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A B S T R A C T

Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) has become a popular research topic,
addressing challenges posed by the pressure of cloud computing and the limited service scope of MEC.
However, the limited computing resources of UAVs and the data dependency of specific tasks hinder the
practical implementation of efficient computational offloading (CO). Accordingly, a device–edge–cloud collab-
orative computing model is proposed in this study to provide complementary offloading services. This model
considers stochastic movement and channel obstacles, representing the dependency relationships as a directed
acyclic graph. An optimization problem is formulated to simultaneously optimize system costs (i.e., delay
and energy consumption) and UAV endurance, taking into account resource and task-dependent constraints.
Additionally, a saturated training SAC-based UAV-assisted dependency-aware computation offloading algorithm
(STS-UDCO) is developed. STS-UDCO learns the entropy and value of the CO policy to efficiently approximate
the optimal solution. The adaptive saturation training rule proposed in STS-UDCO dynamically controls the
update frequency of the critic based on the current fitted state to enhance training stability. Finally, extensive
experiments demonstrate that STS-UDCO achieves superior convergence and stability, while also reducing the
system total cost and convergence speed by at least 11.83% and 39.10%, respectively, compared with other
advanced algorithms.
1. Introduction

In recent years, traditional cloud computing platforms have en-
countered significant challenges arising from the development of the
Internet of Things and next-generation communication technologies.
These advancements have resulted in a surging demand for applica-
tions with varying quality of service (QoS) requirements, including
autonomous driving and virtual reality [1]. Although cloud computing
can provide on-demand computing resources and services for tasks
requiring high computational power or low latency, it has certain
limitations [2]. A limitation is that cloud servers, located at the network
core, are often far away from end users. When numerous users offload
real-time tasks to the cloud center, heightened network congestion and
increased security risks occur during data transmission [3]. Depending
solely on a single cloud computing architecture is no longer adequate
to meet the requirements of today’s applications.

∗ Corresponding author.
E-mail addresses: longxinzhang@hut.edu.cn (L. Zhang), runti_tan@163.com (R. Tan), yanfen.z@foxmail.com (Y. Zhang), jiwu_peng@hnu.edu.cn (J. Peng),

luijing_cs@wust.edu.cn (J. Liu), lik@newpaltz.edu (K. Li).

Mobile edge computing (MEC) has emerged as a promising comput-
ing paradigm, integrating mobile network edge communication with
cloud computing services to offer computing services near mobile user
devices (UDs) [4]. This feature enables mobile users to sequentially
offload real-time tasks to MEC servers situated at the network’s edge,
thereby achieving low latency and high QoS without relying on cloud
centers, a process known as computation offloading (CO) [5]. MEC
serves as a complementary extension to cloud computing rather than
a complete replacement. Nonetheless, traditional MEC heavily relies
on fixedly deployed base station facilities, making it challenging to
effectively respond to computing service requests in remote regions,
disaster-affected areas, and during instances when facilities fail [6].
This limitation significantly restricts the applicability of traditional
MEC.
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Unmanned aerial vehicle (UAV) technologies have found extensive
applications in public services, disaster relief, and fault detection due
to their rapid advancements [7]. UAVs have emerged as a viable
solution to overcome the above-mentioned challenges due to their flex-
ible deployment, high mobility, and line-of-sight (LoS) communication
abilities, giving rise to UAV-assisted MEC (UAV-MEC) [8]. In UAV-MEC,
UAVs act as MEC servers, allowing them to adapt to unpredictable
offloading environments and deliver ubiquitous computing services to
users in a dynamic manner. The flexible deployment of UAVs to provide
cellular services offers substantial improvements in cost-effectiveness
and service efficiency compared with deploying additional MEC base
stations. UAV-MEC establishes a distributed computing environment
with mobile servers, where the servers (i.e., UAVs) are deployed in
flight to provide flexible computing services [9].

However, UAVs encounter challenges in effectively providing com-
prehensive services to CO systems due to their limited computational
power and battery life. These challenges pose significant obstacles to
fully maximizing the aforementioned advantages of UAV-MEC. Mean-
while, numerous studies oversimplify tasks as independent entities,
whereas real tasks often involve multiple subtasks with data dependen-
cies, which can be represented as a directed acyclic graph (DAG) [10].
Additionally, the trajectory of UAVs is crucial in developing efficient
CO strategies because UAVs deliver computational services based on
their flight paths. Accordingly, the multi-device environment with
dynamic UAV involvement introduces a significant number of high-
dimensional state parameters. Traditional optimization algorithms typ-
ically require numerous iterations, posing challenges in adapting to
real-time environmental changes and impeding the establishment of an
optimal model [11].

Deep reinforcement learning (DRL)-based approaches can adap-
tively adjust CO policies in UAV-MEC by interacting with complex
environments in real time compared with traditional methods [12].
DRL transforms the challenging sequential decision-making problem
into a cumulative reward maximization problem within the framework
of a Markov decision process (MDP), which has been regarded as a
suitable method to search the asymptotically optimal solutions in time-
varying edge environments [13]. DRL can iteratively learn and refine
CO policies by utilizing a neural network, gradually converging toward
the theoretical optimum. However, the hybrid actions performed by
agents in UAV-MEC pose new challenges to the convergence speed and
accuracy of DRL algorithms.

This study investigates the improved DRL-based UAV-assisted
dependency-aware CO (UDCO) problem in collaborative computing
systems to address the aforementioned challenges. First, we construct
a UAV-assisted device–edge–cloud (D–E–C) collaborative computing
system. D–E–C three-layer fusion integrates various computing re-
sources to offer complementary computing services for dependent
tasks. Second, we jointly optimize CO policies and UAV endurance
while considering task-dependent and resource constraints. The opti-
mization objective is to minimize the task completion cost (considering
time delay and energy consumption) of all DAG tasks and UAV power
consumption. Finally, we enhance the stability of the critic network
self-training by optimizing the network update rule in actor–critic deep
reinforcement learning (AC-DRL) and propose a maximum entropy
RL (MERL)-based CO algorithm specifically designed for UAV-assisted
dependency awareness scenarios.

The contributions of the study are as follows:

• It proposes a three-layer cooperative computing system involving
UAV participation in the D–E–C framework. This system oper-
ates within a time-varying environment, accounting for channel
transmission obstacles and stochastic user movements.

• It formulates a joint minimization problem that considers the
task completion cost (TCC) and UAV energy consumption while
accounting for resource and task-dependent constraints. A special-
2

ized MDP is designed to address this problem using DRL.
• It introduces a saturated training SAC-empowered UAV-assisted
dependency-aware CO (STS-UDCO) algorithm to generate the
optimal offloading strategy, where an adaptive saturation training
rule (ASTR) is proposed to enhance the stability and learning
capability in STS-UDCO. The experimental results reveal that STS-
UDCO outperforms other advanced algorithms in terms of cost op-
timization. Additionally, STS-UDCO shows notable performance
in terms of convergence and stability.

A shorter version of this work was accepted at the IEEE ICPADS
conference in 2023 [14]. However, the conference version did not ex-
plore the complexities of task dependencies in practical scenarios. This
extended version addresses this issue by introducing modifications to
the MDP and utilizing a different optimization algorithm. Furthermore,
this study enriches the discourse and comparison in the introduction
and related work sections. This study provides more detailed structural
diagrams and includes further analysis on the complexity of the devel-
oped algorithm. Additionally, a wider range of comparative algorithms
are referenced to facilitate additional comprehensive experiments and
a thorough evaluation of the algorithm performance.

The rest of the paper is organized as follows. Section 2 discusses the
related work about CO schemes. Section 3 describes the dependency-
aware CO system model for UAV-assisted D–E–C collaboration. Sec-
tion 4 presents the problem formulation and MDP design under this
model. Section 5 introduces the ASTR and STS-UDCO algorithm in
detail. Section 6 evaluates the experimental performance of STS-UDCO
and compares it with advanced algorithms. Finally, Section 7 concludes
the paper.

2. Related work

In recent years, researchers have conducted extensive studies on
the CO problem in MEC environments. This section introduces three
types of existing CO schemes: CO schemes in conventional MEC, UAV-
assisted CO solutions based on traditional optimization algorithms, and
UAV-assisted CO solutions based on DRL algorithms. A summary and
comparison of the related work are provided in Table 1.

2.1. CO schemes in conventional MEC

MEC brings significant improvements to user’s QoS by leveraging
its robust computing power and quick response time. Furthermore,
MEC alleviates the service burden on centralized cloud centers and
can collaborate with the cloud to deliver comprehensive and efficient
computing services. Sahni et al. [15] conducted research on multi-
hop partial offloading in collaborative MEC to minimize the average
completion time. They demonstrated that this problem falls under the
class of NP-hard problems. In their study, they devised a heuristic
algorithm called joint partial offloading and flow scheduling (JPOFH),
which uses the McCormick envelope to transform the problem into a
linear programming problem. Sun et al. [16] proposed a cloud–edge
computing-based method called joint vehicle task offloading and job
scheduling (JVTR) to optimize the on-board task offloading and job
scheduling process. JVTR minimizes time delay, energy consumption,
and workload balance within the joint offloading environment of cloud,
edge, and vehicles. Thereafter, they utilized an ant colony optimiza-
tion (ACO) algorithm to generate an optimal offloading strategy. Wu
et al. [17] designed a software-defined network-based MEC architecture
(SDN-MEC) for data processing in the Industry 4.0 scenario. They
developed a resource allocation algorithm leveraging stochastic game
and prioritized experience replay (SGRA-PER). The experimental results
confirmed the effectiveness and superiority of SDN-MEC and SGRA-
PER. Ding et al. [18] classified the cooperative computing system into
two architectural types, hierarchical (Hi) and horizontal (Ho), based
on the visibility and accessibility of the cloud. They devised two CO
algorithms based on non-cooperative game theory, termed as CO algo-
rithm for hierarchical architectures (COAHx). Wu et al. [19] introduced
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Table 1
Summary and comparison of recent work.

Algorithm Technology Optimization goals CO type UAV assistance D–E–C fusion Dependency

JPOFH [15] Heuristic Average time delay Portion ✕ ✓ ✓

JVTR [16] Meta-heuristic Energy consumption, latency, and workload balance Binary ✕ ✓ ✕

SGRA-PER [17] Game theory, DRL Energy consumption and time delay Binary ✕ ✓ ✕

COAHx [18] Game theory Energy consumption and time delay Binary ✕ ✓ ✕

OPCO-LA [19] DRL Energy consumption and privacy volume Binary ✕ ✕ ✕

DRLCOSCM [20] DRL Service cost Binary ✕ ✓ ✕

DQN-ETCM [21] DRL, Meta-heuristic Makespan Binary ✕ ✕ ✕

STMTO [22] Heuristic Energy consumption and time delay Binary ✓ ✕ ✕

OPAD [23] Heuristic Computational speed Portion ✓ ✕ ✕

DRLO [24] Heuristic Time delay Binary ✓ ✓ ✕

DDE [25] Meta-heuristic UAV energy consumption and time delay Binary ✓ ✕ ✕

BO-MADDPG [26] DRL, heuristic Energy consumption Binary ✓ ✕ ✕

EE-PPO [27] DRL Energy efficiency Portion ✓ ✕ ✕

DQN-PER [28] DRL Energy consumption Binary ✓ ✕ ✓

DuelingDRL [29] DRL Energy consumption and time delay Binary ✓ ✓ ✕

SMOO [30] DRL Time delay Portion ✓ ✕ ✕

STS-UDCO (Our work) DRL UAV energy Consumption and task completion cost Binary ✓ ✓ ✓
an online privacy-aware IIoT computation offloading method based
on Lyapunov optimization and actor–critic framework (OPCO-LA) to
address the privacy and security concerns of IIoT users. The goal of this
method is to mitigate privacy risks and lower system energy consump-
tion. Zhou et al. [20] developed a DRL-based computation offloading
and service caching mechanism (DRLCOSCM) for reducing the cost of
cloud service centers while meeting delay constraints. They presented
an algorithm using an asynchronous advantage actor–critic approach
to handle the large-scale state space of DRLCOSCM. Zeng et al. [21]
devised an edge task scheduling method based on an improved dual
deep Q-network (DQN-ETCM) to optimize the maximum completion
time. They utilized an improved particle swarm optimization algorithm
for preprocessing to enhance training efficiency.

The aforementioned studies showcase innovative and remarkable
CO schemes within MEC or D–E–C collaboration scenarios. They suc-
cessfully address the optimization problem within the respective con-
structed frameworks, providing valuable insights for dealing with the
CO problem within UAV-MEC environments.

2.2. CO schemes in UAV-MEC using a traditional optimization algorithm

In dynamic, hazardous, and resource-poor environments, the col-
laboration between UAVs and traditional computing systems becomes
crucial in expanding service capabilities and improving QoS. Guo
et al. [22] proposed the smart trusted multi-UAV task offloading
(STMTO) approach to minimize system energy consumption and com-
putational delay. They devised a two-way auction mechanism for
multi-to-multi task offloading, along with a server trust evaluation
method to maximize device utility. He et al. [23] introduced two real-
time distributed joint optimal policies to address the optimal power
allocation and deployment (OPAD) problem. Their approach enables
efficient over-the-air multi-hop edge computing with a multi-UAV
relay network. Chen et al. [24] conducted a study on CO in the air–
heaven–earth computing network. They proposed a distributionally
robust latency optimization (DRLO) algorithm to minimize task delays
while respecting energy consumption constraints. Mousa et al. [25]
developed a discrete differential evolution (DDE) algorithm with a new
variant and crossover operator to determine cluster specifications and
optimal UAV cluster service paths by using an ACO approach. The
goal of DDE is to address the limitations of UAV capability in MEC
environments and outdated benchmark meta-heuristic algorithms.

