-value 
update process of the overall network architecture can be formally 
described as follows:
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(1) Basic DQN framework
The DQN algorithm is classified as an off-policy method and is 

categorized as a value-based reinforcement learning algorithm. Its pri-
mary concept involves parameterizing the Q-value function through the 
construction of a neural network. The iterative update process for the 
target Q-value 𝑄(𝑠, 𝑎; 𝜃) can be formulated as follows: 
𝑄(𝑠, 𝑎; 𝜃) = 𝑟 + 𝛾 max

𝑎′
𝑄
(

𝑠′, 𝑎′; 𝜃′
)

, (28)

where 𝜃 and 𝜃′ represent the weights of the current network and the 
target network, respectively; 𝑠′ and 𝑎′ denote the next state and the 
next action, respectively; and 𝛾 signifies the discount factor.

The loss function 𝐿𝑜𝑠𝑠 is defined by 

𝐿𝑜𝑠𝑠 =
(

𝑄(𝑠, 𝑎; 𝜃) −
(

𝑟 + 𝛾 max
𝑎′

𝑄
(

𝑠′, 𝑎′; 𝜃′
))

)2
. (29)

The DQN algorithm incorporates an experience replay buffer and 
a target network to enhance the accuracy of Q-value estimation. The 
agent acquires experience (𝑠, 𝑎, 𝑟, 𝑠′) through interactions with the envi-
ronment and stores them in the experience replay buffer. Subsequently, 
random sampling is employed to reduce the impact of temporal cor-
relations on the learning process. The target network is designed to 
compute the target Q-values and is updated periodically to stabilize the 
Q-value update process.

(2) Improvement of DDQN
In DQN, employing the same network for both action selection and 

Q-value evaluation introduces maximization bias, which causes the Q-
values to be overestimated. To tackle this issue, the DDQN algorithm, 
which shares a similar structure with DQN, incorporates two separate 
Q-functions. Specifically, in DDQN, the main network determines the 
best action for the next state, while the Q-value of that action is 
computed using the target network. This mechanism, which decouples 
action selection from Q-value evaluation, effectively mitigates the Q-
value overestimation. The update of its Q-value 𝑄(𝑠, 𝑎; 𝜃) is assessed by

𝑄(𝑠, 𝑎; 𝜃) = 𝑟 + 𝛾𝑄
(

𝑠′, argmax
𝑎′

𝑄
(

𝑠′, 𝑎′; 𝜃
)

; 𝜃′
)

. (30)

(3) Dueling network architecture
To facilitate independent modeling of state values and action advan-

tages, the DRL-DGSN algorithm employs the dueling network architec-
ture to systematically decompose the Q-value 𝑄(𝑠, 𝑎; 𝜃) into two distinct 
components: a state value function 𝑉 (

𝑠; 𝜃𝑉
) and an advantage function 

𝐴
(

𝑠, 𝑎; 𝜃𝐴
)

. The state value function 𝑉 (

𝑠; 𝜃𝑉
) is employed to evaluate 

the long-term expected return of the state 𝑠. In contrast, the advantage 
function 𝐴(𝑠, 𝑎; 𝜃𝐴

) measures how much action 𝑎 exceeds the average 
value of all possible actions in the same state. This separation facilitates 
the ability of the network to more effectively learn the intrinsic value of 
states and the differences in value among various actions. This design 
feature significantly improves the efficiency of the learning process 
and enhances its generalization capability. The final output of the Q-
network is represented as a linear combination of the two components, 
as follows: 
𝑄(𝑠, 𝑎; 𝜃) = 𝑉

(

𝑠; 𝜃𝑉
)

+ 𝐴
(

𝑠, 𝑎; 𝜃𝐴
)

. (31)

To enhance the comparability of the output from 𝐴(𝑠, 𝑎; 𝜃𝐴
)

, zero-
averaging is applied to the advantage values. This approach ensures 
that the advantage values of different actions are assessed on a uniform 
scale, which facilitates highly effective comparisons, as follows: 

𝐴
(

𝑠, 𝑎; 𝜃𝐴
)

← 𝐴
(

𝑠, 𝑎; 𝜃𝐴
)

− 1
||

∑

𝑎′∈
𝐴
(

𝑠, 𝑎′; 𝜃𝐴
)

, (32)

where  is the set of actions.

