
Information Sciences 379 (2017) 241–256

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Bi-objective workflow scheduling of the energy consumption

and reliability in heterogeneous computing systems

Longxin Zhang

a , b , Kenli Li a , ∗, Changyun Li b , Keqin Li a , c

a College of Computer Science and Electronic Engineering, National Supercomputing Center in Changsha, Hunan University,

Changsha,410082, China
b College of Computer and Communication, Hunan University of Technology, Zhuzhou,412007, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o

Article history:

Received 25 November 2015

Revised 28 July 2016

Accepted 2 August 2016

Available online 3 August 2016

Keywords:

Multi-objective

Precedence constraints

Reliability

Scheduling

Workflow

a b s t r a c t

Recent studies focus primarily on low energy consumption or execution time for task

scheduling with precedence constraints in heterogeneous computing systems. In most

cases, system reliability is more important than other performance metrics. In addition, en-

ergy consumption and system reliability are two conflicting objectives. A novel bi-objective

genetic algorithm (BOGA) to pursue low energy consumption and high system reliability

for workflow scheduling is presented in this paper. The proposed BOGA offers users more

flexibility when jobs are submitted to a data center. On the basis of real-world and ran-

domly generated application graphs, numerous experiments are conducted to evaluate the

performance of the proposed algorithm. In comparison with excellent algorithms such as

multi-objective heterogeneous earliest finish time (MOHEFT) and multi-objective differen-

tial evolution (MODE), BOGA performs significantly better in terms of finding the spread

of compromise solutions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Modern data centers consume a tremendous amount of power and produce a large amount of pollution. The Tianhe-2,

a heterogeneous computing system, is one example, which is located at the National Supercomputer Center in Guangzhou

(China). It is the worlds fastest supercomputer as of July 13, 2015. The power consumption of Tianhe-2 is 17,808 kW [1] .

Assuming that the electricity charge is 1 yuan per kilowatt hour, the electricity cost of Tianhe-2 is approximately 156 million

yuan (USD 25 million) per year. In addition, high energy consumption also has a negative effect on system reliability. High-

performance heterogeneous computing systems attract the attention of many researchers, who have conducted numerous

studies on different service quality of simple objectives based on heterogeneous computing systems; such objectives include

minimum completion time, low energy consumption, minimum execution cost, and higher system reliability. Such studies

are more challenging when the focus is on more than one objective. Dongarra et al. [9] presented bi-objective scheduling al-

gorithms for optimizing makespan and reliability of heterogeneous systems. They constructed a task graph and transformed

a heuristic that targets makespan minimization to a bi-criteria heuristic. Boeres et al. [5] developed an efficient weighted
∗ Corresponding author. Tel.: +86-731-88664161.

E-mail addresses: longxinzhang@hnu.edu.cn , longxinzhang@hut.edu.cn (L. Zhang), lkl@hnu.edu.cn (K. Li), lcy469@126.com (C. Li), lik@newpaltz.edu (K.

Li).

http://dx.doi.org/10.1016/j.ins.2016.08.003

0020-0255/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2016.08.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.08.003&domain=pdf
mailto:longxinzhang@hnu.edu.cn
mailto:longxinzhang@hut.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lcy469@126.com
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.ins.2016.08.003

242 L. Zhang et al. / Information Sciences 379 (2017) 241–256

bi-objective scheduling algorithm for heterogeneous systems. This study also introduced a classification of the solutions pro-

vided by weighted bi-objective schedulers aimed at helping users to adjust the weighting function such that an appropriate

solution can be matched in accordance with different needs.

To devise matching and scheduling algorithms that account for both makespan and failure probability and balance

them in a parallel application, Do ̆gan and Özgüner [8] explored the bi-objective scheduling algorithms for execution time-

reliability trade-off in heterogeneous computing systems. For this purpose, the bi-objective dynamic level scheduling algo-

rithm is presented by modifying an existing scheduling algorithm, the dynamic-level scheduling [24] algorithm. With respect

to workflow scheduling in heterogeneous environment, Fard et al. [13] proposed a four-objective case study that comprises

makespan, economic cost, energy consumption, and reliability based on ASKALON environment for grid and cloud com-

puting. Jeannot et al. [17] explored the optimization of performance and reliability on heterogeneous parallel systems. For

scheduling independent tasks, constrained minimum lambda tau was designed. For scheduling tasks with precedence con-

straints, a general Pareto front approximation was devised. On the basis of multi-objective swarm algorithms, Arsuaga-Ríos

et al. [3] presented the multi-objective artificial bee colony and the multi-objective gravitational search algorithm in search

of a bi-objective optimization for both execution time and cost. Durillo et al. [10] proposed a novel multi-objective heteroge-

neous earliest finish time (MOHEFT) list-based workflow scheduling algorithm, which is an extension of the heterogeneous

earliest finish time (HEFT) [26] algorithm. In the beginning of the MOHEFT, high-quality initial populations are generated

under the state-of-the-art HEFT strategy. The MOHEFT is capable of computing a set of tradeoff optimal solutions in terms

of makespan and energy efficiency.

Bhuiyan et al. [4] devised excellent strategies in deploying wireless sensor networks with fault tolerance for structural

health monitoring. Wang et al. [12] proposed a look-ahead genetic algorithm (LAGA) which utilizes reliability-driven repu-

tation to optimize the makespan and the reliability of a workflow application. Xu et al. [31] presented a hybrid chemical

reaction optimization scheme for task scheduling on heterogeneous computing systems. Zhang and Li [33] investigated the

energy minimization problem for real-time software systems with task execution time following a statistical distribution.

Huang et al. [16] presented novel heuristic speculative execution strategies in a cluster that runs Hadoop MapReduce. The

non-dominated sorting genetic algorithm (NSGA-II) was presented by Deb et al. [28] in 2002. Zhang et al. [34] developed

novel algorithms to maximize system reliability with energy constraint in heterogeneous systems. Xu et al. applied the con-

ventional chemical reaction optimization framework in [30] and used a multiple priority queues genetic algorithm in [32] to

address the DAG scheduling problem on heterogeneous computing systems. Given its relatively low time complexity and

rapid convergence rate, NSGA-II is used widely in many fields, such as industry, transportation, and finance. In addition,

Penmatsa and Chronopoulos designed a load-balanced scheduling strategy for the execution of job flows in heterogeneous-

distributed systems on the basis of multi-objective optimization [21,22] . Penmatsa et al. presented a load-balanced schedul-

ing algorithm for the execution of loop-level tasks in grids [23] .

However, none of the above studies consider low energy consumption and high system reliability at the same time.

