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ParaCPI: A Parallel Graph Convolutional Network
for Compound-Protein Interaction Prediction

Longxin Zhang , Wenliang Zeng , Jingsheng Chen , Jianguo Chen , and Keqin Li

Abstract—Identifying compound-protein interactions (CPIs) is
critical in drug discovery, as accurate prediction of CPIs can
remarkably reduce the time and cost of new drug development.
The rapid growth of existing biological knowledge has opened up
possibilities for leveraging known biological knowledge to predict
unknown CPIs. However, existing CPI prediction models still fall
short of meeting the needs of practical drug discovery applica-
tions. A novel parallel graph convolutional network model for
CPI prediction (ParaCPI) is proposed in this study. This model
constructs feature representation of compounds using a unique
approach to predict unknown CPIs from known CPI data more
effectively. Experiments are conducted on five public datasets,
and the results are compared with current state-of-the-art (SOTA)
models under three different experimental settings to evaluate the
model’s performance. In the three cold-start settings, ParaCPI
achieves an average performance gain of 26.75%, 23.84%, and
14.68% in terms of area under the curve compared with the other
SOTA models. In addition, the results of the experiments in the
case study show ParaCPI’s superior ability to predict unknown
CPIs based on known data, with higher accuracy and stronger
generalization compared with the SOTA models. Researchers can
leverage ParaCPI to accelerate the drug discovery process.

Index Terms—Cold-start settings, compound-protein interac-
tion, drug discovery, parallel graph convolutional network.

I. INTRODUCTION

IDENTIFYING compound-protein interactions (CPIs) is a
critical step in compound screening, lead discovery, and

holds important application value in drug discovery and design.
Accurate CPI prediction, also known as drug-target interaction
(DTI) prediction, reduces the cost and time of drug discovery and
enhances the success rate of new drug development. Although
high-throughput screening [1] remains a reliable method for de-
tecting interactions between compounds and proteins, building
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large compound screening libraries in practical applications is
difficult [2]. In vitro tests to discover CPIs remain expensive,
time consuming, and laborious, limiting their scalability [3].
Each new compound approved by the US Food and Drug Admin-
istration to enter the market has an average capital cost of billions
of dollars during its development process, which typically lasts
for more than a decade [4]. Over the past few decades, numerous
biologists and pharmacologists have devoted considerable effort
to CPI prediction. Today, researchers utilize efficient computa-
tional methods to analyze CPI data accumulated in past studies,
aiming to improve the accuracy of CPI forecasts. Such com-
putational methods have the potential to dramatically decrease
the time and cost of experimental drug testing while providing
scientists with reliable evidence to accelerate drug discovery by
identifying more precise candidate targets.

Three existing computational methods for CPI prediction
include molecular docking-based, machine learning-based, and
deep learning-based approaches. The molecular docking-based
computational approach involves mapping different conforma-
tions of a compound (conformations refer to the different ar-
rangements of molecules in space) onto the 3D structure of
a protein and then calculating the energy between them to
predict their CPI. However, this method suffers from two draw-
backs: (1) accurate modeling of 3D structures of proteins and
compounds requires high computational costs, and obtaining
3D structures of some proteins is difficult [5], greatly limiting
the application range of molecular docking; (2) the multistep
process of molecular docking introduces potential errors at
each step, leading to inaccurate final prediction results. The
machine learning-based computational method directly utilizes
compound and protein data to predict CPI, bypassing the need to
study complex physicochemical properties as in the molecular
docking method, thereby improving prediction accuracy [6]. For
instance, Yamanishi et al. [7] proposed a supervised learning
method called bipartite graph to infer the existence of CPI by
synthesizing compound and protein information into the phar-
macological space. Bleakley et al. [8] designed a bipartite local
model method based on Ref. [7], which computes the similarity
between compounds and proteins using kernel functions and
employs a kernel-based support vector machine (SVM) for CPI
prediction. To further enhance the accuracy of CPI prediction,
Peng et al. [9] developed a prediction model named Norm-
MulInf based on collaborative filtering theory, utilizing labeled
and unlabeled interaction information. NormMulInf identifies
similarity features by integrating biological information, such
as the similarity of samples and the local correlation between
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sample labels. These features are integrated into a robust prin-
cipal component analysis model and solved using an enhanced
Lagrange multiplier. In the same year, Zhang [10] developed an
ensemble learning approach that integrates available heteroge-
neous data to predict CPIs using intrinsic associations of known
interactions between compounds and proteins. This approach
utilizes a stacked framework and employs an SVM classifier
as a meta-learner, resulting in enhanced prediction outcomes.
In response to the prohibitive costs and labor-intensive nature
of traditional wet experiments, Yang et al. [11] introduced the
BioNet model. This model adopts a deep biological network ar-
chitecture, utilizing a graphical encoder-decoder design to glean
insights into intricate interactions among chemicals, genes, dis-
eases, and biological pathways via a graph convolution process.
Aiming at the problems of high false positive and low accuracy
rates in current DTI prediction methods, DTI-CDF [12] fuses
various features of compounds and proteins to predict CPI by
cascading a random subforest composed of multiple random
trees. DTI-CDF exploits a hierarchical strategy where the output
of each random forest (RF) layer serves as the input for the next
RF layer. It also incorporates a negative sampling strategy to
enhance the diversity of the training dataset, thereby improving
the prediction performance.

