
Electrical Power and Energy Systems 78 (2016) 499–512
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes
Joint optimization of energy efficiency and system reliability
for precedence constrained tasks in heterogeneous systems
http://dx.doi.org/10.1016/j.ijepes.2015.11.102
0142-0615/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: longxinzhang@hnu.edu.cn (L. Zhang), lkl@hnu.edu.cn (K. Li),

lik@newpaltz.edu (K. Li), xxl1205@163.com (Y. Xu).
Longxin Zhang a, Kenli Li a,⇑, Keqin Li a,b, Yuming Xu a

aCollege of Computer Science and Electronic Engineering, National Supercomputing Center in Changsha, Hunan University, Changsha 410082, China
bDepartment of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 August 2014
Received in revised form 23 September 2015
Accepted 25 November 2015

Keywords:
Energy management
Parallel application
Reliability enhancement
Scheduling algorithm
Voltage scaling is a fundamental technique in the energy efficient computing field. Recent studies tack-
ling this topic show degraded system reliability as frequency scales. To address this conflict, the subject of
reliability aware power management (RAPM) has been extensively explored and is still under investiga-
tion. Heterogeneous Computing Systems (HCS) provide high performance potential which attracts
researchers to consider these systems. Unfortunately, the existing scheduling algorithms for precedence
constrained tasks with shared deadline in HCS do not adequately consider reliability conservation. In this
study, we design joint optimization schemes of energy efficiency and system reliability for directed acyc-
lic graph (DAG) by adopting the shared recovery technique, which can achieve high system reliability and
noticeable energy preservation. To the best of our knowledge, this is the first time to address the problem
in HCS. The extensive comparative evaluation studies for both randomly generated and some real-world
applications graphs show that our scheduling algorithms are compelling in terms of enhancement of both
system reliability and energy saving.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

During the past decades, resource management and task
scheduling on computer system have been well addressed. With
the advent of multiprocessor and multi-core, energy management
has become one of the hottest areas due to the dramatically
increasing power consumption of modern heterogeneous compu-
tational systems, which consist of various set of resources. In
reducing energy consumption field, one of the recent main chal-
lenges is to accomplish speed up on parallel application with
regard to directed acyclic graphs (DAG). It’s generally considered
that task scheduling problem is an NP-complete problem [1].

The new generation of processors provides a substantial perfor-
mance boost meanwhile, the energy consumption is not a well
addressed problem. Although a lot of effort is being spent on saving
energy of processor, the efficient and effective method has yet to be
developed. The emergence of severe ecological, economic and tech-
nical issues are caused by the increasing energy consumption.
Hence, it is not very hard to image the size of adverse environmental
footprint left by HCS. With the growing advocacy of green
computing systems, the issue of energy efficiency has recently
attracted extensive research. Hardware technologies [2], energy-
efficient monitors, low-power microprocessors, processor contains
multiple processing element cores and a selective-associative cache
memory, are employed to deal with the energy consumption prob-
lems. Comprehensive surveys can be referred to references [2–4].

Dynamic voltage frequency scaling (DVFS) is a fundamental
energy management technique for modern computing systems. It
has been proven that the dynamic power consumption is a strictly
convex function of the CPU speed. Reducing clock speed or supply
voltage of processor at active state to achieve energy saving are
examples for energy consumption reduction. Various energy
efficient scheduling and resource management strategies have
developed for sustainable computing via taking advantage of DVFS
technique. Nevertheless, the excellent schemes for these scope of
applications are limited to unique processor systems [5], battery
based embedded systems [6] or homogeneous computing systems
[7–9].

Generally speaking, task scheduling is to select a proper proces-
sor for each task which complies with the precedence rules. In the
meanwhile, the main goal is to minimize scheduling length. One
relative research is the famous Dynamic-Level Scheduling (DLS)
algorithm [10] for homogeneous systems.During the past fewyears,
some list scheduling algorithms are proposed for heterogeneous

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2015.11.102&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2015.11.102
mailto:longxinzhang@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
mailto:xxl1205@163.com
http://dx.doi.org/10.1016/j.ijepes.2015.11.102
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes

500 L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512
systems, such as Constrained earliest finish time (CEFT) algorithm
[11], Critical-Path-On-a-Processor (CPOP) algorithm [12], and
heterogeneous earliest finish time (HEFT) algorithm [12]. HEFT
and CPOP are famous for its low-complexity and performance-
effective capability. CEFT is capable of accomplishing tasks earlier
without sacrificing too much time complexity.

Another important challenge is to avoid communication
between processors while transferring data for task nodes with
dependence. An advance technique, named node duplication, is
considered as an effective solution to the stated problem. Based
on this, some recently reported researches, i.e., HCPFD [13] and
HLD [14], are proposed to achieve better performance. The main
idea of these works is to duplicate the immediate parent of each
task if possible and necessary so as to diminish unnecessary com-
munication between parent and child nodes, which are allocated to
the distinct processors. The extensive comparisons, in [13,14],
demonstrate that algorithms with idea of duplication significantly
surpass other strategies, such as DLS [10] and HEFT [12].

Recently, Zhang et al. [15] presented algorithms to enhance task
reliability when a dynamic voltage scaling technique is applied to
achieve low power consumption in heterogeneous computing sys-
tems. Xu et al. [16] proposed a hybrid chemical reaction optimiza-
tion scheme for task scheduling on heterogeneous computing
systems. Huang et al. [17] developed novel heuristic speculative
execution strategies in heterogeneous distributed environments.
Yan et al. [18] developed an intelligent particle swarm optimiza-
tion (IPSO) algorithm for short-term traffic flow predictors to
tackle time-invariant assumptions in the on-road sensor systems.

Unfortunately, most of these approaches are on the basis of
simple system models. It is inadequate in two respects. On one
hand, the employed system model does not precisely reflect the
real parallel computation system. On the other hand, the assump-
tion that each task will always execute successfully is not occur
with real application. For various reasons, transient faults arise
more frequently than permanent faults. In particular, transient
fault is a small probability event but inevitably occurs in the real
situation. The side effect of transient fault is that, it may cause seri-
ously adverse hurt on the running application, sometimes it even
leads to fatal errors. Low-power consumption and high-system
reliability, availability, and utility are major concerns of modern
high-performance computing system development. There are a
few studies focusing on providing fault tolerance capabilities to
embedded systems [19]. Studies in [20,21] explore the interplay
between reliability and energy consumption. However, they are
exclusively confined to the field of real-time system. With regard
to HCS, Tang et al. [22] developed a reliability-driven scheduling
architecture and devised a reliability-aware scheduling scheme
for precedence constrained tasks. Lee and Zomaya [23] proposed
two energy-conscious scheduling algorithms which effectively bal-
ance the quality of schedules and energy consumption with DVFS
technique. Li [24] analyzed the performance of heuristic power
allocation and scheduling algorithms for precedence constrained
sequential tasks. Notwithstanding, none of them incorporates
energy consumption and reliability together. In most cases, the
smaller scheduling length is not the most important objective.
The co-management of system reliability and energy saving has
drawn researchers’ attention only very recently [19,25,26]. Zhao
et al. [19] adopted recovery technique to reexecute fault applica-
tion for tasks with dependence, but it is only applied to unique
core.

In this study, we develop energy efficient and reliability conser-
vation for precedence constrained tasks with shared deadline in
heterogeneous system. It’s also a combinatorial optimization prob-
lem. To the best of our knowledge, this is the first time the problem
is dealt with in HCS. Two kinds of techniques, dynamical voltage
scaling and shared recovery are employed. Our scheduling
problems comprise five nontrivial subproblems, namely, prece-
dence constraining, deadline constraining, energy conservation,
reliability maximizing and task recovery.

� Precedence Constraining. Compared to independent task set,
tasks with precedence constraints make devise and analysis of
heuristic scheduling algorithms particularly complicated.
� Deadline Constraining. The entire task set share a common
deadline.
� Energy Conserving. Tasks should be supplied with appropriate
powers and energy efficient execution speeds, such that the
schedule length is modest and the energy consumption is
minimal.
� Reliability Maximizing. Tasks should be run at a relatively high
speed without exceeding the maximum frequency of processor,
such that the system reliability can achieve an optimal value.
� Task Recovery. After finish each task in the prior queue, error
detection would be started up. Once a fault occurs, then the
error will be recovered at the maximum frequency.