These two metrics are essential parts of modern green computing. Modern data centers need to provide a set of solu-

tions with different performance metrics to meet the diverse demands of users, such as high system reliability and low

energy consumption in different cases. Hence, the major purpose of this paper is to propose a general approach to solve the

bi-objective of low energy consumption and high system reliability on workflow application scheduling in heterogeneous

computing systems.

This study addresses the bi-objective optimization problem of high system reliability and low energy consumption for

parallel tasks as a combinatorial optimization problem. It includes three nontrivial subproblems, i.e., energy saving, reliability

maximizing, and solution selecting. First, appropriate voltage levels are selected for processors so that the schedule length

of parallel tasks is acceptable and the total energy consumption is minimal. Second, the selected speed for each parallel task

is relatively high so that the total system reliability reaches a high level. Third, as energy saving and system reliability are

two conflicting objectives, an effective and efficient solution strategy is devised while selecting the speed and processor for

each candidate parallel task.

These problems are efficiently treated to develop an algorithm with an overall good performance. With the adoption of

the non-dominated idea and dynamical voltage frequency (DVFS) scaling technology, a novel bi-objective genetic algorithm

that aims to achieve low energy consumption and high system reliability is developed.

The major contributions of this paper are listed as follows.

• We show that the problems of minimizing energy consumption and maximizing system reliability under precedence and

schedule length constraints are conflicting. A set of non-dominated solutions with different system reliability and energy

consumption are provided by BOGA when a user submits a job.

• We develop a class of algorithms to solve the above three nontrivial subproblems. These algorithms are crucial compo-

nents that constitute BOGA.

• We present an efficient selection strategy that works in the front part of the BOGA loop to determine the non-dominated

solutions. The elite individuals are selected as a new population when BOGA finishes each iteration. A fine Pareto front

is achieved after the stopping criteria of BOGA are satisfied.

• Through experiments over a large set of randomly generated graphs as well as through the graphs for real-world ap-

plications with different characteristics, we prove that the proposed BOGA algorithm outperforms several related multi-
objective optimization algorithms in terms of energy consumption and system reliability.

L. Zhang et al. / Information Sciences 379 (2017) 241–256 243

Fig. 1. A simple DAG.

Table 1

Voltage-relative frequency pairs.

Level Pair 1 Pair 2 Pair 3

vol. fre. vol. fre. vol. fre.

0 1 .75 1 .00 1 .50 1 .00 2 .20 1 .00

1 1 .50 0 .80 1 .40 0 .90 1 .90 0 .85

2 1 .40 0 .70 1 .30 0 .80 1 .60 0 .65

3 1 .20 0 .60 1 .20 0 .70 1 .30 0 .50

4 1 .00 0 .50 1 .10 0 .60 1 .00 0 .35

5 0 .90 0 .40 1 .00 0 .50

6 0 .90 0 .40

The rest of the paper is organized as follows. Section 1 describes relative works on high-performance research in het-

erogeneous computing systems. Section 2 introduces the models used in this work. Section 3 shows the basic concepts of

multi-objective optimization problems. Section 4 presents the algorithms developed in this work. Section 5 evaluates the

performance of the compared algorithms. Section 6 gives the conclusion and future works.

2. Models

In this section, the models used in this paper are presented.

2.1. Workflow model

A workflow application is usually modeled as a directed acyclic graph (DAG). A DAG, W = (T , E) , where T is a finite set

of tasks τ i (1 ≤ i ≤ n) and E = { (τi , τ j , Dat a i j) | (τi , τ j) ∈ T × T } is the set of edges which denote task precedence constrains,

where Data ij is the volume of the data transferred from activity τ i to activity τ j . parent(τi) = { τk | (τk , τi , Dat a ki ∈ E) } is used

as the predecessor set of activity τ i . All the activities are completed before τ i is released. As shown in Fig. 1 , each directed

arc is associated with a numeric label, which represents data flow. Its value denotes communication cost, which indicates

the activity of data flow performed in different processors.

2.2. System model

The system model consists of a set of PE , which includes p heterogeneous cores/processors in a cluster. Each processor

pe supports the DVFS technology wherein each processor works at several different speeds. For simplicity, the present study

adopts the processor parameter configuration reported in [19] , in which each pe has f different available frequency levels

(AFLs). Since the frequency switching overhead occupies only an insignificant part of time, it is ignored in the following

study. The voltage-frequency pairs used in this study are shown in Table 1 . In addition, the communication subsystem

explored in this study comprises a set of fully connected processors with each processor communicating with any other

processors at any time that is completely free of contention.

244 L. Zhang et al. / Information Sciences 379 (2017) 241–256

2.3. Power model

The classic power model proposed in [35] is adopted to capture the system power in this study:

P = P s + h̄

(
P ind + P d

)
= P s + h̄

(
P ind + C eff f α

)
, (1)

where P s is the static power consumption, P ind is the frequency-independent active power, and P d is the frequency-

dependent dynamic power. Static power includes the power to maintain basic circuits, to keep the clock working, and to

keep memory to stay in sleep mode which can be removed only by turning off the whole system. P ind is a constant, indepen-

dent of system operation frequency (i.e., power consumption occurs while accessing external devices like the main memory,

I/O, and so on), that is decreased to a very small value by setting the system to standby mode [6] . P d is the dynamic power

dissipation which is the dominant component of energy consumption in widely popular CMOS technology. It is shown by

P d = C eff · V 2
dd

· f, where C eff is the effective loading capacitance, V dd is the supply voltage, and f is the clock frequency. Since

f ∝ v γ (0 < γ < 1) [20] , in other words, v ∝ f 1 /γ , it is reckoned that the frequency-dependent active power consumption is

P d ∝ f α , where α = 1 + 2 / γ ≥ 3 . In the present study, P d = C eff f α is used. h̄ denotes the system mode and represents the ac-

tive power consumption that presently occurred. Particularly, h̄ = 1 indicates that the system is currently active. Otherwise,

h̄ = 0 refers to a sleep mode that the system is in. In the context of this paper, all frequencies are normalized with respect

to the maximum frequency f max (i.e., f max = 1 . 0). The energy consumption of task τ i can be calculated according to Eq. (2) :

E i (f i) = P in d i ·
c i
f i

+ C eff · c i · f 2 i , (2)

where c i is the computation cost of the task τ i .