5.2.3. Design of the DRL-DGSN
In the DRL-DGSN algorithm, each UAV is regarded as an inde-

pendent agent connected to a shared neural network through state 
abstraction. This framework facilitates the sharing and reorganiza-
tion of experiences to train a common neural network. During the 
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Algorithm 3 DRL-DGSN
Input: UAV position 𝑑𝑢, user position 𝑑𝑚, channel gain of user 𝑔𝑚.
Output: UAV trajectory design and transmit power allocation. 
1: Initialize the experience replay pool 𝐷; 
2: Initialize 𝑄(𝑠, 𝑎; 𝜃), 𝜃, 𝑄(

𝑠′, 𝑎′; 𝜃′
)

, 𝜃′ ← 𝜃; 
3: for episode ← 1 to 𝐸 do 
4: Initialize state 𝑠; 
5: for 𝑡 ← 1 to 𝑇  do 
6: Invoke Algorithm 2 at every 𝛥 times slots; 
7: for 𝑢 ← 1 to 𝑈 do 
8: Choose an action 𝑎 based on 𝜀−greedy policy. 
9: Execute the action 𝑎, Calculate the reward 𝑟 and obtain the 

next state 𝑠′; 
10: Store the experience (𝑠, 𝑎, 𝑟, 𝑠′) into 𝐷; 
11: Sample random minibatch of experiences from 𝐷; 
12: for each experience (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠′𝑗

) do 
13: Calculate 𝑉 (

𝑠𝑗 ; 𝜃
) and 𝐴(𝑠𝑗 , 𝑎𝑗 ; 𝜃

)

; 
14: Calculate 𝑄(

𝑠𝑗 , 𝑎𝑗 ; 𝜃
) by using 𝑄(

𝑠𝑗 , 𝑎𝑗 ; 𝜃
)

= 𝑉
(

𝑠𝑗 ; 𝜃
)

+
(

𝐴
(

𝑠𝑗 , 𝑎𝑗 ; 𝜃
)

− 1
||

∑

𝑎′𝑗∈
𝐴
(

𝑠𝑗 , 𝑎′𝑗 ; 𝜃
)

)

; 
15: Calculate the target Q-value 𝑄target by using 𝑄target =

𝑟𝑗 + 𝛾 ⋅𝑄
(

𝑠′𝑗 , argmax𝑎 𝑄
(

𝑠′𝑗 , 𝑎𝑗 ; 𝜃
′)
)

; 

16: Calculate 𝐿𝑜𝑠𝑠 by using 𝐿𝑜𝑠𝑠 =
(

𝑄
(

𝑠𝑗 , 𝑎𝑗 ; 𝜃
)

−𝑄target

)2
;

17: end for
18: Perform backpropagation and update 𝜃; 
19: Periodically Copy 𝜃′ ← 𝜃;
20: end for
21: end for
22: end for

training process, data exchange among the agents is implemented to 
enhance overall performance. Notably, no additional communication 
between UAVs is required during operation, which further reduces 
computational complexity. Although each UAV independently selects 
its actions, this cooperative principle is based on the consideration of 
other UAV positions as integral components of the environment. This 
approach allows the UAVs to maintain appropriate distances and avoid 
interference with one another. Accordingly, effectively collaboration on 
tasks is facilitated to improve efficiency and performance. Pseudo-code 
and framework diagrams of the DRL-DGSN algorithm are presented in 
Algorithm 3 and Fig.  2, respectively.

In the initialization phase (lines 1–3), the experience replay pool 
is created to store agent experiences gathered from environmental 
interactions. Concurrently, the main network is initialized with random 
weights to encourage exploration and avoid premature convergence to 
local optima. The target network is also initialized with parameters 
identical to those of the main network to ensure training stability; it will 
later be used to compute the target Q-values. During the environment 
interaction and experience storage phase (lines 4–11), Algorithm 1 is 
initially invoked for user association at each time step. Subsequently, 
each UAV agent adopts the 𝜀−greedy strategy to select an action 𝑎 in 
the current environment. This interaction yields a reward 𝑟 and the next 
state 𝑠′. The agent subsequently stores the experience (𝑠, 𝑎, 𝑟, 𝑠′) in the 
experience replay pool.

