Information Sciences 319 (2015) 113-131

Contents lists available at ScienceDirect 2
INFORMATION
SCIENCES
Information Sciences S
journal homepage: www.elsevier.com/locate/ins o
Maximizing reliability with energy conservation for parallel @ CrossMark
task scheduling in a heterogeneous cluster
Longxin Zhang?, Kenli Li **, Yuming Xu?, Jing Mei?, Fan Zhang ", Keqin Li ¢
2 College of Information Science and Engineering, National Supercomputing Center in Changsha, Hunan University, Changsha 410082, China
b Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
€Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
d Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
ARTICLE INFO ABSTRACT
Articlle history: A heterogeneous computing system in a cluster is a promising computing platform, which
Received 29 June 2014 attracts a large number of researchers due to its high performance potential. High system
Received in revised form 7 February 2015 reliability and low power consumption are two primary objectives for a data center.

Accepted 14 February 2015

Available online 21 February 2015 Dynamic voltage scaling (DVS) has been proved to be the most efficient technique and is

exploited widely to realize a low power system. Unfortunately, transient fault is inevitable
during the execution of an application while applying the DVS technique. Most existing
scheduling algorithms for precedence constrained tasks in a multiprocessor computer sys-
Energy consumption tem .do.not. adeq_uately consider tas.k reliability. In this paper, we devise a novel Reli_ability
List scheduling Maximization with Energy Constraint (RMEC) algorithm, which incorporates three impor-
Parallel application tant phases, including task priority establishment, frequency selection, and processor
Reliability assignment. The RMEC algorithm can effectively balance the tradeoff between high relia-
bility and energy consumption. Our rigorous performance evaluation study, based on both
randomly generated task graphs and the graphs of some real-world applications, shows
that our scheduling algorithm surpasses the existing algorithms in terms of system relia-
bility enhancement and energy consumption saving.

© 2015 Elsevier Inc. All rights reserved.

Keywords:
Cluster computing

1. Introduction

Nowadays, big data applications are progressively becoming the major focus of attention due to the enormous increment
of data generation and storage that has taken place in the recent years. The data size is constantly increasing, as of 2012
ranging from a few dozen terabytes to many petabytes of data in a single data set [37]. The major features of big data are
high volume, high velocity, and/or high variety information assets that require new forms of processing to enable enhanced
decision making, insight discovery, and process optimization [5]. Many real-world areas such as telecommunications, health
care, pharmaceutical, Internet search, financial and business informatics generate massive amounts of data. Tmall [38],
which is the largest online shopping site in Asia, has become an indispensable part of daily life of Chinese. During the
Chinese “Single Day” Double 11 shopping carnival, Alibaba made another record on November 11 2013: total transaction
in a day hit 35 billion yuan (USD 5.71 billion). Merely 55 s after 0:00 on November 11, the transaction amount reached
100 million yuan (USD 16.3 million). At 0:06:07, it reached 1 billion yuan (USD 163 million). At 5:49 am, it reached 10 billion

* Corresponding author. Tel.: +86 731 88664161.
E-mail address: 1kl@hnu.edu.cn (K. Li).

http://dx.doi.org/10.1016/j.ins.2015.02.023
0020-0255/© 2015 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2015.02.023&domain=pdf
http://dx.doi.org/10.1016/j.ins.2015.02.023
mailto:lkl@hnu.edu.cn
http://dx.doi.org/10.1016/j.ins.2015.02.023
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

114 L. Zhang et al./Information Sciences 319 (2015) 113-131

yuan (USD 1.63 billion). About 188 million of transactions were conducted on this day. It contributes to the powerful support
provided by Aliyun. In the data center of Aliyun, there are about 40 thousand jobs to be run on a cluster which is composed of
3000 nodes to process the 1.5 petabyte transaction records everyday, and then to output 20 terabyte results.

A data center garnered significant support and encouragement by its participants, who spanned industry, government
labs, and academia [11]. To meet the needs of economic development, national centers for supercomputing have sprung
up. The ranking of the top supercomputers in the world show a major trend in heterogeneous architectures. They are supe-
rior by power efficiency rather than speed. Such high end computing facilities can consume a very large amount of power,
although they provide high performance computing solutions for scientific and engineering applications. For instance, oper-
ating a middle-sized data center (i.e., a university data center) demands 80,000 kW power [34]. In addition, high power con-
sumption usually leads to expensive cooling costs. Furthermore, keeping computing facilities running on high power for a
long time will result in high temperature of computing systems, which further degrades systems’ availability and reliability.

While performance/hardware-cost has increased dramatically with the advancement of electronic technology, power
consumption in computer systems has also increased according to Moore’s law [36]. Such increased energy consumption
causes severe ecological, economic, and technical issues. Hence, it is not very hard to image the size of adverse environmen-
tal footprint left by the heterogeneous computing systems (HCS) in a cluster. This issue has attracted extensive research
activities in recent years, with the growing advocacy of green computing systems. Some hardware technologies [33], such
as energy-efficient monitors, low-power microprocessors and processors consisting of multiple processing element cores
and a selective-associative cache memory, are employed to address the energy consumption problems. Comprehensive sur-
veys can be found in Refs. [33,2,4].

Task scheduling problems are classic and important. A large number of excellent algorithms are proposed. Huang et al.
[15] proposed three types of fuzzy models to solve the Fuzzy Time-dependent Project Scheduling Problem (FTPSP) while
guaranteeing resource constraints. Under the dynamic grid environment, Kotodziej and Khan [22] introduced a Hierarchic
Genetic Strategy based Scheduler (HGS-Sched) to achieve fast reductions in makespan and flowtime in the concurrent search
of the optimization domain. An adaptive scoring method was used to schedule jobs in grid environment by Chang et al. [7].
With the rapid development of society, reducing processor energy consumption has been a critically important and pressing
research issue in recent years. The dynamic voltage and frequency scaling (DVFS) technique [35] is widely recognized as the
basis of numerous energy management solutions. It exploits the fact that the dynamic power consumption is a strictly con-
vex function of the CPU frequency, and attempts to conserve energy by reducing clock speed and supply voltage at active
state. Benefiting from DVFS, various energy-aware task scheduling and resource management methods have emerged as
promising studies for sustainable computing. Many excellent strategies and approaches have been developed, but their
scope is restricted to unique processor systems [42], homogeneous computing systems [21,13,43], and battery based embed-
ded systems [31].

Numerous algorithms have been devised to accomplish speedup for parallel applications in the form of directed acyclic
graphs (DAG). It is generally appreciated that a task scheduling problem is NP-hard [12]. Usually, scheduling algorithms aim
to map tasks onto proper processors and sort tasks in an appropriate sequence, so that task precedence constraints are met
and the minimum scheduling length can be achieved. A significant number of existing studies are devised for homogeneous
systems, such as the well known Dynamic-Level Scheduling (DLS) algorithm [27]. Recently, a few diverse list scheduling
algorithms have been developed to handle heterogeneous systems, for instance, Constrained Earliest Finish Time (CEFT)
algorithm [20], Critical-Path-On-a-Processor (CPOP) algorithm [32], and Heterogeneous Earliest Finish Time (HEFT) algo-
rithm [32]. Among these algorithms, HEFT and CPOP have been proven to be very promising algorithms with their demon-
strated low complexity and performance effective capability. It is widely accepted that a major challenge in scheduling is to
diminish interprocessor communication cost. Node duplication is an effective solution that has been exploited to deal with
the above described problem. Based on this, recently reported algorithms, such as HCPFD [14] and HLD [3], were proposed
for HCS. They improve the performance by taking account of limited effective duplication into them. Idle time slots, scattered
among the processors, are exploited for duplicating the immediate parent of a child task so as to make its start time earlier.
The comparison analysis of HCPFD [14] and HLD [3] shows that they significantly outperform other algorithms, for instances,
DLS [27] and HEFT [32]. However, the duplication technique aims to reduce the schedule length at the expense of sacrificing
more energy and higher complexity. With respect to the promotion of system reliability, a number of hardware and software
based techniques for hypercube (HC) fault tolerance was developed by Abd-El-Barr and Gebali [1], which can be exploited to
enhance the system reliability and fault tolerance aspects of existing hypercube multi-computer networks (HCNs). Dogan
and Ozgiiner developed three reliability cost functions that were incorporated into making dynamic level (DL) and intro-
duced a Reliable Dynamic Level Scheduling (RDLS) algorithm [9,10]. Tang et al. proposed a Hierarchical Reliability-Driven
Scheduling (HRDS) algorithm in a grid computing system [30]. Wang et al. developed scheduling heuristics which reduce
energy consumption of parallel task execution in a cluster by using the DVFS mechanism [34].