The above subproblems should be solved efficiently so that
heuristic algorithms with overall fine performance can be
explored. By adopting DVFS technique, three algorithms will be
presented in this paper: Shared Recovery for reliability aware of
Heterogeneous Earliest Finish Time (SHRHEFT) algorithm, Shared
recovery for Reliability aware of Critical Path On a Processor
(SHRCPOP) algorithm and Shared Recovery for Energy Efficiency
and system Reliability Maximization (SHREERM) algorithm. Each
of these three algorithms comprises three phases. Task priority
establishment phase builds a proper topological order for the
application task. Frequency selection phase chooses an energy effi-
cient frequency to execute each task. Processor assignment phase
allocates the candidate task to a suitable processor. Finally, task
recovery phase detects the transient fault and recovers the error
task, so as to get higher system reliability with lower total energy
consumption.

The paper proceeds as follows: Section ‘Models’ gives a briefly
introduction of models used in this paper which include the sys-
tem, power, energy and reliability. Based on reliability and energy
model, SHRMEC algorithm and revised algorithms SHRHEFT and
SHRCPOP are presented in Section ‘The proposed algorithms’.
Extensive experiment results are discussed in Section ‘Experiment
s and results’. Section ‘Conclusion’ summarizes the conclusion and
shows the future direction of this work.
Models

In this section, we provide a brief background on the system,
power, fault, and application models used in this paper.
System model

The system model used in this paper is composed of a set P that
includes pj j heterogeneous cores/processors. All the cores are
encapsulated in a chip. Each core of them is available for DVFS
technology; namely, each core can run at different speed (i.e.,
different supply voltage levels) in any time. For each processor p
belongs to the set P, with fj j available frequency levels (AFLs), fol-
lows a random and uniformly distribution among the four different
sets of operation voltages/frequency. As clock frequency is
switched, overheads take an inappreciable amount of time (e.g.
10–150 ls) [27,28], and this overheads are neglected in our study.
The communications among inter-processor are supposed to per-
form at the same speed on all links without contentions. Our paper
is based on the premise that the target system consists of a set of

Table 1
Definitions of notations.

Notation Definition

N A set of task nodes
P A set of processors
V A set of supply voltages
F A set of supply frequencies
wi;j The computation cost of task ni 2 N executed on processor pj 2 P
ci;j The communication cost between nodes ni and nj

�wi The average computational time of a task when it is executed on
different processors

childðniÞ The set of immediate successors of task ni

parentðniÞ The set of immediate predecessors of task ni

ESTðni; pjÞ The earliest execution start time of task ni on processor pj
EFTðni; pjÞ The data ready time of task ni on processor pj
AFLs Available frequency levels
Dshare The common deadline of the task set
De
i;j The effective deadline of task node ni execute on processor pj

SHRHEFT Shared Recovery for reliability aware of Heterogeneous Earliest
Finish Time

SHRCPOP Shared Recovery for reliability aware of Critical Path On a
Processor

SHREERM Shared Recovery for Energy Efficiency and system Reliability
Maximization

Sn The number of nodes in a specific task graph

L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512 501
fully connected processors, which implies that each processor has
a direct communication link to every other processor. Inter-
processor communication is performed by a dedicated communi-
cation subsystem, in a way that is completely free of contention.

Power model

In DVFS technique, the clock frequency is reduced alongside
with the supply voltage for the approximate linear relationship
between the supply voltage and operation frequency [29]. For
the promising capability for energy saving, DVFS technique is
adopted in our study. It enables processor element dynamically
adjust available frequency levels. To present system-level power
model, we adopt the classic one proposed in [30], and the system
power consumption is given as following [31]:

P ¼ Ps þ �hðPind þ PdÞ ¼ Ps þ �hðPind þ Ceff f
aÞ; ð1Þ

where Ps is the static power consumption, Pind refers to the
frequency-independent active power, and Pd represents the
frequency-dependent dynamic power. The static power term,
includes the power to maintain the basic circuits, keeps the clock
working and the memory in sleep mode. It can be removed only
by turning off the whole system. Ps is a constant, independent of
system operation frequency (i.e., the power consumption occurs
while accessing external devices like main memory, I/O and so
on). It can be decreased to a very small value by setting the system
to standby mode [29]. Pd is the dynamic power dissipation, the
dominant component of energy consumption in widely popular
CMOS technology. It can be given by Pd ¼ Ceff � V2

dd � f , where Ceff is
the effective loading capacitance, Vdd is the supply voltage and f
is the clock frequency. Since f / vc; ð0 < c < 1Þ [24], in other

words, v / f 1=c, we reckon that the frequency dependent active
power consumption is Pd / f a, where a ¼ 1þ 2=c P 3. In our
studies, we have Pd ¼ Ceff � f a. And �h indicates the system mode
and represents whether active power consumption occurs present.
Particularly, �h ¼ 1 signifies that the system is currently active.
Otherwise, �h ¼ 0 refers to that system is in sleep mode. In what fol-
lows, all frequencies are normalized with respect to the maximum
frequency fmax (i.e., fmax ¼ 1:0). And the energy consumption of task
ni can be calculated according to the following expression:

Eiðf iÞ ¼ Pindi �
ci
f i
þ Ceff � ci � f 2i ; ð2Þ

where ci is the computational cost at executing frequency of f i.

Application model

A parallel application program consists of a precedence
constrained tasks can be represented by a directed acyclic graph
(DAG). A DAG, G ¼ < N; E >, where N is the task set which com-
prises nj j tasks that can be executed on any available processors.
Set E is composed of the edges which represent tasks precedence
constrains. An edge wi;j 2 E between task nodes i and j, each of
which performs on different processor, denotes the intertask
communication.

For each node ni in a given task graph, the direct predecessors
of which are denoted by parentðniÞ. There is set
parentðniÞ ¼ f8np 2 Njep;i 2 Eg. And its direct successors are
denoted as childðniÞ. If a task without any predecessor, namely,
parentðniÞ ¼£, is called an entry task. Likewise, if a task without
any successor, namely, childðniÞ ¼£, is called an exit task. Without
loss of generality, we assume that the DAG in our study exactly
exists or can be transformed to one entry task nentry and one exit
task nexit .
The weight on task ni is denoted as wi, which represents the
computation cost. In addition, the execution time of task ni on pro-
cessor pj refers to wi;j and its average computation cost is denoted
by �wi. Similarly, the weight ci;j is assigned to an edge represents the
communication cost between two tasks ni and nj. However, the
communication takes place when the two nodes are scheduled to
two distinct processors. In other word, there is no communication
cost when the two nodes are assigned to the same processor (see
Table 1).

Consider the graph with the eleven nodes as shown in Fig. 1, the
edges, which are labeled with different weights, reflect the com-
munication cost of corresponding nodes in different processor. In
our study, the target system comprises of a set P of pj j heteroge-
neous cores which are fully interconnected. And each core is DVFS
enabled. As shown in Table 2, each core can run at different avail-
able frequency levels (AFLs). For each processor element pi 2 P, the
voltage-relative frequency AFLs is selected randomly among the
distinct sets. The execution costs of each node on different proces-
sor are shown in Table 3, which under the condition of each task
run at available maximum frequency. According to the previous
study [32], frequency switching takes a negligible amount to time,
about 189–300 ls. These overheads are not considered in this
study while applying the DVFS technique. Besides, communication
among processor elements are also considered to perform at the
same speed on all links without the limitation of bandwidth.
Fault model

During the course of application execution, a fault maybe hard
to avoid owing to various reasons, such as hardware failure, soft-
ware bugs, devices exposed to extreme temperatures, and external
interference. As a consequence, transient fault occurs more fre-
quently than permanent failure [33,34]. In this study, we pay more
attention to transient faults, and devise a feasible and efficient
scheduling with DVFS technology to maximize overall system
reliability.

Extensive works have been done on fault management. The
transition fault is modeled by Poisson distribution with an average
arrival rate k [20]. Following with most previous studies, we con-
sider the transition fault happens during the execution of each task
as independent. Nevertheless, with the effect of dynamic voltage

Fig. 1. A simple precedence-constrained application DAG.

Table 2
Voltage-relative frequency pairs.

Level Pair 1 Pair 2 Pair 3

Voltage Frequency Voltage Frequency Voltage Frequency

0 1.75 1.00 1.50 1.00 2.20 1.00
1 1.50 0.80 1.40 0.90 1.90 0.85
2 1.40 0.70 1.30 0.80 1.60 0.65
3 1.20 0.60 1.20 0.70 1.30 0.50
4 1.00 0.50 1.10 0.60 1.00 0.35
5 0.90 0.40 1.00 0.50
6 0.90 0.40

Table 3
Computation cost with AFL 0.