Although machine learning has shown good performance in
CPI prediction, the increasing size of biological datasets and the
need for prior knowledge have made traditional methods less
capable of handling massive data. To address these limitations,
the industry and academia have turned their attention to deep
learning methods, which have gained widespread application in
several fields. One early CPI prediction model based on deep
learning is DeepDTA [13], which adopts a “Y”-type prediction
framework using two convolutional neural networks (CNNs)
branches to encode the features of compounds and proteins.
The two feature sets are then fed into a fully connected layer
(FCL) for drug-target binding affinity (DTA) prediction. The
DTA prediction problem is a regression problem which predicts
the binding affinity between the drug and the target. Although
CNN-based models have shown success in CPI prediction,
they represent compounds as strings, which is not the natural
representation of compounds. This representation may lead
to the loss of critical chemical structure information during
the process of extracting compound features, thereby affecting
prediction performance. To address this limitation, researchers
have explored alternative approaches, such as SPP-CPI [14],
which uses a distance matrix to represent the compound and
employs a feature pyramid network to extract potential features
of compounds. For proteins, SPP-CPI utilizes natural language
processing (NLP) methods to obtain the semantic information
of the amino acid sequence. Another approach, DrugVQA [15],
employs 2D distance maps for proteins and molecular linear
symbols for drugs, along with a visual question-answering
model for CPI prediction. DeepConv-DTI [16] recognizes that
traditional protein descriptors may not provide sufficient in-
formation for accurate CPI prediction, and they capture local
residue patterns of generalized protein classes by convolving
amino acid subsequences of varying lengths. The experimental
results demonstrate that DeepConv-DTI effectively enriches the

features of the original protein sequences. HoTS [17] constructs
a binding region (BR) dataset by collecting protein sequences
of CPI complexes and binding sites, and the model is pretrained
on this dataset to improve the interpretability of CPI predic-
tion models. The pretrained model is then used to predict the
DTI dataset. The model performs well in BR prediction on
independent test datasets and accurately predicts DTI without
using 3D structural information. However, the improvement in
prediction performance by these methods is not obvious. Graph
neural network (GNNs) have been applied to CPI prediction
to extract graphical structural information of compounds and
overcome these challenges. GNN-based methods represent com-
pounds as molecular graphs, with atomic nodes as graph nodes
and bond pairs between atoms as edges, and employs GNN
models to obtain embedding representations of the molecular
graphs. For example, Tsubaki et al. [18] developed an end-
to-end prediction model called CPI_prediction by integrating
discrete symbolic data for compounds and proteins, combining
GNN and CNN, and simultaneously employing an attention
mechanism for efficient visualization of CPI. Yang et al. [19]
proposed MGraphDTA, a deep multiscale neural network model
for DTA prediction, based on chemical intuition to address
this problem. MGraphDTA employs an ultradeep GNN with
27 graph convolutional network (GCN) layers, utilizing dense
connections in the GNN to simultaneously capture both the local
and global structure of the compound. To improve model inter-
pretability, MGraphDTA introduces a novel visual interpretation
method called gradient-weighted affinity activation mapping,
revealing the global relationships between atoms in a molecule.
However, this method of constructing full graph features with
ultradeep GNNs leads to considerable information redundancy,
resulting in unsatisfactory prediction performance. Additionally,
MGraphDTA fails to account for the model’s generalizability.
In CPI prediction, accurate representations of atomic features
can substantially enhance prediction accuracy. The CGINet [20]
model takes a unique approach by focusing on subgraphs to
streamline the feature learning process. Initially, node embed-
dings are generated through the learning of binary association
subgraphs. These embeddings are then transitioned to subgraphs
encompassing multiple interactions. This methodology enables
the model to acquire a more concentrated high-level representa-
tion of the target nodes, resulting in more efficient prediction of
interactions between chemicals and genes. With the widespread
application of transformers in NLP and computer vision, re-
searchers have found that the self-attention mechanism of the
transformer architecture effectively captures global dependen-
cies in long text sequences. Building on this insight, Chen et al.
[21] proposed a new CPI prediction model, TransformerCPI,
based on the transformer architecture. The authors highlighted
specific challenge faced by sequence-based CPI prediction mod-
els, including the use of inappropriate datasets, hidden ligand
bias, and inappropriately split datasets, which can lead to an
overestimation of the model’s prediction performance. Trans-
formerCPI addresses these traps by constructing new datasets
tailored specifically for CPI prediction and introducing strict
label reversal experiments to evaluate the model’s ability to
learn true underlying features. Nevertheless, the self-attention

Authorized licensed use limited to: Hunan University of Tech. Downloaded on March 20,2025 at 01:27:56 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: PARACPI: A PARALLEL GRAPH CONVOLUTIONAL NETWORK FOR COMPOUND-PROTEIN INTERACTION PREDICTION 1567

Fig. 1. Overall framework of ParaCPI.

mechanism in TransformerCPI significantly inflates the model
parameters, leading to diminished efficiency during both train-
ing and testing phases. Similar to TransformerCPI, the MG-
BERT [22] model integrates the local information propagation
mechanism of GNNs with the advanced capabilities of BERT to
enhance the efficiency of learning molecular graph structures.
Through this approach, pretraining the MG-BERT model on a
large-scale unlabeled dataset enables more effective extraction
of contextual information from molecules. The atomic features
produced by this method exhibit high sensitivity to context and
are applicable to various intricate prediction tasks. Although
all of the above models have achieved remarkable results in CPI
prediction, further improvements in accuracy and generalization
are needed to enhance the drug development process.

This study proposes a novel approach called parallel GNN
for CPI prediction (ParaCPI) to address the above problems.
We believe that the molecular graph representation of the
compound remains the most efficient approach. Thus, ParaCPI
uses the simplified molecular input line entry specification
(SMILES) [23] of the compounds, and the amino acid sequences
of the proteins are used as inputs to obtain their initial features.
The parallel GNN (ParaGNN) and the deep separable CNN
(DSCNN) are constructed in parallel to process the two initial
feature sets and obtain the embedding representations of the
compounds and proteins. ParaCPI concatenates the two sets
of embedding representations to obtain potential features of
compound-protein complexes (CPCs) and feeds them into a
FCL for CPI prediction. The main contributions of this study are
fourfold.
� A new neighborhood expanding (NE) algorithm is de-

signed to generate an efficient expanded adjacency matrix
(EAM) for aggregating the global feature structure of com-
pounds.

� A unique GNN feature extraction network, ParaGNN, is
constructed on the basis of EAM to extract compound fea-
tures. Additionally, a more effective regularization strategy,

half dropout (HD), is introduced to prevent the model from
overfitting.

� A novel graph regularization block (GRB) is developed to
adjust the model parameters and extract compound features
that are more beneficial for predicting CPIs.