Despite the significant advancements in the field of CO research
under UAV-MEC using traditional optimization algorithms, these meth-
ods encounter challenges in terms of efficiently handling complex
environment models or coping with rapid and massive variations in
parameters.
3

2.3. CO schemes in UAV-MEC using the DRL algorithm

DRL combines the strengths of RL and deep neural networks, al-
lowing for the accurate identification of state differences through the
powerful perception and representation capabilities of neural networks.
This algorithm explores the environment under the MDP model and
leverages accumulated experience to effectively navigate the solution
space of the problem. Gong et al. [26] developed a MADDPG-based
multi-UAV trajectory planning algorithm to address the task offloading
problem in a multi-UAV multi-hop network. They utilized Bayesian
optimization (BO) to estimate UAV actions and enhance learning ef-
ficiency. However, they did not account for inter-task dependencies
in multiple hops. Li et al. [27] studied the optimization problem of
wireless power supply and energy efficiency (EE) maximization in UAV-
MEC computing networks and introduced an EE-maximization proximal
policy optimization (EE-PPO) algorithm. However, the one-time sam-
pling approach of EE-PPO could be wasteful and inefficient in resource
utilization and historical experience. Wei et al. [28] developed a task
offloading algorithm called deep Q-network with prioritized experience
replay (DQN-PER). The algorithm addresses the joint optimization
problem of UAV formation deployment, UAV trajectory optimization,
and task-dependent scheduling in UAV-MEC environments. However,
considering the limitations of DQN as a value-based algorithm for
handling continuous actions [31], the paper discretized the flight an-
gles into eight directions, which affected the models accuracy. Jiang
et al. [29] introduced an efficient task offloading algorithm based on
dueling DQN (DuelingDRL) but did not consider the computing power
of devices and cloud centers. Peng et al. [30] proposed a multi-objective
optimization algorithm using SAC for service caching, task offloading,
and resource allocation (SMOO). However, the original SAC algorithm
used in their work encounters challenges in critic fitting efficiency.

In summary, existing research has explored the CO problem in
UAV-MEC environments. However, they have overlooked the poten-
tial efficiency of collaborative computation in UAV-MEC, the realistic
task dependencies, and the comprehensiveness of the CO environ-
ment. A heterogeneous system can effectively reduce costs and enhance
system reliability [32]. Moreover, these studies have neglected the
large-scale changes in complex computing environments, which pose
challenges for the convergence of CO algorithms. This study focuses
on the dependency-aware CO problem within a UAV-enabled D–E–C
cooperative system to address these issues. The proposed solution, STS-
UDCO, aims to overcome challenges related to convergence speed and
accuracy in the aforementioned complex environment.

3. UAV-assisted D–E–C cooperative dependency-aware CO system

This section initially presents the overview model of the UAV-
assisted dependency-aware CO system in D–E–C collaborative comput-

ing. Subsequently, the system is elaborated in three parts: mobility,
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Table 2
Description of notations.

Notation Definition

UD𝑖 𝑖th UD
𝐷𝐴𝐺(𝑗) DAG structure of the 𝑗th application
𝑇 𝑎𝑠𝑘(𝑗) Subtask set of the 𝑗th application
𝐶𝑜𝑛(𝑗) Set of dependency relationships for the 𝑗th application
con𝑗 (task𝑗, 𝑙 , task𝑗, 𝑛) Dependency of the 𝑙th task and the 𝑛th task in group 𝑗
𝑙𝑗, 𝑛 Transmission amount of task𝑗, 𝑛
𝑑𝑗, 𝑛 Calculation data of task𝑗, 𝑛
𝑡𝑠𝑗, 𝑛 Start time of task𝑗, 𝑛
𝑡𝑒𝑗, 𝑛 End time of task𝑗, 𝑛
, 𝐼 Set of UDs and number of UDs
, 𝑀 Set of computing facility types and number of computing

facility types
 , 𝑁 Set of tasks and number of tasks
 , 𝑇 Set of time slots and length of time sequence
𝐿𝑖 , 𝐿𝑢 , 𝐿𝑐 Location of UD𝑖, UAV, and cloud server
𝑜𝑢(𝑡), 𝑜𝑖(𝑡) Flight angle of UAV and UD𝑖
𝑣𝑢(𝑡), 𝑣𝑖(𝑡) Flight speed of UAV and UD𝑖
𝐸𝑓 (𝑡), 𝐸ℎ(𝑡) Flight and hovering energy consumption of UAV
𝑇 𝑐𝑎𝑙𝑖 (𝑗, 𝑛) Calculation time delay on UD𝑖

𝐸𝑐𝑎𝑙
𝑖 (𝑗, 𝑛) Calculation energy consumption on UD𝑖

𝑇 𝑡𝑟𝑎𝑖, 𝑢 (𝑗, 𝑛) Transmission latency between UD𝑖 and UAV
𝑇 𝑐𝑎𝑙𝑢 (𝑗, 𝑛) Calculation time delay on UAV
𝐸𝑡𝑟𝑎
𝑖, 𝑢 (𝑗, 𝑛) Transmission energy consumption between UD𝑖 and UAV

𝐸𝑐𝑎𝑙
𝑢 (𝑗, 𝑛) Calculation energy consumption on UAV

𝑇 𝑡𝑟𝑎𝑢, 𝑐 (𝑗, 𝑛) Transmission latency between the UAV and the cloud
center

𝑇 𝑐𝑎𝑙𝑐 (𝑗, 𝑛) Calculation time delay on cloud center
𝐸𝑡𝑟𝑎
𝑢, 𝑐 (𝑗, 𝑛) Transmission energy consumption between the UAV and

the cloud center
𝐸𝑐𝑎𝑙
𝑐 (𝑗, 𝑛) Calculation energy consumption on cloud center

ℎ𝑖, 𝑢 , ℎ𝑢, 𝑐 Channel gain from UD𝑖 to UAV and from UAV to cloud
center

𝑟𝑖, 𝑢 , 𝑟𝑢, 𝑐 Transmission rate from UD𝑖 to UAV and from UAV to
cloud

ℎ0 Channel gain per unit distance
𝑝𝑖, 𝑢(𝑡) Judgment factor for the existence of NLoS communication

between UD𝑖 and UAV
𝑊𝑁𝐿𝑜𝑆 Channel transmission loss caused by NLoS
𝑃 𝑢𝑝
𝑖 , 𝑃

𝑢𝑝
𝑢 Transmission power of UD𝑖 and UAV

𝑓𝑖 , 𝑓𝑢 , 𝑓𝑐 CPU calculation frequency of UD𝑖, UAV, and cloud center

communication, and CO model. Table 2 displays the primary notations
utilized in this work to enhance clarity.

3.1. System model

Fig. 1 illustrates the system model of the UAV-assisted D–E–C three-
layer cooperative dependency-aware CO framework. This figure depicts
a UAV operating within a square region and equipped with a micro-
MEC server to manage DAG flow tasks with dependencies related to
UDs. The environment is supported by three computing facilities de-
noted by 𝑚, each offering computing services with varying capabilities.
These facilities range from weak to strong, including the UD (𝑚 = 0),
the UAV (𝑚 = 1), and a cloud server situated at a considerable distance
from the service area (𝑚 = 2). The cloud server consistently possesses
uperior computational and energy resources compared with the UAV.

In this scenario, the entire time sequence  is divided into 𝑇 time
lots. At the end of each time slot 𝑡 ∈  = {1, 2, … , 𝑇 }, the UDs
n the dynamic environment randomly move in small increments and
ssess whether obstacles hinder communication with the UAV. This
ssessment determines whether the link between them is LoS or a
on-LoS (NLoS). Subsequently, the UAV determines whether to offer
omputing or transmission services to a specific UD based on the CO
olicy. If either the UAV or UD can process the task efficiently, then
he task is handled directly by the UAV or UD. Otherwise, the task
4

s forwarded to the cloud center for computation. Therefore, the CO 0
odel comprises four phases: (1) UD to UAV, (2) computation at the
AV, (3) UAV to cloud, and (4) computation at the cloud. Given

hat the small volume of the computational task result and the ample
ownlink between the UAV and the cloud center, this study assumes a
egligible overhead in the backhaul for transmitting the task result.

In practical scenarios, tasks often demonstrate dependencies. We
onsider an environment consisting of 𝐽 groups of data-dependent
pplications. Each group encompasses a common set of subtasks with
equential relationships, autonomously produced by multiple devices
ispersed across the environment. A widely adopted method for repre-
enting dependent tasks is the utilization of DAGs, which constrain the
equential execution order of tasks [33]. Therefore, the application of
AG in the environment can be defined as follows:

𝐴𝐺(𝑗) =
{

𝑇 𝑎𝑠𝑘(𝑗), 𝐶𝑜𝑛(𝑗) ∣ 𝑗 ∈ [1, 𝐽 ]
}

, (1)

here 𝑇 𝑎𝑠𝑘(𝑗) = {task𝑗, 1, task𝑗, 2, … , task𝑗, 𝑛} denotes the set of sub-
asks of the 𝑗-th application, and 𝑛 ∈  = {1, 2, … , 𝑁}. 𝐶𝑜𝑛(𝑗)
epresents the set of task dependency constraints for the 𝑗th applica-
ion. con𝑗 (task𝑗, 𝑙 , task𝑗, 𝑛) denotes the dependency constraint between
ask𝑗, 𝑙 and task𝑗, 𝑛. This notion indicates that task𝑗, 𝑛 must be executed
fter task𝑗, 𝑙 is completed. When task𝑗, 𝑛 does not have any direct pre-
ecessor task, task𝑗, 𝑛 represents the start task of 𝐷𝐴𝐺(𝑗). If task𝑗, 𝑛 has
o direct successor task, then task𝑗, 𝑛 represents the end task in 𝐷𝐴𝐺(𝑗).
s shown in Fig. 1, task𝑗, 1 and task𝑗, 6 denote the start and end tasks in

his application, respectively.
Each task in applications is defined as task𝑗, 𝑛 =

UD𝑖, 𝑙𝑗, 𝑛, 𝑑𝑗, 𝑛, 𝑡𝑠𝑗, 𝑛, 𝑡
𝑒
𝑗, 𝑛}, where 𝑙𝑗, 𝑛 represents the transmission amount

f task𝑗, 𝑛 (in bits), and 𝑑𝑗, 𝑛 denotes the calculation data of task𝑗, 𝑛 (in
umber of CPU cycles per bit). UD𝑖 indicates the generator of task𝑗, 𝑛 is
he 𝑖th UD, where 𝑖 ∈  = {1, 2, … , 𝐼}. 𝑡𝑠𝑗, 𝑛 and 𝑡𝑒𝑗, 𝑛 represent the start
ime and end time of task𝑗, 𝑛, respectively.

.2. Mobility model

Assuming that the UAV is flying at a fixed altitude H to simplify
he model, the coordinates of a 3D Cartesian coordinate system can
e expressed as 𝐿𝑢(𝑡) =

[

𝑥𝑢(𝑡), 𝑦𝑢(𝑡), H
]

. The coordinates of UD𝑖 can be
enoted as 𝐿𝑖(𝑡) =

[

𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 0
]

. Let 𝛥 be the duration of time slot 𝑡.
he UAV receives a flight command at time slot 𝑡, which includes the
light angle 𝑜𝑢(𝑡) and flight speed 𝑣𝑢(𝑡). The coordinates of the UAV in
ime slot 𝑡 + 1 are updated by the following equations (Fig. 2):

𝑢(𝑡 + 1) = 𝑥𝑢(𝑡) + cos
(

𝑜𝑢(𝑡)
)

×𝐷𝑢(𝑡), (2)

𝑢(𝑡 + 1) = 𝑦𝑢(𝑡) + sin
(

𝑜𝑢(𝑡)
)

×𝐷𝑢(𝑡), (3)

here 𝐷𝑢(𝑡) = 𝑣𝑢(𝑡) × 𝛥 represents the flight distance of UAV in time
lot 𝑡.