Node num P1 P2 P2

0 11 16 12
1 14 12 11
2 14 12 15
3 18 12 8
4 15 20 17
5 12 14 15
6 14 15 13
7 16 17 10
8 17 18 16
9 16 15 12

10 14 12 11

502 L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512
and frequency scaling, transition fault’s average arrival rate
depends on the system processing frequency f, and v is the corre-
sponding voltage. Hence the fault rate can be modeled as follows:

kðf Þ ¼ k0 � gðf Þ: ð3Þ
Let fmax be the average fault rate with the corresponding maximum
frequency(and operation voltage is vmax). Specially, we can derive
gðfmaxÞ ¼ 1.

Traditionally, it has been recognized as an exponential relation-
ship between the transient fault rate and the circuit’s critical cost
[35]. We adopt the exponential model proposed in [30] for our
scheduling model and experiment analysis. It can be expressed as:

kðf Þ ¼ k0 � gðf Þ ¼ k0 � 10
dð1�f Þ
1�fmin ; ð4Þ
where k0 stands for the average fault rate as mentioned before. d is a
constant and greater than zero, which represents the degree of fault
rate to frequency and voltage scaling. It can be easy to get that the
fault rate increases exponentially as the frequency decreases for
energy conservation. In other word, kðf Þ is a strictly decreasing

function. Hence, the maximum average fault rate is kmax ¼ k0 � 10d

with corresponding available minimum frequency.
To ensure the feasibility and high efficiency of an algorithm, the

heuristic scheduling strategy must be adhered strictly to the prece-
dence constraint. The following definitions are very important to
the algorithms which are presented in the next section.

Definition 1. The data ready time of a node ni 2 N on processor
pj 2 P is

DRTðni; pjÞ ¼ max
nk2predðniÞ

fEFTðnk þ ck;i; AvailableðpjÞÞg; ð5Þ

where ck;i is the communication cost between nodes nj and nk. This
item is only required provided two tasks nodes are assigned to dif-
ferent processors.
Definition 2. The reliability of a task as the probability of
executing the task successfully. The transient fault follows a
Poisson distribution, the reliability of node ni with the correspond-
ing calculation cost ci is [27]

Riðf iÞ ¼ e
�kðf iÞ�

ci
f i ; ð6Þ

where f i denotes the processing frequency and ci refers to the cor-
responding computational cost.
Definition 3. The system reliability Rsys denotes the reliability of
the entire task set which consists of n tasks. Then the total
reliability of system nodes is

Rsys ¼ Pn
i¼1Riðf iÞ: ð7Þ
Definition 4. The effective deadline De
i;j of task node ni on proces-

sor pj indicates that ni has to complete well before it. The expres-
sion can be stated as:

De
i;j ¼

Dshare; Succðni;pjÞ ¼£

minfDshare � De
k;jg; nk 2 Succðni;pjÞ;

(
ð8Þ

where Succðni;pjÞ represents the task nodes mapped to the proces-
sor pj, whose earliest start time are later than node ni. And Dshare

denotes the common deadline of the task set.

Problem Description: Taking the negative effect of DVFS on
system reliability into consideration, for frame-based dependent
real-time tasks with individual deadlines and a common period
that are represented by a DAG, the problem to be addressed is to
minimize energy consumption while preserving the system origi-
nal reliability without violating task’s deadline and precedence
constraints. Before presenting the details of our new shared-
recovery based RAPM schemes, in what follows, we firstly illus-
trate the conservativeness of the existing individual-recovery
based RAPM schemes through a concrete motivation example.

A motivational example

As shown in Fig. 1, an application with eleven tasks, the corre-
sponding feasible schedule when all tasks run the maximum avail-
able voltage under the famous HEFT scheme, is given in Fig. 2(a).
That is, there is no powermanagement and no reliability awareness.

Fig. 2. Scheduling of task graphs in Fig. 1 under different algorithms.

L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512 503
Each task is performed in the increasing order of blevel [12] and the
schedule must be guaranteed that each one’s precedence con-
straints and the entire tasks’ shared deadline are fulfilled. Assuming
that the environment parameter is set as k0 ¼ 10�6; d ¼ 5, and the
minimal frequency is 0.1. As we can see from Fig. 2(a), the system
still has access to 140–106 = 34 of slack, which can be employed
to scale down the execution of tasks to gain energy saving. Further-
more, and also themost important, transient fault is always inevita-
ble. Once a fault occurs during the performance of tasks, under such
circumstances, it would lead to an error for application. To keep
application efficient and promote the robustness of systems, mea-
sures must be taken to tackle the unexpected accident. Shared
recovery (SHR) technique, first proposed by Zhao et al. [36] and
the extension to DAG with precedence constraint on unique core
at [19], has been proven to be efficient to enhance system reliability.
We extended the SHR technique and applying it to our task set on
multiple processors platform without violating a shared deadline
constraint. In what follows, we define that each processor reserve
a recovery block in case it encounters soft errors in the process of
task scheduling. For instance, we can have one recovery task of size
11 at the very beginning. And the remaining slack can be utilized to
scaled down the following tasks. The recovery is large enough to
cover task n0 once its soft error arises. After n0 execute successfully
at the scaled efficient frequency, then the recovery task size can be
adjusted to 18 on processor 0, which is large enough to recover task
n3 by occupying part of the rest of slacks. This procedure repeats
until all the tasks are scheduled. When soft errors are detected
and the recovery block is employed to execute the error task at
f max. The remainder tasks are mapped to the incident processor,
which turn into the mode of emergency, and run at the full fre-
quency. If not, the systemmay not have sufficient slack to recovery
the further error task and the original reliability can be ensured. As
illustrate in Fig. 2(b), applying the SHRHEFT scheme, a scenario that
an transient fault occurs while performing task n7. Then the recov-
ery block is used to recover n7 and the followingmapped task n9 run
at the full frequency. Besides, under other two strategies, SHRCPOP
and SHRECRM, the correspondingGantt charts are shown in Fig. 2(c)
and (d) for the case that the error of task n7 arises. In case that no soft
fault occurs, the energy consumption of three strategy, SHRHEFT,
SHRCPOP and SHRECRM are 321.86, 310.63, 301.86, respectively.
When the transient default happens while performing task n7, as
captured in Fig. 2(b)–(d), the energy consumption associated with
the three schema are 346.86, 350.63, 341.86 respectively. And the
system reliability in such situation are 0.999993892441768,
0.999993646500958 and 0.999995209531709 respectively. By
elaborating the all the single-error scenarios on each processor,
the three algorithms perform better performance even when they
encounter a transient fault while executing the tasks.
The proposed algorithms

System reliability and energy saving are two primary metrics in
modern computing system. DVFS, which is regarded as one of the
most efficient technologies, is used widely to reduce energy con-
sumption. However, it also brings negative effect on system relia-
bility. A meaningful study is to guarantee higher reliability for
parallel tasks without violating their shared deadline constraint
even when transient faults occur. In heterogeneous systems, paral-
lel tasks scheduling contains two stages, i.e., task priority establish-
ment and task-processor mapping. For the first stage, an upward
rank is used to calculate the priority queue. Efficient strategies
are used to map each task in the priority queue to a best fit proces-
sor while fulfilling the deadline constraint and processing the
potential transient faults in the second stage.

This section devotes to develop three algorithms for addressing
the above system reliability issue in task scheduling. The first algo-
rithm to be proposed is the Shared Recovery for Reliability aware of
Heterogeneous Earliest Finish Time (SHRHEFT) algorithm, which
selects the best fit processor for each ready task to assure higher
system reliability and obey the deadline constraint. The second
algorithm to be presented is the Shared Recovery for reliability
aware of Critical Path On a Processor (SHRCPOP) algorithm. Com-
paredwith SHRHEFT, the SHRCPOP is only different in the processor
mapping. The tasks in the critical path of the application under
SHRCPOP have the highest priority to bemapped to the same fastest
processor. In the third one, namely Shared Recovery for Energy Effi-
ciency and system Reliability Maximization (SHREERM) algorithm,
an efficient combination of task-processor, which aims at energy
saving and maximum reliability, is used in the pre-scheduling

Table 4
Task priorities.

Node no. URank DRank

0 134.67 0.00
1 102.33 26.00
2 105.67 22.00
3 106.67 28.00
4 102.67 23.00
5 76.00 58.67
6 75.33 55.67
7 68.00 56.33
8 44.33 90.33
9 39.67 84.67

10 12.33 122.33

504 L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512
stage. After then, the slots which exist in the processors are
reclaimed to save more energy.

Before expounding the details of three strategies, a feature with
respect to the relationship between system reliability and energy
efficient and some important phases firstly are presented.

Relationship between reliability and energy

In this section, we will present an Energy Efficient and Reliabil-
ity Conservation (SHREERC) algorithm. The algorithm SHREERC,
which will be introduced in the following, based upon the effective
deadline, aims at achieving energy efficiency and reliability preser-
vation in the condition of energy constrained without increasing
makespan during the scheduling procedure.