� Compared with the current state-of-the-art (SOTA) models,
ParaCPI demonstrates strong competitive performance in
terms of generalizability across various environments.

The rest of this study is organized as follows. Section II
elaborates ParaCPI in detail, followed by the presentation of
experimental results and discussions in Section III. Section IV
concludes the study.

II. METHODS

Given a CPC composed of SMILES sequences and protein
sequences, ParaCPI models the CPI problem by considering
the global network structure of the compound and the local
bioinformation of the CPC. Fig. 1 shows the overall framework
of ParaCPI. In particular, ParaCPI is divided into three steps: (i)
data preparation, which aims to initialize the biological infor-
mation and obtain initial features of compounds and proteins;
(ii) feature extraction, which aims to mine potential feature
information in compounds and proteins to obtain features of
the CPC; and (iii) CPI prediction, which feeds the CPC features
into the FCL to predict the CPI. ParaCPI treats CPI prediction
as a binary classification problem, defined as follows:

y = FCL ([fc(xc), fp(xp)]), (1)

where xc and xp are the initial features of the compound and
protein obtained after data processing. fc(·) and fp(·) denote the
feature extraction functions of compounds and proteins, respec-
tively. FCL(·) is the FCL. y indicates whether an interaction
occurs between the compound and the protein, with its value
being 0 or 1. y = 1 indicates a positive interaction (i.e., yes),
otherwise, it indicates no interaction.
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TABLE I
ATOMIC FEATURES ON THE HUMAN AND C.ELEGANS DATASETS

A. Drug Preparation

1) Compound Representation: The sequence-based repre-
sentation method greatly reduces the cost of expensive molecular
docking simulations. In this study, compounds are represented
using SMILES sequences, which are text symbols representing
topological information based on chemical bond rules. ParaCPI
captures the structural and topological information of molecules
through SMILES sequences in a simple and intuitive manner.
In addition, SMILES sequences are a standard representation
that can be easily searched in chemical information systems and
databases. ParaCPI utilizes the RDKit tool [24] to convert each
compound into a molecular map, where the atoms and bonds
of the compound are represented as vertices and edges in the
map, respectively. Consequently, ParaCPI constructs a vector
xc to represent the atomic features in the molecular map of
a compound. These features include the type of atom, atomic
degree, hydrogens, implicit valence, hybridization, aromaticity,
chirality, and chirality type. For the Human and Caenorhabditis
elegans (C.elegans) datasets, this approach represents the fea-
tures of each compound in the dataset as a vector of size 1× 87.
The specific features are encoded, as shown in Table I.

When compounds are represented as molecular maps, GNNs
can automatically extract potential chemical features by taking
the structure of neighboring nodes into account and aggregating
messages between the layers. GNNs typically adopt the adja-
cency matrix of the graph as the method of message passing and
then obtain the full graph structure by continuously deepening
the number of network layers. However, this approach cannot
be stacked extremely deep, unlike CNNs. In cases where the
number of network layers is insufficient, GNNs cannot fully
leverage the subgraph structure information. ParaCPI introduces
a new message passing method based on the adjacency matrix,
named the NE algorithm, as shown in Algorithm 1.

For a G = 〈V,E〉, where V denotes the set of nodes and E
denotes the set of edges. NE first constructs the adjacency matrix
A based on the graph G (lines 1-4). The k1-th power adjacency
matrix Ak1 and the k2-th power adjacency matrix Ak2 of A are
calculated (line 5). The EAM Ac is calculated using (2) (line 6).
The NE algorithm converts Ac into a binary matrix to prevent
repeated extraction of features from a node in the graph (lines
7-13). The time complexity of the NE algorithm is O(N2

V ) =
O(NE) +O(NV ×NV ) +O(k1!) +O(k2!), where k1 and k2
are positive integers no higher than 5. In this study, the SMILES
representation O=C(C)Oc1 ccccc1C(=O)O of Aspirin is used

Algorithm 1: NE.

Input: Compound molecular map G = (V,E),
neighbourhood expansion kernel size k1, k2.

Output: EAM Ac.
1: for (vi, vj) ∈ E do
2: A[vi, vj ]← 1;
3: A[vj , vi]← A[vi, vj ];
4: end for
5: Calculate the k1-th and k2-th powers Ak1 , Ak2 of the

adjacency matrix A;
6: Ac ← Ak1+Ak2 ;
7: for (n← 0;n ≤ len(V )− 1;n++) do
8: for (m← 0;m ≤ len(V )− 1;m++) do
9: if Ac[n,m]! = 0 then
10: Ac[n,m]← 1;
11: end if
12: end for
13: end for
14: return EAM Ac.

Fig. 2. NE algorithm in Aspirin.

as an example to construct the EAM, as shown in Fig. 2. The NE
algorithm utilizes neighborhood expansion kernels with sizes of
k1 = 4 and k2 = 5, which can cover all atoms of the aromatic
hydrocarbon composed of C:4–C:9 in Aspirin. As depicted in
Fig. 2, the EAM generated by the NE algorithm contains more
node information. The binarization operation of the algorithm
can improve the efficiency of GNN aggregation information
while reducing the redundancy of the data, thereby obtaining

Authorized licensed use limited to: Hunan University of Tech. Downloaded on March 20,2025 at 01:27:56 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: PARACPI: A PARALLEL GRAPH CONVOLUTIONAL NETWORK FOR COMPOUND-PROTEIN INTERACTION PREDICTION 1569

more effective feature representation.

Ac = Ak1 +Ak2 . (2)

2) Protein Representation: ParaCPI represents proteins us-
ing amino acid sequences, where each character denotes an
amino acid. In this study, a vocabulary is created to map each
character to an integer (i.e., glycine G for 6, histidine H for 9, and
leucine L for 12). In this way, each protein can be converted to an
integer sequence. Given that the amino acid sequence length of
different proteins is not consistent, ParaCPI sets the maximum
length of the protein sequence to 1,200 to ensure that at least
80% of the proteins can be covered. After receiving the integer
encoding form of the protein, ParaCPI adopts an embedding
layer to embed each amino acid into a 128-dimensional space
to obtain the semantic features of different amino acids.

