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The advantages of unmanned aerial vehicles (UAVs) in terms of maneuverability and line-of-sight com-
munication have made aerial edge computing (AEC) a promising solution for processing computationally
intensive tasks. However, the constrained computational resources of UAVs and the complexity of multi-UAV
coordination pose significant challenges in designing efficient trajectory optimization and power allocation
strategies to enhance user service quality. To address this issue, we construct an AEC architecture assisted by
non-orthogonal multiple access (NOMA) and a deep reinforcement learning (DRL) algorithm based on dynamic
Gaussian mixture and sharing networks (DRL-DGSN). By leveraging the successive interference cancellation
technology of NOMA, DRL-DGSN simultaneously optimizes user association, UAV power allocation, and
trajectory design to maximize system throughput. First, DRL-DGSN employs a dynamic user association
algorithm based on Gaussian mixture model, achieving capacity-aware uniform clustering through probabilistic
modeling combined with cluster capacity constraints, effectively preventing UAV overload. Second, DRL-DGSN
utilizes a multi-agent DRL framework with a dueling network architecture and double deep Q-network. By
integrating a shared network, agents can efficiently share experiences, enabling simultaneous optimization of
multi-UAV cooperative trajectories and power allocation, while reducing Q-value overestimation and enhancing
training efficiency. Finally, extensive experiments validate the superiority and effectiveness of DRL-DGSN
across various scenarios.

1. Introduction the wireless coverage of MEC servers is limited, the communication

quality is poor, and even the MEC servers may fail to provide services

The swift advancement of Internet of Things and wireless commu-
nication technologies has triggered a surge in latency-sensitive and
computation-intensive tasks. Cloud servers can provide powerful com-
puting capabilities to effectively deal with computation-intensive tasks.
However, these servers are frequently distant from end-users, which
leads to high transmission latency and energy consumption. Given this
background, mobile edge computing (MEC) [1] emerges as a crucial
technology for addressing the transmission bottleneck in cloud centers.
This technology extends the computing power from traditional cloud
centers to the network edge. With this approach, computing tasks are
offloaded by wireless devices to mobile edge servers at the network
edge for processing, resulting in an increase in computing power [2].
However, in scenarios such as emergency response and remote areas,
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due to damage, which causes difficulty in ensuring a better service
quality. Recently, unmanned aerial vehicles (UAVs) have experienced
rapid development due to their maneuverability, flexibility, and ease
of operation [3]. Thus, researchers have combined UAVs with MEC
technology and designed aerial edge computing (AEC) assisted by
UAVs. In the AEC architecture, UAV as the carrier of assisted edge
computing can effectively solve the problem of coverage blindness.
It can provide highly stable line-of-sight (LOS) communication by
virtue of its positional advantage, which improves the efficiency of
data transmission. Given the unpredictable mobility of users, static
UAV deployment struggles to deliver efficient edge computing services.
UAVs are required to precisely plan flight trajectories [4] and efficiently
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allocate transmit power. Thus, research has focused on optimizing the
flight trajectories of each UAV to expand the coverage of target user
service areas. Moreover, flight safety and reasonable power allocation
are guaranteed to maximize throughput and maintain user fairness.
Considering the non-convex characteristics of the multi-variable and
multi-constraint problems inherent in multi-UAV cooperation, tradi-
tional heuristic algorithms frequently demonstrate inefficiency and
converge to local optima. This limitation complicates the rapid design
of a safe and efficient cooperation scheme that incorporates power
allocation within complex environments.

For the core requirement of throughput optimization under transmit
power constraints in AEC, non-orthogonal multiple access (NOMA)
demonstrates significant technical advantages. NOMA outperforms tra-
ditional multiple-access technologies by enhancing user fairness and
spectral efficiency through power domain multiplexing and successive
interference cancellation (SIC), resulting in higher throughput [5]. In
practical AEC scenarios, sparse and scattered terrestrial users exacer-
bate the complexity of resource management. Therefore, performing
reasonable NOMA clustering for users is needed to effectively man-
age power allocation and reduce inter-user interference. Most existing
studies adopt K-means or K-means++ clustering algorithm [6]. How-
ever, the traditional K-means algorithm demonstrates limited capability
in delineating non-spherical clusters [7]. Thus, it cannot handle the
complex and variable user distribution in AEC scenarios effectively.
The user count and single-user resource allocation demonstrate an
inverse relationship, attributed to the constraints of UAV communi-
cation resources. Existing clustering algorithms are mostly based on
partitioning, layering, density, or modeling. These algorithms also lack
an explicit constraint mechanism for cluster capacity [8]. This leads
to over-partitioning of resources in high-density regions, resulting in
the inability to guarantee the transmission rate for individual users.
Furthermore, the total throughput will decline further due to increased
interference, ultimately impacting the overall communication quality
of AEC.

Deep reinforcement learning (DRL) integrates the representational
learning capabilities of neural networks with the sequential decision-
making benefits of reinforcement learning [9]. It learns through in-
teractions with the environment and can adapt to dynamic changes
within that environment. In recent years, several studies have utilized
DRL to address joint optimization problems in AEC, including the
co-optimizing deployment of UAVs and the allocation of communi-
cation resources, and joint decision making in task offloading and
UAV trajectory control [10]. The complexity of the AEC environment
and the vast state and action spaces introduce significant demands on
the convergence and generalization capabilities of the algorithm [11].
Furthermore, in a multi-UAV system, each UAV can be regarded as
an independent agent when employing DRL technology. Effectively
managing and coordinating interactions among these agents to ensure
overall performance and synergistic efficiency has become an urgent
research challenge.

To tackle the challenges mentioned above, this study concentrates
on resource allocation algorithms within NOMA-assisted AEC systems.
Moreover, a DRL algorithm based on dynamic Gaussian mixture and
shared network (DRL-DGSN) is proposed. DRL-DGSN employs a novel
multi-agent DRL (MADRL) framework to optimize the user association
strategy, UAV flight trajectories, and communication resource allo-
cation simultaneously. The framework is also used to maximize the
system throughput under the premise of guaranteeing user fairness. The
primary contributions of this study are highlighted below:

» We construct a NOMA-assisted AEC network architecture that uti-
lizes UAV clusters as low-altitude mobile base stations to provide
cooperative communication services to mobile users. In addition,
we implement the SIC technique to effectively reduce interference
among cluster users. By formulating a mixed-integer optimization
problem that integrates user-UAV association policies, UAV flight
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trajectory control, and transmit power allocation, we maximize
system throughput while ensuring the minimum transmission rate
for users.

We propose a dynamic user association algorithm based on the
Gaussian mixture model (GMM) (DUA-GMM) to optimize the
user-UAV association strategy. The DUA-GMM achieves accurate
clustering of user groups by leveraging the advantages of GMM in
modeling complex data distributions. Moreover, the upper limit
on the number of service users due to UAV energy consumption
constraints is addressed by adopting the uniform clustering algo-
rithm (UCA) to constrain cluster capacity, we effectively tackle
the challenge of ensuring users’ transmission rates in high-density
regions under transmit power constraints.

We model the problem as a Markov decision process (MDP) and
develop the DRL-DGSN algorithm to optimize the flight trajec-
tory control and transmit power allocation strategies of UAVs
simultaneously. DRL-DGSN employs a double deep Q-network
(DDQN) algorithm based on the dueling network architecture,
which effectively reduces the overestimation problem in Q-value
estimation. Unlike existing MADRL algorithm, the shared network
is used among the agents. This way further promotes the informa-
tion sharing and collaboration among UAVs. Experimental results
show that, compared with other state-of-the-art methods, DRL-
DGSN achieves an increase in system throughput ranging from
10.06% to 238.04%.

The remainder of the study is organized as follows. Section 2
reviews the related works. Section 3 introduces the system model and
outlines the optimization problem. Section 4 outlines the problem to
be addressed and provides a formal description. Section 5 discusses the
DUA-GMM and DRL-DGSN algorithms in detail. Section 6 assesses and
analyzes the performance of DRL-DGSN. Section 7 offers concluding
remarks.