Due to the frequency-independent active power, the power
consumption no longer varies monotonically as the frequency
increases. Observed from Eq. (2), it can be easily to deduce that
Eiðf iÞ is a strictly convex function and reaches its extreme point
at f i ¼ f ee ¼

ffi
Pind=2Ceff

3
p

(energy efficient frequency) [31]. It can
be deduced that, lower frequencies don’t always take effect for
energy saving and there must exists an optimal voltage-
frequency pair to achieve minimum energy consumption. On the
other hand, as processing frequency increases, the reliability of
task improved monotonically. It is safely to draw such a conclusion
that the high reliability and energy efficiency are almost two con-
tradictive goals for scheduling. Designing a novel strategy for a
tradeoff of them is a non-trivial work. And we will attempt to
schedule tasks aim at enhancing system reliability and pursuing
energy efficiency while guaranteeing common deadline constraint,
transient faults diagnosis and soft errors treatment.

Critical phases

Each of the three algorithms which will be presented in the next
part, is mainly composed of four phases. It involves the following
stages: task priority establishment phase to provide a valid topo-
logical order of application task, frequency selection phase to
choose a feasible and efficient frequency to perform the data ready
task, error detection and task recovery phase to diagnose tran-
sient fault and reexecute the one encounter soft error, and proces-
sor assignment phase to allocate the candidate task to the ‘‘best”
processor in the order of priorities and low energy consumption. In
what follows, we introduce two important phases of them.

Task priority establishment phase: To meet the requirement
of task scheduling, the prior order is established in this phase. Each
task is set with its upward rank, URank, which is computed recur-
sively according to

URankðniÞ ¼ wi þ max
nj2childðniÞ

ðci;j þ URankðnjÞÞ; ð9Þ

where childðniÞ is the set of immediate child of task node ni. As the
rank is computed recursively by traversing from the bottom of DAG
to the top. Some literatures also call it bottom level. It should be
apparent to draw such a conclusion URankðniÞ ¼ wexit . URank is an
effective approach to offer a topologic order to depend tasks. As
shown in Table 3, the computation cost of each node represents
concrete value, that running a task on specific processor at the fast
speed (AFL 0). Akin to URank, the downward rank DRank is defined
as

DRankðniÞ ¼ max
nj2parentðniÞ

ðwj þ ci;j þ DRankðnjÞÞ; ð10Þ

where parentðniÞ is the direct parents of task node ni. Provided there
is no parent for the entry node, it is easy to conclude that the DRank
of entry node is equal to zero. According to the computation cost
given by Table 3, a priority queue for the simple DAG shown in
Fig. 1 is maintained for the following three various algorithms.
The values of task priority using the DRank and URank method are
summarized in Table 4.

Definition 5. The immediate neighboring frequency f in of f ee
processor pj, is the one which consumes less energy.

According to expression f ee ¼
ffi
Pind=2Ceff

3
p

; f ee only depends on
Pind. The particular Pind value for each task obeys uniform distribu-
tion and is determined randomly with its range of 0.2–2 in this
study. So it is not difficult to find that f ee varies on different proces-
sors for each task ni.

Frequency selection: As stated above, the ‘‘best” frequency-
voltage pairs to achieve lower energy and higher reliability appear
are nearest neighbors of f ee on processor for each task node. A bin-
ary search tree is used to find these two immediate neighbors. The
whole process takes a time complexity of OðlgnÞ. Where n is the
number of task nodes. Calculate the active energy using Eq. (2),
the neighbor frequency which consumes less energy will be
selected to perform the data ready task node.

The proposed algorithms

Inspired by two famous algorithms HEFT and CPOP [12],
another two new strategies are to be developed so as to yield an
efficient scheduling even the processor has suffered a soft error.
The first one to be discussed is reliability aware of heterogeneous
earliest finish time (SHRHEFT).

The SHRHEFT algorithm
The SHRHEFT algorithm is an application which schedule task

with bounded number of heterogeneous processors. As shown in
Algorithm 1, the URank and energy-efficient frequency f ee of each
task are computed in the first two steps. The priority queue is cre-
ated in Step 3. Steps 4–18 are the outside loop of SHRHEFT to
ensure the effective scheduling of each task. An appropriate imme-
diate neighboring frequency is selected at Step 10, and temporarily
marked it in the memory. After the end of the inside loop of all the
processors from Steps 6–12, the combination involves a most suit-
able frequency and a ‘‘best” fit processor is obtained. Then assign-
ing the candidate schedule task node to the marked best processor,
with the executing frequency in Step 14. Each time perform loop in
Step 10, the new marked frequency and processor indicates that a
new best scheduling alternative is found. While a task is scheduled,
the SoftErrorDectect procedure is invoked to detect the transient
fault and deal with it in Step 13. The reliability and energy con-
sumption of task are calculated in Steps 15 and 16, respectively.
In SHRHEFT algorithm, it takes Oðlg f Þ time for frequency selection
phase in Step 10. The SHRHEFT algorithm has a time complexity of
Oðn� p� lg f Þ for n task nodes and p processors. Each processor
consists of f levels DVFS enable frequencies.

L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512 505
Algorithm 1. SHRHEFT

Input: A DAG G ¼ < N; E > and a set P of DVFS available
processors

Output: A schedule S of G onto P
1: compute URank of ni 2 N by traversing graph from the

exit node
2: compute energy-efficient frequency for each node in set N
3: sort the tasks in a non-increasing order by URankðniÞ

value and establish a priority queue QueueURank for the
sorted tasks

4: while the priority queue QueueURank is not empty do
5: ni the head node in QueueURank;
6: for each processor pj 2 P do

7: if errors had happened or De
i;j ¼ Dshare then

8: f j;k 1
9: else
10: find the immediate neighboring frequency f in of f ee

on processor pj for task ni, mark the one which
consumes less energy

11: end if
12: end for
13: call SoftErrorDetect(ni; pj) . error detection and task

recovery once it happens
14: assign the marked frequency f in to task ni on the marked

processor
15: compute the reliability of task ni using Eq. (6)
16: compute the energy consumption for task ni using Eq. (2)
17: delete the head node ni in QueueURank
18: end while
Procedure SoftErrorDetect(ni; pj)

For selecting an optimal frequency of task ni on processor pj, we
assume that only single fault scenario exists in each processor dur-
ing task scheduling. It infers that at most one error can be encoun-
tered for each processor. Each time a task has executed, the system
invokes SoftErrorDetect(ni; pj) procedure. Once the algorithm
detects that transient fault occurs and it leads to failure of task exe-
cution, then recovery the fault task at once with the maximum
available frequency, otherwise, nothing would be done.

Procedure. SoftErrorDetect(ni; pj)

Input: task ni and processor pj
Output: soft error detection and error task recovery if needed
1: detect whether task encounters soft error
2: if soft error arises then
3: recover task ni on pj with the maximum frequency
4: end if

The SHRCPOP algorithm

The second algorithm is reliability aware of critical path on a
processor with shared recovery technology (SHRCPOP). Algorithm
2 shows the pseudo-code of SHRCPOP. In this algorithm, the DRank
and URank of each node is firstly computed. The priority queue of
the entire task set is established on the basis of nodes’ URank. An
important sorted list named listCP , consists of the task node on the
critical path with the minimal summation of DRank and URank, is
set up after the first loop at Step 8. As the energy-efficient frequency
f ee of each node only depends on its frequency-independent active
power, and the procedure is finished at Step 9. When the condition
that the critical processor which take the least time is fulfilled, all
the tasks in listCP are get ready to map onto it. The critical processor
which take the least time to execute all the tasks is selected at Step
10. And Steps 12–29 are the main loop body. While scheduling a
task from the priority queue, the node on critical path would only
be assigned to the critical processor. Then pick up a ‘‘best” immedi-
ate neighboring frequency f in for it. The node in other path can also
be assigned to critical processor provided there is free a slack time
slot, otherwise, it will be assigned to a non-critical processor. The
latter procedure is the same with the CP nodes. When soft error is
discovered for any of the executed task, then reexecute it at the
f ee. For all data ready tasks, the feasible frequency searching takes
time Oðlg f Þ. So the complexity of the SHRCPOP algorithm is
Oðn� p� lg f Þ. The detailed definition of each item in the expres-
sion is the same as mention before.