Considering that UD𝑖 executes a brief random movement 𝐷𝑖(𝑡)
ithin the environment, the position of UD𝑖 in time slot 𝑡+1 is obtained
s follows:

𝑖(𝑡 + 1) =
[

𝑥𝑖(𝑡) + cos
(

𝑜𝑖(𝑡)
)

×𝐷𝑖(𝑡), 𝑦𝑖(𝑡) + sin
(

𝑜𝑖(𝑡)
)

×𝐷𝑖(𝑡), 0
]

. (4)

The constraints of the UAV and UD𝑖 within a service range of length
and width 𝑊 are expressed as follows:

𝑢(𝑡) ∈
{

𝑥𝑢(𝑡), 𝑦𝑢(𝑡) ∣ 𝑥𝑢(𝑡) ∈ [0, 𝐿], 𝑦𝑢(𝑡) ∈ [0, 𝑊 ]
}

, ∀𝑡, (5)

𝑖(𝑡) ∈
{

𝑥𝑖(𝑡), 𝑦𝑖(𝑡) ∣ 𝑥𝑖(𝑡) ∈ [0, 𝐿], 𝑦𝑖(𝑡) ∈ [0, 𝑊 ]
}

, ∀𝑖, 𝑡. (6)

Moreover, the movement angle and speed must comply with the
ollowing constraints to ensure the legitimate movement of the UAV
nd UD𝑖:

≤ 𝑜𝑢(𝑡) ≤ 2𝜋, ∀𝑡, (7)
≤ 𝑜𝑖(𝑡) ≤ 2𝜋, ∀𝑡, (8)
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Fig. 1. UAV-assisted D–E–C cooperative dependency-aware CO system.
0 ≤ 𝑣𝑢(𝑡) ≤ 𝑣max, ∀𝑡, (9)

where 𝑣max is the maximum speed of the UAV. The flight energy
consumption of the UAV exhibits an approximate linear relationship
with its weight [34]. Therefore, the flight energy consumption 𝐸𝑓 (𝑡) at
time slot 𝑡 is defined as follows:

𝐸𝑓 (𝑡) = 𝑣2𝑢(𝑡) × 𝑞𝑢 ×𝐷𝑢(𝑡) × 0.5, (10)

where 𝑞𝑢 denotes the mass of the UAV. According to Ref. [35], the
hover energy consumption 𝐸ℎ(𝑡) is estimated by

𝐸ℎ(𝑡) = 𝑛𝑟

√

(𝑞𝑢𝑔)
3

2𝜌𝜋𝜓2
, (11)

where 𝑛𝑟 is the number of rotating wings, 𝑔 is the universal gravita-
tional constant, 𝜌 is the fluid density of air, and 𝜓 is the radius of the
rotating wings.

3.3. Communication model

In this system, UD𝑖 establishes LoS communication with the UAV
through a wireless uplink transmission link. The mobility model pro-
vides the 3D coordinates of the UAV and UD𝑖. Subsequently, the 3D
Euclidean distance can be expressed as 𝐷𝑖, 𝑢(𝑡) =

√

(

𝐿𝑢(𝑡) − 𝐿𝑖(𝑡)
)2 + H2.

The maximum communication distance of the UAV is set to 𝑅max to
ensure that the UAV can provide services within a restricted commu-
nication range. The aforementioned approach enables UD𝑖 to maintain
an effective connection with the UAV. This constraint is expressed as
follows:

𝐷𝑖, 𝑢(𝑡) ≤ 𝑅max, ∀𝑖 ∈ I. (12)

The channel gain with the UAV and UD𝑖 at time slot 𝑡 is defined as
follows, similar to Ref. [36]:

ℎ𝑖, 𝑢(𝑡) = ℎ0𝐷
−2
𝑖, 𝑢(𝑡) =

ℎ0
(

𝐿𝑢(𝑡) − 𝐿𝑖(𝑡)
)2 + H2

, (13)

where ℎ0 denotes the channel gain per unit distance. Obstacles give rise
to NLoS links during communication in real-world environments [37].
5

Fig. 2. UAV movement.

Consequently, the wireless channel transmission rate between UD𝑖 and
UAV, considering the NLoS channel, can be calculated by

𝑟𝑖, 𝑢(𝑡) = 𝐵log2

(

1 +
𝑃 𝑢𝑝𝑖 ℎ𝑖, 𝑢(𝑡)

𝜎2𝑁𝐿𝑜𝑆 + 𝑝𝑖, 𝑢(𝑡)𝑊𝑁𝐿𝑜𝑆

)

, (14)

where 𝐵 represents the channel bandwidth, 𝑃 𝑢𝑝𝑖 denotes the uplink
transmit power of UD𝑖, 𝜎2𝑁𝐿𝑜𝑆 represents the Gaussian white noise
associated with obstacles, 𝑝𝑖, 𝑢 indicates the occurrence of an NLoS
communication link between the UAV and the UD𝑖 during time slot 𝑡,
and 𝑊𝑁𝐿𝑜𝑆 represents the transmission loss due to the NLoS channel.
The channel gain between the UAV and the cloud center at time slot 𝑡
is also defined as follows:

ℎ𝑢, 𝑐(𝑡) =
ℎ0

(

𝐿𝑐 (𝑡) − 𝐿𝑢(𝑡)
)2 + H2

, (15)

where 𝐿𝑐 (𝑡) denotes the coordinates of the cloud center. Given that the
UAV and the cloud center have superior LOS communication condi-
tions, the wireless channel transmission rate between them is calculated
as follows:

𝑟𝑢, 𝑐(𝑡) = 𝐵log2

(

1 +
𝑃 𝑢𝑝𝑢 ℎ𝑢, 𝑐(𝑡)

2

)

, (16)

𝜎
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where 𝑃 𝑢𝑝𝑢 represents the uplink transmit power of the UAV, and 𝜎2

enotes the power of Gaussian white noise.

.4. CO model

The CO evaluation indexes in this study include time delay and
nergy consumption, which encompass task calculation and task uplink
ransmission across various computing facilities.

.4.1. Local computing model
The time delay and energy consumption of task𝑗, 𝑛 executed by UD𝑖

re solely dependent on the computational power and loss of UD𝑖. The
ocal time delay 𝑇𝑖(𝑗, 𝑛) is expressed as follows, consistent with [38]:

𝑖(𝑗, 𝑛) =
𝑠𝑑𝑗, 𝑛
𝑓𝑖

, (17)

where 𝑓𝑖 represents the CPU computing frequency of UD𝑖, and 𝑠 indi-
cates the number of CPU cycles required to process one unit bit of data.
The local energy consumption 𝐸𝑖(𝑗, 𝑛) is formulated as follows, similar
to [38]:

𝐸𝑖(𝑗, 𝑛) = 𝑃𝑖 × 𝑇𝑖(𝑗, 𝑛) = 𝜅𝑓 2
𝑖 𝑠𝑑𝑗, 𝑛, (18)

where 𝑃𝑖 = 𝜅𝑓 3
𝑖 represents the computing power of UD𝑖 [39], and 𝜅 is

a constant associated with the chip [40].

3.4.2. UAV edge computing model
When task𝑗, 𝑛 is transferred to the UAV, the time delay of task𝑗, 𝑛

typically includes the uplink transmission time delay from UD𝑖 to the
UAV and the computing time delay of the UAV. The edge time delay
𝑇𝑖, 𝑢(𝑗, 𝑛) is denoted as follows:

𝑇𝑖, 𝑢(𝑗, 𝑛) = 𝑇 𝑡𝑟𝑎𝑖, 𝑢 (𝑗, 𝑛) + 𝑇
𝑐𝑎𝑙
𝑢 (𝑗, 𝑛) =

𝑙𝑗, 𝑛
𝑟𝑖, 𝑢(𝑡)

+
𝑠𝑑𝑗, 𝑛
𝑓𝑢

, (19)

where 𝑓𝑢 denotes the CPU computing frequency of the UAV.
The edge energy consumption 𝐸𝑖, 𝑢(𝑗, 𝑛) also considers the uplink

ransmission energy consumption from UD𝑖 to the UAV and the com-
utation energy consumption of the UAV should be considered in
his model. Specifically, the transmission energy consumption 𝐸𝑡𝑟𝑎𝑖, 𝑢 (𝑗, 𝑛)
s denoted as 𝐸𝑡𝑟𝑎𝑖, 𝑢 (𝑗, 𝑛) = 𝑃 𝑢𝑝𝑖 × 𝑇 𝑡𝑟𝑎𝑖, 𝑢 (𝑗, 𝑛) = 𝑃 𝑢𝑝𝑖 𝑙𝑗, 𝑛∕𝑟𝑖, 𝑢(𝑡), and the

computational energy consumption 𝐸𝑐𝑎𝑙𝑢 (𝑗, 𝑛) is denoted as 𝐸𝑐𝑎𝑙𝑢 (𝑗, 𝑛) =
𝑃𝑢 × 𝑇 𝑐𝑎𝑙𝑢 (𝑗, 𝑛) = 𝜅𝑓 2

𝑢 𝑠𝑑𝑗, 𝑛. Therefore, 𝐸𝑖, 𝑢(𝑗, 𝑛) is calculated as follows:

𝐸𝑖, 𝑢(𝑗, 𝑛) = 𝐸𝑡𝑟𝑎𝑖, 𝑢 (𝑗, 𝑛) + 𝐸
𝑐𝑎𝑙
𝑢 (𝑗, 𝑛) =

𝑃 𝑢𝑝𝑖 𝑙𝑗, 𝑛
𝑟𝑖, 𝑢(𝑡)

+ 𝜅𝑓 2
𝑢 𝑠𝑑𝑗, 𝑛, (20)

here 𝑃𝑢 = 𝜅𝑓 3
𝑢 represents the computing power of the UAV.

.4.3. Cloud computing model
If task𝑗, 𝑛 is chosen to be further offloaded to the cloud center

or execution, then the total cost (comprising time delay and energy
onsumption) of task𝑗, 𝑛 can be divided into three parts: the transmission
ost before offloading to the UAV, the transmission cost from the UAV
o the cloud center, and the computation cost at the cloud center. The
loud computing delay 𝑇𝑖, 𝑐(𝑗, 𝑛) is denoted as follows:

𝑖, 𝑐(𝑗, 𝑛) = 𝑇 𝑡𝑟𝑎𝑖, 𝑢 (𝑗, 𝑛) + 𝑇
𝑡𝑟𝑎
𝑢, 𝑐 (𝑗, 𝑛) + 𝑇

𝑐𝑎𝑙
𝑐 (𝑗, 𝑛) =

𝑙𝑗, 𝑛
𝑟𝑖, 𝑢(𝑡)

+
𝑙𝑗, 𝑛
𝑟𝑢, 𝑐(𝑡)

+
𝑠𝑑𝑗, 𝑛
𝑓𝑐

,

(21)

where 𝑓𝑐 denotes the CPU computing frequency of the cloud server.
The aforementioned three-stage time delay in the cloud computing

odel corresponds to three-stage energy consumption. Specifically, the
plink transmission energy consumption from the UAV to the cloud
enter is represented as 𝐸𝑡𝑟𝑎𝑢, 𝑐(𝑗, 𝑛) = 𝑃 𝑢𝑝𝑢 × 𝑇 𝑡𝑟𝑎𝑢, 𝑐 (𝑗, 𝑛) = 𝑃 𝑢𝑝𝑢 𝑙𝑗, 𝑛∕𝑟𝑢, 𝑐(𝑡),
6

hile the computing energy consumption of the cloud center is denoted
s 𝐸𝑐𝑎𝑙𝑐 (𝑗, 𝑛) = 𝑃𝑐 × 𝑇 𝑐𝑎𝑙𝑐 (𝑗, 𝑛) = 𝜅𝑓 2
𝑐 𝑠𝑑𝑗, 𝑛. Thereafter, the cloud energy

consumption 𝐸𝑖, 𝑐(𝑗, 𝑛) can be expressed as follows:

𝐸𝑖, 𝑐(𝑗, 𝑛) = 𝐸𝑡𝑟𝑎𝑖, 𝑢 (𝑗, 𝑛) + 𝐸
𝑡𝑟𝑎
𝑢, 𝑐(𝑗, 𝑛) + 𝐸

𝑐𝑎𝑙
𝑐 (𝑗, 𝑛) =

𝑃 𝑢𝑝𝑖 𝑙𝑗, 𝑛
𝑟𝑖, 𝑢(𝑡)

+
𝑃 𝑢𝑝𝑢 𝑙𝑗, 𝑛
𝑟𝑢, 𝑐(𝑡)

+ 𝜅𝑓 2
𝑐 𝑠𝑑𝑗, 𝑛, (22)

where 𝑃𝑐 = 𝜅𝑓 3
𝑐 represents the computing power of the cloud center.

4. Problem formulation and MDP design

This section formulates a joint optimization problem for the CO pol-
icy and UAV endurance under task-dependent and resource constraints
within the aforementioned model. This problem is transformed into an
MDP specifically tailored to handle high-dimensional states and hybrid
actions and efficiently apply the DRL approach.

4.1. Problem formulation

Given the system model, the computational completion cost of tasks
is introduced as the primary evaluation metric of the CO strategy in this
study.

Definition 1 (Task Completion Cost (TCC)). TCC is defined as the
weighted sum of time delay and energy consumption associated with
the computation and transmission of task𝑗, 𝑛 related to UD𝑖.