B. Feature Extraction

1) ParaGNN Module: Inspired by CNNs, some previous
work has improved the feature extraction performance of CPI
prediction models by increasing the number of GCN layers.
This approach improves the accuracy of CPI prediction, but
this process may cause the feature expression of some nodes
to be consistent. This section illustrates this drawback with the
example of the graph G = 〈V,E〉, where each node vi in the
node set V has an initial feature vector x0

i . In a GNN model
consisting of l layers of GCNs, each layer of the GCN will
update node features, and the update function is shown in (3).

x
(l+1)
i = σ

(∑
j∈Ni

1

ni,j
Wlx

(l)
j

)
, (3)

where x
(l)
j denotes the feature vector of node vi at layer l. Ni

is the set of neighboring nodes of the node vi. Wl is the weight
matrix at the layer l. ni,j is the normalization factor of the
edge between nodes vi and vj , and σ(·) denotes the activation
function. From the spatial perspective, the node features updated
by the GCN at each layer can be regarded as the weighted
summation of the neighbor node feature vector x(l)

j of the node

vi, and the feature vector x(l+1)
j of vi at the layer l + 1 can be

obtained through linear and nonlinear transformations. At each
layer of the GNN, the node feature vectors are influenced by their
neighbor nodes, evolving into higher dimensional embedding
representations. However, the aggregation radius (the distance
from the farthest node to the central node) of the node grows
as l increases. When the aggregation radius reaches a certain
threshold, each node will aggregate the node feature information
of the whole graph, as shown in Fig. 3.

Therefore, we present a ParaGNN module composed of
multiple parallel GCNs, which is based on EAM to learn the
embedded representation of compounds. The structure of the
ParaGNN module is shown in Fig. 4, which consists of multiple
parallel GCNs and a graph regularization block (GRB). GRB
includes node batch normalization (NBN) [19], max pooling
(MP), the rectified linear unit (ReLU) activation function, and

Fig. 3. GCN stacking process. With node D as the central node for graph
convolution, each node will aggregate the full graph information when the GCN
layer is larger than 4. At this time, the diversity of the node’s local network
structure is then lost, which will be detrimental to learning the node’s own
features.

Fig. 4. ParaGNN module.

half dropout (HD). The calculation procedure is shown in (4).

Hc = fc(xc,Ac) = GRB

( n∑
c=1

(
D̃−

1
2 ÃD̃−

1
2xcW

c
))

, (4)

where Wc is the GCN layer of the c-th channel, and n indicates
the number of parallel GCNs. Ã denotes the adjacency ma-
trix with self-connection, which is calculated by Ã = Ac + I.
D̃ represents the degree matrix of Ã, which is estimated as
D̃i,i =

∑
j Ãi,j . I denotes the identity matrix of the same

dimension asAc.GRB(·) = HD(σ(MP(NBN(·)))). The input
to the ParaGNN module consists of the initial features xc of
the compound and the EAM Ac. The EAM aggregates the
feature information of almost all nodes in the molecular graph in
each GCN layer by comparing the adjacency matrix of Aspirin
with the EAM in Fig. 2. Obviously, this is contrary to the
problem to be dealt with in this study, but the NE algorithm
can avoid this phenomenon only by adjusting the size of the
neighborhood expansion kernel. In addition, ParaGNN uses
parallel GCN modules to ensure that the weight matrix of each
GCN is independent of each other to extract multidimensional
features of the atomic nodes. A unit matrix is added to the
computation of Ã. When the neighborhood expansion kernel
is even, the diagonal values of Ã are both 2; that is, the GCN
will aggregate the feature information of the central node twice.
As shown in Fig. 4, partial nodes still aggregate the feature
information of all nodes in the graph. ParaGNN designs the GRB
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Fig. 5. DSCNN module.

to address the problem of overfitting caused by this phenomenon.
First, considering that traditional batch normalization ignores
the differences between nodes within a layer, GRB learns the
complex structure of the data better by standardizing the features
of each node within a single batch. Second, ParaGNN’s parallel
GCN can obtain molecular graph features from different dimen-
sions, so GRB takes MP processing of NBN output to obtain
effective feature information on different dimensions. The GRB
then uses the ReLU activation function for nonlinear mapping,
enabling ParaGNN to learn nonlinear patterns in the compound.
Third, GRB adopts HD to clear the weights of some neurons in
ParaGNN to force ParaGNN to learn different features, reduce
overfitting, and ultimately improve the generalization ability of
the model. HD involves early dropout (ED) and late dropout
(LD). Specifically, ED denotes using dropout before an iteration
and then disabling dropout for the rest of the training process.
LD denotes not using dropout until a certain iteration but using
dropout during the rest of the training process.

2) DSCNN Module: ParaCPI uses integer encoding and an
embedding layer to represent the protein as a 2D matrix. The
matrix size of each protein is 1, 200× 128, where 1,200 is the
default number of amino acids per protein in this study, and 128
is the matrix size of each amino acid. A DSCNN based on a
1D CNN is built by ParaCPI to extract the chemical information
from proteins. The structure of the DSCNN module is depicted
in Fig. 5. The output of each CNN layer is processed by the ReLU
activation function to prevent overfitting of the model, and then
effective features are extracted by the MP layer at the end of the
channel. Finally, these multiscale features are connected into a
new vector representing the protein features. DSCNN utilizes
different numbers of CNNs to construct multiple channels to
efficiently extract protein feature information at different scales.
This method of multiscale feature extraction has a wide range of
applications in the CV field, which can extract hidden features
at different levels of images. For protein features, the complex
chemical information between amino acids is also multilayered.
Therefore, DSCNN can obtain the embedded representation
of proteins more efficiently, thereby improving the prediction
accuracy of CPI.

C. CPI Prediction

As illustrated in Fig. 1, the protein and compound features
obtained by the ParaGNN and DSCNN modules are concate-
nated as CPC features and used by ParaCPI for CPI prediction.