Algorithm 2. SHRCPOP

Input: A DAG G ¼ < N; E > and a set P of DVFS available
processors

Output: A schedule S of G onto P
1: compute URankðniÞ of each node ni 2 N by traversing

graph upward from the exit node
2: compute DRankðniÞ of each node ni 2 N by traversing

graph downward from the entry node
3: CPj j Maxf8ni 2 NjURankðniÞ þ DRankðniÞg
4: for each node ni 2 N do
5: if the summation of URankðniÞ and DRankðniÞ equals to

CPj j then
6: add node ni to CP set listCP
7: end if
8: end for
9: compute energy-efficient frequency for each node in set N
10: select the CP processor PCP which has the minimal

summation computation cost of nodes in listCP
11: sort the tasks in a non-increasing order by URankðniÞ

value and establish a priority queue QueueURank for the
sorted tasks

12:while not all nodes in QueueURank have been scheduled do
13: ni the head node in QueueURank
14: if ni 2 listCP then
15: assign processor PCP to ni, and compute the
immediate neighboring frequency f in of f ee on processor

16: else
17: assign the processor which consumes less energy

with immediate neighboring frequency of f in its f ee
for ni

18: end if
19: if errors had happened or De

i;j ¼ Dshare then
20: f j;k 1
21: else
22: find the immediate neighboring frequency f in of f ee

on processor pj for ni task, mark the one which
consumes less energy

23: end if
24: call SoftErrorDetect(ni; pj) . error detection and task

recovery once it happens
25: assign task ni to the marked processor and specify its

executing frequency f in
26: compute reliability of the task node ni using Eq. (6)
27: compute energy consumption of the task node ni using

Eq. (2)
28: delete the head node ni in QueueURank
29: end while

d Energy Systems 78 (2016) 499–512
The SHREERM algorithm
506 L. Zhang et al. / Electrical Power an
Table 5
Configuration parameter for the random graphs.

Parameter Possible values

CCR 0.2, 0.5, 2, 3, 10
Number of processors 3, 6, 9, 12, 15
Size 50, 100, 125, 150, 175, 200
Algorithm 3. SHREERM

Input: A DAG G ¼ < N; E > and a set P of DVFS available
processors

Output: A schedule S of G onto P
1: compute URankðniÞ of each node in DAG G
2: sort task N in a non-increasing order by URankðniÞ to

establish priority queue QueueURank
3: while the priority queue QueueURank is not empty do
4: ni the head node in QueueURank
5: for each processor pj in set p do
6: compute the nearest frequency level of processor pj

which has the minimal energy consumption
7: search the best combination of processor pj and

frequency level of which keeps the max value
EERMðni; pj; f kÞ

8: end for
9: if errors had happened or De

i;j ¼ Dshare then
10: f j;k 1
11: else
12: find the immediate neighboring frequency f in of f ee

on processor pj for ni task while guaranteeing shared
deadline constraint, mark the one which consumes
less energy

13: end if
14: assign the best combination of pj to node ni

15: call SoftErrorDetect(ni; pj) . error detection and task
recovery once it happens

16: compute the node reliability of task ni

17: end while
18: let S0 denotes the scheduling derived from the above

procedure
19: while the scheduling list S0 is not empty do
20: v 0i the head node in scheduling list S0

21: for each processor p0j in set P do

22: while there is an available slack slot in the processor
which satisfies the precedence priority of tasks do

23: compute makespan, node reliability
24: if makespan does not increase, node reliability

promotes and there is an available time slot to
accommodate v 0i then

25: replace v 0i with the better combination processor

p0j and frequency f 0k
26: end if
27: update node reliability and compute the node

energy consumption
28: end while
29: end for
30: end while

Akin to the above two algorithms, another novel algorithm,
shared recovery for energy efficiency and system reliability max-
imization (SHREERM) algorithm, is composed mainly of four
phases. As described in Algorithm 3, the priority queue of task
phase comprises Steps 1 and 2. The topological order of task is
established in this phase. The optimal frequency selection phase
contains Steps 5–8 are at the inner loop body of algorithm.
Enlightened by the energy-conscious mind proposed in [23], the
energy efficiency reliability maximum (EERM) strategy is defined
as
EERMðni;pj; f j;k;pl; f l;mÞ¼�
Rðni;pj; f j;kÞ�Rðni;pl; f l;mÞ

Rðni;pj; f j;kÞ

 !

þ Eðni;pj; f j;kÞ�Eðni;pl; f l;mÞ
Eðni;pj; f j;kÞ�minfEðni;pj; f j;kÞ�Eðni;pl; f l;mÞg

 !
:

ð11Þ

It is exploited to allocated most favorable processor and frequency
combination, the one with maximum value, for each data ready task
node. As describes in Eq. (11), ni represents the data ready task
which in the head of priority queue, f j;k and f l;m are the available dis-
crete frequency on the candidate processors pj and processor pl,
respectively.

Steps 9–13 are included to implement the third phase. Node in
priority queue is assigned to the marked processor with the
selected optimum frequency at this stage. Step 15 is concerned
to handle the execution error. As slack occurs inevitably due to
the interprocessor communication for DAG, Steps 18–29 are
involved to make full use of the time slots among processors, with-
out prolonging schedule length and hurting system reliability. This
procedure can be regarded as local optimum without increasing
computational complexity. So the complexity of SHREERM algo-
rithm is Oð2� n� p� lg f Þ.
Experiments and results

To evaluate the performance of these scheduling algorithms,
two extensive explored sets of task graphs, randomly generated
and real-world applications, are employed in our experiment.
The real parallel applications involve the Fast Fourier Transforma-
tion (FFT), the Laplace, and Gaussian-elimination. In addition, a
large number of variables are made for these task sets. It makes
more comprehensive in some cases.

Specially, the random task graph set consists of 100 base task
graphs, generated with six different sizes, and includes five kinds
of dissimilar CCRs and five distinctly heterogeneous processors set-
ting. The particular parameters are illustrated in Table 5. For each
configuration, the specific Pind value is determined randomly
according to uniform distribution among the range of [0.2,2]. For
simplicity, the value of Ceff is set to one throughout the whole
experiment. With regard to robustness, provided that there is no
special provision for reliability, it would cause certain serious error
once transient faults occur. To simulate the occurrence of transient
fault event and estimate the performance of the algorithms, every
particular task runs a thousand times. The experiment results are
the average value of outputs.

The experiments are performed on a workstation at National
Supercomputing Center in Changsha. It contains an Intel Core i3-
540 dual-core CPU, 8 GB DRAM, and 1 TB hard disk respectively.
The proposed algorithms are implemented in the framework of
the simulator [15] which runs with Windows 7 (64 bit OS) SP1.
This simulator provides implementations of some famous algo-
rithms, which involve CEFT, HLD, HCPFD, and so on. Well-known
benchmarks including a large amount of FFT, Laplace, GE (shown
below) graphs are used to verify the performance of the proposed
algorithms.

In our study, each processor is supposed to execute a non-
preemptive task from the prior queue. The computation and

L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512 507
communication costs, which follow a uniform distribution with the
mean value to the specific average costs of computation and com-
munication, respectively, are generated randomly for each task
node. The occurrence of transient fault obeys a Poisson distribu-
tion, whose expression is given by Eq. (4), where d ¼ 3 and
k0 ¼ 10�9. For the three task sets of real-world applications, the
number of tasks can range from about 14 to 300 as the input num-
ber of points or the sizes of matrix change, respectively.

Performance metrics

Makespan
Makespan, or scheduling length, is defined as

makespan ¼ FTðnexitÞ; ð12Þ
where FTðnexitÞ is the earliest finish time of exit task in the schedul-
ing queue.

Scheduling Length Ratio (SLR)
In the presence of most scheduling algorithms, makespan, or

scheduling length, is one of the major metrics of performance eval-
uation for a scheduling strategy. As a large set of application graphs
with different properties is employed, it is necessary to normalize
the makespan to a lower bound, which is named scheduling length
ration. Without taking the communication cost into account, the
calculation expression of SLR can be stated as

SLR ¼ makespanP
ni2CPminpj2Pfwi;jg : ð13Þ
Energy Consumption Ratio (ECR)
For the sake of fair comparison, we consider energy consump-

tion and the failure of probability for scheduled task set as one of
the two most important performance measure. With regard to a
given task, specially, the energy consumption ratio without consid-
ering communication cost is defined as

ECR ¼ EtotalP
ni2CPminpj2PfPindi � cif i þ Ceff � ci � f 2i g

; ð14Þ

where Etotal represents the total energy consumption of the sched-
uled task.