2. Related work

The deep integration of MEC and UAV technologies has caused dif-
ficulty in efficient resource allocation across dense and heterogeneous
environments in the field of edge intelligence. This section offers a
thorough overview of the latest advancements in research addressing
this challenge.

In MEC, research has mainly focused on the resource optimization
of terrestrial fixed servers, with the core objective of reducing terminal
latency and energy consumption through computational offloading.
Chen et al. [12] developed a three-tier energy consumption model
of cloud-edge-end systems and introduced a particle swarm optimiza-
tion algorithm that incorporates self-adaptation capabilities, further
enhanced by genetic algorithm operators. This model achieves efficient
offloading decisions at each layer through layer partitioning operations,
which effectively reduces coding dimensions and shortens execution
times. Chen et al. [13] proposed a task offloading method in cloud-edge
computing that is real-time and aware of task dependencies, utilizing
Deep Q Networks (DQN) to facilitate parallel task offloading without
predefined priority constraints. Liao et al. [14] created a task offloading
algorithm that employs a double-layer DRL model, effectively minimiz-
ing latency and energy consumption by simultaneously optimizing task
offloading decisions, transmission power, and CPU frequency. Sadiki
et al. [15] investigated large-scale multiple-input multiple-output MEC
systems within the context of computational offloading. They proposed
two DRL algorithms, namely, DQN and proximal policy optimization,
to minimize power consumption and offloading latency for mobile de-
vices. Pang et al. [16] designed an ultra-dense heterogeneous network
scenario with MECs. Additionally, they proposed a distributed frame-
work for task offloading and wireless resource management, aimed at
optimizing the task offloading process, scaling local computing frequen-
cies, assigning subchannels, and regulating transmit power. Saberikia
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et al. [17] proposed a fault-tolerant scheduling algorithm that combines
mixed-integer linear programming (MILP) with heuristics. This ap-
proach aims to optimize energy consumption, fault tolerance, and load
balancing to effectively manage dynamic task loads in edge-fog-cloud
multi-layer architectures. Wu et al. [18] addressed the deficiencies of
traditional edge computing networks that rely on a single access point
and the privacy concerns associated with the offloading process by
presenting a privacy-preserving strategy grounded in stochastic game
theory. They developed a framework for offloading tasks using multiple
access points and created a model to evaluate the quality of service.
These studies have laid a theoretical foundation for resource allocation.
However, the static architecture of ground-based MEC faces challenges
in adapting to the multi-machine collaboration demands of dynamic
scenarios.

Owing to their high maneuverability and advantages in LOS com-
munication, UAVs have gradually emerged as the core carriers of AEC
to overcome the physical limitations of ground-based MEC. Li et al. [19]
addressed the joint optimization challenge of energy efficiency and
fairness in UAV-assisted MEC networks by proposing an optimization
algorithm for joint trajectory planning and computational offloading
strategy based on energy-saving, which integrates an optimization-
embedding multiagent DRL for autonomous decision making under
dynamic demand. Hao et al. [20] explored computing offloading in
multi-UAV collaborative MEC systems. They innovatively integrated
embedding tables with variational autoencoders in a DRL framework
to effectively resolve the co-optimization challenges in hybrid action
spaces. Luo et al. [21] considered the difficulty for UAVs to achieve
ideal search results during the search process due to the constraints of
battery life and computational capability. They designed a framework
for collaborative target search by multiple UAVs to optimize compu-
tational offloading and trajectory design simultaneously under energy
and time constraints. Li et al. [22] developed a maximum clique with
weighted graph algorithm to maximize the resource utilization of UAVs
by simultaneously optimizing the communication range of user devices
along with the latency and energy consumption of computational tasks.
Ghosh et al. [23] designed a model utilizing a quantum-inspired grav-
itational search algorithm for the multi-UAV multi-user binary task
offloading problem. This model employs quantum coding for decoding
and optimizes this process using a hashing method. It incorporates a
penalty mechanism to address the issue of violating decoding agents
while ensuring polynomial time execution. Yan et al. [24] innovatively
modeled the time interval from information generation to reception
as the age of information (Aol) for dynamic scenarios involving UAV-
assisted vehicle edge computing. The twin delayed deep deterministic
policy gradient method was proposed based on Actor-Critic networks,
aiming to optimize Aol, energy consumption, and leasing costs. Despite
significant advancements in dynamic resource scheduling for UAV-
assisted MEC, challenges such as spectrum resource competition and
multi-user interference in dense UAV swarm scenarios continue to
restrict further improvements in system performance. Traditional or-
thogonal multiple access (OMA) technologies can reduce interference
through orthogonal resource allocation mechanisms. However, their
limited spectrum efficiency fails to meet the demands of high-density
user access.

To address the limitations of traditional OMA technologies, NOMA
offers significant advantages in complex communication scenarios in-
volving dense UAV deployments by enhancing spectrum efficiency
through non-orthogonal resource reuse. Hadi and Ghazizadeh [25]
implemented user clustering and resource allocation using a three-stage
heuristic algorithm in a NOMA framework. However, the clustering
method fails to consider load balancing among UAVs. Umar et al. [26]
utilized a NOMA clustering approach based on downlink channel gain
and developed a pairing method based on the size of offloaded data in
the uplink. They constructed an optimization framework using the La-
grangian function to reduce delays by optimizing power and computa-
tional resources. However, this approach only addresses scenarios with
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a single device in each NOMA cluster, which does not accommodate
account for multi-user interference. Lu et al. [27] carried out a secure
communication scheme for flying eavesdroppers to tackle information
security issues. The authors first derived mathematical expressions to
clarify the worst-case security scenario. Then, they applied block co-
ordinate descent and successive convex approximation methods aimed
at maximizing average secure computational power while ensuring
minimum secure computational requirements for each ground user. Xu
et al. [28] used secure computational power as the performance metric
and introduced a block coordinate descent algorithm to tackle the
task offloading decision-making problem. However, these schemes are
limited to single-UAV scenarios and overlook the inter-cluster interfer-
ence caused by multi-computer coordination and the high-dimensional
complexities of system modeling. Dai et al. [29] suggested a resource
scheduling strategy for multi-UAV scenarios by combining the fuzzy C-
means (FCM) algorithm with the MADRL framework to jointly optimize
channel allocation, trajectory control, and transmission power. This
framework aims to maximize data rates and enhance communication
fairness among UAVs while prioritizing ground base stations. FCM
assumes implicit spherical clusters based on Euclidean distance, and
the DQN algorithm employed in this framework struggles with Q-
value overestimation, which can lead UAV action decisions to deviate
from the globally optimal solution. In contrast, the DUA-GMM mod-
ule integrated with the DRL-DGSN algorithm proposed in this study
employs probabilistic distribution modeling to address the spherical
assumption, accurately fitting the randomly dispersed characteristics of
user distributions. Concurrently, it utilizes the DDQN algorithm based
on the dueling network to effectively eliminate Q-value estimation
bias and enhance the global optimality of multi-agent collaborative
decision-making.

The aforementioned work highlights the potential of NOMA in AEC.
However, the challenges of dynamic association and collaborative de-
cision making among multiple agents have not yet been systematically
addressed. To this end, the DRL-DGSN algorithm is introduced, which
integrates a fusion framework of GMM and DRL to tackle the dynamic
association requirements of users and the global optimization problem
of multi-agent collaboration in the AEC environment.

3. System model

This study constructs a multi-UAV-assisted AEC system based on
NOMA technology to address the problem of ground base station
service interruption in disaster environments. As shown in Fig. 1,
the system provides communication services for multiple terrestrial
mobile ground users in a cooperative manner by deploying several
UAVs equipped with MEC servers as low-altitude mobile base stations.
In this setup, each UAV operates on the same frequency band and
employs SIC technology to effectively reduce signal interference within
a multi-user clustering environment. Once the ground users are grouped
into clusters using a clustering algorithm, each user cluster selects a
suitable UAV for association. Then, the UAV allocates transmit power
efficiently to the associated terrestrial ground users. The optimization
goals of this system include realizing an association strategy between
ground users and UAVs, controlling the 3D trajectory of the UAVs, and
allocating transmit power, all with the aim of maximizing the total
system throughput. The main symbols used in this study are presented
in Table 1.