The parameter computation and update phase (lines 12–24) begins 
after environment interactions and experience storage are completed. 
In this phase, the DRL-DGSN algorithm performs stochastic sampling on 
the experience replay buffer to extract a mini-batch of experiences. For 
each extracted experience (𝑠, 𝑎, 𝑟, 𝑠′), 𝑉 (

𝑠; 𝜃𝑉
)

, 𝐴(𝑠, 𝑎; 𝜃𝐴
)

, the Q-value 
and loss for each network, are computed sequentially. Backpropagation 
is performed to update 𝜃. In addition, 𝜃′ are updated at regular intervals 
to enhance training stability.
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Fig. 2. Framework of DRL-DGSN. (a) represents a single training interaction unit, which includes the current UAV and its associated users, where DRL-DGSN 
trains each UAV agent individually based on this unit. (b) and (c) together form the shared network module, allowing UAVs to exchange position and channel 
state information to facilitate the dynamic optimization of collaborative decision-making.
5.2.4. Complexity analysis
The time complexity of the UCA algorithm is denoted as 𝑂(

𝑀 +
𝐾max ⋅ 𝑀 ⋅ 𝑈

)

= 𝑂
(

𝑀 + 𝑀
𝑈 ⋅ 𝑀 ⋅ 𝑈

)

= 𝑂
(

𝑀2). In the DUA-GMM 
algorithm, the time complexity associated with the GMM clustering 
based on the 2D coordinates of users is denoted as 𝑂(𝑇𝑔𝑚𝑚 ⋅ 𝑀 ⋅ 𝑈 ), 
where 𝑇𝑔𝑚𝑚 represents the total number of iterations for the GMM. 
When UAVs are associated with clusters, the complexity is 𝑂(𝑀 + 𝑈 ), 
resulting in an overall time complexity of the DUA-GMM algorithm of 
𝑂
(

𝑇𝑔𝑚𝑚 ⋅𝑀 ⋅ 𝑈 +𝑀2 +𝑀 + 𝑈
)

= 𝑂
(

𝑇𝑔𝑚𝑚 ⋅𝑀 ⋅ 𝑈
)

.
The complexity of the DRL-DGSN algorithm is mainly determined 

by the complexity of the DUA-GMM algorithm and the complexity 
associated with the DRL module. The computational complexity of the 
DRL module is significantly affected by the architectural parameters of 
the neural network. Let 𝑛1 denote the number of nodes in the shared 
feature layer, and 𝑛2 denote the number of nodes in the hidden layers 
of both the value stream and the advantage stream. The computational 
complexity for a single training iteration of the neural network is 
represented as 𝑂((

|| ⋅ 𝑛1 + 2𝑛1 ⋅ 𝑛2 + 𝑛2 ⋅ 1 + 𝑛2 ⋅ ||

)

⋅ 𝐵
) [37], which 

is further simplified to 𝑂((

|| ⋅ 𝑛1 + 𝑛2 ⋅ ||

)

⋅𝐵
)

, where 𝐵 denotes the 
batch size and  is the set of states.

By integrating from the DUA-GMM algorithm and the model train-
ing process, the total complexity for a single step of training in the 
DRL-DGSN algorithm is 𝑂(

𝑇gmm ⋅𝑀 ⋅𝑈+
(

||⋅𝑛1+𝑛2 ⋅||

)

⋅𝐵
)

. Finally, the 
overall time complexity of the DRL-DGSN algorithm can be expressed 
as 𝑂((

𝑇gmm ⋅𝑀 ⋅𝑈 +
(

|| ⋅ 𝑛1 + 𝑛2 ⋅ ||

)

⋅𝐵
)

⋅ 𝑇 ⋅𝐸
)

, where 𝑇  represents 
the number of decision steps in a single iteration, and 𝐸 indicates the 
total number of iterations throughout the execution of the DRL-DGSN 
algorithm.