TABLE II
HYPERPARAMETER ON DIFFERENT DATASETS

Specifically, four FCLs are used to predict the CPI, and the
length of the FCLs is (1,024, 1,024, 256, 2). The ReLU activation
function is used to learn the nonlinear features of the first three
layers of the FCL. A random dropout layer is implemented for
the output of the activation function. Considering that the CPI
prediction problem is a traditional binary classification problem,
we adopt the cross-entropy loss function to train the ParaCPI
model, and it is calculated using (5) [25].

Loss = −[y log ŷ+(1−y) log (1−ŷ)], (5)

where y represents the true class labels, and ŷ is the class
labels predicted by the model. Finally, ParaCPI updates the
network with a set of parameters by applying a backpropagation
algorithm, which aims at minimizing the loss function.

III. RESULTS AND DISCUSSION

A. Experimental Setups

1) Implementation Details: The ParaCPI model is imple-
mented in a software environment with Python3.7 support pro-
vided by PyTorch 1.6.0. The experiments are conducted on a
server with Ubuntu 18.04, Intel(R) Core(TM) i7-6850 K CPU
@ 3.60 GHz, and four NVIDIA GeForce RTX 1080 Ti graphics
cards. ParaCPI uses the Adam optimizer to train the model. In
the experiment, the batch size is 512, and the number of parallel
GCNs is 5. Appropriate hyperparameters are selected by grid
search for different datasets. The partial hyperparameters for
the different datasets are reported in Table II.

2) Datasets: Five datasets are chosen in three different envi-
ronments to assess the performance of the designed ParaCPI
model. The three experimental environments include warm-
start, cold-start, and label reversal settings. The warm-start
setting refers to the inclusion of data (compounds or proteins)
from the training set that may also appear in the test set. Three
types of subjects are involved in the CPI prediction problem,
including compounds, proteins, and CPCs. Thus, three types
of cold-start settings are used, including compound cold-start
settings, protein cold-start settings, and compound-protein cold-
start settings. The three cold-start settings indicate that the model
needs to detect compounds, proteins, or CPCs that have not been
seen during the training phase of the model while testing. The
cold-start setting is more suitable for the practical application of
the CPI prediction problem than the warm-start setting. The label
reversal setting indicates that a compound in the training set be-
longs only to the positive or negative CPI, whereas the compound
in the test set belongs to the opposite class of the sample set. The
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TABLE III
SUMMARY OF DATASETS

five publicly selected datasets selected in the experiments in-
clude Human [18], C.elegans [18], DrugBank [26], GPCR [21],
and Kinase [21]. Details of the datasets are illustrated in
Table III. In this study, we use 5-fold cross-validation (CV) to
validate the model effect on Human and C.elegans datasets. Due
to the additional requirements of the cold-start and label reversal
settings on the test data, the hold-out method combined with
5-fold CV is employed to validate model performance. This
approach initially extracts data meeting specific criteria from
the entire dataset to form the test set. Subsequently, 5-fold CV
is applied to the remaining data, with the final step involving the
evaluation of model metrics on the test set. To ensure fairness,
this study repeated experiments three times with three different
random seeds in the warm-start setting; in the cold-start setting,
it repeated the experiments ten times with ten different random
seeds. D1, D2 and D3 represent the number of training set,
validation set and test set samples under the cold-start setting
of the compound, respectively, with sizes of 22,578, 22,357 and
17,859. Similarly, P* and DP* (* is 1, 2, or 3) represent the
number of samples in different sets of protein cold-start setting
and compound-protein cold-start setting, respectively. P1, P2,
P3, DP1, DP2 and DP3 are 5,646, 5,590, 4,465, 6,799, 7,075
and 1,430, respectively. The reason for the lower total sample
number in the compound-protein cold-start setting compared to
the other two cold-start settings is to ensure that the compounds
or proteins in the test set have not appeared in the training or
validation sets.

3) Baselines: Several classical machine learning mod-
els [27] with six SOTA computational models used for
CPI prediction are compared in the experiment, including
GraphDTA [28], DeepConv-DTI [16], TransformerCPI [21],
MGraphDTA [19], CPGL [29], and MSF-DTA [30], to verify the
effectiveness of ParaCPI. The details of these baseline models
are given below.
� Classical machine learning models [27]: This includes

k-nearest neighbors (KNN), RF, L2-regularized logistic
regression (L2), and SVM. The authors established a set
of highly reliable negative samples of CPI by computer
screening methods and used classical machine learning
classifiers to predict CPI.

� GraphDTA [28]: Compound characteristics are obtained
by combining the molecular diagram structure of the com-
pound and GCN to predict the unknown CPI. The model in
the original study is used to predict DTA, but it can also be
applied to predict CPI by modifying the output dimension
and loss function of the model classifier.

� CPGL [29]: This model comprises a long-short term mem-
ory network for proteins and a graph attention network

for compounds to learn potential feature representations,
thereby predicting CPI in an end-to-end manner.

� MSF-DTA [30]: This model learns the feature representa-
tion of proteins in a novel manner by collecting information
from protein interaction networks and sequence similarity
networks, which are concatenated with compound features
extracted by GCN and fed into FCL for CPI prediction.

4) Evaluation Metrics: In the experiment, the following six
metrics are used to evaluate the performance of the ParaCPI and
SOTA models: accuracy, precision, recall, area under the curve
(AUC), area under precision-recall (AUPR), and F1-score.

a) Accuracy: The accuracy indicates the proportion of
CPIs predicted correctly in all predicted outcomes. High accu-
racy indicates better predictive performance of the model, which
is estimated by

Accuracy =
TN + TP

FP + TP + FN + TN
, (6)

where true negatives (TN ) and false negatives (FN ) represent
the number of correct and incorrect noninteractive CPCs, re-
spectively.

b) Precision: The precision refers to the proportion of true
positive examples of CPIs among CPIs predicted to be positive
samples, and it can be calculated by

Precision =
TP

TP + FP
. (7)

In the CPI prediction problem, the goal is to find potential
interactions, that is, positive samples. The precision reflects the
predictive ability of the model on the positive samples. High
accuracy indicates that the model has a strong prediction ability.

c) Recall: The recall is the proportion of CPIs predicted
as positive samples in the true positive examples’ CPIs, which
is estimated by

Recall =
TP

TP + FN
. (8)

Recall reflects the coverage of positive samples predicted
by the model on the true positive samples. A high recall rate
indicates good predictive performance of the model.

d) AUC: The AUC denotes the area surrounded by the
ROC and the coordinate axes. The vertical axis represents the
TPR and the horizontal axis of the ROC shows the false positive
rate (FPR). The FPR is calculated using (9), and the TPR is
computed using the same equation as recall.