Probability of Failure (POF)
The probability of failure is the other one of the two primary

performance metrics in our comparison. Formally, the POF value
of task set, with allocated frequency to each particular task by a
scheduling algorithm, is given by

POF ¼ 1� R ¼ 1�Pn
i¼1Riðf iÞ: ð15Þ
Randomly generated DAG

In our study, the random DAG graphs, which are generated
using the probability for an edge between any two nodes of the
graph, are firstly considered. Such kind of weighted application
DAGs with diverse characteristics that have a close relation on sev-
eral input parameters, are presented below.

� DAG size ðnÞ: the number of task nodes in graph.
� Communication to computation ratio ðCCRÞ. In some experi-
ment, CCR is utilized to characterize the workload of the task
graph. It’s the ratio with its value equals to the average of com-
munication cost over the average of computation cost. With the
help of CCR, one can judge the importance of communication or
computation in the task graph. A DAG with very low value can
be viewed as a computation intensive application. On the con-
trary, the DAG with a high CCR value is a communication heavy
application.
� Average out degree:the average value of the out degree in DAG
graph.
� Computation capacity heterogeneity factor ðhÞ [37].
Heterogeneity in essence reflects the variance of processing
speed. A high h refers to wider margin in the computation costs
for a task, and vice versa. And each task will has the same
computation cost if its factor is set to zero. The average
computation cost of each task wðniÞ is selected randomly from
a uniform distribution generator, whose mean value W can be
specified by user. And its range can be written as

wðniÞ � 1� h
2

� �
;wðniÞ � 1þ h2ð Þ

h i
. The value of W has no

influence to the performance result of scheduling.

In what follows, graphs are generated with the combination of
above mentioned characters. The size of graph varies from 50 to
200, with step size by 25. The communication edge connect two
arbitrary nodes is generated with an identical probability, which
lies on the average number of edge for each node.

The random application performance analysis

The major purpose of these experiments is to evaluate the per-
formance of the presented algorithms. For the first set of simulation
studies, the results are captured in Figs. 3–5, their data points come
from the average of experiment output obtained by a thousand
times experiments. As can be seen from these three figures,
SHREERM outperforms the other two algorithms significantly with
respect to the different task size and diverse CCRs. For Fig. 3, where
the application is a computation intensivewith CCR ¼ 0:2, the aver-
age of SLR of SHREERM is remarkably close to that of SHRHEFT. The
reason for this is that SLR is not the metrics of most concern in this
study. SHREERM improves the reliability of task execution with
minimum energy consumption to the greatest extent. Again, it also
can be observed from Fig. 3 that SHREERM outperforms SHRHEFT
and SHRCPOP in terms of average ECR and average probability of
failure (POF). We attribute the marginally better performance of
SHREERM over other two algorithms to the fact that SHREERM is
a reliability adaptive strategy and it assigns every task judiciously
to the processorwith an appropriate execution frequency according
to its computational time and execution reliability. In the processor
selection phase, SHRHEFT chooses the processor the earliest finish
time, and SHRCPOP picks the critical processor for critical task. Both
of them do not take enough account of reliability. Thus, their ECR
and POF are worse than SHREERM.

The impact of large CCR value for the random graphs are shown
in Fig. 5. The gaps among the three algorithms shrink gradually
with the increasing of CCR value. For CCR = 1 and CCR = 5, the
improvement of SHREERM evinces significantly, with respect to
the quality of average ECR and average POF. Specially, as CCR
equals five, it infers that communication dominate the whole
application. SHREERM clearly exceeds SHRHEFT and SHRCPOP by
(6.58%, 9.06%) in term of the average ECR, and (6.50%, 6.34%) in
term of the average POF, respectively. SHREERM is an energy effi-
cient and reliability conservation algorithm. The results distinctly
demonstrate that SHREERM surpasses SHRHEFT and SHRCPOP.
Based on the above analysis, we can draw an inclusion that
SHREERM performs better as the CCR increases. In other words, it
is more suitable for data intensive application.

Fig. 6 reveals the performance comparison of three algorithms
under the condition of various numbers of processors. While the
random graph with 200 task nodes and CCR equals to five. As
before, the SHREERM strategy continues to perform better than

50 100 125 150 175 200
0

1

2

3

4

5

6

(a) Number of tasks in a DAG

Av
g.

 S
LR

SHRHEFT
SHRCPOP
SHREERM

50 100 125 150 175 200
0

1

2

3

4

5

6

7

(b) Number of tasks in a DAG

Av
g.

 E
C

R

SHRHEFT
SHRCPOP
SHREERM

50 100 125 150 175 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 10−5

(c) Number of tasks in a DAG

Av
g.

 P
O

F

SHRHEFT
SHRCPOP
SHREERM

Fig. 3. Average SLR, ECR and POF of the three algorithms for CCR = 0.5.

50 100 125 150 175 200
0

1

2

3

4

5

6

(a) Number of tasks in a DAG

Av
g.

 S
LR

SHRHEFT
SHRCPOP
SHREERM

50 100 125 150 175 200
0

1

2

3

4

5

6

7

8

(b) Number of tasks in a DAG

Av
g.

 E
C

R

SHRHEFT
SHRCPOP
SHREERM

50 100 125 150 175 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 10−5

(c) Number of tasks in a DAG

Av
g.

 P
O

F

SHRHEFT
SHRCPOP
SHREERM

Fig. 4. Average SLR, ECR and POF of the three algorithms for CCR = 1.

50 100 125 150 175 200
0

1

2

3

4

5

6

7

(a) Number of tasks in a DAG

Av
g.

 S
LR

SHRHEFT
SHRCPOP
SHREERM

50 100 125 150 175 200
0

1

2

3

4

5

6

7

8

9

10

(b) Number of tasks in a DAG

Av
g.

 E
C

R

SHRHEFT
SHRCPOP
SHREERM

50 100 125 150 175 200
0

1

2

3

4

5

6

7

8
x 10−5

(c) Number of tasks in a DAG

Av
g.

 P
O

F

SHRHEFT
SHRCPOP
SHREERM

Fig. 5. Average SLR, ECR and POF of the three algorithms for CCR = 5.

508 L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512
other two algorithms with the increasing of the number of proces-
sors. The difference of average SLR among the three algorithms
decreases gradually. Note that, the point of nine processors is a
important one in the presented chart. When the number of proces-
sors is great than nine, the performance, including the average of
SLR, ECR, and POF, don’t benefit from the increasing number of pro-
cessors. It’s due to the fact that the scale of graph is not large
enough. In a word, for a particular number of task nodes, the aver-
age of ECR and the average of POF show a slightly declined trend as
the number of processors grows.

L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512 509
Performance analysis on graphs of real-world applications

Without loss of generality, it is necessary to use real applica-
tions to estimate the performance of algorithms. Therefore, three
real-world applications, which are applied widely, are used to eval-
uate the performance of algorithms. There are real-world prob-
lems, including Fast Fourier transformation (FFT), Laplace
equation solver (Laplace) and Gaussian elimination (GE).

Fast Fourier Transformation (FFT)
The fast Fourier transform is an algorithm to compute the dis-

crete Fourier transform and its inverse transform. FFT plays a sig-
nificant role in information field, as it computes such rapidly that
it is used extensively for many application in science, engineering
and mathematics. The computation of FFT is comprised of two sec-
tions, involving the input vector and the butterfly operation. Fig. 7
(a) shows a FFT task graph with four points. It consists of two parts,
the tasks above the dashdotted line are the recursive invocation of
tasks and the below ones are the butterfly operation tasks [37]. The
parameters adopted in experiment are summarized in Table 6.

Let Sn be the number of nodes in FFT task graph, then we have
S4n ¼ 2nþ3 (n P 1), where the subscript of Sn is the size of FFT.
When n changes from 1 to 6 with step by 1, Sn varies among set
{16, 32, 64, 128, 256, 512}. For each kind of experiment configura-
tion, CCR values and the number of processors are involved to
3 6 9 12 15
0

1

2

3

4

5

6

(a) Number of Processors

Av
g.

 S
LR

SHRHEFT SHRCPOP SHREERM

3 6
0

1

2

3

4

5

6

7

(b) Number

Av
g.

 E
C

R

SHRHEFT S

Fig. 6. Average SLR, ECR and POF of the three

(a) FFT with four points (b) Laplac

Fig. 7. Three kinds of
combine together. Under each configuration parameter, our pro-
posed algorithms are tested for one thousand times. The following
results are assessed with the average value of outputs, including
two main metrics POF and ECR.