In the DRL-DGSN algorithm, the state space encompasses the 3D 
spatial coordinates of the UAVs along with the channel gain of the 
users, and the action space consists of the seven movement directions 
of the UAVs and three levels of power allocation. Consequently, the 
state space dimension || = 3𝑈 + 𝑀 and the action space dimension 
9 
|| = 7𝑈+3𝑀 are defined. Thus, the time complexity of the DRL-DGSN 
algorithm is 𝑂((

𝑇gmm ⋅𝑀 ⋅𝑈 +
(

(3𝑈 +𝑀) ⋅𝑛1+(7𝑈 +3𝑀) ⋅𝑛2
)

⋅𝐵
)

⋅𝑇 ⋅𝐸
)

.
Next, we analyze the space complexity of DRL-DGSN. In DRL-DGSN, 

we employ an experience replay pool to store the interaction experi-
ences between the UAV agent and the environment. These experiences 
support the online updates of the evaluate network and the target 
network, and their storage scale directly impacts the space complex-
ity of DRL-DGSN. In DRL-DGSN, the reward dimension is || = 1. 
Therefore, the spatial scale of a single interaction experience (𝑠, 𝑎, 𝑟, 𝑠′)
is 𝑂(

||+ ||+1+ ||
)

= 𝑂
(

2||+ ||

)

. Let the experience replay pool 
capacity be 𝐶, then the spatial complexity of DRL-DGSN is 𝑂(

𝐶 ⋅
(

2||+
||

))

= 𝑂
(

𝐶 ⋅ (7𝑈 + 5𝑀)
)

.

6. Performance evaluation

A series of experiments is conducted to validate the performance of 
the proposed algorithm. Initially, the configurations of the experimen-
tal environment and the corresponding parameter settings are detailed. 
Subsequently, the convergence of the DRL-DGSN algorithm is analyzed. 
Finally, we carry out a comparative assessment of DRL-DGSN against 
existing state-of-the-art schemes.

6.1. Experimental setup

In this study, the experiments are designed to establish an AEC 
network consisting of 𝑈 = 3 UAVs and 𝑀 = 6 ground mobile users 
within a square area with a dimension of 500 m × 500 m. The initial 
positions of the UAVs are uniformly distributed throughout this square 
area at an altitude of 100 m, and their flight altitudes are constrained 
within the range of [20, 120] m. Ground users are randomly positioned 
within three designated hotspot areas [38], and each user follows a 
random roaming model with a speed limit ranging from [0, 0.5] m/s. 
The deep learning framework adopts a dueling network architecture. It 
is divided into three modules: the shared feature layer, the state value 
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Table 2
List of experimental parameters [19,30].
 Parameter description Value  
 Service area boundaries (𝑥max, 𝑦max) 500 m  
 UAV flight altitude range (ℎmin , ℎmax) [20, 120] m  
 Number of UAVs (𝑈) 3  
 Number of users (𝑀) 6  
 Maximum user mobility speed 0.5 m/s  
 UAV mobility speed 5 m/s  
 Minimum distance limit between UAVs (𝑑min) 10 m  
 Carrier frequency (𝑓𝑐 ) 2 GHz  
 Bandwidth (𝐵) 30 kHz  
 Noise power (𝑁) −60 dBm  
 Channel fading (𝑅(𝑡)) Rayleigh fading 
 Maximum UAV transmit power (𝑝max) 28.45 dBm  
 Number of training episodes (𝐸) 200  
 Number of time slots (𝑇 ) 60  
 Update interval of DUA-GMM (𝛥) 4  
 Initial value of 𝜀-greedy exploration 0.9  
 Learning rate 0.00001  
 Discount factor (𝛾) 0.999  
 Batch size 64  
 Replay buffer size (𝐶) 50 000  

stream, and the advantage stream. All layers utilize ReLU activation 
functions. The shared feature layer consists of a fully connected layer 
with 128 nodes. Each hidden layer of the state value stream and the 
advantage stream contains a fully connected layer with 64 nodes.

During the training phase, the experience replay cache is set with a 
capacity of 10,000 records. During each model update, 64 experiences 
are randomly sampled to create a mini-batch. The learning rate is 
set to 0.00001, and the Adam optimizer is employed for updating 
gradients. Furthermore, a discount factor 𝛾 = 0.999 is utilized to balance 
immediate rewards with long-term gains. Table  2 presents the basic 
parameter settings.

The following four algorithms are selected for comparison to com-
prehensively evaluate the performance of the proposed DRL-DGSN 
algorithm.

• Mutual DQN (MDQN) [30]: This algorithm dynamically adjusts 
UAV deployment locations through periodic K-means clustering 
of mobile users. It subsequently employs MDQN to enhance the 
trajectory planning and power allocation of UAVs.