FPR =
FP

FP + TN
. (9)
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TABLE IV
COMPARISON RESULTS OF PARACPI AND BASELINES ON THE HUMAN DATASET

The value of AUC ranges from 0 to 1, and a value close to 1
indicates excellent classifier performance.

e) AUPR: AUPR represents the area surrounded by the
PRC curve and the horizontal axis, where the horizontal axis
of the PRC curve is recall and the vertical axis is precision.
The larger the value of AUPR, the stronger the classification
capability of the model. The value range of AUPR is the same
as that of AUC, with a value closer to 1 indicating better model
performance.

f) F1-score: The F1-score is a statistical measure used to
evaluate the accuracy of a classification model, especially when
there is an uneven distribution of class categories. It represents
the harmonic mean of precision and recall, providing a compre-
hensive metric for assessing the model’s overall performance.
The F1-score is calculated as follows:

F1 = 2 · Precision · Recall
Precision + Recall

. (10)

The F1-score ranges from 0 to 1, where 0 signifies the worst
performance and 1 indicates perfect performance. A higher F1-
score signifies a better balance between precision and recall,
which is crucial in practice, as improving precision often leads
to a reduction in recall, and vice versa.

B. Comparison Experiments

1) Comparison in Warm-Start Setting: In the warm-start set-
ting, we evaluate the predictive performance of ParaCPI on
the Human and C.elegans datasets. The results obtained on the
Human and C.elegans datasets are shown in Tables IV and V.
Error band analysis plots of the results obtained from the 5-fold
CV method are plotted to further demonstrate the robustness
of ParaCPI, as shown in Figs. 6 and 7. For the Human dataset,
ParaCPI achieves precision, recall, and AUC scores of 0.966,
0.957, and 0.991, respectively, surpassing other models in all
three evaluation metrics. It demonstrates average performance
gains of 5.08%, 5.52%, and 4.82%, respectively. As depicted
in Fig. 6, CPGL achieves comparable recall to ParaCPI, but
ParaCPI outperforms CPGL by 5.52% and 1.21% in preci-
sion and AUC scores, respectively. Notably, ParaCPI surpasses
the current SOTA model MGraphDTA by 1.10% in precision.
Additionally, it exceeds MSF-DTA, which currently holds the
highest AUC score, in all three metrics, with performance gains
of 3.27%, 2.90%, and 1.01%, respectively. In Fig. 7, ParaCPI

TABLE V
COMPARISON RESULTS OF PARACPI AND BASELINES ON THE C.ELEGANS

DATASET

Fig. 6. Comparison results of ParaCPI and baselines on the Human dataset.

Fig. 7. Comparison results of ParaCPI and baselines on the C.elegans dataset.

exhibits superior AUC and accuracy compared to SOTA models
on the C.elegans dataset. While ParaCPI’s recall is 0.005 lower
than MGraphDTA, it surpasses MGraphDTA by 0.38% in terms
of AUC. Moreover, ParaCPI achieves performance gains of
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TABLE VI
COMPARISON RESULTS OF PARACPI AND BASELINES IN THE COLD-START SETTING

9.20%, 6.50%, and 5.54% on the three metrics compared to
other models.

2) Comparison in Cold-Start Setting: The effectiveness of
deep learning on multiple problems relies heavily on the ability
of models to be trained on massive datasets. Many existing
models use the result of the warm-start setting to evaluate
performance. However, the cold-start setting is more in line
with the practical requirements for drug discovery than the
warm-start setting. A major challenge in the cold-start setting
is whether the model that performs well on the training set
can achieve accurate predictions on the test set. Four SOTA
models are presented in this section, including GNN-CPI [18],
GNN-PT [31], MolTrans [32], and HyperAttentionDTI [26], to
compare the effectiveness of ParaCPI in the cold-start setting.
HyperAttentionDTI does not directly connect the features ex-
tracted from the two modules but uses an attention mechanism to
obtain the key information and then obtains the final features of
the compounds and proteins through the MP layers. The two sets
of features are concatenated and fed into the FCL to predict the
CPI. The experimental results of ParaCPI with other compared
models on DrugBank in the cold-start setting are reported in
Table VI. The accuracy, precision, recall, AUC, and AUPR of
ParaCPI are 0.791, 0.778, 0.778, 0.871, and 0.830, respectively,
in the compound cold-start setting, which improves by 10.14%,
0.52%, 27.19%, 10.93%, and 5.73%, respectively, compared
with the current best model HyperAttentionDTI. ParaCPI ex-
hibits a remarkable improvement in the protein cold-start setting.
The AUC of ParaCPI is 0.970, which gains an improvement
of 18.61% over HyperAttentionDTI. Additionally, ParaCPI
improves the other four evaluation metrics by approximately
10%-34% compared with HyperAttentionDTI. When CPCs that
are not seen during model training are input during model test-
ing, ParaCPI improves by 2.60%, 5.63% and 0.19% compared

with HyperAttentionDTI in terms of accuracy, recall, and AUC,
respectively. Table VI shows that ParaCPI is 0.037 and 0.021
lower than HyperAttentionDTI in terms of accuracy and recall
in the compound-protein cold-start setting, respectively. The
reason behind this phenomenon is that the attention mechanism
adopted by HyperAttentionDTI after extracting the compound
and protein features separately strengthens the connection be-
tween the two. However, it is this connection that causes the
model to fail to achieve suitable performance in the other two
cold start environments, whereas ParaCPI shows good perfor-
mance in three cold-start settings. In particular, the average
performance gains for the five performance metrics of ParaCPI
are 29.45%, 25.40%, 38.98%, 23.69%, and 19.63% in the protein
cold-start setting compared with the other seven models.