2.4. Reliability model

As an application is running, a fault is hard to avoid due to hardware failure, software bugs, devices that work in high

temperature, and so on. Accordingly, transient faults happen more frequently. Based on the previous study [34] , the reliabil-

ity model used in this study can be formalized as follows:

Definition 1. The reliability of a task is the probability of executing the task successfully. If the transient fault follows a

Poisson distribution, the reliability of node τ i with the corresponding computation cost c i is [35]

R i (f i) = e
−λ(f i) × c i

f i , (3)

where f i denotes the processing frequency, λ(f) = λ0 · g(f) = λ0 · 10
d(1 − f)
1 − f min , d and λ0 are constants.

2.5. Problem definition

The problem addressed in the study consists of scheduling the workflow tasks applications in heterogeneous computing

system under certain given constraints. The objectives are to minimize energy consumption and probability of failure (POF;

equal to 1 − R) while satisfying the shared deadline constraint of workflow tasks. This workflow scheduling problem is

formalized as follows:

Minimize: F = (F 1 , F 2) ,

F 1 = min

τi ∈ T, f j (τi) ∈ PE
Energy

(
τi , f j (τi)

)
,

F 2 = min

τi ∈ T, f j (τi) ∈ PE
P OF

(
τi , f j (τi)

)
,

subject to: makespan (T) < D, (4)

where D is the shared deadline of the entire tasks set T .

To meet the task scheduling requirement, a prior order is established in this phase. Each task is set with its URank , which

is computed recursively according to the following expression:

URank (τi) = w i + max
τ j ∈ child(τi)

(
c i, j + URank (τ j)

)
, (5)

where child (τ i) is the set of immediate children of task node τ i , c i , j is the communication cost between nodes τ i and τ j

and w i is the average computational time of τ i when it is executed on different processors. Rank is recursively computed by

traversing from the bottom to the top in a DAG. It should be apparent to draw such a conclusion that URank (τexit) = w exit .

3. Multi-objective optimization and a motivational example

In this section, several basic concepts of multi-objective optimization theory are introduced to understand this work

better. Moreover, a motivational example is illustrated.

L. Zhang et al. / Information Sciences 379 (2017) 241–256 245

Fig. 2. Multi-objective Optimization.

3.1. Multi-objective optimization problem overview

Since any maximization problem is transformed to a minimization problem, without loss of generality, the goal of all

the objectives can be defined as minimization problem. Concepts from the multi-objective optimization (MOP) theory are

introduced for a better understanding of this work. Since there are several performance metrics, such as energy saving,

makespan, and system reliability in the workflow scheduling problem, it is usually formalized as a multi-objective opti-

mization problem. In most cases, these metrics are a group of conflicting objectives when they are optimized at the same

time. For Eq. (4) , decreasing energy consumption brings an increment of the probability of failure. Classically, multi-object

optimization problem is formally defined as follows:

Definition 2. Given an n -dimensional vector
⇀

S = [x 1 , x 2 , x 3 , . . . , x n] , MOP is to minimize the following objective function:

⇀

F (
⇀

S) = [f 1 (
⇀

S) , f 2 (
⇀

S) , . . . , f m

(
⇀

S)] . (6)

Since finding a solution which minimizes both energy consumption and the probability of system reliability is not an

easy work, the definition of dominance is introduced in the following.

Definition 3. A solution is considered to dominate another solution if it is as good as the other and better in at least one

objective. In other words, for two solutions
⇀

S
∗

and

⇀

S in the solution space,
⇀

S
∗

dominates
⇀

S if and only if Eq. (7) holds:

∀ i ∈ [1 , 2 , 3 , . . . , m] , f i (
⇀

S
∗
) ≤ f i (

⇀

S) ∧ ∃ j ∈ [1 , 2 , 3 , . . . , m] , f j (
⇀

S
∗
) < f j (

⇀

S) . (7)

As shown in Fig. 2 , solution A dominates solution C as the energy consumption and probability of system reliability of

A are better (smaller) than those of C . Similarly, compared to solution C , solution B has smaller energy consumption and

probability of system failure, so solution B dominates solution C . However, for solutions A and B , solution A is better in

energy consumption and B is better in probability of system reliability. Hence, solutions A and B are non-dominated.

For a particular problem in this study, n denotes the number of the task set T (| T | = n), and the i th component of the

solution

⇀

S represents the resource on which task τ i is released for execution. In the bi-objective optimization problem

scenario, m = 2 is obtained, where f 1 (
⇀

S) is the energy consumption and f 2 (
⇀

S) is the POF.

As reported in our previous study [34] , energy consumption and system reliability are two conflicting objectives. It is

impossible to achieve the minimum for both POF and energy consumption simultaneously. In such problems, no single

optimal solution exists but rather a set of potential solutions. A solution is considered to dominate another solution if it

is as good as the other and better in at least one objective. Conversely, two solutions are considered to be non-dominated

whenever neither of them dominates the other (one is better in energy saving and the other is better in system reliability).

Another important concept is the Pareto set which is a fine solution set. The Pareto set consists of a set of non-dominated

solutions. It captures a set of tradeoff solutions among different objectives. Each solution in the Pareto set denotes a distinct

task mapping of different processors with diverse energy consumption and POF. The Pareto front can be used as a tool to

help the user make a decision on choosing the kind of mapping strategy for the workflow tasks resources.

246 L. Zhang et al. / Information Sciences 379 (2017) 241–256

Table 2

Computation costs on different pro-

cessors.

Node number P 1 P 2 P 3

0 11 16 10

1 12 17 11

2 10 12 15

3 12 6 11

4 14 13 17

5 13 8 12

6 9 12 11

7 14 10 17

8 15 17 10

9 10 18 16

3.2. A motivational example

When a DAG workflow model is submitted to a data center, the only constraint condition is the tasks completion time

(makespan). As an illustration, the workflow is shown in Fig. 1 , and the computation cost of each task node on different

processors is captured in Table 2 . The constraint condition for this application is that the makespan does not exceed 135.

While applying the BOGA, the data center provides the user with alternatives (shown by pairs in terms of energy con-

sumption ratio and POF): (1.902854, 1.14e-06), (1.962252, 9.97e-07), (2.189743, 1.20e-06), (2.362726, 1.20e-06), (2.390827,

1.17e-06), (2.487445, 1.02e-06), (2.769279, 1.18e-06), (2.871348, 1.18e-06), and (3.051540, 1.24e-06). These solutions spread

in the Pareto front.

4. Algorithms

Several parts including encoding, initial population, fitness measure, selection, one-point crossover, mutation, and the

main algorithm, respectively, are presented in this section. The novel algorithm, named BOGA, is devised in this section to

address the workflow application scheduling problem in a heterogeneous cluster.

4.1. Encoding

In this approach, each chromosome comprises two components, which include the mapping and the scheduling string.