Thus, the TCC of task𝑗, 𝑛 can be represented differently based on
three distinct offloading goals:

TCC𝑗, 𝑛 =
⎧

⎪

⎨

⎪

⎩

𝛿 × 𝑇𝑖(𝑗, 𝑛) + 𝜃 × 𝐸𝑖(𝑗, 𝑛), if 𝛾0(𝑗, 𝑛) = 1;
𝛿 × 𝑇𝑖, 𝑢(𝑗, 𝑛) + 𝜃 × 𝐸𝑖, 𝑢(𝑗, 𝑛), if 𝛾1(𝑗, 𝑛) = 1;
𝛿 × 𝑇𝑖, 𝑐(𝑗, 𝑛) + 𝜃 × 𝐸𝑖, 𝑐(𝑗, 𝑛), otherwise,

(23)

where 𝛾𝑚(𝑗, 𝑛) ∈ {0, 1} is a binary variable, indicates that task𝑗, 𝑛 can
nly be executed by the 𝑚th computing device. 𝑚 ∈  = {0, 1, 2}
epresents three types of computing facilities: user terminals, UAV
nboard edge servers, and cloud centers. When 𝛾1(𝑗, 𝑛) = 1, task𝑗, 𝑛 is

divided into an edge offloading state, which will be offloaded until the
UAV completes the computing task and then transmitted back to the
corresponding user. At this point, 𝛾0(𝑗, 𝑛) = 1 and 𝛾2(𝑗, 𝑛) = 1 are set to
0. 𝛿 and 𝜃 represent the time delay and energy consumption weighting
factors, respectively. The current TCC of the task is calculated by
combining the two weighted factors.

The above-mentioned CO environment considers the dependencies
between tasks, implying that when a task is executed, all of its direct
predecessors must have already been completed. Let task𝑗, 𝑙 denote all
direct predecessors that match con𝑗 (task𝑗, 𝑙 , task𝑗, 𝑛).

Definition 2 (Task Time Dependency (TTD)). TTD is defined as the
condition that the start time 𝑡𝑠𝑗, 𝑛 of task𝑗, 𝑛 must be greater than or equal
to the end time 𝑡𝑒𝑗, 𝑙 of all of its direct predecessors’ task𝑗, 𝑙. 𝑡𝑠𝑗, 𝑙 and 𝑡𝑒𝑗, 𝑛
together form a set of dependent time node pairs, and task𝑗, 𝑙 and task𝑗, 𝑛
must satisfy con𝑗 (task𝑗, 𝑙 , task𝑗, 𝑛). Therefore, the TTD is calculated as
follows:

𝑡𝑒𝑗, 𝑙 ≤ 𝑡𝑠𝑗, 𝑛,∀con𝑗 (task𝑗, 𝑙 , task𝑗, 𝑛). (24)

𝑡𝑒𝑗, 𝑛 is represented as follows in accordance with the services pro-
vided by various computing facilities:

𝑡𝑒𝑗, 𝑛 =

⎧

⎪

⎨

⎪

⎩

𝑡𝑠𝑗, 𝑛 + 𝑇𝑖(𝑗, 𝑛), 𝛾0(𝑗, 𝑛) = 1;
𝑡𝑠𝑗, 𝑛 + 𝑇𝑖, 𝑢(𝑗, 𝑛), 𝛾1(𝑗, 𝑛) = 1;
𝑡𝑠𝑗, 𝑛 + 𝑇𝑖, 𝑐(𝑗, 𝑛), 𝛾2(𝑗, 𝑛) = 1.

(25)

Given that 𝑡𝑠𝑗, 𝑛 relies on the maximum end time of its direct prede-
cessors, it is expressed as 𝑡𝑠 = max{𝑡𝑒 }, ∀con (task , task ).
𝑗, 𝑛 𝑗, 𝑙 𝑗 𝑗, 𝑙 𝑗, 𝑛
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This study aims to simultaneously minimize the TCC of the en-
tire CO process and the energy consumption of the UAV for all UD𝑖

hile taking into account task-dependent and resource constraints. The
ptimization problem is formulated as follows:

𝑃1) ∶ minimize
{𝛿, 𝜃, 𝑜, 𝑣}

{ 𝑇
∑

𝑡=1

𝐽
∑

𝑗=1

𝑁
∑

𝑛=1

2
∑

𝑚=0
𝛾𝑚(𝑗, 𝑛)

(

TCC𝑗, 𝑛

+𝐸𝑓 (𝑡) + 𝐸ℎ(𝑡)
)

}

,

s.t. 𝐶1 ∶ 𝛿 + 𝜃 = 1,

𝐶2 ∶ 𝛾𝑚(𝑗, 𝑛) ∈ {0, 1},∀𝑚, 𝑗, 𝑛,

𝐶3 ∶
2
∑

𝑚=0
𝛾𝑚(𝑗, 𝑛) = 1,∀𝑗, 𝑛,

𝐶4 ∶
𝑇
∑

𝑡=1

(

𝐸𝑓 (𝑡) + 𝐸ℎ(𝑡) + 𝐸𝑠(𝑡)
)

≤ 𝐸𝑏,∀𝑡,

𝐶5 ∶ Eq. (5)–Eq. (9), Eq. (12),
𝐶6 ∶ Eq. (24).

(26)

The above-mentioned constraints are explained as follows.
Constraint 𝐶1 represents the weight constraint, indicating that the

um of the ratio of delay to energy consumption cannot exceed one.
onstraints 𝐶2 and 𝐶3 illustrate the task attribution constraints, speci-

ying that task𝑗, 𝑛 can select only one of the local, UAV, or cloud center
omputing facilities to handle its tasks. Constraint 𝐶4 denotes the UAV

power constraint, where the service energy consumption 𝐸𝑠(𝑡) consists
of 𝐸𝑐𝑎𝑙𝑢 (𝑗, 𝑛) and 𝐸𝑡𝑟𝑎𝑢 (𝑗, 𝑛), while 𝐸𝑏 represents the total battery life.
Constraint 𝐶5 specifies the legal action constraints, encompassing that
the motion of the UAV cannot exceed the legal environmental bound-
aries, angle range, and maximum communication distance. Constraint
𝐶6 outlines the task dependency constraint, showing that any sub task’s
service must start after all its parent tasks are completed.

Given that 𝛾𝑚(𝑗, 𝑛) is subject to an integer constraint, it becomes
a critical factor in solving 𝑃1. Consequently, 𝑃1 transforms into a
mixed integer nonlinear programming (MINLP) problem, which is typ-
ically NP-hard and non-convex. Additionally, the interplay and conflict
between energy consumption and time delay impede the joint opti-
mization of these two factors. These challenges greatly influence the
convergence speed and accuracy of algorithms. Therefore, we con-
vert 𝑃1 into an MDP suitable for RL processing, aiming to propose a
MERL-based CO algorithm to overcome the complexity of 𝑃1.

4.2. MDP design under high-dimensional states

The system cost is influenced by the observation state of the en-
vironment and the UAV action. When the current action is applied to
the current state, it triggers the environment to transition into the next
state. At this point, 𝑃1 can be structured as an MDP consisting of three
key elements: observation space, action space, and reward function.

4.2.1. Observation space
In the environment described in this study, the MDP observation

space comprises the observed states of the UAV, the UDs, and the
current environment. The observation space is modeled as

𝑆 =
{

𝑠𝑡|𝑠𝑡 =
{

𝐸𝑟(𝑡), 𝐿𝑢(𝑡), 𝑑𝑟(𝑡), 𝐿𝑖(𝑡), 𝑑𝑖(𝑡), 𝐶𝑜𝑛(𝑡), 𝑝𝑖, 𝑢(𝑡)
}

}

, (27)

where 𝑠𝑡 is the current environmental observation at time slot 𝑡, 𝐸𝑟(𝑡)
denotes the remaining power of the UAV at time slot 𝑡, 𝑑𝑟(𝑡) represents
the remaining tasks in the environment at time slot 𝑡, 𝑑𝑖(𝑡) signifies the
tasks waiting to be offloaded by UD𝑖 at time slot 𝑡, and 𝐶𝑜𝑛(𝑡) indicates
the set of dependencies existing at time slot 𝑡.

We also apply normalization operations to the entire observation
space to enhance the processing efficiency of DRL approach on input
observations. This normalization enables the neural network to adjust
7

to varying input variables. s
Definition 3 (Observation Normalization (𝑂𝐵𝑁)). 𝑂𝐵𝑁 utilizes the
difference between the maximum 𝑖𝑡𝑒𝑚max and the minimum 𝑖𝑡𝑒𝑚min
of each observation state 𝑖𝑡𝑒𝑚𝑡 as a normalization factor to normalize
𝑖𝑡𝑒𝑚𝑡. The 𝑂𝐵𝑁 for each element in 𝑆 is defined as follows:

𝑂𝐵𝑁(𝑖𝑡𝑒𝑚𝑡) = 𝑖𝑡𝑒𝑚𝑡∕(𝑖𝑡𝑒𝑚max − 𝑖𝑡𝑒𝑚min),∀𝑖𝑡𝑒𝑚𝑡 ∈ 𝑠𝑡, (28)

here 𝑖𝑡𝑒𝑚𝑡 represents the seven state elements from 𝐸𝑟(𝑡) to 𝑝𝑖, 𝑢(𝑡) in
he observation space.

.2.2. Action space
The UAV takes actions based on the current state of the environ-

ent, which includes the target user, motion parameters, and selected
erver. The actions in this environment are hybrid, consisting of dis-
rete and continuous action spaces. Discrete action spaces consist of
ervice targets UD𝑖 and server targets 𝑠, while continuous action spaces
ncompass the flight parameters 𝑜𝑢(𝑡) and 𝑣𝑢(𝑡) of the UAV. Therefore,
he action space is modeled as follows:

=
{

𝑎𝑡|𝑎𝑡 =
{

UD𝑖, 𝑜𝑢(𝑡), 𝑣𝑢(𝑡), 𝛾𝑚(𝑗, 𝑛)
}

}

, (29)

here 𝑎𝑡 is the action taken at time slot 𝑡. Continuous action spaces
ose significant challenges for solving problems using DRL algorithms
ecause methods, such as DQN require discretization operations. Unlike
alue-based DRL approaches that produce probability distributions of
ctions, the SAC algorithm leveraged in this study utilizes Gaussian
istributions to model the mean and covariance of actions, providing
ction samples. This mechanism is better suited for handling continuous
ctions in the UAV-MEC model.

A mapping pair between continuous and discrete actions is estab-
ished to achieve SAC output for discrete actions. Specifically, discrete
ctions are encoded as continuous actions based on mapping relation-
hips, and their ownership within segmented continuous space is then
llocated to achieve a bidirectional mapping with discrete actions.

.2.3. Reward function
After taking actions, immediate feedback is crucial to evaluate the

ffectiveness of the decision. A well-designed reward can effectively
eflect the feedback from the current environment, guiding agents to
earn and accelerate convergence. The reward function is modeled as
ollows:

= 𝑟(𝑠𝑡, 𝑎𝑡) = −
(

TCC𝑗, 𝑛 + 𝐸𝑓 (𝑡) + 𝐸ℎ(𝑡)
)

, (30)

here 𝑟(𝑠𝑡, 𝑎𝑡) denotes the immediate reward that can be obtained by
aking action 𝑎𝑡 in state 𝑠𝑡. Given that 𝑃1 aims to jointly optimize the
CC and UAV energy consumption, we set the reward value based
n the minimization extent of this optimization objective. This step
nsures that the reward aligns with the principles of agent training by
aximizing the negative value of the objective.

. STS-UDCO algorithm

Building upon the previous model and formulation, this section
ighlights the advantages and limitations of the MERL and AC frame-
orks. This mechanism will serve as a foundation for introducing an
STR and elucidating the process of the STS-UDCO algorithm.

.1. MERL and SAC under UAV-assisted DAG-CO

In traditional RL frameworks, the commonly discussed problem
evolves around how an agent can maximize its gains in a complex
nvironment [41]. Unlike traditional RL, the primary goal of MERL is
o maximize the entropy of the strategy while simultaneously pursuing
ts benefits. This approach encourages agents to take actions in a more
andom manner. MERL is well suited for dealing with the complex

trategy pursuit involved in D–E–C collaborative computing with UAV
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participation and dependent task flow. In this context, the optimal
strategy learning is denoted as follows:

𝜋∗ = argmax
𝜋∗

E(𝑠𝑡 , 𝑎𝑡)∼𝜌𝜋

[ 𝑇
∑

𝑡=0
𝑟(𝑠𝑡, 𝑎𝑡) + 𝜀𝐻

(

𝜋(⋅|𝑠𝑡)
)

]

, (31)

where 𝜀 represents the temperature coefficient, responsible for control-
ling the degree of randomness in the strategy. 𝐻(𝜋(⋅|𝑠𝑡)) = E𝑎∼𝜋(⋅|𝑠𝑡)
[

− log𝜋(𝑎|𝑠𝑡)
]

denotes the information entropy, which utilizes loga-
rithmic probability to quantify the specific measure of randomness in
strategy 𝜋 within 𝑠𝑡. The emphasis on strategy entropy empowers MERL
with robust exploration capabilities and stability, allowing it to avoid
local optima and capture multiple extreme points.

The SAC algorithm serves as an AC architecture algorithm within
DRL and MERL frameworks, featuring two types of networks: actor
network and critic network.

(1) Actor. The actor network interacts with the environment and
generates policy actions following a Gaussian distribution in a deter-
ministic policy.

(2) Critic. The critic network learns a value function from the expe-
riences generated by the interactions of the actor network. This network
uses this function to assess the subsequent actions and facilitate the
optimization of the actor network parameters.