3.1. Mobile model

In this study, a communication network comprising M users and
U UAVs is examined, with M > U. The sets of users and UAVs are
represented by M = {1,2,..., M} and U = {1,2,...,U}, respectively.
The time series is segmented into 7 time slots in this scenario. The
motion of UAVs and users on the ground is modeled using the Cartesian
coordinate system. At time slot ¢, the position of each UAV u is denoted
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Fig. 1. Multi-UAV assisted AEC system based on NOMA technology.

Table 1
Description of notations.
Notation Definition
UM, T Number of UAVs, users and time slots
U, M,T Sets of UAVs, users and time slots
d,(1),d, 1) Coordinates of UAV « and user m at time slot ¢
D, Linear distance between UAV u and user m at time slot ¢
doi Minimum distance limit between UAVs

min

Lyo(1), Lyjos()

Line-of-sight and non-line-of-sight path loss at time slot ¢

Channel gain between UAV u and user m at time slot ¢

Ly () Average path loss at time slot ¢
fe Carrier frequency

R(1) Channel fading at time slot ¢
Eum(®)

[A0)
1O, 10

Set of channel gains between UAV u and its associated users at time slot ¢

Intra-cluster interference and inter-cluster interference experienced by user m

P, 0 Transmit power allocated by UAV u to user m at time slot ¢

N Noise power

PPy Py Decoding sequence of users

SIN Rii,fpm(t) Signal-to-interference-and-noise ratio of the user ¢,, at time slot ¢
f;‘:“'a(t) Intra-cluster interference experienced by user ¢, at time slot ¢
M, Mean vector of Gaussian components n

z, Covariance matrix of Gaussian components n

, Mixing coefficients of Gaussian components n

Youn Posterior probability between user m and Gaussian components n
R,, () Throughput of the user ¢,, at time slot ¢

R Total system throughput

Kax Maximum number of serviceable users per UAV

K, Load of UAV u

0 Movement direction of the UAV u

u

as d,(t) = (x,(0),y,(1), h,(1)), where x,(1), y,(t) and h, (1) are the X, Y
and Z coordinates of the UAV u. For user m, the position is d,,(t) =
X (@), Y (D), b, (1)), where x,,(7) and y,,(¢) are the horizontal coordinates,
and the Z coordinate 4,,(f) = 0 because the user is positioned on the
ground.

At time slot #, the linear distance D, () and the horizontal distance
Dﬁm(t) between the UAV u and the user m are denoted as
(@]

Dy(®) = || = a0 .

D! ()= “(xu(t) — (1), ¥ (1) — ym(t))uz, @

To prevent UAV collisions between UAVs, it must be ensured that
the distance between any two UAVs, u and ¢/, is not less than the safe
distance, which is expressed by

where d;,

3

d, (1) — du,(z)”2 >dy Vi € Uu#

is the minimum distance limit between UAVs.

3.2. NOMA-based communication models

During signal transmission, the link transmission loss is influenced
by LOS and non-line-of-sight (NLOS) propagation. The LOS path loss
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L; s and the NLOS path loss Ly; g between the UAV u and the user m
are modeled as follows [30]:

Liog() =309+ (2225-05-1g(h,®)) - 1g(D, () +20-1g(f.), (4

Lon(®) = max{ Ligs (0,324 (432=7.6-1g(h,1))) 1g(D,(0) +20-1g(£,) }.
)

where f, is the carrier frequency.
Let P, (1) and Py;.(¢) denote the probabilities of LOS and NLOS
propagation, respectively. Their expressions are given as follows:

h .
- 1 . D, 0 <d.(1);
Los() =19 4.0 _ DR, 4 h
o TP { P X (1 D,ﬁm(t)> } . Dy, >d.@®,
(6)
Pypos(D) = 1= Py, @)

where d, (1) = max{294.05x1g(h, (1)) —432.94, 18} is the critical distance,
and pj,, (1) = 233.98 x1g(h, (1)) —0.95 is the parameter that regulates the
attenuation of P (7) [30].

Based on the propagation of LOS and NLOS, the average path loss
between the UAV u and the user m is given by [31]

Laug(t) = PLos(t) : LLOS(I) + PNLos(t) : LNLos(t)
= Ppos() - Lyos() + (1 - PLos(t)) * Lnpos (-

The channel gain resulting from random loss g, , () can be evaluated

(8

as

(_Lmu))
gumO=R@®x10\ 1/, 9)

where R(t) represents the channel fading caused by multipath ef-
fects [30].

Let a, () € {0,1} be a binary variable indicating the association of
UAV u with user m. Specifically, a, ,(t) = 1 if UAV u is associated with
user m at the time slot #, and g, ,,(t) = 0 otherwise. Given that each user
can be associated with a maximum of one UAV at any time slots, the
following constraint must be satisfied:

U
Y a,,0)=1Yme MeT. (10)
u=1

The signal power P,ff,i"a' (¢) transmitted by the UAV u to the user m
is given by [32]

PYE(1) = (1) X Py (1) X G0, an

where P, ,(7) represents the power allocated by the UAV u to the user m,
satisfying 0 < P, ,(t) < P™® (with P™* denoting the maximum trans-
mit power of UAV u). Meanwhile, the total transmit power allocated
by UAV u to its associated users must satisfy Z”Af: L Gy P,y < PO,
where PutOtal is the total transmit power of the UAV u.

The intra-cluster interference I;","{a experienced by user m from other
users with the UAV u is given by [33]

M
Y G, OX Py ()X 8y, (1) 12)

my,=1,m,#m

0=

The signal interference (inter-cluster interference) I;{‘;f‘ (t) experi-
enced by user m from users served by other UAVs can be expressed
as [33]

U M
ey =3 N ay p OX Py (X g (O a13)

up=1u,#umy=1

The signal-to-interference-and-noise ratio (SINR) for the user m can
be calculated by [34]
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signal
Pom (1)

SINR,,, (1) = — : :
[intra () + [inter (1) + N

14

where N is the noise power.

In this system architecture, multiple users transmit their requests
to the UAV via the uplink channel, which may result in inter-signal
interference due to variations in channel conditions and signal strength
between the UAV and the users. We implement the SIC technique to
address this challenge. This technique can significantly enhance signal
reception quality, optimize spectrum utilization, and adapt to differ-
ences in signal strengths of users by progressively decoding stronger
signals and mitigating their interference with weaker signals.

Based on a comprehensive consideration of channel gain, inter-
ference factors, and noise levels, we adopt SINR as the core metric
for determining the decoding order. Specifically, by calculating the
SINR, the UAV can accurately assess the strength of the request signal
of each user and optimize the processing order accordingly. In this
process, received signals are decoded based on SINR priority; that is,
user requests with the highest SINR are prioritized, and the interference
caused by the decoded requests is gradually mitigated during the
decoding process. For the UAV u, when multiple users transmit signals,
the SINR ordering can be evaluated by

SINR,, (t)> SINR,, ()>>SINR,, (). (15)

Therefore, the decoding sequence is ¢, @,, ..., px. When user ¢,
to user ¢,,_; have been decoded sequentially, all decoded signals from
user ¢y, @,, ..., o, are also removed according to the SIC decoding
principle. At this point, the intra-cluster interference fjp“:a(t) for user
@ can be further described as follows:

M
ifi/::ra(t) = 2 au,lﬁj ®)x P‘ﬂ/ ®)x gu’(ﬂ/ @. (o)

j=m
The SINR for user ¢,, is represented as follows:

. Psignal %)
SINR (1)= ——" )
Il‘,{‘(j,',;‘ ®»+ I,;{‘};mf ®H+N

P a7

The data offloading transmission throughput Ry g, @ for the user ¢,,
is calculated based on Shannon’s theorem [35], and it is formulated as
follows:

Ry, (0=B- log2<l + SINRSS (z)), 18)
where B is the bandwidth of the UAV u.
4. Problem formulation

The objective of this study, denoted as P;, is to maximize the total

network throughput by jointly optimizing the user association policy,
UAV trajectory planning and transmit power allocation, expressed as:

T U N
P i maxR=) 3 Y R, 0,
=0 u=1 m=1
S.t. X, € [Xpin> Xmax]> Y4, (19a)
Yu € [ymin’ymax]vvu’ (19]))
Ry, € [yins My 1: Vi, (19¢)
d,(0) = dy (||, 2 dpyin, Vit uu# v, (19d)
Ay () € 10,1}, Y, Vi, Vi, (19¢)
U
Y @t = 1,Yu,Ym, ¥, (196
u=1
M
N @O X Py < PV, Vm, V1, (19g)
m=1
Ry (1) = Ry, Y, Ym, V1, (19h)
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where Egs. (19a) to (19¢) define the physical spatial boundaries for
UAV flights. Eq. (19d) addresses the requirement for safe distances
between UAVs to prevent airborne collisions. Egs. (19e) and (19f)
ensure that each user can and must associate with only one UAV at any
given time slot. Eq. (19g) establishes an upper limit on the maximum
transmit power of the UAVs, and Eq. (19h) specifies the minimum
throughput requirement per user.

5. Algorithm design

In this section, we first introduce the DUA-GMM algorithm for user-
UAV association. Next, we present the DRL-DGSN joint optimization
approach for UAV trajectory and transmit power allocation. Finally, we
analyze the complexity of the proposed algorithms.

5.1. The DUA-GMM algorithm

In AEC scenarios, the dynamic changes in user mobility and dis-
tribution introduce challenges for the association between UAVs and
users. In this section, the DUA-GMM algorithm is proposed and com-
bined with the UCA algorithm to achieve dynamic association between
UAVs and users while ensuring UAV load balancing.

In this study, GMM is utilized to cluster the user population. No-
tably, each UAV corresponds to a specific cluster. In this mechanism,
user requests within the current cluster are offloaded to the assigned
UAV for processing, which ensures that the number of clusters matches
the number of UAVs.

Specifically, we first randomly initialize the mean vector u, and
covariance matrix X,, with an equal number of Gaussian components
as UAVs. In addition, we assign mixing coefficients , for each Gaussian
component, with verification that they sum to 1, as described below:

U
Y=l (20
n=1

Subsequently, the expectation-maximization (EM) algorithm is iter-
ated until the parameters converge. The EM algorithm comprises two
primary phases: the expectation step (E-step) and the maximization step
(M-step).

5.1.1. E-step
In the E-step of the EM algorithm, the posterior probability y,,
(i.e., the degree of responsibility) that each user m belongs to each
Gaussian component » is computed, which is expressed as
Ty N(dm | ”n!zn)

Yo = , 21
T Nd | 1y Z5)

where N (d,, | u,, Z,) is the probability density function that follows a
Gaussian distribution, with u, representing the mean and X, denoting
the covariance. y,,, € [0,1] represents the conditional probability of
user m belonging to cluster n. Unlike the hard assignment of the K-
means algorithm (i.e., each user can only belong to a single cluster), Eq.
(21) adopts a soft assignment mechanism. This mechanism allows each
user to be associated to multiple clusters with different probabilities,
thereby quantifying the strength of user-cluster associations.

5.1.2. M-step

The responsibility y,,, is used to update the critical parameters of
the Gaussian component: the mean vector u, iteratively refines the
center of Gaussian component n by computing a weighted average of all
users’ positions. The covariance matrix o, characterizes the dispersion
and spatial distribution of users around their centers y,. The mixing
coefficients x, indicate the expected proportion of users associated with
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Gaussian component n by averaging the responsibility y,,, of each user.
The update formulas are expressed as follows:

M
d
U, = Zm;} Ymn9m (22)
Zm:| Ymn
M T
Zm=1 Ymn (dm - ”n) (dm - ”n)
X, = 7 R (23)
Yot Yo
M
—17
T, = —Z"’;\; " 24)

The abovementioned steps are iteratively repeated until the param-
eters converge, which leads to the final assignments of each user to
their respective clusters.

UAVs are constrained by limited battery capacity and power when
performing tasks. Thus, we address the potential for a sudden drop
in endurance due to overloading by setting an upper limit on the
maximum number of serviceable users K,,, or each UAV. This setting
satisfies the condition K, = M which ensures fairness in resource
allocation among clusters. The load K, of each UAV u should converge
to K., to maximize the satisfaction rate of user requests. However,
traditional GMM clustering approaches only assign users to the nearest
cluster centers, ignoring the capacity limitations of those clusters. This
approach may result in some UAVs becoming overloaded while others
remain idle. To address this issue, we propose the UCA. After users
complete GMM clustering, the UCA achieves load balancing between
clusters. The UCA iteratively selects an unsaturated cluster » (i.e., K,, <
K .x), calculates the distance between its center y, and all users
exceeding the capacity limit, and reassigns the nearest users to cluster
n. This process repeats until all clusters meet the capacity constraint.
Ultimately, each balanced cluster is assigned to a UAV, ensuring that
the UAV’s load equals K-

The UCA algorithm is designed to overcome this limitation, and its
implementation steps are detailed in Algorithm 1. u2¢[ ] represents the
list of user-cluster associations, u2c[m] indicates the cluster associated
with user m, and the mean vector of Gaussian components serves as the
cluster center. First, the number of users in each cluster is calculated
(lines 1-5). Second, for each cluster »n that has not yet reached the
capacity limit K,,,,, the distance of all users in the large-scale clusters
from the center y, of cluster »n are calculated (lines 6-13). Finally, the
user m,;, closest to u, is selected and re-associate to cluster n, followed
by an update of the cluster size (lines 14-19).

Although the UCA employs a greedy algorithm for local adjust-
ments to address load imbalance, which may lead to local optima,
it effectively mitigates the combinatorial explosion issue associated
with global optimization. Global optimization requires traversing all
user-cluster assignment combinations that satisfy the K, constraint,
resulting in a computational complexity of O(U™). This significantly
increases decision latency for UAVs, which fails to meet user demands
for low-latency responses. In contrast, UCA reduces complexity to
O(Kpax - M - U) by locally redistributing overloaded users. Further-
more, UCA prioritizes users that are closest to the target cluster center
during redistribution, thereby maximizing the preservation of spatial
probability distribution information within GMM.

Given that the mobility characteristics of users are modeled as
random wandering, the initially established cluster structure becomes
less effective over time when traditional one-shot clustering methods
are applied. To overcome this challenge, we recalculate the cluster
structure by activating the DUA-GMM algorithm at the start of each
time slot by using the newly obtained user location data. This method
effectively reduces the risk of cluster structure failure due to mobility
by periodically clustering and associating users. Algorithm 2 presents
the pseudo-code for the DUA-GMM algorithm. Here, c2u[ ] and u2u] ]
denote the association lists of users with clusters and clusters with
UAVs, respectively; c2u[n] represents the UAV associated with cluster
n; and u2u[m] denotes the UAV associated with user m.
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Algorithm 1 UCA

Algorithm 2 DUA-GMM

Input: user location d,,, maximum cluster capacity K,,,,, cluster center
#,, GMM’s clustering result u2c[ ].
Output: optimized user uniform clustering decision u2c¢| ].
1: for m < 1 to M do
2:  n_orig <« u2c[m]; // Obtain the original cluster n_orig associated
with user m;

3 Kn_arig - Kn_orig + 1;

4: end for

5: forn < 1to U do

6: while K, < K, do

7: for m < 1 to M do

8: n < u2c[m);

9: if K,y > K, then

10: D,y < ||bn — dm) 5

11: end if

12: end for

13: Obtain the cluster 7 associated with m;,, where ii = u2¢[mp;,1;

14: u2c[my;,1 < n; // Update the cluster associated with user m,;,
to n;

15: K, <K, +1, K; <« K;+1;

16: end while

17: end for

The DUA-GMM algorithm starts by initializing the mixing coeffi-
cients r,, the mean vector 4, and the covariance matrix X, (lines 1-2).
Next, the degree of responsibility y,,, is calculated between each user
m and each Gaussian component n, with user m being associated with
the Gaussian component that has the highest degree of responsibility
(lines 3-10). Following this, the algorithm iterates through all Gaussian
components to update the mean vector u,, the covariance matrix X,
and the mixing coefficients 7, refining the Gaussian model to better
capture the distribution of the user (lines 11-15). After completing
the GMM clustering, Algorithm 1 is executed to uniformly cluster the
users (line 16). Finally, each UAV is assigned to the nearest cluster
in succession, ensuring that every UAV is matched with the closest
cluster, thereby establishing the association between UAVs and users
(lines 17-23).