Unfortunately, most of these approaches are on the basis of simple system models, which do not precisely reflect the real
parallel computation systems. One of the assumptions, i.e., a node never fails during execution, may lead to some problems.
In real systems, the transition faults in task execution are inevitable and may have an adverse impact on the running
applications. Studies in [41] show that it is critical to design an accurate schedule with consideration of task reliability.
Low power consumption and high system reliability, availability, and utility are the main concerns of modern high-
performance computing system development. A number of studies [18,40,25] revealed the interplay between energy con-
sumption and system reliability. However, these approaches are exclusively confined to the embedded systems. Li and Xu

L. Zhang et al./Information Sciences 319 (2015) 113-131 115

et al. analyzed the performance of heuristic power allocation and scheduling algorithms for precedence constrained parallel
tasks [24,39]. Lee and Zomaya developed two energy-conscious scheduling algorithms which effectively balance the quality
of schedules and energy consumption using dynamic voltage scaling (DVS) [23]. Tang et al. designed a reliability-driven
scheduling architecture and proposed a reliability-aware scheduling algorithm for precedence constrained tasks [29].
Notwithstanding, none of them incorporates energy consumption and reliability together. In most cases, the scheduling
length is not always as small as possible. It is crucial to run an application with higher reliability and lower energy
consumption.

In this paper, we treat maximizing reliability with energy conservation for precedence constrained tasks in a heterogeneous
cluster with dynamically variable voltage and speed as an combinatorial optimization problem. Our scheduling problem com-
prises three nontrivial subproblems, namely, precedence constraining, energy conserving, and reliability maximizing.

e Precedence Constraining. Compared to an independent task set, parallel tasks with precedence constraints make devise
and analysis of heuristic scheduling algorithms particularly complicated.

e Energy Conserving. Processors should provide appropriate powers and energy efficient execution speeds, such that the
schedule length is modest and the energy consumption is minimal.

e Reliability Maximizing. Tasks should be run at relatively high speeds without exceeding the maximum frequency of pro-
cessors, such that the system reliability can be achieved optimal.

The above subproblems should be solved efficiently so that heuristic algorithms with overall fine performance can be
explored. By adopting the DVS technique, three algorithms are presented in this paper, i.e., the Reliability-aware
Heterogeneous Earliest Finish Time (RHEFT) algorithm, the Reliability-aware Critical-Path-On-a-Processor (RCPOP) algo-
rithm, and a novel Reliability Maximization with Energy Constraint (RMEC) algorithm. Algorithms RHEFT and RCPOP are
two intuitive strategies for system reliability enhancement. The main purpose is to lead to the presentation of algorithm
RMEC. Each of these three algorithms comprises the following three phases. The task priority establishment phase builds
a proper topological order for the application tasks. The frequency selection phase chooses an energy efficient frequency
to execute each task. The processor assignment phase allocates a candidate task to a suitable processor, so as to get higher
total system reliability with lower total energy consumption.

The rest of the paper is organized as follows. Section 2 presents the system, energy, application, and reliability models
used in this paper. Based on the previously introduced reliability and energy models, Section 3 develops the RMEC algorithm
and other two revised algorithms RHEFT and RCPOP. A simple motivational example is presented in Section 4. Extensive
experimental results are discussed in Section 5. Finally, Section 6 gives concluding remarks and mentions future works.

2. Models
In this section, we introduce the system, power, application, fault and reliability models used in this paper.
2.1. System model

The system model used in this paper comprises a set PE of p heterogeneous cores/processors in a cluster. Each of them is
available for DVFS technology; namely, each core can run at different speeds (i.e., different supply voltage levels). Each
processor pe which belongs to set PE has f different available frequency levels (AFLs). It follows a random and uniform
distribution among the four different sets of operation voltages/frequency. As clock frequency switching overhead takes
an inappreciable amount of time (e.g., 10-150 ps [16,26]), such overhead is neglected in our paper. Besides, the communi-
cations among the processors are supposed to perform at the same speed on all links without contention. Our paper is based
on the premise that the target system consists of a set of fully connected processors, which implies that each processor has a
direct communication link to every other processor. Inter-processor communication is performed by a dedicated communi-
cation subsystem in such a way that is completely free of contention.

2.2. Power model

Generally, with the DVFS technique, the clock frequency is reduced alongside with the supply voltage for the
approximately linear relationship between the supply voltage and operation frequency [6]. For the promising capability
of energy saving, the DVFS technique is adopted in our study. It enables a processor dynamically adjust available frequency
levels. To present a system-level power model, we adopt the classic one proposed in [44]. And the system power consump-
tion is given as follows [41]:

P:Ps+h(Pind+Pd):Ps+h(Pind+Ceﬁfl): (1)
where P; is the static power consumption, P;,y refers to the frequency-independent active power, and P, represents the
frequency-dependent dynamic power. The static power term, including the power to maintain the basic circuits, keeps

the clock working and the memory staying in sleep mode, can be removed only by turning off the whole system. P, is a
constant, independent of system operation frequency (i.e., the power consumption occurs while accessing external devices

116 L. Zhang et al./Information Sciences 319 (2015) 113-131

like main memory, 1/0, and so on), can be decreased to a very small value by setting the system to standby mode [6]. P, is the
dynamic power dissipation, the dominant component of energy consumption in widely popular CMOS technology. It can be
given by Py = Co - de -f, where Cg is the effective loading capacitance, V4 is the supply voltage, and f is the clock frequen-
cy.Since f x v (0 < y < 1) [24], in other words, v f'/”, we reckon that the frequency dependent active power consumption
is Py o< f*, where oo =1+2/7 > 3. In our studies, we have Py = Cozf”. And h indicates the system mode and represents
whether active power consumption is occurred present. Particularly, i = 1 signifies that the system is active currently.
Otherwise, i = 0 refers to a sleep mode that the system is in. In the context of this paper, all frequencies are normalized with
respect to the maximum frequency f ., (i.e., f.x = 1.0). And the energy consumption of task »; can be calculated according
to Eq. (2),
¢

Ei(f;) = Pig, ‘ﬁ+cejf‘ci‘f,‘27 (2)
1

where ¢; is the computational cost at executing frequency of f;. The total energy E, consumed by processors during the
execution of tasks in a task set is hence estimated by

Etotal = ZEl(fi) (3)
i=1

For simplicity, only processor energy consumption is considered in this paper.

max

2.3. Application model

Generally, a parallel application program consisting of precedence constrained tasks can be represent by a directed acyclic
graph (DAG). A DAG, G = (T,E), where T is the task set which comprises |T| tasks that can be executed on any available pro-
cessors. Set E is composed of the edges which represent task precedence constrains. An edge w;; € E between task node i and
node j, both of which perform on different processors, denotes the intertask communication.

For each node t; in a given task graph, the direct predecessors of which are denoted by parent(t;), which is a set
parent(t;) = {V1, € Tlep; € E}. And its direct successors are denoted as child(t;). If a task has no any predecessor, namely,
parent(t;) =), itis termed as an entry task. Likewise, if a task has no any successor, namely, child(t;) = 0, itis called an exit task.
Without loss of generality, we assume that a DAG in our study has (or can be transformed to have) exactly one entry task Tenry
and one exit task ... The notations about the system and application models used in this paper are summarized in Table 1.

The weight on task 7; is denoted as w;, which represents the computation cost. In addition, the execution time of task 7; on
processor pe; refers to w;; and its average computation cost is denoted by w;. Similarly, the weight c;; assigned to an edge
represents the communication cost between two tasks 7; and t;. However, the communication occurs only when the two
nodes are scheduled to two distinct processors. In other word, there is no communication cost provided that the two nodes
are assigned to the same processor.

Consider the graph with eleven nodes as shown in Fig. 1, the edges, which are labeled with weights, reflect the commu-
nication costs of corresponding nodes in different processors. In our study, the target system comprises of a set PE of p

Table 1
Definitions of notations.
Notation Definition
PE A set of processing elements
Vv A set of supply voltages
F A set of supply frequencies
wij The computational cost of task 7; € T on processor pe; € PE
Cij The communication cost between node 7; and node t;
w; The average computational time of a task when executed on different processors
child(t;) The set of immediate successors of task t;
parent(t;) The set of immediate predecessors of task t;

EST(7;, pe;) The earliest execution start time of task 7; on processor pe;
EFT(t;, pej) The earliest execution finish time of task 7; on processor pe;

AFLs Available frequency levels

DAG Directed acyclic graph

DVFS Dynamic Voltage Frequency Scaling

CCR Communication to computation ratio

SLR Scheduling Length Ratio

ECR Energy Consumption Ratio

POF Probability of Failure

RDLS The Reliable Dynamic Level Scheduling algorithm

HRDS The Hierarchical Reliability-Driven Scheduling algorithm
RHEFT The Reliability-aware Heterogeneous Earliest Finish Time algorithm
RCPOP The Reliability-aware Critical-Path-On-a-Processor algorithm
RMEC The Reliability Maximization with Energy Constraint algorithm

Sn The total number of nodes of a special DAG

L. Zhang et al./Information Sciences 319 (2015) 113-131 117

heterogeneous processors. And each one is DVFS enabled. As shown in Table 2, each core can run at different AFLs. For each
processor pe; € PE, the voltage-relative frequency AFLs is selected randomly among the distinct sets. The execution costs of
each node on different processors are shown in Table 3, under the condition that each task runs at the maximum available
frequency. According to the previous study [17], frequency switching takes a negligible amount to time, about 189-300 pis.
These overheads are not taken into account in this study while applying the DVFS technique. Besides, communications
among processors are also considered to perform at the same speed on all links without the limitation of bandwidth.