• UAV path selection and resource offloading algorithm (UPRA) 
[39]: This algorithm combines the K-means clustering method 
with the Hungarian algorithm to enable periodic online matching 
between users and UAVs. In addition, a semi-fixed hierarchical 
power control strategy is developed to improve the autonomous 
obstacle avoidance and power management abilities of the UAV 
by employing the DQN algorithm.

• DDQN: The algorithm is based on the original DDQN algorithm 
[40] for the trajectory optimization and power allocation deci-
sions of UAVs. Meanwhile, it incorporates the DUA-GMM and 
sharing network proposed in this study to optimize user associ-
ation and multi-agent interaction.

• Dueling DQN: This algorithm utilizes DUA-GMM developed in this 
work to enable association between UAVs and users. It employs 
our proposed shared network among multiple agents for training. 
The Dueling DQN algorithm [41] is applied to optimize the 
trajectory control and power allocation strategies for UAVs.

• Random: In this algorithm, the DUA-GMM proposed in this study 
is used to optimize user association decisions, while the UAV 
randomly selects flight directions and transmit power.

6.2. Analysis and setting of hyperparameters

The configuration of hyperparameters in deep neural networks plays 
a crucial role in determining the training efficiency, generalization 
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ability, and decision accuracy of the model. The effects of key hy-
perparameters, including learning rate, batch size, and discount fac-
tor, on the convergence performance of the DRL-DGSN algorithm are 
systematically analyzed.

First, the convergence of the DRL-DGSN algorithm is investigated 
using various learning rates, which directly affect the magnitude of 
gradient updates in the neural network. Fig.  3 depicts the convergence 
characteristics of the algorithm and highlights significant differences 
as the learning rate varies from 0.000001 to 0.001. The experimental 
results indicate that, when the learning rate is set at 0.00001, the DRL-
DGSN shows favorable convergence and achieves the maximum return 
value. By contrast, an excessively high learning rate (e.g., 0.0001) leads 
to degraded convergence performance, with the convergence curve 
oscillating around the solution space and failing to reach the optimal 
solution. Meanwhile, an excessively low learning rate (e.g., 0.000001) 
results in slow training and convergence to a local optimum. As a result, 
a learning rate of 0.00001 is chosen for the experiments, as shown in 
Fig.  3, as it optimally balances convergence speed and model stability.

The batch size, which refers to the number of samples used during 
neural network training, influences the effect of sample diversity on 
gradient estimation within the empirical replay mechanism. Three 
batch sizes are assessed: 32, 64, and 128. As illustrated in Fig.  4, 
smaller batch sizes (e.g., 32) exhibit significant fluctuations due to 
increased gradient variations between samples. On the contrary, larger 
batch sizes (e.g., 128) tend to rely on stale data during training, 
which potentially hinders convergence. Conversely, a batch size of 64 
minimizes gradient variations while preserving sample diversity, which 
results in the maximum reward value. Therefore, a batch size of 64 is 
chosen because it optimally accommodates both gradient stability and 
sample diversity requirements, as evidenced by the results in Fig.  4.

The discount factor 𝛾 governs the trade-off between immediate and 
future rewards. We set the range of 𝛾 between 0.9 and 0.9999 [41,
42]. As illustrated in Fig.  5, an excessively large discount factor 
(e.g., 0.9999) leads the model to disproportionately prioritize future 
rewards, which causes strategy updates to be overly influenced by 
uncertain future states. Conversely, an excessively small discount factor 
(e.g., 0.9 or 0.99) overemphasizes immediate rewards, which hinders 
the learning of long-term dependencies. By setting the discount factor 
to 0.999, DRL-DGSN effectively balances short-term gains with long-
term objectives. This workable balance enables rapid convergence of 
the reward function toward the optimal solution. Consequently, the 
selection of a discount factor is based on its optimal trade-off between 
short-term gains and long-term objectives, as shown in Fig.  5.