5.2. Resource allocation algorithm based on DRL-DGSN

It is widely acknowledged that the mixed-integer nonlinear pro-
gramming problem examined is NP-hard [36]. Consequently, tradi-
tional convex optimization methods encounter great challenges when
addressing such complex problems. To solve the problem Py, it is first
formulated as a MDP, and the DRL-DGSN algorithm is developed to
simultaneously optimize the power allocation and trajectory control
strategies for the UAV.

5.2.1. MDP formulation

In this section, the resource allocation process is modeled within
an MDP framework to optimize decision making for UAV agents in
communication tasks. During interactions with the environment, the
current state is perceived by UAV agents, actions are selected based
on their decision-making strategies, and the environmental feedback
(i.e., reward) obtained after executing an action is utilized as the
basis for learning. This iterative process allows for the continuous
refinement of their decision-making strategies. Three key components
of the MDP-state s, action a, and reward r—are defined as follows.

(1) State: The UAV agent can sense the following information: the
position of the current UAV relative to other UAVs, as well as the
channel gains between the current UAV and other UAVs in conjunction

Input: UAV location d,, user location d,,, maximum cluster capacity
Kmax'
Output: UAV and user association decisions u2u[ ].
1: Initialize the mixing coefficients r, by using Eq. (20);
2: Initialize the mean vector yu, and the covariance matrix %,;
3: for i« 1toi,, do

max

4: Initialize the array u2¢[ J;

5. form«1to M do

6 for n < 1to U do

7: Calculate y,,, by using Eq. (21);
8 end for

9 u2c[m] < argmax, r,,;

10: end for

11: forn < 1toU do

12: Calculate u, and X%, by using Egs. (22) and (23);
13: Update z, by using Eq. (24);

14:  end for

15: end for

16: Call Algorithm 1;
17: for n < 1 to U do
18:  c2u[n] < argmax, )
19: end for

20: for m < 1 to M do
21:  n' < u2c[m] // Obtain the cluster n’ associated with user m;
22:  wu[m] < c2u [n’];

23: end for

>

du_”n

with their associated users. Based on this information, the state of the
UAV agent is characterized as

s = {d, 0, 1, oer1u GO {Go® ey b (25)

where U \ {u} denotes the set of UAVs U except UAV u. G, (1) =
{gufm}m < Tepresents the set of channel gains between UAV u and its
associated users.

(2) Action: The UAV must determine its current direction of move-
ment and the transmit power assignment for the associated user within
each time slot. The transmit power is selected from a predefined set
of discrete levels P = {P,, P,, ..., P}, where L is the total number of
discrete transmit power levels. Therefore, the action of the UAV agent
is described by

a={0,P ... Pg, }VUEU, (26)

where o, indicates the direction of movement of the UAV u.

(3) Reward: The reward function is designed as a combination
of system throughput and a penalty mechanism. When the transmis-
sion rate of the worst-performing user does not meet the minimum
requirement, the system imposes a fixed penalty value 7 to ensure dual
optimization of system performance and fairness. The reward function
for the UAV is defined as follows:

-1, if the minimum rate is below the threshold;
r=
Z::f R, (), otherwise.
27)

5.2.2. Network architecture of DRL-DGSN

DRL-DGSN is based on the DQN framework for algorithmic improve-
ment. It combines the overestimation suppression mechanism of DDQN
with the state-action decoupling idea of dueling network. The Q-value
update process of the overall network architecture can be formally
described as follows:
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(1) Basic DQN framework

The DQN algorithm is classified as an off-policy method and is
categorized as a value-based reinforcement learning algorithm. Its pri-
mary concept involves parameterizing the Q-value function through the
construction of a neural network. The iterative update process for the
target Q-value Q(s, a; 0) can be formulated as follows:

O(s,a;0) = r +ymax Q(s',d;0'), (28)

where 6§ and ¢’ represent the weights of the current network and the
target network, respectively; s’ and o’ denote the next state and the
next action, respectively; and y signifies the discount factor.

The loss function Loss is defined by

Loss = (Q(s,a;B) - (r+ y max Q(s’,a’;B’)))z. (29)

The DQN algorithm incorporates an experience replay buffer and
a target network to enhance the accuracy of Q-value estimation. The
agent acquires experience (s, a, r, s") through interactions with the envi-
ronment and stores them in the experience replay buffer. Subsequently,
random sampling is employed to reduce the impact of temporal cor-
relations on the learning process. The target network is designed to
compute the target Q-values and is updated periodically to stabilize the
Q-value update process.

(2) Improvement of DDQN

In DQN, employing the same network for both action selection and
Q-value evaluation introduces maximization bias, which causes the Q-
values to be overestimated. To tackle this issue, the DDQN algorithm,
which shares a similar structure with DQN, incorporates two separate
Q-functions. Specifically, in DDQN, the main network determines the
best action for the next state, while the Q-value of that action is
computed using the target network. This mechanism, which decouples
action selection from Q-value evaluation, effectively mitigates the Q-
value overestimation. The update of its Q-value Q(s, a; 0) is assessed by

05, a:0) = r+yQ(s argmax O(',a'30):6' ). (30)

(3) Dueling network architecture

To facilitate independent modeling of state values and action advan-
tages, the DRL-DGSN algorithm employs the dueling network architec-
ture to systematically decompose the Q-value Q(s, a; 6) into two distinct
components: a state value function ¥ (s; 6,/ ) and an advantage function
A(s,a;0,). The state value function V (s;6, ) is employed to evaluate
the long-term expected return of the state s. In contrast, the advantage
function A(s,a; 0 A) measures how much action a exceeds the average
value of all possible actions in the same state. This separation facilitates
the ability of the network to more effectively learn the intrinsic value of
states and the differences in value among various actions. This design
feature significantly improves the efficiency of the learning process
and enhances its generalization capability. The final output of the Q-
network is represented as a linear combination of the two components,
as follows:

O(s,a;0) = V(S;HV) + A(s,a;HA). (31)

To enhance the comparability of the output from A(s,a;8,), zero-
averaging is applied to the advantage values. This approach ensures
that the advantage values of different actions are assessed on a uniform
scale, which facilitates highly effective comparisons, as follows:

A(s,a;0,) < A(s,a;0,) — ﬁ 2 A(s,d';0,), (32)
adeA

where A is the set of actions.

5.2.3. Design of the DRL-DGSN

In the DRL-DGSN algorithm, each UAV is regarded as an inde-
pendent agent connected to a shared neural network through state
abstraction. This framework facilitates the sharing and reorganiza-
tion of experiences to train a common neural network. During the
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Algorithm 3 DRL-DGSN

Input: UAV position d,, user position d,,, channel gain of user g,,.
Output: UAV trajectory design and transmit power allocation.