2.4. Fault model

While an application is executing, a fault maybe hard to avoid owing to various reasons, such as hardware failure, soft-
ware bugs, devices exposed to extreme temperatures, and external interference. As a consequence, transient faults occur
more frequently than permanent failures [19,28]. In this paper, we will pay more attention to transient faults in our study,
and devise a feasible and efficient scheduling algorithm with the DVFS technology to maximize overall system reliability.

Extensive works have been done for fault management. Generally, the transient fault is modeled by a Poisson distribution
with an average arrival rate / [40]. Following most previous studies, we assume that transient faults happen during the
execution of each task independently. Nevertheless, with the effect of dynamic voltage and frequency scaling, transient
faults’ average arrival rate will depend on the system processing frequency f, and v is the corresponding voltage. Hence,
the fault rate can be modeled as follows:

7

MF) = 20 - &(f). 4)
our scheduling model and experiment analysis. It can be expressed as
Héf/ 8}
20 20
1

In the above equation, we have g(f,...) = 1, where f,,, = 1.0. Traditionally, it has been recognized as an exponential relation-
13

ship between the transient fault rate and the circuit’s critical cost [18]. We adopt the exponential model proposed in [44] for
14 10 17 9
2 13
15
@
1 12
Fig. 1. A simple precedence-constrained application DAG.

Table 2

Voltage-relative frequency pairs.
Level Pair 1 Pair 2 Pair 3

Voltage Frequency Voltage Frequency Voltage Frequency

0 1.75 1.0 1.5 1.0 2.2 1.00
1 1.50 0.8 14 0.9 1.9 0.85
2 1.40 0.7 13 0.8 1.6 0.65
3 1.20 0.6 1.2 0.7 13 0.50
4 1.00 0.5 1.1 0.6 1.0 0.35
5 0.90 0.4 1.0 0.5
6 0.9 04

118 L. Zhang et al./Information Sciences 319 (2015) 113-131

Table 3
Computation costs on different processors.
Node number P P, P3
0 12 15 13
1 11 16 10
2 14 12 15
3 9 13 7
4 15 20 17
5 7 9 15
6 13 12 11
7 11 9 18
8 13 18 15
9 9 12 17
10 12 10 16
d(-f)
MF) = 20-8(f) = 20 - 107 min, (3)

where /, stands for the average fault rate as mentioned before, d is a constant greater than zero, which represents the depen-
dency of fault rate on frequency and voltage scaling. It can be seen easily that the fault rate will increase exponentially when
the frequency decreases for energy conservation. In other words, A(f) is a strictly decreasing function. Hence, the maximum

average fault rate is Anax = Ao - 109, which corresponds to the minimum available frequency.

Definition 1. The reliability of a task is the probability of executing the task successfully. If the transient fault follows a
Poisson distribution, the reliability of node t; with the corresponding computation cost ¢; is [44]

Ri(f;)) = e I, (6)

where f; denotes the processing frequency.

Definition 2. The system reliability R,,s denotes the probability of successfully executing an entire task set which consists of
n tasks:

Rsys = H?:]Ri(fi)' (7)

2.5. Problem description

The problem to be solved in this paper can be formally described as follows. Assume that we are given a DAG which com-
prises tasks with precedence constraints, and processors in a heterogeneous cluster which support different frequency levels.
Then, the problem to be addressed in this paper is to assign a property execution voltage (or frequency) of an available pro-
cessor for each ready task in a right order, while assuring the maximum system reliability and guaranteeing the total energy
consumption not exceeding a given energy E*. Obviously, it is a combinatorial optimization problem, whose formulation is
given as follows:

Maximize: Rys = IT",Ri(f;),

subject to: foin <fi <fmao, (Vi: 1<i<n), (8)
E[oml < E". (9)

3. A motivational example

As an illustration, Fig. 2 presents the schedule obtained by the RMEC algorithm for the sample DAG in Fig. 1. The schedule
length is equal to 127.33, the total energy consumption is 236.70, and the probability of failure (1 — Ryys) is 2.37e—6. While
the corresponding scheduling results of the RHEFT and RCPOP algorithms in terms of schedule length, total energy, and prob-
ability of failure are 138.49, 256.32, 2.57e—6, 142.49, 258.02, 2.75e—6, respectively.

4. The proposed algorithms

Reliability is critical for an application, sometimes higher system reliability is even more important than shorter schedule
length. For a real application, a more useful objective is to assure that the total energy consumption does not exceed E* and
the system reliability is maximized. In a cluster, task scheduling consists of two major stages, i.e., task priority calculation

L. Zhang et al./Information Sciences 319 (2015) 113-131 119

.

:

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Fig. 2. Scheduling the task graph in Fig. 1 using the RMEC algorithm.

and task-processor pair selection. In the first stage, we use the efficient URank to calculate the task priorities, which can
guarantee the topological order of a given DAG. In the second phase, there are more feasible strategies to decide the task-
processor pair while fulfilling the energy constraint.

In this section, three schemes are developed to solve the problem of maximizing the reliability with energy conservation
for parallel tasks in a heterogeneous cluster. The first scheme, namely the Reliability-aware Heterogeneous Earliest Finish
Time (RHEFT) algorithm, is to choose the proper frequency to maximize the task execution reliability with the earliest finish
time on a heterogeneous processor. The executing frequency for each task depends on the remaining energy and system
reliability maximizing. The second scheme to be presented is the Reliability-aware Critical-Path-On-a-Processor (RCPOP)
algorithm. In comparison with the RHEFT algorithm, the RCPOP algorithm only differs in the phase of processor selection
after finding the efficient frequency for each ready task. Under such a scheme, the distinguishing feature is to find a processor
with the highest reliability which can be allocated to the critical path of the application on it. In addition, a new scheme,
which is referred to as the Reliability Maximization with Energy Constraint (RMEC) algorithm, picks out the best combina-
tion of task-processor according to the maximum reliability and energy conservation during the first round task scheduling.
After the pre-scheduling, the available time slots are reclaimed to further reduce the energy.

Before introducing the details of the above three schemes, we firstly present the characteristics of high reliability and
energy with task executing frequency.

4.1. Relationship between reliability and energy

In this section, we will present a Reliability Maximization with Energy Constraint (RMEC) algorithm. The RMEC algorithm
which will be presented in the following aims at achieving high reliability with the condition of energy constraint and with-
out increasing makespan during the scheduling procedure. Due to the frequency-independent active power, the power con-
sumption no longer varies monotonically with the increasing of frequency. As shown in Eq. (2), it can be easily to deduce that
Ei(f;) is a strictly convex function and is minimum when f; = f,, = {/Pina/2Ce (energy efficient frequency) [41]. Therefore,
lower frequencies may not always be of benefit for energy saving and there must exist an optimal voltage-frequency pair
for each candidate task to achieve minimum energy consumption. On the other hand, as the processing frequency increases,
the reliability of task improves monotonically. It is safely to draw such a conclusion that high reliability and low energy con-
sumption are two contradicting elements for scheduling. Searching a good strategy for the tradeoff of them is a worthwhile
work. We will attempt to schedule tasks aiming at improving system reliability and preserving energy consumption.

Definition 3. The immediate neighboring frequency f;, of f,, on processor pe;, is the one which consumes less energy.

According to the expression f; = f,, = </Pina/2Cef, fe. Only depends on P;y4. The specific Pipq value for each task follows a
uniform distribution and is determined randomly with its range between 0.2 and 2.0. So it is not difficult to find that f,, var-
ies on different processors for each task ;.

4.2. Critical phases

Each of the three algorithms which will be presented in the next part, is mainly composed of three phases. In the follow-
ing, we introduce two important phases as outlined below.
Task priority establishment phase. To meet the requirement of task scheduling, a prior order is established in this phase.
Each task is set with its URank, which is computed recursively according to the expression
URank(t;) =W; + max (c;; + URank(tj)), (10)

Tjechild(t;)

120 L. Zhang et al./Information Sciences 319 (2015) 113-131

where child(t;) is the set of immediate children of task node 7;. The rank is computed recursively by traversing from the bot-
tom of a DAG to the top. It should be apparent to draw such a conclusion that URank(Teyit) = Wexie. Similarly, the downward
rank DRank is defined as

DRank(t;) = max (W; + ¢;j + DRank(t;)), (11)
Tjeparent(t;)

where parent(t;) is the set of direct parents of task node t;. As there is no parent for the entry node, it is easy to conclude that
the DRank of the entry node is equal to zero. As shown in Table 3, the computation cost of each node which is performed on a
special processor with the maximum available processing speed (AFL 0) is obtained. According to the computation cost given
in Table 3, a priority queue for the simple DAG shown in Fig. 1 is maintained for the following three algorithms. The values of
task priority using the DRank and URank method are presented in Table 4. DRank is also effective but less efficient than URank
while forming a priority queue during the task priority establishment phase. Both of them can guarantee the priority con-
straint while scheduling. Furthermore, they are two indispensable elements to search the critical path of a DAG. In what fol-
lows, we use the URank to present our algorithms.