6.3. Convergence analysis

As illustrated in Fig.  6, all five algorithms demonstrate improved 
convergence. Notably, DRL-DGSN not only exhibits enhanced stability 
but also rapidly achieves and maintains the optimal convergence value 
after 150 iterations. The optimal solution obtained by DRL-DGSN shows 
improvements of 9.22% and 129.60% compared with those of UPRA 
and MDQN, respectively. This enhancement can be attributed to the 
probabilistic clustering model employed by the DUA-GMM algorithm 
integrated within DRL-DGSN, which is better suited to accommodate 
the complexities of user distribution. Furthermore, the cluster capacity 
constraint facilitates load balancing among UAVs and enhances the 
fairness of user services.

In contrast to DDQN and Dueling DQN that utilize the DUA-GMM 
algorithm, DRL-DGSN achieves an average improvement of 39.48% in 
the final convergence value. This advancement is primarily due to the 
incorporation of a dueling network architecture, which builds upon the 
DDQN framework. Thus, it enables more efficient state modeling and 
mitigates the interference from redundant action updates by decoupling 
the state value from the action advantage. Moreover, DDQN employs 
two distinct networks for action selection and value evaluation. Thus, 



L. Zhang et al. Journal of Systems Architecture 170 (2026) 103634 
Fig. 3. Comparison of rewards with different learning rates in the DRL-DGSN algorithm.
Fig. 4. Comparison of rewards for different batch sizes in the DRL-DGSN algorithm.
it circumvents the overestimation issue commonly associated with Q-
values when a single network is utilized in standard DQN. These 
advantages empower the DRL-DGSN algorithm to more accurately 
perceive environmental changes and make optimal decisions, which 
enhance the overall convergence performance of the algorithm.

Fig.  7 illustrates the convergence of transmission rates for the 
worst-performing users under different algorithms. MDQN and UPRA 
prioritize maximizing total throughput, which causes them to favor 
users with better communication capabilities. This emphasis results in 
a decline in computation rates for the worst-performing users, which 
leads to difficulty in balancing fairness across the user base. On the 
contrary, DRL-DGSN incorporates user fairness constraints into the 
11 
Bellman equation’s objective function during the Q-network update 
process through a direct threshold-based penalty mechanism. When the 
transmission rate of the worst user falls below a predefined threshold, 
DRL-DGSN imposes a fixed negative reward signal to discourage ac-
tions that compromise fairness by utilizing a discretized reward and 
punishment function. Simultaneously, the dueling network architecture 
in DRL-DGSN decouples the state value function from the action advan-
tage function. This procedure allows the Q-network to be more sensitive 
in identifying actions with ‘‘high global value but compromising fair-
ness’’. The experimental results demonstrate that the total transmission 
rate of the worst-performing user in DRL-DGSN improves by 150.69% 
and 13.62% compared with those in MDQN and UPRA, respectively.
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Fig. 5. Comparison of rewards with different discount factors in the DRL-DGSN algorithm.
Fig. 6. Overall performance comparison.
6.4. Analysis of clustering strategies and update intervals 𝛥

As shown in Fig.  8, we examined the late-stage transmission rate 
performance of the DRL-DGSN under static clustering and different 
update intervals 𝛥 (with the late stage defined as 𝑡 > 20 s). The 
figure reveals that after a certain point, the total transmission rate gap 
between static clustering and periodic clustering (based on different 
update intervals 𝛥) gradually widens, with static clustering demonstrat-
ing a clear disadvantage. This occurs because static clustering fixes the 
12 
association decisions between drones and users from the outset, failing 
to adapt to the environmental changes caused by user mobility. In 
contrast, periodic clustering allows the DRL-DGSN to dynamically op-
timize drone-user association strategies through regular reallocations, 
thereby continuously enhancing and sustaining high total transmission 
rate levels. Within the periodic clustering strategy, performance varies 
significantly across different update intervals. As 𝛥 increases from 8 to 
24, the median total transmission rate gradually decreases. This decline 
is due to excessively long update interval, causing cluster structure 
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Fig. 7. Convergence of computation rate for worst users.
Fig. 8. Late-stage transmission rate of DRL-DGSN under static clustering and different update intervals 𝛥.
adjustments to lag behind dynamic user movements. For 𝛥 ranging 
from 2 to 8, the overall total transmission rate levels are similar. 
However, the box plot for 𝛥 = 4 shows a 23.64% and 32.10% decrease 
compared to 𝛥 = 2 and 𝛥 = 8, respectively. This indicates that 
the DRL-DGSN exhibits lower total transmission rate fluctuations and 
13 
significantly superior stability at the update interval 𝛥 = 4 compared 
to 𝛥 = 2 and 𝛥 = 8. In summary, the update interval 𝛥 = 4
achieves optimal stability while maintaining a high total transmission 
rate level. Therefore, we set the update interval for the DRL-DGSN to 
𝛥 = 4.
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Fig. 9. Trajectory designed of UAVs.
6.5. Trajectory optimization for UAVs