The scheduling represents the DAG topological sort, which guarantees the precedence constrains. The chromosome length is

equal to the number of the task set T (| T | = n). Let ch (a vector of length | T |) be the scheduling string. T i appears only once

in ch .

4.2. Initial population

In the initial stage of BOGA, the quality of initial population is crucial. The strategy used in this stage is efficient and

has a relatively low time complexity. Several outstanding heuristic list scheduling algorithms, i.e., HEFT [26] , heterogeneous

critical parents with fast duplicator (HCPFD) [15] , predict earliest finish time (PEFT) [2] and so on, are proven to perform

well in static task scheduling research. In the priority-establishing stage, these excellent strategies are selected randomly to

generate distinct chromosomes.

4.3. Fitness measure

A fitness function is used to measure the quality of the solutions according to the given optimization objectives. Two

objectives which include system reliability and energy consumption are primary metrics in this study.

The energy consumption of a workflow application is measured by energy consumption ratio (ECR) expressed as follows:

ECR =

E total ∑

τi ∈ CP min pe j ∈ PE

{

P in d i · c i
f i

+ C eff · c i · f 2
i

} , (8)

where E total is the total energy consumption of the scheduled tasks, and CP is the set of tasks in the DAG critical path.

A high system reliability problem can be transformed to a low POF. Hence, POF is used to measure the second objective

of this study. Apparently, POF is defined as:

P OF = 1 − R = 1 − �n
i =1 R i

(
f i
)
. (9)

L. Zhang et al. / Information Sciences 379 (2017) 241–256 247

Fig. 3. The selection procedure.

4.4. Selection

Applying the non-dominated sorting reported in [7] , each solution is set with a rank of non-dominated solutions. Accord-

ing to this rank , all of the feasible solutions are classified. The non-dominated level of each candidate solutions is established.

The solutions with equal rank values are placed in the same level. The smaller the rank value is, the higher is the solution

priority which maintains elitism to the next iteration. For the particular objectives in this study, low POF and low energy

consumption are the two main metrics. After the procedure of non-dominated sorting, rank 1 is found to be at the inner

position. From the inner to the outside positions, rank 2, rank 3, and so on followed. The solutions in the inner levels are

prior to the one in the outside levels when the solutions are selected as an elite population for the next iteration.

To assess chromosome quality, i.e., the performance of both POF and energy consumption in the solution is very impor-

tant. During algorithm iterations, two populations (2 n) are obtained after the mutation operation. The selection operation

chooses the best n solutions from the candidate population (the size is 2 n). The rule to evaluate the solutions proceeds with

the rank of solutions. The detailed rules of priorities selection are expressed as follows:

1. For solutions in different levels, the non-dominated solutions with lower level are preferred.

2. For the solutions in the same level, the solutions with large crowding distance are a priority than the small ones.

The selection procedure is shown in Fig. 3 .

4.5. One-point crossover

The traditional crossover operation in genetic algorithm contains many kinds of strategies, such as one-point crossover,

multi-point crossover, uniform crossover, cycle crossover, and so on. However, these common strategies are not directly

applied to DAG chromosomes. The tasks sequence on a chromosome must satisfy the precedence constraints of the task set.

After the completion of the cross operation, the tasks of the chromosome representation must maintain the topology of the

task graph to ensure the correctness of the crossover strategy. For DAG, the following is a specific single-point cross way.

Let parent 1 and parent 2 be the two random chromosomes in the population, they are also the two feasible solutions to

the DAG workflow task. Accordingly, the order of genes in each of the two chromosomes satisfies the precedence constraint

of the task graph. parent 1 and parent 2 are the parent generation; after one-point crossover, two new chromosomes named

child 1 and child 2 are generated. As shown in Fig. 4 , let T (| T | = n) be the length of the chromosome. The one-point crossover

operation is expressed as follows:

1. Two positive integers are randomly picked up as the crossover points when the condition 0 ≤ i ≤ n − 1 is met.

2. The genes in parent 1 which locate before the crossover point i to child 1 are located in the same location. When

conditions k < i and 0 ≤ k ≤ n − 1 are satisfied, child1 k = parent1 k is the result.

3. The genes in parent2 which do not appear in child1 currently appeared and temporarily stored in the middle chro-

mosome r 2. The length of r 2 is n − i .

4. The r 2 from Step 3 is combined to the rear of child 1.

5. The one-point crossover operations are repeated for parent 2 as in the Steps mentioned above.

The crossover algorithm is shown in Algorithm 1 . In Algorithm 1 , Step 1 initializes the new population which contains

two individuals. Steps 2 to 9 form the loop guaranteeing that the produced new individuals are distinct. Step 5 invokes

Algorithm 2 , which presents a normal crossover procedure. Algorithm 3 ensures that the crossover operation gets a feasible

individual without violating the precedence constraint among the DAG graph. In algorithm 3 , Step 1 randomly selects two

248 L. Zhang et al. / Information Sciences 379 (2017) 241–256

Fig. 4. one-point crossover.

Algorithm 1 The crossover algorithm

Require: two parent individuals parent1 and parent2 .

Ensure: two child individuals child1 and child2 .

1: children ← ∅
2: while i ∈ (1… POPULATION_SIZE) do

3: if random([0, 1]) ≤ CROSSOVER_RATE then

4: (parent1 , parent2) ← select(parents)

5: (child1 , child2) ← crossover1(parent1 , parent2)

6: add(children , child1)

7: add(children , child2)

8: end if

9: end while

10: return children

Algorithm 2 The crossover1 algorithm

Require: two parent individuals parent1 and parent2 .

Ensure: two child individuals child1 and child2 .

1: child1 ← crossover2(parent1 , parent2)

2: child2 ← crossover2(parent2 , parent1)

3: return (child1 , child2)

crossover points. Steps 2 to 4 are initial phases. Steps 6 to 9 compose the loop which duplicates the range before crossover

point. Steps 10 to 14 compose the loop which shift the genes left after Steps 6 to 9 while satisfying the constraints among

the parallel tasks. The time complexity of crossover algorithm is O (n ·log N), where N is the population size and n is the

workflow size.

4.6. Mutation

In general, mutation operation includes simple, uniform, boundary, Gaussian, and non-uniform mutation. To escape from

local optima, mutation operations are used in order to explore better solutions to some extent. As mentioned above, URank

can maintain the topological order of the workflow tasks, i.e., the precedence constraints among tasks. As illustrated in

Fig. 5 , the mutation strategy used in this study is described as follows: two positive integers i and j are randomly selected

while satisfying the condition 0 ≤ i < j ≤ n − 1 . When the URank of the selected tasks τ i and τ j (corresponding to genes i

and j in the candidate chromosome, respectively) meet the inequality URank (τ i) < URank (τ j), the genes i and j are swapped

and a new chromosome is generated.