Processor frequency selection phase. As mentioned above, the “best” frequency-voltage pair to achieve lower energy
and higher reliability appears as nearest neighbors of f,, on a processor for each task node. A binary search tree is used
to find these two immediate neighbors, which has time complexity of O(log|T|), where |T| is the number of task nodes.
By calculating the active energy using Eq. (2), the neighbor frequency which consumes less energy will be selected to
perform a data ready task node.

4.3. The proposed algorithms
4.3.1. The Reliability-aware Heterogeneous Earliest Finish Time (RHEFT) Algorithm

For the purpose of performance comparison, two other revised algorithms which are based on two well known algorithms
will be presented in order to find the optimal system reliability. The first revised algorithm is the Reliability-aware

Heterogeneous Earliest Finish Time (RHEFT) algorithm.

Algorithm 1. RHEFT

Require: A DAG G = (T, E) and a set PE of DVS available processors.

Ensure: A schedule S of G onto PE.

1: compute URank of t; € T by traversing the graph from the exit node

2: compute energy-efficient frequency for each node in set T

3: sort the tasks in a non-increasing order by URank(t;) value and establish a priority queue Queueygqy, for the sorted
tasks

4: while the priority queue Queueygg, is not empty do

5: 1; « the head node in Queueyggnk

6: for each processor pe; € PE do

7: for vf;, < F do

8: find the immediate neighboring frequency f;, of f,, on processor pe; for task 7;, mark the one which consumes
less energy

9: if the summation of energy consumption satisfies E;;; < E* then

10: f ik fin

11: else

12: fj.k - fmax

13: end if

14: end for

15: end for

16: assign the marked frequency f;, to task t; on the marked processor
17: compute the reliability of task t; using Eq. (6)

18: compute the energy consumption for task t; using Eq. (2)

19: delete the head node t; in Queueygank

20: end while

The RHEFT algorithm (Algorithm 1) is an application scheduling algorithm with bounded number of heterogeneous
processors. It consists of three major phases, i.e., the priority establishment phase to provide a valid topological order of
application tasks, the frequency selection phase to choose a feasible and efficient frequency to perform the data ready task,
and the processor assignment phase to allocate the candidate task to the “best” processor in the order of priorities and low
energy consumption.

L. Zhang et al./Information Sciences 319 (2015) 113-131 121

As shown in Algorithm 1, Step 1 and Step 2 primarily calculate the URank and energy-efficient frequency for each
task, respectively. The priority queue is constructed in Step 3. Steps 4-20 are outside loop of the RHEFT to guarantee
each task node is scheduled in a right order. In Step 8, a suitable immediate neighboring frequency is selected, and
temporarily marked in the memory. Steps 9-13 guarantee that the total energy consumption does not exceed E*.
After traversing all the processors in Steps 6-15, the most suitable frequency and the “best” processor are produced.
Then the algorithm allocates a task node to the best processor and assigns it with suitable execution frequency f;, in
Step 16. The reliability and energy consumption of a task are calculated in Steps 17 and 18, respectively. The RHEFT
algorithm takes O(logf) time for the frequency selection phase in Step 8. The RHEFT algorithm has a O(|T| x p x logf)
time complexity for |T| task nodes and p processors, where each processor supports f levels of DVS enabled
frequencies.

4.3.2. The Reliability-aware Critical-Path-On-a-Processor (RCPOP) Algorithm

Another revised algorithm is the Reliability-aware Critical-Path-On-a-Processor (RCPOP) algorithm. In this algo-
rithm, the DRank and URank of each node is computed firstly. A priority queue of the application graph is formed
according to the decreasing order of nodes’ URank values. The task nodes on the critical path, which has the maximum
summation of DRank and URank, should be found and stored to a sorted list. Then in Step 9, energy-efficient frequency
fee 1s derived. The critical processor which takes the least computational cost for all task nodes on the critical path is
selected in Step 10. Steps 12-28 are the main part of a loop. While scheduling a task from the priority queue, a node
on the critical path will only be assigned to the critical processor. Then the algorithm picks out a “best” immediate
neighboring frequency f;, for it under the constraint of total computation consumption. The nodes in other paths
can also be assigned to the critical processor provided that there is a free and big enough slack time slot to accom-
modate it. Otherwise, it will be assigned to a non-critical processor. The latter procedure is the same as the CP nodes.
For all ready tasks, the feasible frequency searching takes time O(logf). So the complexity of the RCPOP algorithm is
O(IT| x p x Igf).

Algorithm 2. RCPOP

Require: A DAG G = (T,E) and a set PE of DVS available processors.
Ensure: A schedule S of G onto PE.
1: compute URank(t;) of each node t; € T by traversing the graph upward from the exit node

2: compute DRank(t;) of each node t; € T by traversing the graph downward from the entry node

3: |CP| = Max{Vt; € T|URank(t;) + DRank(t;)}

4: for each node 7; € T do

5: if the summation of URank(t;) and DRank(t;) equals to |CP| then

6: add node t; to CP set listcp

7: end if

8: end for

9: compute energy-efficient frequency for each node in set T

10: select the CP processor Pcp which have the minimal summation computation cost of nodes in listcp

11: sort the tasks in a non-increasing order by URank(t;) value and establish a priority queue Queueyggy, for tasks in

order
12: while not all nodes in Queueygy,x have been scheduled do
13: 1; «— the head node in Queueyggk
14: if 7; € listcp then

15: assign processor Pcp to 7;, and compute the immediate neighboring frequency f;, of f,, on processor

16: else

17: assign the processor which consumes less energy with immediate neighboring frequency of f;, its f,, for t;
18: end if

19: if the summation of energy consumption satisfies E;q < E* then

20: fj,k — fin

21: else

22 fj.k — Frmax

23: end if

24: assign task 71; to the marked processor and specify its executing frequency f;,
25: compute reliability of the task node t; using Eq. (6)

26: compute energy consumption of the task node t; using Eq. (2)

27: delete the head node 7; in Queueyggnk

28: end while

122 L. Zhang et al./Information Sciences 319 (2015) 113-131

4.3.3. The Reliability Maximization with Energy Constraint (RMEC) Algorithm

Likewise, three phases are incorporated into the RMEC algorithm. The task priority queue consists of Steps 1 and 2. The
topological order of tasks is established in this phase. The optimal frequency selection phase comprises Steps 5-13. It is
notable that Steps 7-11 assure the RMEC algorithm within the energy constraint, as well as improve the reliability of each
candidate task during execution. It is in the inner loop body of the algorithm. Inspired by the energy-conscious scheduling
method proposed in [23], the reliability maximum energy conservative (RME) strategy is to choose a processor and frequen-
cy combination that has the maximum value, as shown in Eq. (12),

R(ti,pe;,fir) — R(ti, ey fim)
R(ti,pe;, fir)

RME(TI'-,pejvfj‘k’pelafl‘m) == <

E(ti, pe;.f;1) — E(Ti,pey.fim) > (12)

* <E(Ti7pejafj.k) — min {E(Tiapeﬁfj,k) - E(Tivpelvfl.m)}

where 7; is the data ready task which is in the head of the priority queue, f;, and f;,, are the available discrete frequency on
the candidate processors pe; and processor pe;, respectively. R(t;, pe;, f;,) and R(7;, pe;, f;,) denote the reliability of task 7; on
processor pe; at frequency f;, and that of task 7; on processor pe, at frequency of f, ,, respectively. Similarly, E(t;, pe;, f;,) and
E(ti, pe;, f1,,) Tepresent the energy consumption of task 7; on processor pe; at frequency f;, and that of task 7; on processor pe,
at frequency of f; ,,, respectively.

Algorithm 3. RMEC

Require: A DAG G = (T,E) and a set PE of DVS available processors.

Ensure: A schedule S of G onto PE.