1: Initialize the experience replay pool D;

2: Initialize O(s, a; ), 0, O(s",a’;0"), 0' < 0;

3: for episode < 1 to E do

4: Initialize state s;

5 fort< 1toT do
6: Invoke Algorithm 2 at every 4 times slots;
7: foru < 1to U do
8: Choose an action a based on e—greedy policy.
9: Execute the action a, Calculate the reward r and obtain the
next state s’;
10: Store the experience (s,a,r,s') into D;
11: Sample random minibatch of experiences from D;
12: for each experience (sj,aj,rj,s;) do
13: Calculate V (s;;0) and A(s;,a;;0);
14: Calculate Q(s;,a;;0) by using O(s;,a;;0) = V(sj;e) +
(A(sja20) = o Zurea Alsjaz0) );
15: Calculate the target Q-value Qeer DY USING Orarger
ri+y- Q(s;., arg max,, Q(s;, aj;B’));
16: Calculate Loss by using Loss = (Q(sj, a;;0) - Qtarget)z;
17: end for
18: Perform backpropagation and update 6;
19: Periodically Copy 6’ « 6;
20: end for
21:  end for
22: end for

training process, data exchange among the agents is implemented to
enhance overall performance. Notably, no additional communication
between UAVs is required during operation, which further reduces
computational complexity. Although each UAV independently selects
its actions, this cooperative principle is based on the consideration of
other UAV positions as integral components of the environment. This
approach allows the UAVs to maintain appropriate distances and avoid
interference with one another. Accordingly, effectively collaboration on
tasks is facilitated to improve efficiency and performance. Pseudo-code
and framework diagrams of the DRL-DGSN algorithm are presented in
Algorithm 3 and Fig. 2, respectively.

In the initialization phase (lines 1-3), the experience replay pool
is created to store agent experiences gathered from environmental
interactions. Concurrently, the main network is initialized with random
weights to encourage exploration and avoid premature convergence to
local optima. The target network is also initialized with parameters
identical to those of the main network to ensure training stability; it will
later be used to compute the target Q-values. During the environment
interaction and experience storage phase (lines 4-11), Algorithm 1 is
initially invoked for user association at each time step. Subsequently,
each UAV agent adopts the e—greedy strategy to select an action a in
the current environment. This interaction yields a reward r and the next
state s’. The agent subsequently stores the experience (s,a,r,s’) in the
experience replay pool.

The parameter computation and update phase (lines 12-24) begins
after environment interactions and experience storage are completed.
In this phase, the DRL-DGSN algorithm performs stochastic sampling on
the experience replay buffer to extract a mini-batch of experiences. For
each extracted experience (s, a,r,s"), V (5;0y ), A(s,a;0,), the Q-value
and loss for each network, are computed sequentially. Backpropagation
is performed to update 0. In addition, §’ are updated at regular intervals
to enhance training stability.
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Fig. 2. Framework of DRL-DGSN. (a) represents a single training interaction unit, which includes the current UAV and its associated users, where DRL-DGSN
trains each UAV agent individually based on this unit. (b) and (c) together form the shared network module, allowing UAVs to exchange position and channel
state information to facilitate the dynamic optimization of collaborative decision-making.

5.2.4. Complexity analysis

The time complexity of the UCA algorithm is denoted as O(M +
Ky " M -U) = O(M + % . M - U) = O(M?). In the DUA-GMM
algorithm, the time complexity associated with the GMM clustering
based on the 2D coordinates of users is denoted as O(T,,,, - M - U),
where T,,, represents the total number of iterations for the GMM.
When UAVs are associated with clusters, the complexity is O(M + U),
resulting in an overall time complexity of the DUA-GMM algorithm of
O(Ty M -U+M>+ M +U) =0(T, - M -U).

gmm gmm

The complexity of the DRL-DGSN algorithm is mainly determined
by the complexity of the DUA-GMM algorithm and the complexity
associated with the DRL module. The computational complexity of the
DRL module is significantly affected by the architectural parameters of
the neural network. Let n; denote the number of nodes in the shared
feature layer, and n, denote the number of nodes in the hidden layers
of both the value stream and the advantage stream. The computational
complexity for a single training iteration of the neural network is
represented as O((|S| - n; +2n; - ny +ny - 1+ ny - |A|) - B) [37], which
is further simplified to O((|S| - n; +n, - |A|) - B), where B denotes the
batch size and S is the set of states.

By integrating from the DUA-GMM algorithm and the model train-
ing process, the total complexity for a single step of training in the
DRL-DGSN algorithm is O Ty M -U+(|S|-ny+n,-|.A])-B). Finally, the
overall time complexity of the DRL-DGSN algorithm can be expressed
as O((Tgmm - M -U + (S| -n +ny-|Al)- B)-T- E), where T represents
the number of decision steps in a single iteration, and E indicates the
total number of iterations throughout the execution of the DRL-DGSN

algorithm.

In the DRL-DGSN algorithm, the state space encompasses the 3D
spatial coordinates of the UAVs along with the channel gain of the
users, and the action space consists of the seven movement directions
of the UAVs and three levels of power allocation. Consequently, the
state space dimension |S| = 3U + M and the action space dimension

|A| =7U+3M are defined. Thus, the time complexity of the DRL-DGSN
algorithm is O((Tymm* M -U +(BU +M)-n;+(7U +3M)-n,)-B)-T-E).

Next, we analyze the space complexity of DRL-DGSN. In DRL-DGSN,
we employ an experience replay pool to store the interaction experi-
ences between the UAV agent and the environment. These experiences
support the online updates of the evaluate network and the target
network, and their storage scale directly impacts the space complex-
ity of DRL-DGSN. In DRL-DGSN, the reward dimension is |R| = 1.
Therefore, the spatial scale of a single interaction experience (s, a, r, s")
is O(|S|+|A|+1+|S|) = O(2|S| +|A]). Let the experience replay pool
capacity be C, then the spatial complexity of DRL-DGSN is O(C- (2| S|+
|A])) = O(C - (7U +5M)).

6. Performance evaluation

A series of experiments is conducted to validate the performance of
the proposed algorithm. Initially, the configurations of the experimen-
tal environment and the corresponding parameter settings are detailed.
Subsequently, the convergence of the DRL-DGSN algorithm is analyzed.
Finally, we carry out a comparative assessment of DRL-DGSN against
existing state-of-the-art schemes.

6.1. Experimental setup

In this study, the experiments are designed to establish an AEC
network consisting of U = 3 UAVs and M = 6 ground mobile users
within a square area with a dimension of 500 m x 500 m. The initial
positions of the UAVs are uniformly distributed throughout this square
area at an altitude of 100 m, and their flight altitudes are constrained
within the range of [20, 120] m. Ground users are randomly positioned
within three designated hotspot areas [38], and each user follows a
random roaming model with a speed limit ranging from [0, 0.5] m/s.
The deep learning framework adopts a dueling network architecture. It
is divided into three modules: the shared feature layer, the state value
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Table 2

List of experimental parameters [19,30].
Parameter description Value
Service area boundaries (X;,y, Ymax) 500 m
UAV flight altitude range (A, Amay) [20, 120] m
Number of UAVs (U) 3
Number of users (M) 6
Maximum user mobility speed 0.5 m/s
UAV mobility speed 5 m/s
Minimum distance limit between UAVs (d;,) 10 m
Carrier frequency (f,) 2 GHz
Bandwidth (B) 30 kHz
Noise power (N) —60 dBm
Channel fading (R(1)) Rayleigh fading
Maximum UAV transmit power (p™*) 28.45 dBm
Number of training episodes (E) 200
Number of time slots (7T) 60

Update interval of DUA-GMM (4) 4

Initial value of e-greedy exploration 0.9
Learning rate 0.00001
Discount factor (y) 0.999
Batch size 64
Replay buffer size (C) 50000

stream, and the advantage stream. All layers utilize ReLU activation
functions. The shared feature layer consists of a fully connected layer
with 128 nodes. Each hidden layer of the state value stream and the
advantage stream contains a fully connected layer with 64 nodes.