L. Zhang et al. / Information Sciences 379 (2017) 241–256 249

Algorithm 3 The crossover2 algorithm

Require: two parent individuals parent1 and parent2 .

Ensure: a child individual.

1: (i, j) ← random (1 ≤ i < j ≤ N)

2: for all k ∈ (1 , . . . , i − 1 , j + 1 , . . . , N) do

3: task (child k) ← task(parent1 k))

4: end for

5: m ← 0

6: for all [k ∈ (1 , . . . , N)] ∧ [task(parent2 k) / ∈ tasks(child)] do

7: task(solution _ buffer m

) ← task(parent2 k)

8: m ← m +1

9: end for

10: for all k ∈ (i, . . . , j) do

11: while all solution ∈ population do

12: task(child k) ← task(solution _ buffer k −i +1)

13: end while

14: end for

Fig. 5. Mutation.

Algorithm 4 The mutation algorithm

Require: all children individuals.

Ensure: new children individuals.

mutation(children)

2: for all solution ∈ children do

if random ([0 , 1]) ≤ MUTATION_RATE then

4: mutation(solution)

end if

6: end for

mutation(solution)

8: (i, j) ← random(1 ≤ i < j ≤ N ∧ check _ level (ch i , ch j))

swap(task(ch i), task(ch j))

10: check_level(ch i , ch j)

return URank (ch i) < URank (ch j)

As shown in Algorithm 4 , the mutation helps the candidate solution to escape from a local optimum. In Algorithm 4 ,

Steps 2 to 6 make each new candidate solution mutate once. Steps 3 to 5 control the degree of mutation which depends on

the MUTATION_RATE. Step 8 randomly selects two mutation points. Step 10 guarantees that the entire mutation conforms

to the precedence constraints among parallel tasks. The time complexity of mutation algorithm is O (N), where N is the

population size.

4.7. The main algorithm

The BOGA pseudocode is shown in Algorithm 5 . In the population initialization, the priority queue is established with

several famous strategies such as HEFT [26] , HCPFD [15] , PEFT [2] , and that is used to create a feasible precedence queue.

This operation also improves the convergence speed of the algorithm. In BOGA, Step 2 calculates the entire energy consump-

tion and POF for each individual when it is evaluated. Steps 5–11 are repeated until the iteration circle reaches the specified

250 L. Zhang et al. / Information Sciences 379 (2017) 241–256

Algorithm 5 BOGA

Require: A DAG G = < V, E > and a set PE of DVS available processors.

Ensure: A pareto front which contains a set of schedule for G onto P E.

1: initialize(population, POPULATION_SIZE)

2: evaluate(population)

3: GENERATION ← 1

4: while GENERATION ≤ GENERATION_MAXIMUM do

5: parents ← select(population)

6: children ← one_point_crossover(parents)

7: mutation(children)

8: evaluate(children)

9: replace(population, children)

10: update(archive, children)

11: GENERATION ← GENERATION+1

12: end while

maximum. Two parent individuals are randomly selected and the selected individuals are guaranteed to be different in Step

5. After Step 6, two new individuals are generated. In order to prevent the early convergence and escape from the local op-

tima, mutation operation is devised for parallel tasks in Step 7 which is employed to expand the solution space of this study.

For the new generated individuals, only the one which dominates its parent is selected for the next population. When BOGA

proceeds to Step 10, the size of the current population is twice (2 N) that of the initial population. Inspired by the fast and

elitist multi-objective genetic algorithm reported in [7], the 2 N individuals are processed with fast non-dominated sorting

and crowding distance calculation. Then, each individual is assigned with rank values and crowding distance, respectively.

During the process of selection, the individual with a low rank has a higher priority to be an elite. Next is the one with a

large crowding distance value in the same rank level. This process repeats until the size of the elite individuals reaches N .

The whole algorithm runs until the iterations reach the upper bound. The latest individuals N elites are the Pareto set. For a

workflow with n nodes, e is the number of directed edges allowing the p processors to schedule the n tasks. The complexity

of the BOGA algorithm is O (n log n + (e + n) p) .

5. Performances evaluation

In this section, experiments are conducted to verify the effectiveness of this study’s proposed BOGA. In the following

descriptions, two performance metrics are firstly introduced. Then, the configuration of the experiment parameters is shown.

Real-world and randomly generated application graphs are used to assess the performance of the proposed algorithms.

Lastly, the experiment results are analyzed.

5.1. Performance metrics

(1) Hypervolume (HV , I H)

This indicator calculates the volume, in the objective space, covered by members of a non-dominated set of solutions Q .

Let v i be a hypercube. v i is constructed with a reference point X and the solution i (i ∈ Q) is the diagonal corners of the

hypercube [11] . The hypervolume is calculated:

I H = volume

(| Q | ⋃

i =1

v i

)

. (10)

The hypervolume different indicator I −
H

[14] is used to measure the differences among non-dominated fronts generated

by the compared algorithms. The objective portion is assessed by I −
H

. The lower the value of I −
H

is, the better the algorithm

performs.

(2) Epsilon (I ε+)

Given a computed front for a problem, A , this indicator gives a measure of the smallest distance one needs to translate

every solution in A so that it dominates the optimal Pareto front of this problem. Let pf ∗ be the optimal Pareto front of A .

Given solutions
⇀

s 1 = (s 1 1 , . . . , s
1
n) and

⇀

s 2 = (s 2 1 , . . . , s
2
n) , where n is the number of objectives:

I ε+ (A) = inf
ε∈ R

{
∀

⇀

s 2 ∈ p f ∗ ∃

⇀

s 1 ∈ A :
⇀

s 1 ≺ε

⇀

s 2
}

, (11)

L. Zhang et al. / Information Sciences 379 (2017) 241–256 251

Table 3

Selected workflow models.

Workflow # Nodes Reference Note

T1 15 [27] Gauss-Jordan Algorithm

T2 14 [27] LU decomposition

T3 16 [29] Laplace Transform

where,
⇀

s 1 ≺ε

⇀

s 2 if and only if ∀ 1 � i � n : s 1
i

< ε + s 2
i
. This indicator gives the idea on how separate distributions differ from

each other according to their degree of ε + − non-domination (for detailed descriptions, please refer to [14]). The lower

value indicates a better Pareto front.