1: compute URank(t;) of each node in DAG G

2: sort task T in a non-increasing order by URank(t;) to establish priority queue Queueyggny
3: while the priority queue Queueygg, is not empty do

4: 1; — the head node in Queueyggik

5: for each processor pe; in set P do

6: compute the nearest frequency level f;, of processor pe; which has the minimal energy consumption

7: if the summation of energy consumption satisfies E;,;; < E* then

8: fj ‘_fin

9: else

10: fj <*fmax

11: end if

12: search the best combination of processor pe; and frequency level f;, of which keeps the max value
REM(7;, pe;, fi. pee. f+) > pe, and f, are used to temporarily store the best combination of processor and
processing frequency respectively

13: end for

14: assign the recorded best combination of processor pe, and processing frequency f, to node ;
15: compute the node reliability of task t;

16: end while

17: let S’ denotes the scheduling derived from the above procedure

18: while the scheduling list S’ is not empty do

19: 7} the head node in scheduling list &’

20: for each processor pe; in set PE do

21: while there is an available slack slot in the processor which satisfies the precedence priority of tasks do

22: compute makespan, node reliability

23: if makespan does not increase, node reliability promotes and there is an available time slot to accommodate
7} then

24: replace 7} with the better combination processor pe; and frequency f,

25: end if

26: update node reliability and compute the node energy consumption

27: end while

28: end for

29: end while

L. Zhang et al./Information Sciences 319 (2015) 113-131 123

Steps 14-15 are included to realize the third phase, i.e., assigning a node in the marked processor with the optimum fre-
quency. As slack occurs inevitably due to the inter-processor communication for a DAG, Steps 17-29 are used to utilize the
slot times of processors without increasing the schedule length and degrading reliability. This step can be taken as local opti-
mum without sacrificing time complexity consumption. So the complexity of the RMEC algorithm is O(2 x |T| x p x logf).

5. Experiments and results

RHEFT and RCPOP are two algorithms with straightforward minds for reliability maximization. In the comparison with
the RMEC algorithm, they are inferior in performance. Hence, in this section, we not only compare the three proposed algo-
rithms, but also compare the performance of the RMEC algorithm with two other excellent reliability-aware algorithms, i.e.,
HRDS [30] and RDLS [10]. These two algorithms are proven to perform well for parallel task scheduling in a heterogeneous
computing system. The following comparison is intended not only to present quantitative results, but also to qualitatively
analyze the results. To measure the performance of these scheduling algorithms, two extensive sets of task graphs, i.e., ran-
domly generated and real-world applications, are used in our study. The three real parallel applications are the fast Fourier
transformation (FFT), the LU-decomposition, and Gaussian-elimination. In addition, plenty of variables are made for these
task sets in some more comprehensive cases.

Before making a comparison with algorithms RDLS and HRDS, we firstly give a brief introduction of them. HRDS
[30] refers to the Hierarchical Reliability-Driven Scheduling algorithm in a hierarchical grid computing system. Its
main objective is to achieve high reliability and shorter schedule length by considering the task reliability overhead
while mapping a task to the appropriate processor. The algorithm proceeds in two phases. During the first phase of
establishing task priority, the system task overhead LC(tj,pe;) is taken into account, where LC(7;,pe;) is the sum of
the task reliability cost and the corresponding earliest finish time of task 7; on processor pe;. During the second phase,
the algorithm selects the processor pe,, which costs the minimal overhead LC(7;, pe;) to perform task 7;. That is to say,
for a given task 7; in the task set T, HRDS allocates the processor pe,, with minimal LC(t;, pe,,) in the mapping phase of
list scheduling.

While the Reliable Dynamic Level Scheduling (RDLS) algorithm [10] is based on the DLS [9], it promotes the best suited
resources to the application to reduce the execution time of that application. During the task priority calculation phase, RDLS
adds the last item C(7;, pe;) to capture the reliability, which could impact the allocation decision and improve the reliability
of application. It is noteworthy that the C(z;, pe;) is a cost function, which could promote resources reliability at a high level
to maximize the reliability of an application. Akin to the DLS algorithm, the RDLS algorithm finds a suitable task-processor
pair with the highest dynamic level. The RDLS algorithm minimizes the makespan and enhances the reliability of the appli-
cation to some extent.

Specially, the random task graph set consists of 100 base task graphs generated with 80 different sizes, eleven CCRs, and
five processor heterogeneity settings. For each configuration, the specific P;,y value is determined randomly according to a
uniform distribution in the range of [0.2,2.0]. For simplicity, the value of C, is set to one throughout the whole experiments.
Each of the three real-world applications is conducted in the benchmark that involves 7250 task graphs. Hence the total
amount is 21,750.

Our experiments are carried out using a workstation at National Supercomputing Center in Changsha. It is equipped with
an Intel Core i3-540 dual-core CPU, 8 GB DRAM, and 500 GB hard disk, respectively. The machine runs with Windows 7
(64 bit OS) SP1. We designed a simulator which has implemented well known algorithms, including HCPFD [14], HLD [3],
RDLS [10], and so on. Based on this framework, we utilize the well-known benchmark involving the large number of FFT,
GE, Laplace (introduced below) graphs to implement our proposed algorithms to verify the performance.

In our study, each processor is assumed to execute a task from the prior queue without preemption. The computation and
communication costs are generated and follow a uniform distribution for each task node, with the mean value to the specific
average cost of computation and communication, respectively. The occurrence of transient fault follows a Poisson

Table 4
Task priorities.
Node number URank DRank
0 136.33 0.00
1 96.67 27.33
2 101.00 22.33
3 106.00 30.33
4 101.33 22.33
5 69.33 67.00
6 64.33 53.00
7 70.00 53.67
8 39.00 97.33
9 37.33 86.33
10 12.67 123.67

124 L. Zhang et al./Information Sciences 319 (2015) 113-131

distribution, and the equation is given by Eq. (5), where d = 3 and /o = 10°. For the three real applications, the number of
tasks can range from about 14 to 1024 as the input number of points and the matrix sizes are varied, respectively.

5.1. Performance metrics

5.1.1. Scheduling Length Ratio (SLR)
Makespan, or scheduling length, is defined as

makespan = FT(Tey),)

where FT(T.) is the earliest finish time of the exit task in the scheduling queue.

For most scheduling algorithms, makespan is one of the main metrics of performance evaluation. Since a large set of
application graphs with different properties are used, it is necessary to normalize the makespan to the lower bound, which
is named as Scheduling Length Ratio (SLR). Without considering the communication cost, the calculation expression of SLR
can be expressed as:

makespan

SIR = - .
> ccpMiNpeepe {Wij }

(14)

5.1.2. Energy Consumption Ratio (ECR)
In our study, we consider energy consumption and the probability of failure for a scheduled task set as another two more
important performance metrics. For a given task set, the ECR is defined as:

ECR _ . Etotal T (‘15)
ZI;ECPmlanJEPE{Pindl % + Cef - Ci ‘fi }

where E,q is the total energy consumption of the scheduled tasks.

5.1.3. Probability of Failure (POF)
The probability of failure is one of the two primary performance metrics for our comparison. Formally, the POF value of a
task set with the allocated frequency to each specific task by a scheduling algorithm is defined as:

POF=1—-R=1-1",R(f)). (16)

5.2. Randomly generated DAG

In our study, we first considered the random DAG graphs, which are generated with certain probability for an edge
between any two nodes of the graph. Such kind of weighted application DAGs with various characteristics that have close
relationship with several input parameters can be presented briefly as follows.

e DAG size (7). This is the number of task nodes in a graph.

e Communication to computation ratio (CCR). In some experiments, CCR is used to characterize the workload of the task
graph. It is the ratio which equals to the average of communication cost over the average of computation cost. With
the help of CCR, one can judge the importance of communication or computation in the task graph. A DAG with very
low value can be considered as a computation intensive application. On the contrary, a DAG with a high CCR value is a
communication intensive application.

e Average out degree (6). This is the average value of the out degree of a DAG graph.

o Computation capacity heterogeneity factor (h) [8]. Heterogeneity basically reflects the variance of processing speed. A
high h indicates wider margin in the computation costs for a task, and vice versa. And each task has the same computation

cost if this factor is set to 0. The average computation cost of each task w(t;) is selected randomly from a uniform distri-

bution generator with a mean value W which can be specified by a user. And its range is [W(’E,-) x (1=, w(t) x (1+5].

The value of W has no influence on the performance of scheduling.

In each of our experiments, graphs are created with the combination of the above characteristics. The graph size ranges
from 50 to 500 nodes, with step by 50. The communication edge between two nodes is generated with identical probability
and computed based on the average number of edges for each node.

5.3. Random application performance results

The goal of these experiments is to assess the performance of the proposed algorithms with two other excellent algo-
rithms, i.e., HRDS and RDLS.