The experimental results in Table VI demonstrate that
ParaCPI is superior to the SOTA models on the DrugBank
dataset in evaluation metrics under the cold-start setting, with
only a few exceptions. The reason for the excellent performance
of ParaCPI in the cold-start setting is multifold. First, the NE
algorithm is crucial for the expansion of node neighborhoods.
Compared with the GNN-CPI, GNN-PT, and GraphDTA models
without the NE algorithm, ParaCPI can construct compound
feature representations with stronger generalization and higher
efficiency based on known CPCs. For recall, ParaCPI increases
by 49.12%, 78.53%, and 44.68% compared with GNN-CPI,
GNN-PT, and GraphDTA, respectively. Second, the DSCNN ex-
hibits the ability to extract sequence features without inferiority
to the transformer framework. For the protein feature extraction
module, the other seven compared models use FCL, transformer
architecture or stacked CNN layers to extract protein features.
From the experimental results of the protein cold start setting,
ParaCPI achieves a more efficient protein feature extraction
capability and can use these features to predict interactions
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Fig. 8. Comparison results of ParaCPI and baselines on the GPCR and Kinase
datasets.

between compounds and unseen proteins. Third, the paralleliza-
tion design of ParaGNN alleviates the deficiency of NE, and
GRB effectively eases the problem of overfitting in the training
process.

3) Comparison in Label Reversal Setting: The label reversal
setting is designed to validate whether the model has hidden
ligand bias issues, which was first reported in the DUD-E and
MUV datasets [33]. The hidden ligand bias problem refers to
the fact that the model predicts CPI primarily based on ligand
patterns rather than on information about CPIs, which will lead
to difficulties in matching between theoretical modeling and
practical applications [21]. The experimental results of ParaCPI
with other baseline models in the label reversal setting are
illustrated in Fig. 8. Fig. 8 shows that ParaCPI does not have
a remarkable performance advantage on the GPCR dataset. For
AUC, ParaCPI is 0.011 lower than that of TransformerCPI.
For AUPR, ParaCPI is 0.027 lower than that of CPGL. This
phenomenon may arise from the size of the dataset. On the
Kinase dataset with larger training data, the AUC and AUPR
of ParaCPI reached 0.718 and 0.462, which increased by 0.98%
and 43.48% compared with CPGL, respectively. The Kinase
dataset is a category-imbalanced dataset compared with the
GPCR dataset; that is, the AUPR can better reflect the prediction
performance of the model. Although the prediction performance
of ParaCPI on the GPCR dataset does not exceed that of the
current SOTA model, ParaCPI does not suffer from severe
hidden ligand bias compared with the GCN, CPI-GNN, and
GraphDTA models, which is confirmed by experimental results
on the Kinase dataset.

C. Ablation Study

The core idea of ParaCPI depends on the design of ParaGNN
combined with the NE algorithm. The following four variant
models are developed using ParaCPI in the experiments to verify
the effectiveness of each module in ParaCPI. CPI-NE: The NE
algorithm is not used in the data processing process, but the fea-
tures of other nodes are aggregated using the adjacency matrix of
atomic nodes in the original drug molecule map. CPI-ParaGNN:
The ParaGNN module is replaced with a five-layer stacked GCN
module (the same number of GCN layers used by ParaGNN)
based on CPI-NE, but the GRB is retained. CPI-GRB: This
model removes GRB based on the CPI-ParaGNN. CPI-DSCNN:

This model replaces the DSCNN module with six stacked CNN
layers based on CPI-GRB.

As depicted in Table VII, when NE is not utilized, ParaCPI’s
accuracy, recall, AUC, and F1-score on the Human dataset de-
crease by 2.66%, 3.01%, 2.69%, and 2.46%, respectively. These
reductions directly impact ParaCPI’s predictive performance.
CPI-ParaGNN surpasses CPI-NE across all evaluation metrics
on both datasets. CPI-ParaGNN outperforms CPI-NE in terms
of all evaluation metrics on both datasets. The reason for this
phenomenon is that when EAM is not used, CPI-ParaGNN
needs to use multiple layers of stacked GCNs to construct
effective compound features. CPI-NE uses ParaGNN to extract
compound features based on the adjacency matrix and cannot
extract useful compound features. Despite replacing ParaGNN
with a compound feature extraction module akin to GraphDTA,
CPI-ParaGNN exhibits a 7.70% and 5.18% enhancement in
accuracy over GraphDTA on the two datasets, respectively. This
improvement is attributed to GRB, which successfully reduces
the degree of overfitting of the model and enables the model to
achieve more accurate prediction performance while stacking
several layers of GCNs. When CPI-GRB removes GRB, the
model tends to overfit due to the excessive number of GCN
layers, leading to a decrease in the AUC of the model by 2.64%
and 1.76% compared to CPI-ParaGNN on the two datasets,
respectively. The structure of CPI-DSCNN is similar to that
of GraphDTA. The distinction between the two lies in the
depth of the network. CPI-DSCNN, having a deeper network,
achieves AUCs of 0.934 and 0.959 on the two datasets, which are
2.78% and 1.56% lower than those of GraphDTA, respectively.
Additionally, the F1-score of ParaCPI outperforms other variant
models, exhibiting an average increase of 3.93% and 3.06%
across the two datasets. The experimental results illustrate that
ParaGNN combined with the NE algorithm can effectively ex-
tract compound features. GRB can also effectively adjust model
parameters to prevent the model from overfitting. DSCNN has
a more efficient protein feature extraction capability compared
with the constantly stacked CNN module.