Furthermore, SAC introduces adaptive entropy adjustment, which
dynamically adjusts the entropy level based on the fitting condition.
This mechanism allows for flexible control of the stochastic exploration
intensity of the strategy. The interplay and co-optimization of the actor
and critic networks contribute to convergence efficiency and stability
during agent training. However, the actor network relies on a well-
trained critic network to provide accurate gradients for optimization
to achieve the aforementioned advantages.

5.2. ASTR-based AC optimization scheme

In the AC architecture, the actor and critic networks mutually
optimize and evolve together. However, frequent changes in action
samples generated by the actor network can result in underfitting of the
critic network, affecting the overall training stability and introducing
gradient noise. Drawing from insights and applications of generative
adversarial networks [42], the critic network can achieve a highly ac-
curate fitting ability through more extensive training. This mechanism
involves applying a more saturated training frequency to the critic
compared to the actor within the AC structure. With a well-trained
critic, this mechanism can better guide the actor network in developing
appropriate strategies.

Therefore, we propose an ASTR designed to dynamically adjust
the update rates of the actor and critic using two main strategies.
First, we dynamically utilize a higher learning rate (LR) for the critic
compared with the actor through the Adam optimizer. Second, our
approach prioritizes multiple updates to the critic before updating the
actor. Consequently, ASTR functions as an adaptive updating algorithm
that dynamically establishes the update frequency of the critic based
on the current fitting status of the critic network. ASTR determines
the updating threshold of the critic through 𝜏, which is expressed as
follows:

𝜏 = exp
(

−𝜒2
)

, (32)

where 𝜒 = 0.995 × 𝜒 + 0.005 × 𝐹𝑄(𝛽) denotes the critic saturation
factor, starting at one and updated following each iteration of the critic
loss function 𝐹𝑄(𝛽). ASTR continuously refreshes all critic networks,
maintaining the critic update frequency beneath a preset upper thresh-
old 𝑏max. The actor update occurs after meeting a judgment condition,
defined as 𝑎∕𝑏 < 1∕(2 − 𝜏), 𝑏 ∈ {1, 2, … , 𝑏max}, where 𝑎 is a scalar
manually adjusted to control the minimum update frequency of the
critic. This method guarantees the critic’s adequate training relative to
8

the current fitting condition of 𝐹𝑄(𝛽), thus reducing the adverse effects
of its abnormal fitting on overall stability. Algorithm 1 elaborates the
detail of ASTR.

In ASTR, the network parameters of the actor and critic are alter-
nately updated using soft policy improvement and soft policy evalua-
tion, integrating the adaptive update mechanism [39].

5.2.1. Soft policy evaluation
The critic maintains two sets of main and target networks to miti-

gate the overestimation issue during value evaluation. The parameters
of the main critic network 𝛽 are updated using the mean square error
(MSE) loss function. The Bellman equation for 𝑄∗

𝜋 (𝑠𝑡, 𝑎𝑡) is estimated as
follows, incorporating the strategy entropy value, as per Eq. (31):

𝑄∗
𝜋 (𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾E(𝑠𝑡+1 , 𝑎𝑡+1)

[

𝑄∗(𝑠𝑡+1, 𝑎𝑡+1) − 𝜀 log
(

𝜋(𝑎𝑡+1 ∣ 𝑠𝑡+1)
)]

,

(33)

where 𝛾 denotes the reward discount factor. At this stage, the up-
date function of 𝛽 can be expressed by minimizing the soft Bellman
residuals [43], which are calculated as follows:

𝐹𝑄(𝛽) = E(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)∼𝐷

[ 1
2
(

𝑄𝛽 (𝑠𝑡, 𝑎𝑡) − �̂�(𝑠𝑡, 𝑎𝑡)
)2]

, (34)

here �̂�(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾
(

𝑄𝛽 (𝑠𝑡+1, 𝑎𝑡+1) − 𝜀 log(𝜋(𝑎𝑡+1|𝑠𝑡+1))
)

repre-
ents the learning target of the critic network, comprising 𝑟(𝑠𝑡, 𝑎𝑡) and
he future reward. 𝛽 denotes the target network parameter. 𝑄𝛽 (𝑠, 𝑎) and
𝛽 (𝑠, 𝑎) represent the state–action value functions of the main critic
etwork and its corresponding target network.

The target critic network updates its parameters through soft up-
ates to maintain stability between the main network and the target
etwork. The update of 𝛽 is expressed as follows:

�̂� ← 𝜔𝛽𝑐 + (1 − 𝜔)𝛽𝑐 , ∀𝑐 = 1, 2, (35)

here 𝜔 denotes the soft update ratio, and 𝑐 is the number of network
ombinations.

.2.2. Soft policy improvement
This approach involves the utilization of an energy-based model

EBM) alongside reparameterization techniques to update the actor.
ere, the actor refines the network parameters by minimizing the
ullback–Leibler (KL) divergence between the Gaussian sampling pol-

cy 𝜋𝛼 and the EBM. The goal is to bring 𝜋𝛼 as close as possible to the
BM. Consistent with [44], The update function of 𝛼 is expressed as
𝜋 (𝛼) = E𝑠𝑡∼𝐷, 𝑎𝑡∼𝜋𝛼

[

𝜀 log𝜋𝛼(𝑎𝑡|𝑠𝑡) −𝑄𝛽 (𝑠𝑡, 𝑎𝑡)
]

.
Given the highly nonlinear Gaussian sampling process involved

n the strategy, direct gradient propagation becomes infeasible. Ac-
ordingly, the form of the action must undergo transformation via
eparameterization to separate sampling from gradient propagation.
he update of 𝛼 is denoted using reparameterization as follows:

𝜋 (𝛼) = E𝑠𝑡∼𝐷, 𝜀∼𝑁
[

𝜀 log𝜋𝛼
(

𝑓𝛼(⋅)|𝑠𝑡
)

−𝑄𝛽
(

𝑠𝑡, 𝑓𝛼(⋅)
)]

, (36)

here 𝑓𝛼(⋅) = 𝑓𝜇𝛼 (𝑠𝑡) + 𝑛𝑡 ⊙ 𝑓𝜎𝛼 (𝑠𝑡) represents a unit of Gaussian
istribution sample. 𝑓𝜇𝛼 (𝑠𝑡) and 𝑓𝜎𝛼 (𝑠𝑡) denote the mean and covariance
f the strategy, respectively; and 𝑛𝑡 is the noise sampled from a nor-
al distribution. Consequently, the sampling process concerning the

ction is reformulated as a process with respect to 𝑛𝑡, which proves
dvantageous for gradient propagation and optimization.

.2.3. Adaptive entropy regulation
The adaptively adjustable 𝜀 can accommodate complex environ-

ents and changing rewards, automatically adjusting the exploratory
bility of the agent at different stages. The learning objective of MERL is
eformulated as a constrained optimization problem, based on Eq. (31),
o discover a stochastic policy with the highest expected reward while
eeting a minimum expected entropy constraint, as follows:

𝑃2) ∶ max
𝜋

E𝜌𝜋

[ 𝑇
∑

𝑡=0
𝑟(𝑠𝑡, 𝑎𝑡)

]

,

[ ( )]

(37)

s.t. E(𝑠𝑡 , 𝑎𝑡)∼𝜌𝜋 − log 𝜋𝑡(𝑎𝑡|𝑠𝑡) ≥ H0,
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where H0 is the entropy threshold constant. When the offloading pol-
icy is exploring a new space, the optimal offloading action remains
unclear, and the temperature should be increased to allow for further
exploration. Once a certain space has been extensively explored, and
the optimal offloading action is essentially determined, the temperature
can then be reduced. The loss function of 𝜀 is denoted as follows by
simplifying the equation using dynamic programming [44]:

𝐹 (𝜀) = E𝑎𝑡∼𝜋𝑡
[

−𝜀 log𝜋𝑡(𝑎𝑡|𝑠𝑡) − 𝜀H0
]

. (38)

Algorithm 1 ASTR
Input: Mini-batch sampling set 𝑀 , parameters 𝛽1, 𝛽2, 𝛼, and 𝜀.

utput: Updated parameters 𝛽1, 𝛽2, 𝛼, and 𝜀.
1: Initialize 𝛽𝑐 ← 𝛽𝑐 , 𝑐 = {1, 2};
2: Initialize the critic maximum update frequency 𝑏max and the ASTR

update factor 𝑎← 1;
3: for 𝑏← 1 to 𝑏max do
4: Randomly replace a transition in 𝑀 ;
5: Update 𝛽𝑐 by using Eq. (34) and 𝛽𝑐 = 𝛽𝑐 − 𝜆𝛽 ∇̂𝛽𝑐𝐹𝑄(𝛽𝑐 );
6: Calculate 𝜏 according to Eq. (32);
7: if 𝑎∕𝑏 < 1∕(2 − 𝜏) then
8: Update 𝜀 by using Eq. (38) and 𝜀 = 𝜀 − 𝜆𝜀∇̂𝜀𝐹 (𝜀);
9: Update 𝛼 by using Eq. (36) and 𝛼 = 𝛼 − 𝜆𝛼∇̂𝛼𝐹𝜋 (𝛼);
0: break;
1: end if
2: end for
3: Update 𝛽𝑐 by using Eq. (35).

5.3. Description of STS-UDCO

This study combines ASTR with the SAC algorithm to devise a
saturated training SAC-empowered UAV-assisted dependency-aware CO
algorithm (STS-UDCO), to address 𝑃1. The overarching framework of
TS-UDCO comprises three primary components: an actor and a critic
epresenting the intelligences and the UAV-assisted DAG-CO environ-
ent (Fig. 3). The actor and critic networks are constructed using
ulti-layer perceptions (MLPs) with two hidden layers. The actor’s

nput corresponds to the observation state, while its output represents
he mean and covariance of Gaussian-distributed policy actions, respec-
ively. The critic’s input comprises an empirical tuple, and its output
ields the Q-value.

STS-UDCO comprises two primary phases: interaction and training
hases. During the interaction phase, once the environment initializa-
ion is complete, the system transitions into a continuous operation
tate. At each time slot, the UAV inputs the current observation state
ollected into the actor network of the agent. Subsequently, the actor
etwork generates a set of action spaces based on the current obser-
ation and policy. The UAV executes these action spaces to interact
ith the current environment, receiving reward feedback and the ob-

ervation state for the next time slot. Thereafter, the agent stores the
nteraction tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into the buffer pool as an experience.

During the training phase, the agent samples a random batch of
xperiences from the buffer pool to provide to the actor and critic. The
ritic evaluates the selected action of the agent under ST, taking one
xperience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) as input and outputting a value. Saturation

training is achieved through ASTR and adaptive entropy temperatures,
wherein the main Q network self-updates based on the sampling shifts
and the target network and soft-updates the new parameters synchro-
nized to the target network. Finally, 𝐹𝜋 (𝛼) completes the update based
on the shift evaluation output by the main critic Q network.

The pseudo-code of the STS-UDCO algorithm is described in Al-
gorithm 2. At the start of each time slot, STS-UDCO acquires state
9

information from the design environment (lines 1–5). The interaction c
Algorithm 2 STS-UDCO
Input: Environment observation 𝑠𝑡, number of episodes 𝑒max, mini-

batch size 𝑀𝐵, time sequence length 𝑡max.
utput: Optimum CO strategy.

1: Initialize network parameters 𝛽1, 𝛽2, 𝛼, 𝜀, and replay memory 𝐷 = ∅;

2: Initialize two critic networks 𝑄𝛽 , two critic target networks 𝑄𝛽 , and
an actor network 𝜋𝛼 ;

3: for 𝑒← 1 to 𝑒max do
4: Reset environment parameters and get initial observation 𝑠0;
5: Sort the DAG to task sets by using Eqs. (24) and (25);
6: for 𝑡← 1 to 𝑡max do
7: Obtain the observation 𝑠𝑡 from environmental parameters;
8: Perform 𝑂𝐵𝑁 on 𝑠𝑡 by using Eq. (28);
9: Obtain 𝑎𝑡 = {UD𝑖, 𝑜𝑢(𝑡), 𝑣𝑢(𝑡), 𝛾𝑚(𝑗, 𝑛)} ∼ 𝜋𝛼(𝑎𝑡|𝑠𝑡);
0: Update 𝐿𝑢(𝑡) by using Eqs. (2) and (3);
1: if 𝐿𝑢(𝑡)! = 𝐿𝑢(𝑡 − 1) then
2: Calculate 𝐸𝑓 (𝑡) by using Eq. (10);
3: end if
4: Calculate 𝐸ℎ(𝑡) by using Eq. (11);
5: Calculate TCC𝑗, 𝑛 by using 𝛾𝑚(𝑗, 𝑛) and Eq. (23);
6: Obtain 𝑟(𝑠𝑡, 𝑎𝑡) by using Eq. (30) and next state 𝑠𝑡+1;
7: Store the tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into 𝐷;
8: end for
9: Randomly sample the Mini-batch 𝑀𝐵 from 𝐷;
0: Update 𝛽1, 𝛽2, 𝛼, and 𝜀 by using Algorithm 1;
1: end for

between the agent and the environment is depicted in lines 6–18. Dur-
ing this interaction, the UAV executes actions and adjusts its position
based on the current policy. After the position update, the energy cost
of the flight is computed. Thereafter, the TCC is calculated considering
the optimal offload position for the task. The experience gained from
this interaction is stored in the buffer pool. In lines 19–20, the buffer
pool is sampled, and the network is updated based on the ASTR.