5.2. Experimental setting

In this section, several benchmarks used in workflow model are exploited to test BOGA. These workflows were designed

to resolve several particular parallel numeric computation problems. These benchmarks include parallel Gauss-Jordan algo-

rithm to solve systems of equations [27] , parallel LU decompositions [27] , and discrete Laplace transformation [29] . Detailed

parameters are shown in Table 3 .

Before making a comparison with multi-objective differential evolution (MODE) and MOHEFT algorithms, a brief intro-

duction is firstly given. The parent and several other individuals randomly selected are combined to generate new candidate

solutions. The parent is replaced by a candidate when it has a worse fitness value. It is a great selection strategy that often

surpasses other classic evolution algorithms. In addition, the concept of dominance is used to preserve a uniformly spread

front of non-dominated solutions. Then, the population size grows. The MODE truncates to prepare it for the next round of

iterative evolution operations. While the MOHEFT algorithm is based on HEFT, a solution is created by iteratively mapping

tasks onto appropriate resources. Its main objective is to minimize the entire completion time of each task. When multiple

objectives are simultaneously considered, the goal changes to calculate the set of tradeoff solutions. In MOHEFT, several so-

lutions are allowed to generate simultaneously instead of creating a single solution. In addition, the tasks are allowed to map

onto other resource which has a late finish time when the tradeoff of this resource is between the considered objectives.

The experiments of the present study are carried out using a workstation at the National Supercomputing Center in

Changsha. It is equipped with an Intel Core i3-540 dual-core CPU, 8 GB DRAM, and 500 GB hard disk. The machine runs with

Windows 7 (64-bit OS) SP1. The proposed algorithm is implemented in an open-source framework jMetal [11] , which is an

object-oriented Java-based framework aimed at the development, experimentation, and study of metaheuristics for solving

multi-objective optimization problems. The earliest version of jMetal is used to implement the multi-objective optimization

problem of continuous functions. In the past 2 years, several researchers developed it to solve discrete optimization problem.

The workflow scheduling problem developed in this study refers to a discrete and combinatorial multi-objective optimization

problem in which each task has precedence constraint. In order to further exhibit BOGA performance, it was compared to

the performance of MODE [25] . MODE introduces a different evolution idea to solve workflow scheduling in the global grid.

Each algorithm iterates 100 times. The benchmark used in this study involves three different types of workflows. Under

these workflows in the benchmark, the minimum extent in each objective is used to evaluate the quality of the proposed

algorithms.

5.3. Real world application graphs

Task graphs from four kinds of real-world applications are used in these experiments: Gauss-Jordan [27] , LU decomposi-

tion [27] , Laplace transformation [29] , and molecular dynamic code [18] .

5.3.1. Three kinds of classic DAG graphs

According to the experimental parameters in Table 3 , three heterogeneous processors configurations are used to sched-

ule the three different types of workflow, i.e., T1, T2, and T3, respectively. The performance metric used for comparison

are ECR and POF. The communication to computation ratio (CCR) of a DAG is used to depict the feature of the graph. It

is either a communication-intensive or a computation-intensive application. When the value of CCR is higher, DAG is a

communication-intensive task graph. On the contrary, the lower the CCR value is, the more computation-intensive the DAG

is. The comparisons of the three workflows under algorithms BOGA, MODE, and MOHEFT are illustrated as Figs. 6 , 7 and 8 ,

respectively, when CCR is set to 1.

Fig. 6 shows the Gauss-Jordan workflow under the three kinds of algorithms. MODE, based on the differential evolution

idea, finds a better Pareto front compared with MOHEFT. As the value of ECR is above 2.62, the POF of MOHEFT significantly

increases. For BOGA, a fine initial population is obtained when the famous list schedule algorithms such as HEFT, HCPDF,

and PEFT are employed. During each BOGA iteration, the solutions in the population proceeds with non-dominated sorting

and crowding distance operations to get nondominated fronts. Then, specific one-point crossover and mutation operators for

parallel tasks are employed so that the generated individuals are invalid and they reserve the most elitist individuals from

252 L. Zhang et al. / Information Sciences 379 (2017) 241–256

Fig. 6. Comparisons of Gauss-Jordan (the number of processors equals 3 with CCR = 1.0).

Fig. 7. Comparisons of Laplace (the number of processors equals 3 with CCR = 1.0).

its parent generations. Therefore, BOGA obtains the best Pareto front in comparison with MODE and MOHEFT. In addition,

the classical algorithms used in the beginning of BOGA greatly improve the efficiency of initial population constructing,

which has no impact on the time complexity of BOGA.

Likewise, as shown in Figs. 7 and 8 , BOGA consistently performs well. I −
H

and I ε+ of BOGA are the minimum of the three

algorithms. The difference is that T1, T2, and T3 are three different kinds of workflow in structure. The average in-degree (or

the average out-degree) of T1, T2, and T3 are not the same because the task set have different parallel degrees. When the

number of workflow is almost the same, the ECR and POF of the obtained Pareto front under the three existing algorithms

have several differences.

5.3.2. Molecular dynamic code

DAG, extracted from the molecular dynamic code presented in [18] , is used to evaluate the performance of the scheduling

algorithms in this experiment. DAG is shown in Fig. 9 .

The maximum out-degree in this specific DAG is 7 as shown in Fig. 9 . The parameter of the maximum out-degree in a

DAG has a great impact to the performance of algorithms. The parallelism degree largely depends on these parameters to

some extent. When the value of the maximum out-degree is large enough, further increasing the number of processors has

less effect in improving performance.

Fig. 10 shows the performance of the three algorithms when the molecular dynamic code DAG graph is scheduled on six

different processor with CCR = 1.0. These results suggest that MODE and MOHEFT effectively performs to explore feasible

solutions. The BOGA presented in this study delivers more consistent performance in finding better Pareto front solutions.

In Fig. 10 , the ECR increases as the POF decreases. This result once again verifies that BOGA is able to strike a fine balance

between energy consumption and system reliability.

L. Zhang et al. / Information Sciences 379 (2017) 241–256 253

Fig. 8. Comparisons of LU (the number of processors equals 3 with CCR = 1.0).

Fig. 9. A molecular graph.

Fig. 10. Comparisons of molecular graph (the number of processors equals 6 with CCR = 1.0).

254 L. Zhang et al. / Information Sciences 379 (2017) 241–256

Fig. 11. Comparisons of randomly generated DAG graph (the number of task graphs equals to 100, the number of processors equals 6 with CCR = 0.5).

Fig. 12. Comparisons of randomly generated DAG graph (the number of task graphs equals to 100, the number of processors equals 6 with CCR = 1.0).