Fig.  9 presents the trajectory designed of the UAV cluster opti-
mized by the DRL-DGSN algorithm. Throughout the entire time slot 
T, the UAVs maintain a safe distance from one another, and their 
flight paths do not intersect. This observation validates the effec-
tiveness of the user association strategy employed by the DUA-GMM 
algorithm. The DRL-DGSN algorithm leverages a mechanism of multi-
agent collaboration, which enables real-time exchange of UAV position 
information via a shared network architecture. This feature facilitates 
collaborative obstacle avoidance in complex scenarios. The flight tra-
jectories of all UAVs remain within the established motion boundaries, 
which demonstrates the effective boundary constraints imposed by 
DRL-DGSN. In addition, each UAV accurately identifies its associated 
user cluster and executes directional flight through dynamic trajectory 
adjustments. This capability arises from the trajectory control com-
ponent of DRL-DGSN, which dynamically adjusts UAV trajectories by 
precisely estimating the Q-value of movements.

In summary, DRL-DGSN effectively achieves cooperative control 
over user cluster matching, UAV safety constraints, and dynamic tra-
jectory adjustments through the integration of DUA-GMM algorithm, 
boundary constraint management, and multi-agent information shar-
ing. Ultimately, this integration maximizes system throughput by si-
multaneously optimizing power allocation and trajectory planning for 
UAVs.

6.6. Effect of different numbers of users on the total system throughput

As the number of ground user increases, competition for resources 
among users intensifies, which significantly complicates the resource 
allocation algorithm. Accordingly, we consider a scenario with 3 UAVs 
and set the number of users for these UAVs to 3, 6, and 9, respectively. 
As illustrated in Fig.  10, the total throughput of the system initially 
exhibits a rapid increase before the growth rate begins to slow down 
as the number of users rises. Specifically, when the number of users 
increases from 3 to 6, a marked enhancement in total system through-
14 
put is observed. This result suggests that, within a certain range, 
increasing the number of users can lead to more efficient utilization 
of UAV resources, which improves overall throughput. However, when 
the number of users is further increased to 9, the growth rate of 
total system throughput diminishes. This slowdown can primarily be 
attributed to the limited computational power of the UAVs. As the 
number of users approaches a certain threshold, the UAV resources 
become nearly saturated, which results in a deceleration in the growth 
of total system throughput. Experimental results demonstrate that DRL-
DGSN consistently maintains optimal performance across varying user 
sizes. In the scenario with 6 users, the total system throughput of DRL-
DGSN improves by 9.61%, 149.52%, 25.59%, 53.31%, and 274.33% 
compared with those of UPRA, MDQN, DDQN, Dueling DQN, and 
Random, respectively.

6.7. Effect of different numbers of UAVs on the total system throughput

The number of UAVs directly affects the division of user clusters 
and the level of interference. In turn, this influence affects the parallel 
processing capabilities of the system. We have examined scenarios with 
1, 2, and 3 UAVs to compare the system throughput of each algorithm. 
As illustrated in Fig.  11, the total system throughput increases across 
all cases as the number of UAVs rises. However, in the single-UAV 
scenario, the total system throughput decreases by only 22.15% com-
pared with the scenario with 2 UAVs. This moderate increase can be 
attributed to that, in the single-UAV scenario, all users are grouped 
into a single service cluster managed by that UAV. This arrangement 
avoids the negative effects of inter-cluster interference, which results 
in a less significant reduction in total system throughput despite the 
fewer UAVs available. Experimental results indicate that DRL-DGSN 
achieves the highest total system throughput across different numbers 
of UAVs. This superior performance is attributable to the integration of 
the DUA-GMM algorithm within DRL-DGSN, which effectively models 
user distribution and constrains cluster capacity through probabilistic 
methods. This capability significantly reduces inter-cluster interference 
in multi-UAV scenarios. In addition, the positions and channel state 
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Fig. 10. Effect of different numbers of users on the total system throughput.
Fig. 11. Effect of different numbers of UAVs on the total system throughput.
information of UAVs are modeled as the state space of MDP, and 
the network parameters are shared among the agents. This consider-
ation greatly improves the consistency of resource allocation among 
UAV clusters. In the multi-UAV cooperative scenario with 3 UAVs, 
DRL-DGSN enhances the total system throughput by 8.04%, 135.00%, 
25.38%, 60.28%, and 269.32% compared with UPRA, MDQN, DDQN, 
Dueling DQN, and Random, respectively.