5.4. Complexity analysis

The space complexity of STS-UDCO is analyzed considering each
interaction with the environment. The actor network generates a tuple
of temporary experiences (i.e., 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, and 𝑠𝑡+1) and stores it. Addi-
tionally, the critic network utilizes an experience tuple for self-updating
at each time slot. The size of the storage space temporarily occupied
by STS-UDCO during operation is determined by the experience tuple.
Consequently, the space complexity is expressed as 𝑂(2 |𝑆|+ |𝐴|+ |𝑅|),
where |𝑆|, |𝐴|, and |𝑅| denote the total dimensions of 𝑠𝑡, 𝑎𝑡, and 𝑟𝑡,
espectively [11].

The computational complexity of STS-UDCO is subsequently ana-
yzed. The primary task of STS-UDCO is to interact with the environ-
ent and improve strategies based on experience. The computational

omplexity mainly depends on the training complexity of the neural
etworks involved, which includes the actor network and all the critic
etworks. These networks are MLPs. In a combination of MLPs with a
ixed number of hidden layers and neurons, the computational com-
lexity of the backpropagation update method scales proportionally
ith the product of the input and output sizes [45]. In STS-UDCO,

he actor network takes states as inputs and outputs actions, while the
ritic network takes states and actions as inputs and outputs reward
alues obtained from the fitting process. Therefore, the complexity of
he actor network is 𝑂(|𝑆| × |𝐴|) and the complexity of critic network
s 𝑂(|𝑆| × |𝐴| × |𝑅|). Consequently, the computational complexity of
TS-UDCO is expressed as 𝑂(|𝑆| × |𝐴| × |𝑅|).

Finally, the time complexity of STS-UDCO is analyzed. Let 𝐸 be
he maximum number of training iterations. In this case, the time

omplexity of STS-UDCO is expressed as 𝑂(𝐸 × 𝑇 × |𝑆| × |𝐴| × |𝑅|) [4].
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Fig. 3. Framework architecture of STS-UDCO.
6. Performance evaluation and analysis

In this section, a series of experiments is conducted to evaluate
the performance of STS-UDCO. The experimental setup is first de-
scribed, followed by an overview and discussion of the overall perfor-
mance of STS-UDCO. A comparison is also made between STS-UDCO
and other advanced algorithms using various DAG instances and CO
environments.

6.1. Experimental setup

The experimental environment is built on the Python 3.9 platform,
utilizing the Pytorch 1.12.0 machine learning library, and operates
on Ubuntu 18.04. The UAV-assisted collaborative computation model
considers a square area with a side length of 200 m. The initial position
of the UAV is set at (100, 100, 100). The UDs are randomly generated
at different ground positions within the service area. The cloud server
is positioned outside the area at (300, 300, 0). The environment in
this study focuses on time-varying channel states, where the presence
of obstacles can affect the channel quality. The noise power of the
impaired channel is set to a constant value for ease of processing. In
these experiments, each neural network adopts an MLP architecture
with one input layer, two hidden layers (with 256 and 64 nodes,
respectively), and one output layer. The ReLU function is used as
the activation function, and the Adam optimizer is utilized. The key
experimental parameters are summarized in Table 3.

Four DAG instances are utilized in the experiments to simulate
an application environment with task-dependent constraints [33,46].
These instances consist of 6, 12, 18, and 24 subtasks as indicated in
Table 4. The structure of these instances is depicted in Fig. 1, where
the subtasks are evenly distributed among the application entrance,
application exit, and two intermediate layers. Sequential dependency
order is established between the two neighboring layers, and each
subtask can only be serviced once all the tasks in the preceding layer
have been completed.

The following four algorithms are introduced for comparison to
comprehensively evaluate the effectiveness of STS-UDCO:
10
Table 3
List of experimental parameters.
Parameter description Value

Wireless bandwidth (𝐵) 1 MH
Gaussian white noise (𝜎2) –100 dBm
Noise with obstacles (𝜎2𝑁𝐿𝑜𝑆 ) –80 dBm
Computing frequency of UD𝑖 (𝑓𝑖) 1 GHz
Computing frequency of UAV (𝑓𝑢) 5 GHz
Computing frequency of the cloud (𝑓𝑐 ) 10 GHz
Channel gain per unit distance (ℎ0) 1 × 10−5

Computational density (𝑠) 1 × 103 cycles/s
Uplink transmit power of UD𝑖 (𝑃 𝑢𝑝

𝑖 ) 1 W
Uplink transmit power of UAV (𝑃 𝑢𝑝

𝑢 ) 2 W
Power coefficient of CPU (𝜅) 1 × 10−28

Battery capacity of UAV (𝐸𝑏) 500 kJ

Table 4
Test instances.
Instance Total number of subtasks

Instance 1 6
Instance 2 12
Instance 3 18
Instance 4 24

• SAC-based dynamic CO algorithm (SACDCO) [47]: This algo-
rithm utilizes the original SAC algorithm to develop an optimal
policy for UAV-assisted task offloading and resource allocation
under resource constraints. Given that the objectives and MDP
framework of Ref. [47] differ from those of STS-UDCO, we align
the objectives of STS-UDCO with SACDCO while preserving the
original MDP framework.

• DDPG-based CO algorithm (DDPGCO) [37]: This approach aims
to minimize task processing delay while adhering to discrete
variables and energy consumption constraints. DDPGCO utilizes
a DDPG-based RL algorithm to address the CO problem. The
experimental setup partially resembles that of DDPGCO.
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Fig. 4. Performance of loss function or episode reward of STS-UDCO with different hyperparameters.
• DQN-based DAG task scheduling algorithm (DQNDO) [48]: This
scheme introduces a deep Q-network (DQN)-based optimization
algorithm for the efficient task offloading in DAG and UAV de-
ployment. The primary objective is to minimize the combined
weighted system delay and energy consumption. Discretization
operations are applied to align DQN with the MDP employed in
this study.

• Local_only algorithm: In this algorithm, the minimization of costs
associated with UAVs and cloud servers is ensured by retaining
all tasks for local processing at the UDs.

• Edge_only algorithm: This algorithm offloads all tasks to UAV
processing along predetermined flight routes, emphasizing the
importance of the cloud server.

6.2. Analysis and setting of hyperparameters

This section investigates the influence of the various hyperparam-
eters on the convergence and stability of STS-UDCO. Specifically, the
analysis focuses on the LR of the critic network, the reward discount
factor, the size of the experience pool, and the soft update scale factor.
Experiments are conducted to identify the optimal values for these
hyperparameters.

The influence of MSE LR on the loss function of the critic network
is first examined. LR is varied within the range of 0.0001 to 0.01,
leveraging the loss gradient to regulate the network weights and control
11
the parameter updating speed. LR’s effect on the loss curve does not
consistently correlate with convergence performance as illustrated in
Fig. 4(a), the loss function can gradually and accurately reach the
optimal solution while maintaining stable convergence by setting LR to
0.005. By contrast, an LR value of 0.001 or 0.0001 results in slow con-
vergence to suboptimal solutions or failure to converge, respectively.
An LR of 0.01 causes the loss function to enter an oscillatory state post-
convergence and eventually diverge. This situation occurs because a
smaller LR reduces the optimizer learning efficiency, whereas a larger
LR induces model instability and misfit. Consequently, LR is set to
0.005.

Second, the influence of buffer size on STS-UDCO is explored. The
buffer size is varied within the range of 5000 to 100,000. The buffer
pool stores past agent interactions and undergoes continuous updates
using a ‘‘first-in-first-out’’ mechanism to provide suitable samples for
training. The convergence of the loss function becomes increasingly
challenging with larger buffer sizes, as depicted in Fig. 4(b). Specifi-
cally, when the buffer size is set to 50,000 or 100,000, the loss function
fails to converge to the optimal solution or may not converge at all,
respectively. Setting the buffer size to 5000 results in severe oscillations
in convergence during later stages. A buffer size of 20,000 demonstrates
optimal convergence. This situation is attributed to larger buffer pools
resulting in lower filling rates and sampling efficiency, thereby diluting
critical sampling data. Smaller buffer pools affect training stability due
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Fig. 5. Performance of time delay and energy consumption with different weights.

to high content turnover frequency. Consequently, the buffer size is set
to 20,000.

Third, in the investigation of the discount factor 𝛾 in STS-UDCO,
its range is set from 0.9 to 0.99. 𝛾 signifies the significance of future
rewards to the agents in RL. Moreover, 𝛾 influences the convergence
erformance of iterative reward, as depicted in Fig. 4(c). Specifically,
hen 𝛾 is set to 0.95, the curve demonstrates oscillations in the late

tage and struggles to converge to the optimal solution. When 𝛾 is set to
0.98, the reward robustly converges to the optimum. In the remaining
two cases, the patterns diverge, with either large or small oscillations
observed. This disparity arises because a smaller 𝛾 emphasizes unstable
short-term benefits, whereas a larger 𝛾 disregards immediate rewards,
resulting in inefficient training. Therefore, 𝛾 is set to 0.98.

At last, in the examination of the soft update factor 𝜔 in STS-
DCO, its range is established from 0.001 to 0.05. 𝜔 enhances the

overall stability of the network by regulating the smoothness of soft
updates in the target network. Moreover, 𝜔 influences the convergence
performance of iterative reward, as depicted in Fig. 4(d). Specifically,
when 𝜔 is set to 0.01, the curve demonstrates the most favorable
convergence performance. When 𝜔 is set to 0.05, the curves oscillate

idely, resulting in reverse optimization. The remaining two cases
isplay varying degrees of sluggish convergence. This disparity arises
ecause a smaller 𝜔 represents a lower percentage of the main network
arameters, resulting in a slower update of the target network. In
ontrast, a larger 𝜔 affects the stability of the target network, which
ndermines the purpose of soft updating. Therefore, 𝜔 is set to 0.01.

.3. Analysis of TCC weighting influence and task proportion

This section scrutinizes the weighting ratios of time delay and en-
rgy consumption in TCC. Moreover, this section explores the task allo-
ation under the D–E–C three-tier architecture by employing TCC across
ach ratio. This experiment investigates the direction of task flow as the
elay and energy consumption fluctuate with the weighting factors and
nalyzes the benefits of the three-tier computing architecture.

Fig. 5 illustrates the influence of the time delay weight factor 𝛿
n the relationship between time delay and energy consumption when
et to 0.1, 0.5, and 0.9. To aid observation, the experiment uniformly
cales down both time delay and energy consumption. The experiment
niformly scales down time delay and energy consumption to aid ob-
ervation. Time delay and energy consumption are affected by varying
agnitudes with the changing weight factors, with energy consumption
emonstrating more fluctuations (Fig. 5). When 𝛿 is set to 0.1, the
ystem prioritizes energy consumption optimization. The total energy
12
consumption of a single task is reduced to 0.5. Time delay receives sig-
nificant attention, as 𝛿 increases. A significant proportion of tasks prefer
allocating higher energy to the server for computational purposes,
resulting in a 3.8-fold increase in energy consumption and a 0.48-fold
decrease in delay. Extreme weight settings can be utilized to fulfill
offloading requests in exceptional cases, such as computation-intensive
or delay-sensitive tasks. When both weighting factors are set to 0.5, the
TCC achieves its minimum value, which is more advantageous for task
offloading in uncommon scenarios.

In the UAV-assisted three-tier cooperative system, three devices
with diverse computational capabilities are present: the UDs, the UAV
on-board servers, and the cloud. Each device demonstrates distinct
strengths in computation and incurs varying execution costs for CO.
The unique execution advantages of these computing facilities result
in alterations in the task distribution ratio across various experimental
environments. However, how these alterations are manifested in the
processing facilities for each task remains unclear. Statistical experi-
ments are conducted to explore the proportion of tasks executed on
each computing facility under different weight factors for delay and
energy consumption to bridge this gap.

Fig. 6 illustrates the results of the statistical experiment. The pro-
portion of tasks executed on the UDs decreases from an initial value
of 30.7% to a negligible percentage with the gradual decrease in the
weight factor 𝛿. The UAV edge server initially handles the largest share
of tasks when 𝛿 is set to 0.5, but its proportion decreases gradually.
Correspondingly, the tasks assigned to cloud servers experience a grad-
ual increase. These trends in performance are closely related to the
computing power and execution cost of each computing device. When
𝛿 is set to 0.1, task offloading favors terminal devices and UAVs as
the destination. This inclination stems from the higher transmission
energy consumption associated with distant cloud servers. The energy
consumption of the UAV is significantly reduced, by keeping tasks local,
𝑦 keeping tasks local. The computing power and resources of UDs and
UAVs may prove insufficient to meet stringent delay requirements with
the gradual increase in 𝛿. Despite the higher overall energy consump-
tion of the cloud server, its robust computing capability enables it to
provide high-speed computing services. When the weight factors for
time delay and energy consumption are equal, the UAV, benefiting from
its proximity to users, can flexibly provide convenient, fast, and energy-
efficient computing services, making it the most suitable offloading
destination at that point. This experiment demonstrates that the three
computing devices with distinct capabilities can effectively handle
CO requests under various requirements. The D–E–C fusion approach
shows high reliability across diverse demand environments.