During the training phase, the experience replay cache is set with a
capacity of 10,000 records. During each model update, 64 experiences
are randomly sampled to create a mini-batch. The learning rate is
set to 0.00001, and the Adam optimizer is employed for updating
gradients. Furthermore, a discount factor y = 0.999 is utilized to balance
immediate rewards with long-term gains. Table 2 presents the basic
parameter settings.

The following four algorithms are selected for comparison to com-
prehensively evaluate the performance of the proposed DRL-DGSN
algorithm.

Mutual DQN (MDQN) [30]: This algorithm dynamically adjusts
UAV deployment locations through periodic K-means clustering
of mobile users. It subsequently employs MDQN to enhance the
trajectory planning and power allocation of UAVs.

UAV path selection and resource offloading algorithm (UPRA)
[39]: This algorithm combines the K-means clustering method
with the Hungarian algorithm to enable periodic online matching
between users and UAVs. In addition, a semi-fixed hierarchical
power control strategy is developed to improve the autonomous
obstacle avoidance and power management abilities of the UAV
by employing the DQN algorithm.

DDOQN: The algorithm is based on the original DDQN algorithm
[40] for the trajectory optimization and power allocation deci-
sions of UAVs. Meanwhile, it incorporates the DUA-GMM and
sharing network proposed in this study to optimize user associ-
ation and multi-agent interaction.

Dueling DQN: This algorithm utilizes DUA-GMM developed in this
work to enable association between UAVs and users. It employs
our proposed shared network among multiple agents for training.
The Dueling DQN algorithm [41] is applied to optimize the
trajectory control and power allocation strategies for UAVs.
Random: In this algorithm, the DUA-GMM proposed in this study
is used to optimize user association decisions, while the UAV
randomly selects flight directions and transmit power.

6.2. Analysis and setting of hyperparameters

The configuration of hyperparameters in deep neural networks plays
a crucial role in determining the training efficiency, generalization
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ability, and decision accuracy of the model. The effects of key hy-
perparameters, including learning rate, batch size, and discount fac-
tor, on the convergence performance of the DRL-DGSN algorithm are
systematically analyzed.

First, the convergence of the DRL-DGSN algorithm is investigated
using various learning rates, which directly affect the magnitude of
gradient updates in the neural network. Fig. 3 depicts the convergence
characteristics of the algorithm and highlights significant differences
as the learning rate varies from 0.000001 to 0.001. The experimental
results indicate that, when the learning rate is set at 0.00001, the DRL-
DGSN shows favorable convergence and achieves the maximum return
value. By contrast, an excessively high learning rate (e.g., 0.0001) leads
to degraded convergence performance, with the convergence curve
oscillating around the solution space and failing to reach the optimal
solution. Meanwhile, an excessively low learning rate (e.g., 0.000001)
results in slow training and convergence to a local optimum. As a result,
a learning rate of 0.00001 is chosen for the experiments, as shown in
Fig. 3, as it optimally balances convergence speed and model stability.

The batch size, which refers to the number of samples used during
neural network training, influences the effect of sample diversity on
gradient estimation within the empirical replay mechanism. Three
batch sizes are assessed: 32, 64, and 128. As illustrated in Fig. 4,
smaller batch sizes (e.g., 32) exhibit significant fluctuations due to
increased gradient variations between samples. On the contrary, larger
batch sizes (e.g., 128) tend to rely on stale data during training,
which potentially hinders convergence. Conversely, a batch size of 64
minimizes gradient variations while preserving sample diversity, which
results in the maximum reward value. Therefore, a batch size of 64 is
chosen because it optimally accommodates both gradient stability and
sample diversity requirements, as evidenced by the results in Fig. 4.

The discount factor y governs the trade-off between immediate and
future rewards. We set the range of y between 0.9 and 0.9999 [41,
42]. As illustrated in Fig. 5, an excessively large discount factor
(e.g., 0.9999) leads the model to disproportionately prioritize future
rewards, which causes strategy updates to be overly influenced by
uncertain future states. Conversely, an excessively small discount factor
(e.g., 0.9 or 0.99) overemphasizes immediate rewards, which hinders
the learning of long-term dependencies. By setting the discount factor
to 0.999, DRL-DGSN effectively balances short-term gains with long-
term objectives. This workable balance enables rapid convergence of
the reward function toward the optimal solution. Consequently, the
selection of a discount factor is based on its optimal trade-off between
short-term gains and long-term objectives, as shown in Fig. 5.

6.3. Convergence analysis

As illustrated in Fig. 6, all five algorithms demonstrate improved
convergence. Notably, DRL-DGSN not only exhibits enhanced stability
but also rapidly achieves and maintains the optimal convergence value
after 150 iterations. The optimal solution obtained by DRL-DGSN shows
improvements of 9.22% and 129.60% compared with those of UPRA
and MDQN, respectively. This enhancement can be attributed to the
probabilistic clustering model employed by the DUA-GMM algorithm
integrated within DRL-DGSN, which is better suited to accommodate
the complexities of user distribution. Furthermore, the cluster capacity
constraint facilitates load balancing among UAVs and enhances the
fairness of user services.

In contrast to DDQN and Dueling DON that utilize the DUA-GMM
algorithm, DRL-DGSN achieves an average improvement of 39.48% in
the final convergence value. This advancement is primarily due to the
incorporation of a dueling network architecture, which builds upon the
DDOQN framework. Thus, it enables more efficient state modeling and
mitigates the interference from redundant action updates by decoupling
the state value from the action advantage. Moreover, DDQN employs
two distinct networks for action selection and value evaluation. Thus,
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it circumvents the overestimation issue commonly associated with Q-
values when a single network is utilized in standard DQN. These
advantages empower the DRL-DGSN algorithm to more accurately
perceive environmental changes and make optimal decisions, which
enhance the overall convergence performance of the algorithm.

Fig. 7 illustrates the convergence of transmission rates for the
worst-performing users under different algorithms. MDQN and UPRA
prioritize maximizing total throughput, which causes them to favor
users with better communication capabilities. This emphasis results in
a decline in computation rates for the worst-performing users, which
leads to difficulty in balancing fairness across the user base. On the
contrary, DRL-DGSN incorporates user fairness constraints into the

T T T
100 150 200

Episode

Comparison of rewards for different batch sizes in the DRL-DGSN algorithm.

Bellman equation’s objective function during the Q-network update
process through a direct threshold-based penalty mechanism. When the
transmission rate of the worst user falls below a predefined threshold,
DRL-DGSN imposes a fixed negative reward signal to discourage ac-
tions that compromise fairness by utilizing a discretized reward and
punishment function. Simultaneously, the dueling network architecture
in DRL-DGSN decouples the state value function from the action advan-
tage function. This procedure allows the Q-network to be more sensitive
in identifying actions with “high global value but compromising fair-
ness”. The experimental results demonstrate that the total transmission
rate of the worst-performing user in DRL-DGSN improves by 150.69%
and 13.62% compared with those in MDQN and UPRA, respectively.
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6.4. Analysis of clustering strategies and update intervals A

As shown in Fig. 8, we examined the late-stage transmission rate
performance of the DRL-DGSN under static clustering and different
update intervals A (with the late stage defined as r > 20 s). The
figure reveals that after a certain point, the total transmission rate gap
between static clustering and periodic clustering (based on different
update intervals 4) gradually widens, with static clustering demonstrat-
ing a clear disadvantage. This occurs because static clustering fixes the
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association decisions between drones and users from the outset, failing
to adapt to the environmental changes caused by user mobility. In
contrast, periodic clustering allows the DRL-DGSN to dynamically op-
timize drone-user association strategies through regular reallocations,
thereby continuously enhancing and sustaining high total transmission
rate levels. Within the periodic clustering strategy, performance varies
significantly across different update intervals. As 4 increases from 8 to
24, the median total transmission rate gradually decreases. This decline
is due to excessively long update interval, causing cluster structure
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adjustments to lag behind dynamic user movements. For A ranging
from 2 to 8, the overall total transmission rate levels are similar.
However, the box plot for 4 = 4 shows a 23.64% and 32.10% decrease
compared to A = 2 and A = 8, respectively. This indicates that
the DRL-DGSN exhibits lower total transmission rate fluctuations and
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significantly superior stability at the update interval 4 = 4 compared
to A = 2 and 4 = 8. In summary, the update interval 4 = 4
achieves optimal stability while maintaining a high total transmission
rate level. Therefore, we set the update interval for the DRL-DGSN to
A=4.
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6.5. Trajectory optimization for UAVs