L. Zhang et al./ Information Sciences 319 (2015) 113-131 125

The experimental results of the first set of simulation studies are shown in Figs. 3-5, where each data point comes from
the average value of experiment data based on the algorithms running for 500 times. As can be seen from these three figures,
RMEC outperforms the other four algorithms significantly for applications with different sizes and diverse CCR values. For
Fig. 3, where the application is computation intensive with CCR = 0.5, the average SLR for both RMEC and HRDS are pretty
close. This is due to the fact that SLR is not the most important metric in this study. To achieve high system reliability even at
the expense of modest performance loss in some cases, RMEC tries its best to improve the reliability of a task with the mini-
mum energy consumption to the greatest extent. It can also be observed from Fig. 3 that RMEC outperforms HRDS and RDLS
in terms of average ECR and average POF. We attribute the marginally better performance of RMEC over other four
algorithms to the fact that RMEC is a reliability adaptive strategy and assigns each task intelligently to a processor with
an appropriate execution frequency according to its computational time and execution reliability. In the processor allocation

[_JRDLS [~ HRDS [_JRDLS [NJHRDS [_JRDLS [~ HRDS
(I RHEFT 72 RCPOP KXX] RMEC ([0 RHEFT FZZZ/RCPOP [RZX] RMEC x10* [RHEFT 77 RCPOP RXX) RMEC
14

n 10 4 -
I 1.2 n
6 _ N 9
81 1.0
] _
o ['4 w p
) g 8 61 8 8 -
¢ ‘] I 0 N ¢
< < il <
*] 1 B NI [N
4 4 B NI K
K K 9 e K
21 b K o | NIPE b
i K K g K
4 4 21 B NIk b
1 § 8 <IN bl
K K K /st !
0+ K K 0+ A a gl o 1 & 2 N L sl
50 100 150 200 250 300 50 100 150 200 250 300
a umbper of lasks In a umbper of lasks In a (9 umber of 1asks Ina
Number of Tasks in a DAG b) Number of Tasks in a DAG Number of Tasks in a DAG
Fig. 3. Average SLR, ECR, and POF of the five algorithms for CCR = 0.5.
[JRDLS [JHRDS [_JRDLS [N\\\JHRDS [JROLS [N\\JHRDS
[RHEFT FZ7ARCPOP RXX]RMEC [RHEFT FZ7ARCPOP REXX] RMEC x10* [[[RHEFT 77} RCPOP XXX RMEC
7
n 101 A 1.0
6 .
5 M 8 I 5 08)
o 4 R o w
a* Q 64 Q o6+
< o Q g <)
> 34] 4 5
3 R z i] :: < R E‘
3 4 NIFR < 0.4 s K
K NI K ki K
2 i N[t K ¢l K
Kl ! o] !]
1 E: 21 i EE EE 021 E: EE :E
] 3 NI o NI NI
3 Nlligs Ki Kl 3 k!
1 50 100 150 200 250 300
(a) Number of Tasks in a DAG (b) Number of Tasks in a DAG (c) Number of Tasks in a DAG
Fig. 4. Average SLR, ECR, and POF of the five algorithms for CCR = 1.0.
RDLS HRDS RDLS HRDS [__JRDLS ~ [NJHRDS
RHEFT RCPOP_EZZIRMEC RHEFT RCPOP XXX RMEC x10° [RHEFT [Z77RCPOP BXX) RMEC
8 T—— ————
101 & M
71 N .
. . - .
6 - 9 _) .
i o T 81 _ 61 _
14 w 54
3 g o g°
. . N = -
e o N 8 o 44
z 2 \ 2
44 N 3 !
B | N 3 34 3
RN 8 K
N H !
8N & 2 K
KN K Kl
24| NIiiFe | N 4
SEIN K 14 !
KN 3 o
R INNAS | INIAR) | I | NS | I | o LN 1IN R 1IN | IR | NI | oA k B I LINIIAES 1IN |
100 150 200 250 300 50 1 150 200 250 300 50 100 150 200 250 300
(a) Number of Tasks in a DAG (b) Number of Tasks in a DAG (c) Number of Tasks in a DAG

Fig. 5. Average SLR, ECR, and POF of the five algorithms for CCR = 5.0.

126 L. Zhang et al./Information Sciences 319 (2015) 113-131

phase, RHEFT chooses the processor with the earliest finish time, and RCPOP identifies the critical processor for critical tasks.
Both of them do not take enough account for reliability. Meanwhile, HRDS pays excessive attention to system task overhead
LC(7;, pe;) in the phase of processor selecting. And the cost function of RDLS cannot accurately reflect the importance of the
efficient frequency selection for an application’s reliability. Thus, their ECR and POF are all worse than RMEC.

The comparisons for random graphs with larger CCR values are shown in Figs. 4 and 5, respectively. The gaps among the
five algorithms shrink gradually with the CCR value increasing. For both CCR = 1.0 and CCR = 5.0, the improvement of RMEC
evinces significantly, with respect to the quality of average ECR and average POF. Specially, as CCR equals to five, it implies
that the cost of communication part dominates the whole application. RMEC clearly exceeds RHEFT, RCPOP, HRDS, and RDLS
by (3.31%, 5.74%, 7.62%, 14.05%) in terms of the average ECR, and (3.14%, 6.22%, 11.23%, 14.05%) in terms of the average POF,
respectively. With respect to average SLR, RMEC has slightly lower performance (—2.95%, 1.10%, —3.68%, 3.89%) over RHEFT,
RCPOP, HRDS, and RDLS. RMEC is a reliability-aware and energy conservative algorithm. It obtains nice ECR and POF at the
expense of slight longer makespan. The results distinctly demonstrate that RMEC surpasses HRDS and RDLS. For the above

[_JRDLS [NJHRDS [_JRDLS [JHRDS [_JRDLS [JHRDS
([RHEFT 777 RCPOP RXX) RMEC [RHEFT 777 RCPOP [RXX) RMEC x10* |[IIIRHEFT FZZZ1RCPOP [XX) RMEC
14

n n n - 1.2 M
s ; ;
104 o 2 2 . - 2 . -
3 1.0
84
° 4 08+
> 61 - 06
. X
T 04+
s !
1 02+
o L K d d o L K| 004 ol

3 6 9 12 15 3 6 9 12 15 3 6 9 12 15
(a) Number of Processors (b) Number of Processors (c) Number of Processors

ol

XX
oo

e
0L

Avg. SLR

Avg. ECR
Avg. POF

XX
XK

DOO0L
KKK
IS

XK
oo

XX

SOOOX
XK
N

ESSSSSISSSSSNSSSNS{Y
e

ESSSSSSSSSSSSSSSSSSN]
X

e
e

>
I

Fig. 6. Average SLR, ECR, and POF of the five algorithms for CCR = 5.0 and DAG size = 500.

(a) FFT with four points (b) LU-decomposition task graph (c) Gaussian elimination task

Fig. 7. Three kinds of real-world DAGs.

Table 5

Configuration parameters for the FFT task graphs.
Parameter Possible values
CCR 051,2,3,...,10
Number of processors 3,6,9,12, 15

Number of points 4,8, 12, 16, 20, 24

L. Zhang et al./Information Sciences 319 (2015) 113-131 127

analysis, we can get a conclusion that our algorithms perform better as the CCR increases, especially the RMEC algorithm. In
other words, it is more suitable for data intensive applications.

Fig. 6 reveals the performance of the five algorithms for various numbers of processors, where the random graph has 500
task nodes and CCR equals to five. The RMEC strategy performs consistently better than other four algorithms with the num-
ber of processors increasing. The margins of the average SLR among the five algorithms decrease gradually. As the number of
processors increases, the average of ECR and the average of POF show a slight downward trend. At some point, especially for
12 processors in Fig. 6, the increase in the number of processors is of no use to improve the performance.

5.4. Performance analysis on graphs of real-world applications
Without loss of generality, it is necessary to use real-world applications to evaluate the performance of our algorithms. To

this end, three representative real-world applications will be used to test the performance of our algorithms. These three
applications are real-world problems, i.e., fast Fourier transformation (FFT), LU decomposition, and Gaussian elimination.

[_[RoLs _XSUHRDS _IMMTRHEFT P77Z7RCPOP XX RMEC]

12 ' B
_ <7
10
% o
D
X
< I NmA
NIGE | NI
0 A
05 1 10
25
204 _ _
N N=
3 /i
4 Z15R
g s 0
m 71
. 0
z 10 1 /::::
0 7
05 1 10
5 X 10° [Trots XXJHRDS _[[MTRHEFT [77JRCPOP ERZX RMEC]
4'7377§7 Nmi Nz N2 7 Nme Nmz Nime Nmi
: | | |
=
g’ 2_
<
14
0
05 1 2 3 4 5 6 7 8 9
(c) CCR

Fig. 8. Average SLR, ECR, and POF for the FFT task graph with different CCR.

Table 6

Configuration parameters for the LU decomposition task graphs.
Parameter Possible values
CCR 05,1,2,3,...,10
Number of processors 3,6,9,12,15

Size 56,7,...,29,30

128 L. Zhang et al./Information Sciences 319 (2015) 113-131

5.4.1. Fast Fourier transformation (FFT)

A fast Fourier transform is an algorithm to compute the discrete Fourier transform and its inverse transform. FFT compu-
tations are very fast and widely used in many applications in science, engineering, and mathematics. The computation of FFT
is comprised of two operations, i.e., the input vector and the butterfly operation. Fig. 7(a) shows a FFT task graph with four
points. It consists of two parts. The tasks above the dashdotted line are the recursive call tasks and the ones below are the
butterfly operation tasks [8]. The parameters used for experiment are shown in Table 5. The total number of tasks used in the
evaluation follows the expression, Sy, = 2°", (n > 2), where n is the number of levels in a FFT graph. As the size of n ranges
from 4 to 10 with the step by 1, the input FFT points change from 4 to 24 with the step by 4, and the corresponding number
of task nodes in a FFT graph varies as 16, 32, 64, 128, 256, and 512. For each kind of configuration, which combines the three
parameters in Table 5 together, we test the five Algorithms 500 times in such a combination. The ultimate results are
evaluated with the selected average value from the output, involving the average value of SLR, ECR, and POF with the

increment of CCR.