6.4. Instance performance and overall convergence analysis

This section applies STS-UDCO and five other comparison algo-
rithms to four different DAG applications with identical environmen-
tal parameter configurations. The goal is to assess the overall of-
floading performance of these algorithms in diverse subtask-dependent
environments. Additionally, the discrepancy in convergence perfor-
mance between STS-UDCO and the comparison algorithms is evaluated
throughout the entire training process.

Fig. 7 illustrates the system cost, which combines TCC and UAV
energy consumption, across four instances utilizing various algorithms.
All instances maintain consistent environmental configurations with
the same total number of subtasks and data volume to mitigate the
influence of varying user numbers on the experiment. Consequently,
the percentage of tasks in the environment belonging to the same
level of dependency order positions, excluding the start and end tasks,
increases. This leads to a higher density of parent tasks that must be
processed before child node tasks. Consequently, the UAV experiences
reduced complexity and signaling in service delivery due to a higher
proportion of tasks sharing identical dependency states. This expanded
set of options grants the UAV greater flexibility, resulting in a gradual
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Fig. 6. Proportion of tasks executed on three computing devices.
Fig. 7. System cost of different algorithms for different DAG instances.

decline in the overall task offloading cost. The Local_only algorithm
persists in a consistently high-cost state as it exclusively executes tasks
locally. By contrast, the DRL-based algorithm exhibits markedly lower
system costs compared with Local_only and Edge_only algorithms. This
discrepancy stems from the collaborative computing framework and
the DRL-based offloading strategy, which proficiently optimizes the CO
decision. The STS-UDCO algorithm achieves the most favorable system
cost across diverse instances, demonstrating remarkable stability by
minimizing performance differentials among them.

Fig. 8 showcases the reward training convergence curves for the
three algorithms within the same example. The DDPGCO algorithm ad-
heres to the ‘‘explore first, train later’’ principle, resulting in the initial
fluctuations within a constrained range of rewards. This phenomenon
arises from the early learning stages of the algorithm, during which the
experience pool remains incomplete and the gathered samples possess
limited value. However, the convergence efficiency steadily enhances
as the experience pool accumulates additional valuable insights. The
integration of Figs. 7 and 8 reveals that STS-UDCO has the swiftest
convergence rate and the most precise convergence outcomes among
the DRL-based algorithms. STS-UDCO consistently converges around 71
generations with the highest cumulative reward. STS-UDCO enhances
convergence speed by 29.71% and 54.21%, and the optimal solution
by 13.69% and 22.65% compared with SACDCO and DDPGCO, re-
spectively. These enhancements stem from the incorporation of SAC
in STS-UDCO, integrating policy entropy into rewards and optimizing
policy generation via the AC architecture. This approach empowers the
algorithm to explore various extremes of the model, maximizing its
potential to identify the optimal solution. These advantages facilitate
the early convergence of STS-UDCO. The decline in rewards observed
during the pre-convergence period in Fig. 8 signifies the consideration
of strategy entropy for exploration. STS-UDCO demonstrates superior
convergence performance in contrast to SACDCO algorithms, which
13
Fig. 8. Comparison of overall convergence performance with different algorithms.

are part of the same SAC algorithm family. This contrast is evident in
SACDCO’s tendency to oscillate during convergence, ultimately failing
to select the optimal solution. Two primary factors contribute to this
discrepancy. First, the computational model’s high-dimensional state
and the multi-objective optimization MDP present challenges in net-
work updating and convergence. However, ASTR effectively addresses
this challenge by balancing updates between the actor and critic,
dynamically adjusting their relative update frequencies to mitigate
issues of critic misfitting. Second, STS-UDCO features a more refined
MDP design, incorporating more specific observations, a well-designed
action space, and the utilization of OBN and action mapping pairs. Ex-
perimental results highlight the greater stability of ASTR in converging
toward the optimal solution.

6.5. Comparative experiments in different CO environments

In this section, four experiments are designed to verify the supe-
riority of STS-UDCO and other advanced algorithms across various
environments and task configurations.

6.5.1. Influence of different task sizes
The size of randomly generated task data directly affects the cost

of the system and the selection of the CO destination. Larger task sizes
exert greater pressure on the computing facility. In our experiments,
tasks are classified as small (1.5–3 MB), medium (3–4.5 MB), and
large (4.5–6 MB) to compare the TCC of each algorithm. As shown
in Fig. 9(a) and (b), STS-UDCO demonstrates the lowest time delay
and energy consumption among the five benchmark algorithms across
different task sizes, followed by SACDCO, DDPGCO, and DQNDO.
These algorithms are all based on DRL approaches, which gradually
learn optimal offloading decisions through trial and error, resulting in
improved performance compared with the Local_only and Edge_only
algorithms. Moreover, the difference in energy consumption between
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Fig. 9. Comparison on the average (a) time delay and (b) energy consumption with different task sizes.
Fig. 10. Comparison on the average (a) time delay and (b) energy consumption with different numbers of UDs.
ocal_only and the other algorithms is smaller compared with the
ifference in time delay as local processing is more energy-efficient.
TS-UDCO, based on the ASTR-enhanced SAC framework, exhibits en-
anced exploration and convergence capabilities, resulting in a 12.51%
mprovement in time delay and a 13.74% enhancement in energy
onsumption over the suboptimal algorithm for large-scale tasks.

.5.2. Influence of different numbers of UDs
The increasing numbers of UDs requesting computing services has

significant influence on the optimization efficiency of the algorithms
ecause of a higher volume of urgent tasks throughout the time series
nd more complex offloading decisions. In our experiments, we vary the
umber of UDs as 10, 30, and 50 to compare the TCC of each algorithm.
he task density in the overall environment rises with the increase in
he number of UDs, resulting in longer time delays and higher energy
verhead (Fig. 10(a) and (b)). The experimental results demonstrate
hat STS-UDCO achieves the lowest system cost across different UD
ounts, outperforming the five advanced algorithms. This is attributed
o the optimal solution capture capability of adaptive strategy entropy.
n a massive user-distributed environment, STS-UDCO surpasses the
ext best algorithm by 9.56% and 12.86% in system cost, respectively.
14
6.5.3. Influence of the different bandwidths
The channel bandwidth plays a crucial role in task transmission

efficiency and has a significant influence on UAVs that perform com-
putational and transmission tasks. In our experiments, we vary the
channel bandwidth as low (1 MHz), medium (2 MHz), and high (3
MHz) bandwidth to evaluate the time delay and energy consumption
(i.e., TCC) of each algorithm. The TCC decreases with the increase
in the channel bandwidth (Fig. 11(a) and (b)). Meanwhile, the TCC
of the Local_only algorithm remains constant because it processes all
local tasks and is unaffected by the bandwidth. The experimental
results consistently demonstrate that STS-UDCO outperforms the five
comparison algorithms across different bandwidth specifications. In
a low bandwidth environment, STS-UDCO exhibits superior perfor-
mance compared with the next best algorithm, SACDCO. Specifically,
STS-UDCO achieves a 10.10% reduction in time delay and a 14.71%
decrease in energy consumption.

6.5.4. Influence of different CPU processing powers
The efficiency of task computation, which refers to the number of

processor cycles required to process 1 bit of data, is directly influenced
by the CPU processing power. Multi-threading technology has the

potential to significantly enhance CPU processing efficiency. In our
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Fig. 11. Comparison on the average (a) time delay and (b) energy consumption with different bandwidths.
Fig. 12. Comparison on the average (a) time delay and (b) energy consumption with different CPU processing powers.
xperiments, we vary the CPU processing power of the three types
f computing facilities as strong (500 cycles/bit), normal (1000 cy-
les/bit), and weak (1500 cycles/bit) to evaluate the effect of different
PU processing powers. Fig. 12(a) and (b) illustrate the observation
hat time delay and energy consumption increase with the decrease
n the processing power. The experimental results consistently demon-
trate that STS-UDCO achieves optimal optimization effects under dif-
erent CPU processing powers compared with the five comparison
lgorithms. STS-UDCO outperforms the suboptimal SACDCO algorithm
y 13.60% and 8.63% at weak processing power, respectively. The
QNDO algorithm fails to properly converge at weak processing power.
his situation arises because the reduced processing power causes a
ignificant number of tasks to linger, exceeding the optimization limit
f the DQNDO algorithm after the action discretization process. In our
xperiments, we enhance the weak processing capacity by increasing
he other system resources of the DQNDO algorithm.

In summary, STS-UDCO demonstrates superior solving ability and
tability performance in all four distinct environments. This feature is
vident from its lowest levels of time delay and energy consumption
nd minimal performance variance across different loads, particularly
15

n high load scenarios.
7. Conclusion and future work

This study focuses on addressing the dependency-aware CO problem
in a UAV-assisted D–E–C cooperative computing system. To efficiently
solve the problem of minimizing UAV battery consumption and TCC,
we propose an algorithm called STS-UDCO and utilizes a specific MDP
model to handle high-dimensional states and hybrid actions. We also
introduce an ASTR in STS-UDCO to enhance the stability of the AC
structure. ASTR dynamically encourages the critic to self-train based on
the current fitting degree. Experimental results conducted on various
instances and environments validate the effectiveness of STS-UDCO.
In comparison with the other advanced algorithms, STS-UDCO signifi-
cantly reduces system cost by at least 11.83% and optimizes delay and
energy consumption in different environments by up to 13.60% and
14.71%, respectively. Meanwhile, STS-UDCO exhibits superior conver-
gence and stability, with a maximum convergence speed of 39.10% and
a convergence amplitude optimization effect of 67.39%, respectively.

However, this study primarily operates under the assumption of a
single UAV environment and the absence of clear task deadlines. A
basic UAV-assisted computing architecture presents notable security
risks and vulnerability to interference. Furthermore, the utilization of
UAV clusters and task queuing systems in actual offloading scenarios

can significantly enhance the overall system performance.
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In the near future, our research will focus on further investigating
the CO and trajectory optimization problem based on multi-UAV co-
operation and competition. We will also integrate pricing and security
considerations into the CO strategies, enhance existing task models, and
develop an offloading model that is better suitable for real-world utility
scenarios.

CRediT authorship contribution statement

Longxin Zhang: Writing – review & editing, Writing – original
raft, Validation, Methodology, Investigation, Funding acquisition, Con-
eptualization. Runti Tan: Writing – original draft, Software, Re-

sources. Yanfen Zhang: Validation, Software, Resources. Jiwu Peng:
Validation, Methodology, Data curation. Jing Liu: Validation, Method-
ology, Data curation. Keqin Li: Supervision, Methodology, Conceptu-
alization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The source code that support the findings of this study are available
in/from hyperlink to data source https://github.com/TanRunti/JSA-
STSUDCO.

Acknowledgments

The authors would like to thank five anonymous reviewers for their
suggestions to improve the manuscript. The preliminary version of
this paper has been submitted and accepted for presentation at the
2023 IEEE 29th International Conference on Parallel and Distributed
Systems (ICPADS). This work was partially funded by the Natural
Science Foundation of Hunan Province (Grant No. 2023JJ50204), the
Scientific Research Foundation of Hunan Provincial Education Depart-
ment, China (Grant No. 23B0560), the National Key R&D Program
of China (Grant No. 2018YFB1003401), the National Natural Science
Foundation of China (Grant Nos. 61702178, 62072172), and the Hunan
Provincial Innovation Foundation For Postgraduate, China (Grant No.
CX20241108).

References

[1] P. Lin, Q. Song, F.R. Yu, D. Wang, L. Guo, Task offloading for wire-
less VR-enabled medical treatment with blockchain security using collective
reinforcement learning, IEEE Internet Things J. 8 (21) (2021) 15749–15761.

[2] L. Zhang, M. Ai, K. Liu, J. Chen, K. Li, Reliability enhancement strategies
for workflow scheduling under energy consumption constraints in clouds, IEEE
Trans. Sustain. Comput. 9 (2) (2024) 155–169.

[3] J. Shi, C. Li, Y. Guan, P. Cong, J. Li, Multi-UAV-assisted computation offloading
in DT-based networks: A distributed deep reinforcement learning approach,
Comput. Commun. 210 (2023) 217–228.

[4] N. Zhao, Z. Ye, Y. Pei, Y.-C. Liang, D. Niyato, Multi-agent deep reinforcement
learning for task offloading in UAV-assisted mobile edge computing, IEEE Trans.
Wireless Commun. 21 (9) (2022) 6949–6960.

[5] C. Sun, W. Ni, X. Wang, Joint computation offloading and trajectory planning
for UAV-assisted edge computing, IEEE Trans. Wireless Commun. 20 (8) (2021)
5343–5358.

[6] F. Xu, S. Wang, W. Su, L. Zhang, Joint optimization task offloading and trajectory
control for unmanned-aerial-vehicle-assisted mobile edge computing, Comput.
Electr. Eng. 111 (2023) 108916.

[7] D. Ebrahimi, S. Sharafeddine, P.-H. Ho, C. Assi, Autonomous UAV trajectory for
localizing ground objects: A reinforcement learning approach, IEEE Trans. Mob.
Comput. 20 (4) (2021) 1312–1324.