5.4. Randomly generated application graphs

Without loss of generality, randomly generated task graphs are used to assess the performance in these experiments. Xu

et al. [31] developed a random graph generator, which specifies different graphs of DAG input parameters (i.e., input degree,

out-degree, the number of DAG, the level of DAG, the value of CCR, and so on) by the users. With this task generator, a large

set of random task graphs are generated with different characteristics. All of these graphs are scheduled on heterogeneous

computing systems. To evaluate the performance of BOGA, MODE, and MOHEFT under different parameters involving various

numbers of computing processors, DAG task different numbers and different CCR values are compared. In this study, the

input parameters used in the experiments is as follows: the number of task is 100, the levels of tasks ranges from 7 to 57,

the maximum DAG in- and out-degrees are 47 and 57, respectively, and the average in-degree is 7.81. With respect to the

number of CCRs, three kinds of values are specified–0.5, 1.0, and 5.0, respectively.

Figs. 11 to 13 show the comparisons of the three algorithms which run on three heterogeneous processors under different

CCRs. As shown in Fig. 11 , the application is computation intensive with CCR = 0.5 wherein the solutions explored by BOGA

are significantly better than MODE and MOHEFT. When the user needs a lower POF with a modest energy consumption, the

obtained Pareto front produced by BOGA offers a large number of candidate solutions. For Fig. 12 , the application is modest

in computation and communication. The POFs and ECRs explored by BOGA, MODE, and MOHEFT maintain the same trend as

CCR = 0.5. BOGA outperforms the other two algorithms in finding a better set of feasible solutions. As illustrated in Fig. 13 ,

when CCR is equal to 5, DAG is a communication-intensive graph and BOGA performs consistently better over MODE and

MOHEFT. The fine performance of BOGA is attributed to the fact that the mechanisms of the initial population and selection

in BOGA are more intelligent.

L. Zhang et al. / Information Sciences 379 (2017) 241–256 255

Fig. 13. Comparisons of randomly generated DAG graph (the number of task graphs equals to 100, the number of processors equals 6 with CCR = 5.0).

6. Conclusion

The data center provides users with different quality of service such as maximum completion time, energy-saving effect,

and system reliability to satisfy their different requirements. This paper addresses the dual objectives of energy saving and

system reliability for the workflow with precedence constraints in heterogeneous systems. BOGA is developed to obtain a

fine Pareto front. In the beginning of BOGA, several well-known, efficient strategies are adopted to the initial population

without introducing additional computation complexity. For the selection operation, the two objectives of low energy con-

sumption and low POF are used to determine the non-dominated solutions. The specific one-point crossover is designed

to generate new individuals without violating the precedence constraint. The selected solutions that fulfill the URank con-

straint perform a particular mutation operation, thereby helping the BOGA to escape from the local optima and explore a

new solution space. While entering the next iteration, two operations, namely, non-dominated sorting and crowding dis-

tance, are performed, thereby reserving the diversity of individuals. Unlike in modified MODE and MOHEFT, three kinds of

workflows, i.e., Gauss-Jordan, parallel LU decomposition and discrete Laplace transform, and real-world application graphs

(i.e., molecular dynamics code graph and randomly generated application graphs), are exploited to assess performance. Ex-

periments show that the proposed BOGA algorithm significantly outperforms other algorithms in terms of system reliability

and energy consumption.

One planned future research is to develop multiple objectives such as makespan, energy saving, and system reliability

problem for workflow in heterogeneous computing systems.

Acknowledgment

The research was partially funded by the Key Program of National Natural Science Foundation of China (Grant Nos.

61133005 , 61432005), the National Natural Science Foundation of China (Grant Nos. 61370095 , 61472124), the Interna-

tional Science & Technology Cooperation Program of China (Grant No. 2015DFA11240), the National High-tech R&D Program

of China (Grant No. 2015AA015303), the Research Foundation of Education Bureau of Hunan Province (No. 15C0400), the

Natural Science Foundation of Hunan Province (Grant No. 2016JJ4002), the Project of the National Housing and Construction

(No. 2014-K8-062), and the Key Foundation of Education Bureau of Hunan Province (No. 14A037).

References

[1] 2015, (http://www.top500.org/).

[2] H. Arabnejad, J. Barbosa, List scheduling algorithm for heterogeneous systems by an optimistic cost table, IEEE Trans. Parallel Distrib. Syst. 25 (3)
(2014) 682–694, doi: 10.1109/TPDS.2013.57 .

[3] M. Arsuaga-Ríos , M.A. Vega-Rodríguez , F. Prieto-Castrillo , Meta-schedulers for grid computing based on multi-objective swarm algorithms, Appl. Soft
Comput. 13 (4) (2013) 1567–1582 .

[4] M. Bhuiyan, G. Wang, J. Cao, J. Wu, Deploying wireless sensor networks with fault-tolerance for structural health monitoring, IEEE Trans. Comput. 64
(2) (2015) 382–395, doi: 10.1109/TC.2013.195 .

[5] C. Boeres , I.M. Sardiña , L.M. Drummond , An efficient weighted bi-objective scheduling algorithm for heterogeneous systems, Parallel Comput. 37 (8)

(2011) 349–364 .
[6] T.D. Burd , R.W. Brodersen , Energy efficient cmos microprocessor design, in: System Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii Interna-

tional Conference on, 1, IEEE, 1995, pp. 288–297 .
[7] K. Deb , A. Pratap , S. Agarwal , T. Meyarivan , A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197 .

[8] A. Do ̆gan , F. Özgüner , Biobjective scheduling algorithms for execution time–reliability trade-off in heterogeneous computing systems, Comput. J. 48
(3) (2005) 300–314 .

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100004735
http://www.top500.org/
http://dx.doi.org/10.1109/TPDS.2013.57
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0002
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0002
http://dx.doi.org/10.1109/TC.2013.195
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0004
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0005
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0006
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0007
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0007

256 L. Zhang et al. / Information Sciences 379 (2017) 241–256

[9] J.J. Dongarra , E. Jeannot , E. Saule , Z. Shi , Bi-objective scheduling algorithms for optimizing makespan and reliability on heterogeneous systems, in:
Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and architectures, ACM, 2007, pp. 280–288 .

[10] J.J. Durillo , V. Nae , R. Prodan , Multi-objective energy-efficient workflow scheduling using list-based heuristics, Future Gener. Comput. Syst. 36 (2014)
221–236 .