The experiment result in terms of average ECR and POF respec-
tively, are captured in Figs. 8 and 9. Obviously, the SHREERM is
capable of yielding competitive consistently over SHRHEFT and
SHRCPOP with regard to ECR and POF. Due to the comprehensive
precedence constraints of most task nodes as the size of graph
grows, the margin of both ECR and POF for three algorithms are
not large. In such case, increasing the processor will not bring
any benefit for improving performance. The overall performance
of the SHREERM strategy for FFT graphs in terms of average POF
is 8.19%, 13.50% better over SHRHEFT and SHRCPOP, respectively.
With regard to average ECR, SHREERM performs 8.08%, 11.50% bet-
ter than SHRHEFT and SHRCPOP. And on average SLR dimension,
SHREERM surpasses SHRHEFT and SHRCPOP at an average of
6.14%, 21.3%.

Laplace
Laplace equation solver, is used broadly in solving mathemati-

cal equations and information technique. As shown in Fig. 7(b), it
works by transforming a matrix into a production of lower and
upper triangular matrixes. Table 7 gives a summation of the used
parameters in the experiment of Laplace task graph. The number
9 12 15
of Processors

HRCPOP SHREERM

3 6 9 12 15
0

1

2

3

4

5

6 x 10−5

(c) Number of Processors

Av
g.

 P
O

F

SHRHEFT SHRCPOP SHREERM

algorithms for CCR = 5, DAG size = 500.

e (c) Gaussian elimination

generated DAG.

Table 6
Configuration parameter for the FFT task graphs.

Parameter Possible values

CCR 0.2, 0.5, 1, 2, 5, 10
Number of processors 3, 6, 9, 12, 15
Size 4, 8, 12, 16, 20, 24

0.2 0.5 1 2 5 10
0

5

10

15

20

25

30

35

CCRs

Av
g.

 E
C

R

SHRHEFT SHRCPOP SHREERM

Fig. 8. Average ECR of the FFT task graph with different CCRs.

0.2 0.5 1 2 5 10
0

1

2

3

4

5

6

7 x 10−5

CCRs

Av
g.

 P
O

F

SHRHEFT SHRCPOP SHREERM

Fig. 9. Average POF of the FFT task graph with different CCRs.

Table 7
Configuration parameter for the Laplace decomposition task graphs.

Parameter Possible values

CCR 0.2, 0.5, 1, 2, 5, 10
Number of processors 3, 6, 9, 12, 15
Size 5, 6, 7, . . ., 20, 21

0.2 0.5 1 2 5 10
0

1

2

3

4

5

6

7

CCRs

Av
g.

 E
C

R

SHRHEFT SHRCPOP SHREERM

Fig. 10. Average ECR of the Laplace task graph with different CCRs.

510 L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512
of task nodes Sn satisfies expression Sn ¼ n2 (n P 3), where n is the
size. When the size of input matrix varies from 5 to 21 with the
increment step by 1, Sn changes from 25 to 441. In addition,
the number of processors varies from 3 to 15 with step by 3 and
the value of CCR varies among the set {0.2, 0.5, 1, 2, 5, 10}.
These three kinds of parameters in Table 7 are combined together.
The presented algorithms in this study runs for one thousand times
under each combination. The final experiment result is the average
value of output, including the average of SLR, ECR and POF as CCR
increases.

As illustrated in Figs. 10 and 11, the SHREERM strategy outper-
forms SHRHEFT and SHRCPOP strategies for all values of the CCR
parameter. For both small and large CCR value, SHREERM algo-
rithm consistently produces very low ECR values, especially for
small CCR value. The overall performance evaluation of the
SHREERM strategy for Laplace graphs is 6.21%, 10.2% in terms of
average POF better over SHRHEFT and SHRCPOP respectively. With
regard to average ECR, SHREERM surpasses SHRHEFT and SHRCPOP
at an average of 8.65%, 10.77% respectively. And on average SLR
dimension, SHREERM performs 1.35%, 16.1% better than SHRHEFT
and SHRCPOP.

Gaussian-elimination
As a well known method, the Gaussian-elimination is widely

used in mathematics for solving systems of equations. Let n be
the size of matrix which depicts the Gaussian-elimination task
graph. The number of tasks in GE graph follows the expression,
Sn ¼ n2þn�2

2 , (n P 5). As the size of n varies from 5 to 22 with step
by 1, Sn ranges from 19 to 252. The detailed parameter configura-
tions are given in Table 8. The CCR, the number of processors and Sn
are combined together. The developed algorithms run for one
thousand time under each combination. The ultimate results are
evaluated with the average value of the outputs.
For the presence of comparison for both of ECR and POF, the
input matrix size varies from 5 to 22, with an increment step of
1. And corresponding task nodes range change from 19 to 252. It
can be seen from Figs. 12 and 13 that SHREERM strategy surpasses
the SHRHEFT and SHRCPOP scheduling strategies for all the CCR, in
term of average ECR and average POF respectively. As CCR
increases, the average ECR of three algorithms grows slightly. After
a thousand times execution for GE graph in each particular size,

0.2 0.5 1 2 5 10
0

1

2

3

4

5

6 x 10−5

CCRs

Av
g.

 P
O

F

SHRHEFT SHRCPOP SHREERM

Fig. 11. Average POF of the Laplace task graph with different CCRs.

Table 8
Configuration parameter for the Gaussian elimination task graphs.

Parameter Possible values

CCR 0.2, 0.5, 1, 2, 5, 10
Number of processors 3, 6, 9, 12, 15
Size 5, 6, 7, . . . , 20, 21, 22

0.2 0.5 1 2 5 10
0

1

2

3

4

5

6

7

8

CCRs

Av
g.

 E
C

R

SHRHEFT SHRCPOP SHREERM

Fig. 12. Average ECR of the Gaussian-elimination task graph with different CCRs.

0.2 0.5 1 2 5 10
0

1

2

3

4

5

6
x 10−5

CCRs

Av
g.

 P
O

F

SHRHEFT SHRCPOP SHREERM

Fig. 13. Average POF of the Gaussian-elimination task graph with different CCRs.

L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512 511
transient fault event simulator imitates the real environment. Once
soft error arises, shared recovery block reexecute the fault task. The
overall performance of the SHREERM algorithm for the Gaussian
elimination graph is 6.25%, 12.4% in terms of average POF better
than SHRHEFT and SHRCPOP respectively. On average ECR, RMEC
performs 5.48%, 8.81% better than SHRHEFT and SHRCPOP respec-
tively. And on average SLR dimension, SHREERM performs 1.15%,
19.76% better than SHRHEFT and SHRCPOP respectively.
Conclusion

As green computing is the major trend in Heterogeneous com-
puting system (HCS), DVFS is exploited extensively to obtain
energy saving. The usual approach is to reduce the execution fre-
quency. Its side effect would increase the probability of transient
fault. And task’s reliability can degrade significantly without spe-
cial provisions. Hence, it is essential to enhance system reliability
while managing energy in HCS.

Themain goal of this study is to promote system reliabilitywhile
applying DVFS technique to achieve lower energy consumption for
HCS. To the best of our knowledge, this problem has not been
addressed in the research literature in the past. Thus, we proposed
energy efficient and reliability conservative algorithms for tasks
with precedence and common deadline constrains, involving
SHREERM, SHRHEFT, SHRCPOP. Firstly, the effective deadline of each
task depends on the precedence constrains of tasks set and follows
its downward rank rule. Based upon the shared recovery technique,
the scaled tasks share a single recovery block in each candidate pro-
cessor. The evaluation of performance for the presented algorithms
are conductedwith both randomly generated graphs and the graphs
of some real world applications, including fast Fourier transforma-
tion (FFT), Laplace equation solver and LU-decomposition. While
scheduling a task graph with 200 nodes to 3 processors, even in
the case that each processor encounters an soft error, the system
reliability is greater than 0.9999. The simulation results show that
these algorithms address the reliability and energy well especially
when transient faults arise. And SHREERM algorithm significantly
surpasses bothSHRHEFTand SHRCPOP in termsof reliability conser-
vation and energy consumption. Future studies in this area are two-
fold. First, we are intent to explore the mathematical relationship
between the system reliability and energy consumption. Second,
we intend to develop the bi-objective optimization of reliability
enhancement and energy saving.

Acknowledgments

The authors would like to express their gratitude to the anony-
mous reviewers for their insightful comments. The research was
partially funded by the Key Program of National Natural Science
Foundation of China (Grant Nos. 61133005, 61432005), the
National Natural Science Foundation of China (Grant Nos.

512 L. Zhang et al. / Electrical Power and Energy Systems 78 (2016) 499–512
61370095, 61472124), the National Science Foundation for
Distinguished Young Scholars of Hunan (Grant No. 12JJ1011), and
the Research Foundation of Education Bureau of Hunan Province
(No. 15C0400).

References

[1] Garey MR, Johnson DS. Computers and intractability: an introduction to the
theory of NP-completeness, San Francisco; 1979.