[C_JRDLS HRDS [RHEFT RCPOP 2% RMEC |

Avg. SLR
SN

TL707007)

I

=

[_TroLs XXYHRDS _M[RHEFT P77TRCPOP [REX RMEC

Avg. ECR
o - N w E (4]

)

N|

)

N|
7
= |
N|

X10° [C_JrDLS HRDS ([RHEFT RCPOP 2% RMEC |

Avg. POF

o
3

5
(c)CCR

Fig. 9. Average SLR, ECR, and POF for the LU task graph with different CCR.

5[Iy N Nz Nl NIZERIN Nige [Nige [N
4
3]
5]
14
0
2 3 4

Table 7

Configuration parameters for the Gaussian elimination task graphs.
Parameter Possible values
CCR 051,2,3,...,10
Number of processors 3,6,9,12,15

Size 56,7,...,29, 30,31

L. Zhang et al./ Information Sciences 319 (2015) 113-131 129

The experiment result are presented in Fig. 8(b) and (c). As can be observed from these two figures, algorithms RHEFT,
RCPOP, and RMEC are able to produce competitive ECR and POF over HRDS and RDLS. Due to the comprehensive precedence
constraints of most task nodes as the size of graph grows, the variety of both ECR and POF for the three algorithms are not
large. In such a case, an increment of number for the processor will not bring any benefit for improving performance.

The overall performance improvement of the RMEC strategy for FFT graphs is 4.87%, 6.19%, 8.43%, 17.64% better than
RHEFT, RCPOP, HRDS, and RDLS respectively, in terms of the average POF. For the average ECR, RMEC performs 3.21%,
5.12%, 6.79%, 15.02% better than RHEFT, RCPOP, HRDS, and RDLS. For the average SLR, RMEC performs —0.60%, 1.55%,
1.87%, 11.54% better than RHEFT, RCPOP, HRDS, and RDLS.

5.4.2. LU decomposition
LU decomposition, as shown in Fig. 7(b), is used wisely in solving mathematical equations and works by transforming a
matrix into a production of lower and upper triangular matrices. Table 6 shows the used parameters for experiment of LU

decomposition task graphs. The total number of task nodes S, complies with the expression, S, = ”2;3" ,(n = 3), where n is
the size. With the size of input matrix varies from 5 to 30, the task node number changes from 20 to 495. With regard to the
number of processors and the value of CCR, they vary from 3 to 15 with step by 3, and 0.5, 1, 2, 3,4, ..., 9, 10, respectively.
During the experiments, we choose the combination of the three parameters in Table 6, and make the algorithms execute
500 times under the condition of every combination. The following result is collected from the average value of the output.

As shown in Fig. 9(b) and (c), the RMEC strategy outperforms HRDS and RDLS strategies for all values of the CCR para-
meter. For both small and large CCR values, the RMEC algorithm consistently produces very low ECR values, especially for

small CCR values. The overall performance improvement of the RMEC strategy for LU decomposition graphs is 2.67%,

[C_JrDLS HRDS [[MI RHEFT RCPOP_[222J RMEC |

Avg. SLR
o - N w £ [¢,] o
V2777227)
=
NN
77
NN
A ISIAPD)
NE=———
S
]
)
ofEFV————+
N
)
_
IN N|

5
(a) CCR

[[__JrRDLS HRDS [RHEFT RCPOP_[3%J RMEC |

N N2 [Nz [IRMZs TR
8 9

s Nsre. N0 [N [NPs [
5_
4_
3_
24
14
0
2 3

Avg. ECR

0.5 1 4 6 7 10
(b) CCR
x10° [[_JrRoLs XSJHRDS (MMM RHEFT PZZJRCPOP X% RMEC |
6 : : : : " " : : : : :
518w | ;e [IRm2— [IRme | Nmbs [N N 172 7 O I R I 7 M N 7
w4 1
o
2 3 .
[
>
<, i
1 j
0 AR |
0.5 1 2 3 4 5 6 7 8 9 10
(c)CCR

Fig. 10. Average SLR, ECR, and POF for the GE task graph with different CCR.

130 L. Zhang et al./Information Sciences 319 (2015) 113-131

3.59%, 7.37%, 6.25% better than RHEFT, RCPOP, HRDS, and RDLS respectively, in terms of the average POF. For the average
ECR, RMEC performs 3.77%, 4.29%, 5.69%, 6.74% better than RHEFT, RCPOP, HRDS, and RDLS. For the average SLR, RMEC
performs —1.04%, 3.34%, 0.23%, 5.68% better than RHEFT, RCPOP, HRDS, and RDLS.

5.4.3. Gaussian-elimination

The Gaussian-elimination, a well known method, is widely used in mathematics for solving system of linear equations.
Let n be the size of a matrix which depicts the Gaussian-elimination task graph. The total number of tasks S, in this DAG
is equal to %, (n = 2), where n is the size of a matrix in a GE graph. Fig. 7(c) shows a Gaussian elimination graph with
matrix size 5. Table 7 shows the corresponding parameters used in the experiment of Gaussian elimination graphs. As the
size of a matrix varies from 5 to 31 with an increment step by 1, the total number of task nodes ranges from 14 to 495.
Similarly as above, after 500 times execution under the combination of the there parameters in Table 7, the final comparison
for the five algorithms with the average SLR, ECR, POF for different CCR is given below.

It can be seen from Fig. 10(b) and (c) that the RHEFT, RCPOP, and RMEC strategies surpass the HRDS and RDLS scheduling
strategies for all the CCR values, in terms of the average ECR and the average POF. As CCR increases, the average ECR for each
of the five algorithms grows slightly. The overall performance of the RMEC algorithm for the Gaussian elimination graph is
3.81%, 4.84%, 6.94%, 8.40% better than RHEFT, RCPOP, HRDS, and RDLS respectively, in terms of the average POF. For the aver-
age ECR, the RMEC performs 4.53%, 4.96%, 6.38%, 7.63% better than RHEFT, RCPOP, HRDS, and RDLS, respectively. For the
average SLR, RMEC performs —1.53%, 3.77%, —1.31%, 9.96% than RHEFT, RCPOP, HRDS, and RDLS, respectively.

6. Conclusion

This paper aims at incorporating task reliability while applying the DVS technique to achieve low power consumption in a
heterogeneous computing system of a cluster. Since most traditional researches lack for the consideration of transient failure
while exploiting the DVS technique, we believe that it is mandatory to devise and implement highly reliable scheduling
heuristics to satisfy the requirement of precedence constrained tasks, while pursuing high performance as well as achieving
energy efficiency. Thus, we design scheduling algorithms that can incorporate task reliability enhancement and energy sav-
ing for directed acyclic graphs. They can achieve high system reliability.

The performance of the RMEC algorithm is compared with four other reliability-aware algorithms. All of them take proper
consideration of improvement for system reliability in a multiprocessor computing system. The comparison is based on a
large number of randomly generated DAGs and three real-world applications, which include fast Fourier transformation
(FFT), Gaussian elimination, and LU-decomposition. The simulation results show that the proposed RMEC algorithm
significantly surpasses other algorithms in terms of system reliability and energy consumption.

Robustness, high system reliability, and low energy consumption are crucial to a heterogeneous computing system in a
cluster. One planned future research is to detect and recover a failed task while scaling frequency to execute tasks. This
extension may come up with one or more shared recovery blocks in each processor.

Acknowledgments

The authors would like to express their gratitude to the anonymous reviewers for their insightful comments. The research
was partially funded by the Key Program of National Natural Science Foundation of China (Grant Nos. 61133005, 61432005),
the National Natural Science Foundation of China (Grant Nos. 61370095, 61472124), the National Science Foundation for
Distinguished Young Scholars of Hunan (Grant No. 12JJ1011), and the Innovation Fund Designated for Graduate Students
of Hunan Province (No. CX2013B142).