Fig. 9 presents the trajectory designed of the UAV cluster opti-
mized by the DRL-DGSN algorithm. Throughout the entire time slot
T, the UAVs maintain a safe distance from one another, and their
flight paths do not intersect. This observation validates the effec-
tiveness of the user association strategy employed by the DUA-GMM
algorithm. The DRL-DGSN algorithm leverages a mechanism of multi-
agent collaboration, which enables real-time exchange of UAV position
information via a shared network architecture. This feature facilitates
collaborative obstacle avoidance in complex scenarios. The flight tra-
jectories of all UAVs remain within the established motion boundaries,
which demonstrates the effective boundary constraints imposed by
DRL-DGSN. In addition, each UAV accurately identifies its associated
user cluster and executes directional flight through dynamic trajectory
adjustments. This capability arises from the trajectory control com-
ponent of DRL-DGSN, which dynamically adjusts UAV trajectories by
precisely estimating the Q-value of movements.

In summary, DRL-DGSN effectively achieves cooperative control
over user cluster matching, UAV safety constraints, and dynamic tra-
jectory adjustments through the integration of DUA-GMM algorithm,
boundary constraint management, and multi-agent information shar-
ing. Ultimately, this integration maximizes system throughput by si-
multaneously optimizing power allocation and trajectory planning for
UAVs.

6.6. Effect of different numbers of users on the total system throughput

As the number of ground user increases, competition for resources
among users intensifies, which significantly complicates the resource
allocation algorithm. Accordingly, we consider a scenario with 3 UAVs
and set the number of users for these UAVs to 3, 6, and 9, respectively.
As illustrated in Fig. 10, the total throughput of the system initially
exhibits a rapid increase before the growth rate begins to slow down
as the number of users rises. Specifically, when the number of users
increases from 3 to 6, a marked enhancement in total system through-
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put is observed. This result suggests that, within a certain range,
increasing the number of users can lead to more efficient utilization
of UAV resources, which improves overall throughput. However, when
the number of users is further increased to 9, the growth rate of
total system throughput diminishes. This slowdown can primarily be
attributed to the limited computational power of the UAVs. As the
number of users approaches a certain threshold, the UAV resources
become nearly saturated, which results in a deceleration in the growth
of total system throughput. Experimental results demonstrate that DRL-
DGSN consistently maintains optimal performance across varying user
sizes. In the scenario with 6 users, the total system throughput of DRL-
DGSN improves by 9.61%, 149.52%, 25.59%, 53.31%, and 274.33%
compared with those of UPRA, MDQN, DDQN, Dueling DQN, and
Random, respectively.

6.7. Effect of different numbers of UAVs on the total system throughput

The number of UAVs directly affects the division of user clusters
and the level of interference. In turn, this influence affects the parallel
processing capabilities of the system. We have examined scenarios with
1, 2, and 3 UAVs to compare the system throughput of each algorithm.
As illustrated in Fig. 11, the total system throughput increases across
all cases as the number of UAVs rises. However, in the single-UAV
scenario, the total system throughput decreases by only 22.15% com-
pared with the scenario with 2 UAVs. This moderate increase can be
attributed to that, in the single-UAV scenario, all users are grouped
into a single service cluster managed by that UAV. This arrangement
avoids the negative effects of inter-cluster interference, which results
in a less significant reduction in total system throughput despite the
fewer UAVs available. Experimental results indicate that DRL-DGSN
achieves the highest total system throughput across different numbers
of UAVs. This superior performance is attributable to the integration of
the DUA-GMM algorithm within DRL-DGSN, which effectively models
user distribution and constrains cluster capacity through probabilistic
methods. This capability significantly reduces inter-cluster interference
in multi-UAV scenarios. In addition, the positions and channel state
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information of UAVs are modeled as the state space of MDP, and
the network parameters are shared among the agents. This consider-
ation greatly improves the consistency of resource allocation among
UAV clusters. In the multi-UAV cooperative scenario with 3 UAVs,
DRL-DGSN enhances the total system throughput by 8.04%, 135.00%,
25.38%, 60.28%, and 269.32% compared with UPRA, MDQN, DDQN,
Dueling DQN, and Random, respectively.

6.8. Effect of different maximum transmit power values of the UAV on total
system throughput

This experiment investigates scenarios where the maximum trans-
mit power values of the UAV are set to 20, 25, and 30 dBm, respec-
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tively. As illustrated in Fig. 12, the gradual increase in the maximum
transmit power of the UAV also raises the power allocated to each user.
Given the positive correlation between the power allocated to a user
and the resulting throughput, the total system throughput demonstrates
a consistent increase across different algorithms. The experimental
results indicate that DRL-DGSN achieves optimal performance metrics
across various maximum UAV transmit power scenarios. Specifically,
when the maximum transmit power of the UAV is 20 dBm, the total sys-
tem throughput of DRL-DGSN improves by 22.48%, 148.96%, 26.88%,
69.39%, and 248.11% compared with those of UPRA, MDQN, DDQN,
Dueling DQN, and Random, respectively. This advantage arises from
the synergistic optimization of NOMA technology and DRL within DRL-
DGSN. By dynamically optimizing the power allocation strategy for
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the UAV through the Dueling network architecture and employing SIC
technology to mitigate intra-cluster interference, DRL-DGSN maximizes
cumulative system throughput in power-constrained scenarios.

7. Conclusion

In this study, a NOMA-assisted AEC network architecture is de-
veloped, and user association, UAV trajectory, and power allocation
strategies are simultaneously optimized with the goal of maximizing
cumulative system throughput. To address the non-convexity of the
optimization problem, it is modeled as an MDP. Meanwhile, the DRL-
DGSN algorithm is proposed based on the DRL framework, offering an
effective solution to the resource allocation challenges in AEC. First,
users are dynamically clustered according to their spatial distribution
using the DUA-GMM algorithm. As a result, the optimal association
strategy between user clusters and UAVs is established. Subsequently,
a DDQN algorithm framework based on a dueling network architecture
is introduced to achieve trajectory control and power allocation of
UAVs. This approach effectively addresses the issue of Q-value overes-
timation and enhances the generalization ability of decision making by
decoupling the state value function from the action advantage function.
The experimental results demonstrate that improvements in system
throughput are achieved by the DRL-DGSN algorithm, with increases
of 129.66%, 10.06%, 25.85%, 49.10%, and 238.04% compared with
those of MDQN, UPRA, DDQN, Dueling DQN, and Random, respec-
tively. It also exhibits superior converge to the compared algorithms.
Additionally, DRL-DGSN demonstrates considerable practical poten-
tial for emergency communication scenarios, where autonomous UAV
collaboration can substantially enhance network service performance.

However, DRL-DGSN still exhibits certain limitations. Its perfor-
mance relies on a set of idealized assumptions, such as the full avail-
ability of channel state information, user mobility strictly adhering
to a random walk model, and the absence of hardware constraints
for UAVs. These assumptions deviate considerably from the conditions
encountered in real-world scenarios. Experimental validation scenarios
are restricted to small-scale networks and do not address large-scale de-
ployment requirements. Furthermore, the optimization objective is lim-
ited to system throughput, which makes it challenging to accommodate
diverse service requirements.
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To address these challenges, future work will focus on developing
a multi-objective optimized DRL model to address additional perfor-
mance metrics such as delay, energy consumption, and task completion
rate, in order to accommodate heterogeneous service requirements.
Furthermore, a MADRL resource allocation scheme within a feder-
ated learning framework will be explored to enhance the algorithm’s
adaptability and scalability in large-scale network environments.
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