[2] Venkatachalam V, Franz M. Power reduction techniques for microprocessor
systems. ACM Comput Surv (CSUR) 2005;37(3):195–237.

[3] Albers S. Energy-efficient algorithms. Commun ACM 2010;53(5):86–96.
[4] Benini L, Bogliolo A, De Micheli G. A survey of design techniques for system-

level dynamic power management. IEEE Trans Very Large Scale Integr (VLSI)
Syst 2000;8(3):299–316.

[5] Zhong X, Xu C-Z. Energy-aware modeling and scheduling for dynamic voltage
scaling with statistical real-time guarantee. IEEE Trans Comput 2007;56
(3):358–72.

[6] Tian Y, Boangoat J, Ekici E, Ozguner F. Real-time task mapping and scheduling
for collaborative in-network processing in DVS-enabled wireless sensor
networks. In: The 20th IEEE international parallel distributed processing
symposium; 2006. p. 10–9.

[7] Kyong Hoon K, Buyya R, Jong K. Power aware scheduling of bag-of-tasks
applications with deadline constraints on DVS-enabled clusters. In: The
seventh IEEE international symposium on cluster computing and the grid;
2007. p. 541–8.

[8] Ge R, Feng X, Cameron KW. Performance-constrained distributed DVS
scheduling for scientific applications on power-aware clusters. In: The 2005
ACM/IEEE conference on supercomputing; 2005. p. 34–44.

[9] Zhu D, Melhem R, Childers BR. Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems.
IEEE Trans Parall Distrib Syst 2003;14(7):686–700.

[10] Sih GC, Lee EA. A compile-time scheduling heuristic for interconnection-
constrained heterogeneous processor architectures. IEEE Trans Parallel Distrib
Syst 1993;4(2):175–87.

[11] Khan M A. Scheduling for heterogeneous systems using constrained critical
paths. Parall Comput 2012;38(4):175–93.

[12] Topcuoglu H, Hariri S, Wu M. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans Parall Distrib Syst
2002;13(3):260–74.

[13] Topcuoglu H, Hariri S, Wu M. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Trans Parall Distrib Syst
2002;13(3):260–74.

[14] Bansal S, Kumar P, Singh K. Dealing with heterogeneity through limited
duplication for scheduling precedence constrained task graphs. J Parall Distrib
Comput 2005;65(4):479–91.

[15] Zhang L, Li K, Xu Y, Mei J, Zhang F, Li K. Maximizing reliability with energy
conservation for parallel task scheduling in a heterogeneous cluster. Inf Sci
2015;319:113–31.

[16] Xu Y, Li K, He L, Zhang L, Li K. A hybrid chemical reaction optimization scheme
for task scheduling on heterogeneous computing systems. IEEE Trans Parall
Distrib Syst 2014;PP(99):1.

[17] Huang X, Zhang L, Li R, Wan L, Li K. Novel heuristic speculative execution
strategies in heterogeneous distributed environments. Comput Electr Eng
2015. http://dx.doi.org/10.1016/j.compeleceng.2015.06.013.
[18] Kit Yan C, Dillon TS, Chang E. An intelligent particle swarm optimization for
short-term traffic flow forecasting using on-road sensor systems. IEEE Trans
Ind Electron 2013;60(10):4714–25.

[19] Zhao B, Aydin H, Zhu D. Shared recovery for energy efficiency and reliability
enhancements in real-time applications with precedence constraints. ACM
Trans Des Autom Electron Syst (TODAES) 2013;18(2):23–43.

[20] Zhang Y, Chakrabarty K. Energy-aware adaptive checkpointing in embedded
real-time systems. In: Design, automation and test in Europe conference and
exhibition; 2003. p. 918–23.

[21] Melhem R, Moss D, Elnozahy E. The interplay of power management and fault
recovery in real-time systems. IEEE Trans Comput 2004;53(2):217–31.

[22] Tang X, Li K, Li R, Veeravalli B. Reliability-aware scheduling strategy for
heterogeneous distributed computing systems. J Parall Distrib Comput
2010;70(9):941–52.

[23] Lee YC, Zomaya AY. Energy conscious scheduling for distributed computing
systems under different operating conditions. IEEE Trans Parall Distrib Syst
2011;22(8):1374–81.

[24] Li K. Scheduling precedence constrained tasks with reduced processor energy
on multiprocessor computers. IEEE Trans Comput 2012;61(12):1668–81.

[25] Izosimov V, Eles P, Peng Z. Value-based scheduling of distributed fault-tolerant
real-time systems with soft and hard timing constraints. In: Embedded
systems for real-time multimedia (ESTIMedia), 2010 8th IEEE workshop on;
2010. p. 31–40.

[26] Acharya S, Mahapatra R. A dynamic slack management technique for real-time
distributed embedded systems. IEEE Trans Comput 2008;57(2):215–30.

[27] Intel. Intel pentium m processor datasheet; 2004. <http://download.
intel.com/support/processors/mobile/pm/sb/25261203.pdf>.

[28] Min R, Furrer T, Chandrakasan A. Dynamic voltage scaling techniques for
distributed microsensor networks. In: The very large scale integration
workshop; 2000. p. 43–6.

[29] Burd TD, Brodersen RW. Energy efficient CMOS microprocessor design. In: The
28th Hawaii international conference on system sciences; 1995. p. 288–97.

[30] Zhu D, Melhem R, Moss D. The effects of energy management on reliability in
real-time embedded systems. In: The IEEE/ACM international conference on
computer aided design; 2004. p. 35–40.

[31] Zhao B, Aydin H, Zhu D. On maximizing reliability of real-time embedded
applications under hard energy constraint. IEEE Trans Ind Inform 2010;6
(3):316–28.

[32] Ishihara T, Yamaguchi S, Ishitobi Y, Matsumura T, Kunitake Y, Oyama Y, et al.
AMPLE: an adaptive multi- performance processor for low-energy embedded
applications. In: The international symposium on application specific
processors; 2008. p. 83–8.

[33] Kartik S, Murthy C S R. Task allocation algorithms for maximizing reliability of
distributed computing systems. IEEE Trans Comput 1997;46(6):719–24.

[34] Sridharan R, Gupta N, Mahapatra R. Feedback-controlled reliability-aware
power management for real-time embedded systems. In: The 45th ACM/IEEE
design automation conference; 2008. p. 185–90.

[35] Izosimov V, Pop P, Eles P, Peng Z. Design optimization of time-and cost-
constrained fault-tolerant distributed embedded systems. In: The conference
on design, automation and test in Europe, vol. 2; 2005. p. 864–9.

[36] Zhao B, Aydin H, Zhu D. Enhanced reliability-aware power management
through shared recovery technique. In: The 2009 international conference on
computer-aided design; 2009. p. 63–70.

[37] Daoud M I, Kharma N. A high performance algorithm for static task scheduling
in heterogeneous distributed computing systems. J Parall Distrib Comput
2008;68(4):399–409.

http://refhub.elsevier.com/S0142-0615(15)00533-5/h0010
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0010
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0015
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0020
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0020
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0020
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0025
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0025
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0025
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0045
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0045
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0045
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0050
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0050
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0050
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0055
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0055
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0060
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0060
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0060
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0065
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0065
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0065
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0070
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0070
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0070
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0075
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0075
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0075
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0080
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0080
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0080
http://dx.doi.org/10.1016/j.compeleceng.2015.06.013
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0090
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0090
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0090
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0095
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0095
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0095
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0105
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0105
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0110
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0110
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0110
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0115
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0115
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0115
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0120
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0120
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0130
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0130
http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf
http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0155
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0155
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0155
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0165
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0165
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0185
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0185
http://refhub.elsevier.com/S0142-0615(15)00533-5/h0185

	Joint optimization of energy efficiency and system reliability�for precedence constrained tasks in heterogeneous systems
	Introduction
	Models
	System model
	Power model
	Application model
	Fault model
	A motivational example

	The proposed algorithms
	Relationship between reliability and energy
	Critical phases
	The proposed algorithms
	The SHRHEFT algorithm
	Procedure SoftErrorDetect\([$]{n}_{i},{p}_{j}[$]\)
	The SHRCPOP algorithm
	The SHREERM algorithm

	Experiments and results
	Performance metrics
	Makespan
	Scheduling Length Ratio \(SLR\)
	Energy Consumption Ratio \(ECR\)
	Probability of Failure \(POF\)

	Randomly generated DAG
	The random application performance analysis
	Performance analysis on graphs of real-world applications
	Fast Fourier Transformation \(FFT\)
	Laplace
	Gaussian-elimination

	Conclusion
	Acknowledgments
	References