6.8. Effect of different maximum transmit power values of the UAV on total 
system throughput

This experiment investigates scenarios where the maximum trans-
mit power values of the UAV are set to 20, 25, and 30 dBm, respec-
15 
tively. As illustrated in Fig.  12, the gradual increase in the maximum 
transmit power of the UAV also raises the power allocated to each user. 
Given the positive correlation between the power allocated to a user 
and the resulting throughput, the total system throughput demonstrates 
a consistent increase across different algorithms. The experimental 
results indicate that DRL-DGSN achieves optimal performance metrics 
across various maximum UAV transmit power scenarios. Specifically, 
when the maximum transmit power of the UAV is 20 dBm, the total sys-
tem throughput of DRL-DGSN improves by 22.48%, 148.96%, 26.88%, 
69.39%, and 248.11% compared with those of UPRA, MDQN, DDQN, 
Dueling DQN, and Random, respectively. This advantage arises from 
the synergistic optimization of NOMA technology and DRL within DRL-
DGSN. By dynamically optimizing the power allocation strategy for 
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Fig. 12. Effect of different maximum transmit power values of the UAV on the total system throughput.
the UAV through the Dueling network architecture and employing SIC 
technology to mitigate intra-cluster interference, DRL-DGSN maximizes 
cumulative system throughput in power-constrained scenarios.

7. Conclusion

In this study, a NOMA-assisted AEC network architecture is de-
veloped, and user association, UAV trajectory, and power allocation 
strategies are simultaneously optimized with the goal of maximizing 
cumulative system throughput. To address the non-convexity of the 
optimization problem, it is modeled as an MDP. Meanwhile, the DRL-
DGSN algorithm is proposed based on the DRL framework, offering an 
effective solution to the resource allocation challenges in AEC. First, 
users are dynamically clustered according to their spatial distribution 
using the DUA-GMM algorithm. As a result, the optimal association 
strategy between user clusters and UAVs is established. Subsequently, 
a DDQN algorithm framework based on a dueling network architecture 
is introduced to achieve trajectory control and power allocation of 
UAVs. This approach effectively addresses the issue of Q-value overes-
timation and enhances the generalization ability of decision making by 
decoupling the state value function from the action advantage function. 
The experimental results demonstrate that improvements in system 
throughput are achieved by the DRL-DGSN algorithm, with increases 
of 129.66%, 10.06%, 25.85%, 49.10%, and 238.04% compared with 
those of MDQN, UPRA, DDQN, Dueling DQN, and Random, respec-
tively. It also exhibits superior converge to the compared algorithms. 
Additionally, DRL-DGSN demonstrates considerable practical poten-
tial for emergency communication scenarios, where autonomous UAV 
collaboration can substantially enhance network service performance.

However, DRL-DGSN still exhibits certain limitations. Its perfor-
mance relies on a set of idealized assumptions, such as the full avail-
ability of channel state information, user mobility strictly adhering 
to a random walk model, and the absence of hardware constraints 
for UAVs. These assumptions deviate considerably from the conditions 
encountered in real-world scenarios. Experimental validation scenarios 
are restricted to small-scale networks and do not address large-scale de-
ployment requirements. Furthermore, the optimization objective is lim-
ited to system throughput, which makes it challenging to accommodate 
diverse service requirements.
16 
To address these challenges, future work will focus on developing 
a multi-objective optimized DRL model to address additional perfor-
mance metrics such as delay, energy consumption, and task completion 
rate, in order to accommodate heterogeneous service requirements. 
Furthermore, a MADRL resource allocation scheme within a feder-
ated learning framework will be explored to enhance the algorithm’s 
adaptability and scalability in large-scale network environments.
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