[11] J.J. Durillo , A.J. Nebro , jmetal: A java framework for multi-objective optimization, Adv. Eng. Software 42 (10) (2011) 760–771 .
[12] J.J. Durillo , R. Prodan , Multi-objective workflow scheduling in amazon ec2, Cluster Comput. 17 (2) (2014) 169–189 .

[13] H.M. Fard , R. Prodan , J.J.D. Barrionuevo , T. Fahringer , A multi-objective approach for workflow scheduling in heterogeneous environments, in: Pro-

ceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), IEEE Computer Society, 2012,
pp. 300–309 .

[14] C.M. Fonseca , J.D. Knowles , L. Thiele , E. Zitzler , A tutorial on the performance assessment of stochastic multiobjective optimizers, in: Third International
Conference on Evolutionary Multi-Criterion Optimization (EMO 2005), 216, 2005, p. 240 .

[15] T. Hagras , J. Jane ̌cek , A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous systems, Parallel Comput. 31
(7) (2005) 653–670 .

[16] X. Huang, L. Zhang, R. Li, L. Wan, K. Li, Novel heuristic speculative execution strategies in heterogeneous distributed environments, Comput. Electr.
Eng. (2015), doi: 10.1016/j.compeleceng.2015.06.013 .

[17] E. Jeannot , E. Saule , D. Trystram , Optimizing performance and reliability on heterogeneous parallel systems: Approximation algorithms and heuristics,

J. Parallel Distrib. comput. 72 (2) (2012) 268–280 .
[18] S. Kim , J. Browne , A general approach to mapping of parallel computation upon multiprocessor architectures, in: International conference on parallel

processing, 3, 1988, pp. 1–8 .
[19] Y.C. Lee , A.Y. Zomaya , Energy conscious scheduling for distributed computing systems under different operating conditions, IEEE Trans. Parallel Distrib.

Syst. 22 (8) (2011) 1374–1381 .
[20] K. Li , Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers, IEEE Trans. Comput. (2012) 1668–1681 .

[21] S. Penmatsa , A.T. Chronopoulos , Cooperative load balancing for a network of heterogeneous computers, in: the 20th IEEE International Parallel and

Distributed Processing Symposium, IEEE, 2006, pp. 8–15 .
[22] S. Penmatsa , A.T. Chronopoulos , Cost minimization in utility computing systems, Concurrency Comput. 26 (1) (2014) 287–307 .

[23] S. Penmatsa , A.T. Chronopoulos , N.T. Karonis , B.R. Toonen , Implementation of distributed loop scheduling schemes on the teragrid, in: the 21th IEEE
International Parallel and Distributed Processing Symposium, IEEE, 2007, pp. 1–8 .

[24] G.C. Sih , E.A. Lee , A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures, IEEE Trans. Parallel
Distrib. Syst. 4 (2) (1993) 175–187 .

[25] A. Talukder , M. Kirley , R. Buyya , Multiobjective differential evolution for scheduling workflow applications on global grids, Concurrency Comput. 21

(13) (2009) 1742–1756 .
[26] H. Topcuoglu , S. Hariri , M.-y. Wu , Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib.

Syst. 13 (3) (2002) 260–274 .
[27] T. Tsuchiya , T. Osada , T. Kikuno , Genetics-based multiprocessor scheduling using task duplication, Microprocess. Microsyst. 22 (3) (1998) 197–207 .

[28] X. Wang , C.S. Yeo , R. Buyya , J. Su , Optimizing the makespan and reliability for workflow applications with reputation and a look-ahead genetic algo-
rithm, Future Gener. Comput. Syst. 27 (8) (2011) 1124–1134 .

[29] M.-Y. Wu, D.D. GAJsKI, Hypertool: a programming aid for message-passing systems, IEEE Trans. Parallel Distrib. Syst. 1 (3) (1990) 330–343, doi: 10.

1109/71.80160 .
[30] Y. Xu , K. Li , L. He , T.K. Truong , A dag scheduling scheme on heterogeneous computing systems using double molecular structure-based chemical

reaction optimization, J. parallel distrib. comput. 73 (9) (2013) 1306–1322 .
[31] Y. Xu, K. Li, L. He, L. Zhang, K. Li, A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems, IEEE

Trans. Parallel Distrib. Syst. 26 (12) (2015) 3208–3222, doi: 10.1109/TPDS.2014.2385698 .
[32] Y. Xu , K. Li , J. Hu , K. Li , A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues, Inf. Sci. 270

(2014) 255–287 .

[33] L. Zhang , K. Li , Energy minimization for software real-time systems with uncertain execution time, in: 2011 Fourth International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP), 2011, pp. 87–91 .

[34] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, K. Li, Maximizing reliability with energy conservation for parallel task scheduling in a heterogeneous
cluster, Information Sciences 319 (2015) 113–131. http://dx.doi.org/10.1016/j.ins.2015.02.023 . URL http://www.sciencedirect.com/science/article/pii/

S0 020 0255150 01231
[35] D. Zhu , R. Melhem , D. Mossé, The effects of energy management on reliability in real-time embedded systems, in: Computer Aided Design, 2004.

ICCAD-2004. IEEE/ACM International Conference on, IEEE, 2004, pp. 35–40 .

http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0008
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0009
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0010
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0011
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0012
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0013
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0014
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0014
http://dx.doi.org/10.1016/j.compeleceng.2015.06.013
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0016
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0017
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0018
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0019
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0020
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0021
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0022
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0023
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0024
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0025
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0026
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0027
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0027
http://dx.doi.org/10.1109/71.80160
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0029
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0029
http://dx.doi.org/10.1109/TPDS.2014.2385698
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0031
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0032
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0032
http://dx.doi.org/10.1016/j.ins.2015.02.023
http://www.sciencedirect.com/science/article/pii/S0020025515001231
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0034
http://refhub.elsevier.com/S0020-0255(16)30572-2/sbref0034

	Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems
	1 Introduction
	2 Models
	2.1 Workflow model
	2.2 System model
	2.3 Power model
	2.4 Reliability model
	2.5 Problem definition

	3 Multi-objective optimization and a motivational example
	3.1 Multi-objective optimization problem overview
	3.2 A motivational example

	4 Algorithms
	4.1 Encoding
	4.2 Initial population
	4.3 Fitness measure
	4.4 Selection
	4.5 One-point crossover
	4.6 Mutation
	4.7 The main algorithm

	5 Performances evaluation
	5.1 Performance metrics
	5.2 Experimental setting
	5.3 Real world application graphs
	5.3.1 Three kinds of classic DAG graphs
	5.3.2 Molecular dynamic code

	5.4 Randomly generated application graphs

	6 Conclusion
	 Acknowledgment
	 References