References

[1] M. Abd-El-Barr, F. Gebali, Reliability analysis and fault tolerance for hypercube multi-computer networks, Inf. Sci. 276 (2014) 295-318.
[2] S. Albers, Energy-efficient algorithms, Commun. ACM 53 (5) (2010) 86-96.
[3] S. Bansal, P. Kumar, K. Singh, Dealing with heterogeneity through limited duplication for scheduling precedence constrained task graphs,]. Parallel
Distrib. Comput. 65 (4) (2005) 479-491.
[4] L. Benini, A. Bogliolo, G. De Micheli, A survey of design techniques for system-level dynamic power management, Trans. VLSI Syst. 8 (3) (2000) 299-
316.
[5] M.A. Beyer, D. Laney, The Importance of ‘big data’: A Definition, Gartner, Stamford, CT, 2012.
[6] T.D. Burd, R.W. Brodersen, Energy efficient CMOS microprocessor design, in: Proc. of the Twenty-Eighth Hawaii International Conference on System
Sciences, 1995, pp. 288-297.
[7] RS. Chang, C.Y. Lin, C.F. Lin, An adaptive scoring job scheduling algorithm for grid computing, Inf. Sci. 207 (2012) 79-89.
[8] M.L Daoud, N. Kharma, A high performance algorithm for static task scheduling in heterogeneous distributed computing systems,]. Parallel Distrib.
Comput. 68 (4) (2008) 399-409.
[9] A. Dogan, F. Ozgiiner, Optimal and suboptimal reliable scheduling of precedence-constrained tasks in heterogeneous distributed computing, in: Proc. of
International Workshops on Parallel Processing, 2000, pp. 429-436.
[10] A. Dogan, F. Ozgiiner, Matching and scheduling algorithms for minimizing execution time and failure probability of applications in heterogeneous
computing, [EEE Trans. Parallel Distrib. Syst. 13 (3) (2002) 308-323.
[11] W.C. Feng, T. Scogland, The green500 list: year one, in: IEEE International Symposium on Parallel & Distributed Processing (IPDPS 2009), 2009, pp. 1-7.
[12] M.R. Garey, D.S. Johnson, Computers and Intractability, vol. 174, Freeman, New York, 1979.

http://refhub.elsevier.com/S0020-0255(15)00123-1/h0005
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0010
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0015
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0015
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0020
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0020
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0035
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0040
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0040
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0050
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0050
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0060
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0060

L. Zhang et al./ Information Sciences 319 (2015) 113-131 131

[13] R. Ge, X. Feng, KW. Cameron, Performance-constrained distributed DVS scheduling for scientific applications on power-aware clusters, in: Proc. of the
2005 ACM/IEEE Conference on Supercomputing, 2005, pp. 34-45.

[14] T. Hagras, J. Janecek, A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous systems, Parallel Comput. 31
(7) (2005) 653-670.

[15] W. Huang, S.K. Oh, W. Pedrycz, A fuzzy time-dependent project scheduling problem, Inf. Sci. 246 (2013) 100-114.

[16] Intel, Intel Pentium m Processor Datasheet, 2004. <http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf>.

[17] T. Ishihara, S. Yamaguchi, Y. Ishitobi, T. Matsumura, Y. Kunitake, Y. Oyama, Y. Kaneda, M. Muroyama, T. Sato, Ample: an adaptive multi-performance
processor for low-energy embedded applications, in: Symposium on Application Specific Processors (SASP 2008), 2008, pp. 83-88.

[18] V. Izosimov, P. Pop, P. Eles, Z. Peng, Design optimization of time-and cost-constrained fault-tolerant distributed embedded systems, in: Proc. Design
Automat. Test Europe Conf. (DATE'05), 2005, pp. 864-869.

[19] S. Kartik, C. Siva Ram Murthy, Task allocation algorithms for maximizing reliability of distributed computing systems, IEEE Trans. Comput. 46 (6)
(1997) 719-724.

[20] M.A. Khan, Scheduling for heterogeneous systems using constrained critical paths, Parallel Comput. 38 (4) (2012) 175-193.

[21] K.H. Kim, R. Buyya, J. Kim, Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters, in: Proc. of the 8th
IEEE International Symposium on Cluster Computing and the Grid (CCGRID’07), 2007, pp. 541-548.

[22]]. Kotodziej, S.U. Khan, Multi-level hierarchic genetic-based scheduling of independent jobs in dynamic heterogeneous grid environment, Inf. Sci. 214
(2012) 1-19.

[23] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing systems under different operating conditions, IEEE Trans. Parallel Distrib.
Syst. 22 (8) (2011) 1374-1381.

[24] K. Li, Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers, IEEE Trans. Comput. (2012) 1668-1681.

[25] R. Melhem, D. Mossé, E. Elnozahy, The interplay of power management and fault recovery in real-time systems, IEEE Trans. Comput. 53 (2) (2004) 217~
231.

[26] R. Min, T. Furrer, A. Chandrakasan, Dynamic voltage scaling techniques for distributed microsensor networks, in: Proc. of IEEE Computer Society
Workshop on VLSI, 2000, pp. 43-46.

[27] G.C. Sih, E.A. Lee, A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures, IEEE Trans. Parallel
Distrib. Syst. 4 (2) (1993) 175-187.

[28] R. Sridharan, N. Gupta, R. Mahapatra, Feedback-controlled reliability-aware power management for real-time embedded systems, in: Proc. Design
Automat. Conf., 2008, pp. 185-190.

[29] X. Tang, K. Li, R. Li, B. Veeravalli, Reliability-aware scheduling strategy for heterogeneous distributed computing systems, J. Parallel Distrib. Comput. 70
(9) (2010) 941-952.

[30] X. Tang, K. Li, M. Qiu, E.H.M. Sha, A hierarchical reliability-driven scheduling algorithm in grid systems, J. Parallel Distrib. Comput. 72 (4) (2012) 525-
535.

[31] Y. Tian, J. Boangoat, E. Ekici, F. Ozgiiner, Real-time task mapping and scheduling for collaborative in-network processing in DVS-enabled wireless
sensor networks, in: 20th International Parallel and Distributed Processing Symposium (IPDPS'06), 2006, pp. 10-19.

[32] H. Topcuogluy, S. Hariri, M.y. Wu, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib.
Syst. 13 (3) (2002) 260-274.

[33] V. Venkatachalam, M. Franz, Power reduction techniques for microprocessor systems, ACM Comput. Surv. (CSUR) 37 (3) (2005) 195-237.

[34] L. Wang, S.U. Khan, D. Chen,]. Kotodziej, R. Ranjan, C.Z. Xu, A. Zomaya, Energy-aware parallel task scheduling in a cluster, Future Gener. Comput. Syst.
29 (7) (2013) 1661-1670.

[35] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced cpu energy, in: Mobile Computing, Springer, 1996, pp. 449-471.

[36] Wikipedia, Moore’s law, 2012. <http://en.wikipedia.org/wiki/Moore’s_law>.

[37] Wikipedia, Big data, 2014a. <http://en.wikipedia.org/wiki/Big_data>.

[38] Wikipedia, Tmall.com, 2014b. <http://www.tmall.com/>.

[39] Y. Xu, K. Li,]J. Hu, K. Li, A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues, Inf. Sci. 270 (2014)
255-287.

[40] Y. Zhang, K. Chakrabarty, Energy-aware adaptive checkpointing in embedded real-time systems, in: Proc. Design Automat. Test Europe Conf., 2003, pp.
918-923.

[41] B. Zhao, H. Aydin, D. Zhu, On maximizing reliability of real-time embedded applications under hard energy constraint, IEEE Trans. Industr. Inf. 6 (3)
(2010) 316-328.

[42] X. Zhong, C.Z. Xu, Energy-aware modeling and scheduling for dynamic voltage scaling with statistical real-time guarantee, IEEE Trans. Comput. 56 (3)
(2007) 358-372.

[43] D. Zhu, R. Melhem, B.R. Childers, Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems,
IEEE Trans. Parallel Distrib. Syst. 14 (7) (2003) 686-700.

[44] D. Zhu, R. Melhem, D. Mossé, The effects of energy management on reliability in real-time embedded systems, in: IEEE/ACM International Conference
on Computer Aided Design (ICCAD’04), 2004, pp. 35-40.

http://refhub.elsevier.com/S0020-0255(15)00123-1/h0070
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0070
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0075
http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0095
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0095
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0100
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0110
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0110
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0115
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0115
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0120
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0125
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0125
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0135
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0135
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0145
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0145
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0150
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0150
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0160
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0160
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0165
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0170
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0170
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0175
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0175
http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/Big_data
http://www.tmall.com/
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0195
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0195
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0205
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0205
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0210
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0210
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0215
http://refhub.elsevier.com/S0020-0255(15)00123-1/h0215

	Maximizing reliability with energy conservation for parallel task scheduling in a heterogeneous cluster
	1 Introduction
	2 Models
	2.1 System model
	2.2 Power model
	2.3 Application model
	2.4 Fault model
	2.5 Problem description

	3 A motivational example
	4 The proposed algorithms
	4.1 Relationship between reliability and energy
	4.2 Critical phases
	4.3 The proposed algorithms
	4.3.1 The Reliability-aware Heterogeneous Earliest Finish Time (RHEFT) Algorithm
	4.3.2 The Reliability-aware Critical-Path-On-a-Processor (RCPOP) Algorithm
	4.3.3 The Reliability Maximization with Energy Constraint (RMEC) Algorithm

	5 Experiments and results
	5.1 Performance metrics
	5.1.1 Scheduling Length Ratio (SLR)
	5.1.2 Energy Consumption Ratio (ECR)
	5.1.3 Probability of Failure (POF)

	5.2 Randomly generated DAG
	5.3 Random application performance results
	5.4 Performance analysis on graphs of real-world applications
	5.4.1 Fast Fourier transformation (FFT)
	5.4.2 LU decomposition
	5.4.3 Gaussian-elimination

	6 Conclusion
	Acknowledgments
	References