[8] A.V. Savkin, C. Huang, W. Ni, Joint multi-UAV path planning and LoS commu-
nication for mobile-edge computing in IoT networks with RISs, IEEE Internet
16

Things J. 10 (3) (2023) 2720–2727.
[9] K. Li, Heuristic task scheduling on heterogeneous UAVs: A combinatorial
optimization approach, J. Syst. Archit. 140 (2023) 102895.

[10] R. Jia, K. Zhao, X. Wei, G. Zhang, Y. Wang, G. Tu, Joint trajectory planning,
service function deploying, and DAG task scheduling in UAV-empowered edge
computing, Drones 7 (7) (2023) 443.

[11] A. Sacco, F. Esposito, G. Marchetto, P. Montuschi, Sustainable task offloading in
UAV networks via multi-agent reinforcement learning, IEEE Trans. Veh. Technol.
70 (5) (2021) 5003–5015.

[12] H. Yang, J. Zhao, Z. Xiong, K.-Y. Lam, S. Sun, L. Xiao, Privacy-preserving fed-
erated learning for UAV-enabled networks: Learning-based joint scheduling and
resource management, IEEE J. Sel. Areas Commun. 39 (10) (2021) 3144–3159.

[13] H. Zhou, K. Jiang, X. Liu, X. Li, V.C.M. Leung, Deep reinforcement learning for
energy-efficient computation offloading in mobile-edge computing, IEEE Internet
Things J. 9 (2) (2022) 1517–1530.

[14] L. Zhang, R. Tan, M. Ai, H. Xiang, C. Peng, Z. Zeng, DSUTO: Differential rate
SAC-based UAV-assisted task offloading algorithm in collaborative edge comput-
ing, in: 2023 IEEE 29th International Conference on Parallel and Distributed
Systems, ICPADS, 2023, pp. 2329–2336.

[15] Y. Sahni, J. Cao, L. Yang, Y. Ji, Multi-hop multi-task partial computation
offloading in collaborative edge computing, IEEE Trans. Parallel Distrib. Syst.
32 (5) (2021) 1133–1145.

[16] Y. Sun, Z. Wu, K. Meng, Y. Zheng, Vehicular task offloading and job scheduling
method based on cloud-edge computing, IEEE Trans. Intell. Transp. Syst. 24 (12)
(2023) 14651–14662.

[17] G. Wu, H. Wang, H. Zhang, Y. Zhao, S. Yu, S. Shen, Computation offloading
method using stochastic games for software-defined-network-based multiagent
mobile edge computing, IEEE Internet Things J. 10 (20) (2023) 17620–17634.

[18] Y. Ding, K. Li, C. Liu, K. Li, A potential game theoretic approach to computa-
tion offloading strategy optimization in end-edge-cloud computing, IEEE Trans.
Parallel Distrib. Syst. 33 (6) (2022) 1503–1519.

[19] G. Wu, X. Chen, Y. Shen, Z. Xu, H. Zhang, S. Shen, S. Yu, Combining Lyapunov
optimization with actor–critic networks for privacy-aware IIoT computation
offloading, IEEE Internet Things J. 11 (10) (2024) 17437–17452.

[20] H. Zhou, Z. Wang, H. Zheng, S. He, M. Dong, Cost minimization-oriented
computation offloading and service caching in mobile cloud-edge computing:
An A3C-based approach, IEEE Trans. Netw. Sci. Eng. 10 (3) (2023) 1326–1338.

[21] L. Zeng, Q. Liu, S. Shen, X. Liu, Improved double deep q network-based task
scheduling algorithm in edge computing for makespan optimization, Tsinghua
Sci. Technol. 29 (3) (2024) 806–817.

[22] J. Guo, G. Huang, Q. Li, N.N. Xiong, S. Zhang, T. Wang, STMTO: A smart and
trust multi-UAV task offloading system, Inform. Sci. 573 (2021) 519–540.

[23] X. He, R. Jin, H. Dai, Multi-hop task offloading with on-the-fly computation
for multi-UAV remote edge computing, IEEE Trans. Commun. 70 (2) (2022)
1332–1344.

[24] Y. Chen, B. Ai, Y. Niu, H. Zhang, Z. Han, Energy-constrained computation
offloading in space-air-ground integrated networks using distributionally robust
optimization, IEEE Trans. Veh. Technol. 70 (11) (2021) 12113–12125.

[25] M.H. Mousa, M.K. Hussein, Efficient UAV-based mobile edge computing using
differential evolution and ant colony optimization, PeerJ Comput. Sci. 8 (2022)
870.

[26] S. Gong, M. Wang, B. Gu, W. Zhang, D.T. Hoang, D. Niyato, Bayesian optimiza-
tion enhanced deep reinforcement learning for trajectory planning and network
formation in multi-UAV networks, IEEE Trans. Veh. Technol. 72 (8) (2023)
10933–10948.

[27] B. Li, W. Liu, W. Xie, X. Li, Energy-efficient task offloading and trajectory
planning in UAV-enabled mobile edge computing networks, Comput. Netw. 234
(2023) 109940.

[28] X. Wei, L. Cai, N. Wei, P. Zou, J. Zhang, S. Subramaniam, Joint UAV trajectory
planning, DAG task scheduling, and service function deployment based on DRL
in UAV-empowered edge computing, IEEE Internet Things J. 10 (14) (2023)
12826–12838.

[29] Z. Jiang, R. Cao, S. Zhang, Joint optimization strategy of offloading in multi-
UAVs-assisted edge computing networks, J. Ambient Intell. Humaniz. Comput.
14 (2023) 4385–4399.

[30] Z. Peng, G. Wang, W. Nong, Y. Qiu, S. Huang, Task offloading in multiple-
services mobile edge computing: A deep reinforcement learning algorithm,
Comput. Commun. 202 (2023) 1–12.

[31] S. Shen, L. Xie, Y. Zhang, G. Wu, H. Zhang, S. Yu, Joint differential game and
double deep Q-networks for suppressing malware spread in industrial internet
of things, IEEE Trans. Inf. Forensics Secur. 18 (2023) 5302–5315.

[32] L. Zhang, M. Ai, R. Tan, J. Man, X. Deng, K. Li, Efficient prediction of makespan
matrix workflow scheduling algorithm for heterogeneous cloud environments, J.
Grid Comput. 21 (4) (2023) 75.

[33] X. Liu, Z.-Y. Chai, Y.-L. Li, Y.-Y. Cheng, Y. Zeng, Multi-objective deep rein-
forcement learning for computation offloading in UAV-assisted multi-access edge
computing, Inform. Sci. 642 (2023) 119154.

[34] S. Jeong, O. Simeone, J. Kang, Mobile edge computing via a UAV-mounted
cloudlet: Optimization of bit allocation and path planning, IEEE Trans. Veh.
Technol. 67 (3) (2018) 2049–2063.

https://github.com/TanRunti/JSA-STSUDCO
https://github.com/TanRunti/JSA-STSUDCO
https://github.com/TanRunti/JSA-STSUDCO
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb1
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb1
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb1
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb1
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb1
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb2
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb2
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb2
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb2
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb2
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb3
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb4
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb5
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb5
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb5
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb5
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb5
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb6
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb7
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb8
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb9
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb9
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb9
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb10
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb10
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb10
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb10
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb10
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb11
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb11
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb11
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb11
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb11
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb12
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb13
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb14
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb15
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb16
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb17
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb18
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb19
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb20
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb21
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb22
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb22
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb22
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb23
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb23
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb23
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb23
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb23
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb24
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb25
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb25
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb25
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb25
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb25
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb26
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb27
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb27
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb27
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb27
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb27
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb28
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb29
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb29
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb29
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb29
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb29
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb30
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb30
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb30
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb30
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb30
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb31
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb31
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb31
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb31
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb31
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb32
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb32
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb32
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb32
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb32
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb33
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb33
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb33
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb33
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb33
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb34
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb34
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb34
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb34
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb34


Journal of Systems Architecture 154 (2024) 103215L. Zhang et al.
[35] K. Dorling, J. Heinrichs, G.G. Messier, S. Magierowski, Vehicle routing problems
for drone delivery, IEEE Trans. Syst. Man Cybern.: Syst. 47 (1) (2017) 7085.

[36] X. Xu, K. Liu, P. Dai, F. Jin, H. Ren, C. Zhan, S. Guo, Joint task offloading and re-
source optimization in NOMA-based vehicular edge computing: A game-theoretic
DRL approach, J. Syst. Archit. 134 (2023) 102780.

[37] Y. Wang, W. Fang, Y. Ding, N. Xiong, Computation offloading optimization
for UAV-assisted mobile edge computing: a deep deterministic policy gradient
approach, Wirel. Netw. 27 (2021) 2991–3006.

[38] I. Budhiraja, N. Kumar, H. Sharma, M. Elhoseny, Y. Lakys, J.J.P.C. Rodrigues,
Latency-energy tradeoff in connected autonomous vehicles: A deep reinforcement
learning scheme, IEEE Trans. Intell. Transp. Syst. 24 (11) (2023) 13296–13308.

[39] G. Wu, Z. Xu, H. Zhang, S. Shen, S. Yu, Multi-agent DRL for joint completion
delay and energy consumption with queuing theory in MEC-based iIoT, J. Parallel
Distrib. Comput. 176 (2023) 80–94.

[40] L. Zhang, D. Liu, M. Ai, R. Tan, Z. Zeng, Reliability enhancement algorithm
based on budget level in cloud-edge environments, Int. J. Embed. Syst. 16 (1)
(2023) 9–22.

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare,
Human-level control through deep reinforcement learning, Nature 518 (2015)
529–533.
17
[42] N. Shrivastava, M.A. Hanif, S. Mittal, S.R. Sarangi, M. Shafique, A survey of
hardware architectures for generative adversarial networks, J. Syst. Archit. 118
(2021) 102227.

[43] X. Li, Y. Qin, J. Huo, W. Huangfu, Heuristically assisted multiagent RL-based
framework for computation offloading and resource allocation of mobile-edge
computing, IEEE Internet Things J. 10 (17) (2023) 15477–15487.

[44] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H.
Zhu, A. Gupta, P. Abbeel, S. Levine, Soft actor-critic algorithms and applications,
2018, arXiv e-prints, arXiv:1812.05905.

[45] M. Sipper, A serial complexity measure of neural networks, in: IEEE International
Conference on Neural Networks, Vol. 2, 1993, pp. 962–966.

[46] F. Song, H. Xing, X. Wang, S. Luo, P. Dai, K. Li, Offloading dependent tasks in
multi-access edge computing: A multi-objective reinforcement learning approach,
Future Gener. Comput. Syst. 128 (2022) 333–348.

[47] S. Li, X. Hu, Y. Du, Deep reinforcement learning for computation offloading and
resource allocation in unmanned-aerial-vehicle assisted edge computing, Sensors
21 (19) (2021) 6499.

[48] J. Li, Y. Pan, Y. Xia, Z. Fan, X. Wang, J. Lv, Optimizing dag scheduling
and deployment for Iot data analysis services in the multi-UAV mobile edge
computing system, Wirel. Netw. (2023).

http://refhub.elsevier.com/S1383-7621(24)00152-8/sb35
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb35
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb35
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb36
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb36
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb36
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb36
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb36
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb37
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb37
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb37
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb37
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb37
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb38
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb38
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb38
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb38
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb38
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb39
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb39
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb39
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb39
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb39
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb40
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb40
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb40
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb40
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb40
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb41
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb41
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb41
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb41
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb41
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb42
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb42
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb42
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb42
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb42
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb43
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb43
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb43
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb43
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb43
http://arxiv.org/abs/1812.05905
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb45
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb45
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb45
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb46
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb46
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb46
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb46
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb46
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb47
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb47
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb47
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb47
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb47
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb48
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb48
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb48
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb48
http://refhub.elsevier.com/S1383-7621(24)00152-8/sb48

	UAV-assisted dependency-aware computation offloading in device–edge–cloud collaborative computing based on improved actor–critic DRL
	Introduction
	Related work
	CO schemes in conventional MEC
	CO schemes in UAV-MEC using a traditional optimization algorithm
	CO schemes in UAV-MEC using the DRL algorithm

	UAV-assisted D–E–C cooperative dependency-aware CO system
	System model
	Mobility model
	Communication model
	CO model
	Local computing model
	UAV edge computing model
	Cloud computing model


	Problem formulation and MDP design
	Problem formulation
	MDP design under high-dimensional states
	Observation space
	Action space
	Reward function


	STS-UDCO algorithm
	MERL and SAC under UAV-assisted DAG-CO
	ASTR-based AC optimization scheme
	Soft policy evaluation
	Soft policy improvement
	Adaptive entropy regulation

	Description of STS-UDCO
	Complexity analysis

	Performance evaluation and analysis
	Experimental setup
	Analysis and setting of hyperparameters
	Analysis of TCC weighting influence and task proportion
	Instance performance and overall convergence analysis
	Comparative experiments in different CO environments
	Influence of different task sizes
	Influence of different numbers of UDs
	Influence of the different bandwidths
	Influence of different CPU processing powers


	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