D. Performance of ParaCPI With Different Numbers of GCNs

Given that the feature dimension of compounds is unknown to
the model, determining the GCN number of ParaGNN is the key
to extracting compound features. When the number of GCNs is
extremely small, ParaGNN cannot extract efficient compound
features for CPI prediction. When the number of GCNs is
extremely large, the model may produce incorrect feature repre-
sentations and affect the prediction performance. Fig. 9 reports
the ROC and PR curves of ParaCPI under different numbers
of GCNs on the Human and C.elegans datasets. Fig. 9 shows
that the AUC and AUPR are low when the number of GCNs is
3. The AUC and AUPR reach the maximum when the number
of GCN is 5. As the number of GCNs increases, the model’s
prediction performance exhibits a declining trend. Specifically,
the AUC of ParaCPI decreases by 0.007 and 0.003 on the Human
and C.elegans datasets, respectively, when the number of GCNs
reaches 11. The AUC of ParaCPI under different GCN numbers
still exceeds that of most current SOTA models.
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TABLE VII
PERFORMANCE OF DIFFERENT VARIANT MODELS ON THE HUMAN AND C.ELEGANS DATASETS

Fig. 9. The ROC curves and PR curves of ParaCPI with different numbers of
GCNs on the Human and C.elegans test datasets.

E. Performance of ParaCPI With Different Neighborhood
Expansion Kernel Sizes

The good feature extraction capability of ParaGNN is largely
derived from the EAM constructed by the NE algorithm. The
appropriate neighborhood expansion kernel size is the key to
constructing an effective EAM. Fig. 10 shows the ROC and PR
curves of ParaCPI on the Human and C.elegans datasets with
different neighborhood expansion kernel sizes. Fig. 11 describes
the EAM construction process to illustrate the differences be-
tween neighborhood nodes under different k values. ParaCPI
does not adopt the NE algorithm to construct the association
features when k1 = 1, k2 = 1 due to the binarization operation
in NE, which can be observed in Fig. 11(a). Fig. 10 shows that
when k1 = 1, k2 = 1, ParaCPI has the smallest areas under
the ROC and PR curves on the two datasets. When the NE
algorithm is applied, the parity of the two neighborhood expan-
sion kernels selected in this study is inconsistent. This occurs
because when the size of the neighborhood extension kernels is
either odd or even, it leads to the exclusion of either even-order
or odd-order neighborhood node features of the central node.
When k1 = 4, k2 = 5, the AUC and AUPR of ParaCPI using
the NE algorithm on the Human dataset are 0.991 and 0.966,
respectively. An interesting phenomenon that can be observed
from Fig. 10 is that ParaCPI (i.e., Fig. 11(d)–(g)), considering

Fig. 10. The ROC curves and PR curves of ParaCPI with different neighbor-
hood expansion kernel sizes on the Human and C.elegans test datasets.

Fig. 11. Node association features are constructed by the NE algorithm at
different k values. Red represents the starting node and the blue represents the
neighborhood dilation node.

third-order neighborhood node features, has better prediction
performance. This is consistent with the view that most CPI
prediction models without the NE algorithm set the number of
GCN layers to 3. As can be observed in Fig. 10, the model
performance of k1 = 3, k2 = 4 and k1 = 4, k2 = 5 is highly
similar. On the basis of the results of Fig. 11(f)–(g) the degree
of the selected starting node in this study is 1. When the degree of
the selected starting node is greater than 1, the EAM constructed
by k1 = 3, k2 = 4 or k1 = 4, k2 = 5 is the same in Fig. 11.
This similarity in performance is because the degree of the
atomic nodes in the molecular graph of the compound is mostly
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TABLE VIII
PREDICTION RESULTS OF PARACPI ON THE DB00201 DATASET

TABLE IX
PREDICTION RESULTS OF PARACPI ON THE Q99928 DATASET

greater than 1. Hence, the neighborhood expansion kernel is
set to k1 = 4, k2 = 5 for ensuring the prediction ability of the
model and enhancing the generalization ability of ParaCPI.

F. Case Study

The compound DB00201 (Caffeine) and the protein Q99928
(gamma-aminobutyric acid receptor subunit gamma-3) are se-
lected for the case studies to further evaluate the efficiency
of ParaCPI on the top-ranking prediction. The DB00201 and
Q99928 datasets are obtained from the DrugBank website for
proteins or compounds that have been confirmed to interact
with each other. ParaCPI is employed to predict the interaction
probability of compounds and proteins on the DB00201 and
Q99928 datasets (interaction exists when prediction >=0.5).
The top 20 CPI pairs of predicted results from the two datasets
are reported in Tables VIII and IX, where CID and PID denote
compound ID and protein ID, respectively. Pred is the proba-
bility score of the interaction predicted by ParaCPI. Caffeine is
a drug of the methylxanthine class used for various purposes,
involving certain respiratory conditions in premature newborns,
pain relief, and combatting drowsiness. Taking the first CPI
in Table VIII as an example, DB00201 inhibits the activity of
Q14432 (cGMP-inhibited 3’, 5’-cyclic phosphodiesterase A),
thereby affecting a variety of cellular signaling and physiological
effects, including effects on the biological clock, regulation
of vasodilation, and cardiovascular systems. The function of
Q99928 is to inhibit the ion channel activity of the extracellular
ligand-gate. Taking the first CPI in Table VIII as an example,
DB00201 inhibits the activity of Q14432 (cGMP-inhibited 3’,
5’-cyclic phosphodiesterase A), thereby affecting a variety of

cellular signaling and physiological effects, including effects
on the biological clock, regulation of vasodilation and car-
diovascular systems. The function of Q99928 is to inhibit the
ion channel activity of the extracellular ligand-gate. DB01589
(Quazepam) in Table IX is a long-acting benzodiazepine used
to manage insomnia. Quazepam can enter the brain and interact
with Q99928, thereby reducing neuronal excitability and ner-
vous system activity. The prediction results from Tables VIII
and IX show that ParaCPI has a wide range of application in
CPI prediction problems. Especially when faced with unseen
proteins, ParaCPI successfully predicts 20 of the first 20 CPIs
with a prediction probability of over 80%. However, ParaCPI
only successfully predicts 11 out of the first 20 CPIs in the
face of previously unseen drugs, which may be due to the lack
of integration of CPI features of the model, resulting in poor
prediction performance.

IV. CONCLUSION

In this study, a novel sequence-based CPI prediction model,
ParaCPI, is developed to predict unknown CPIs for CPCs with
known interactions. Different from existing models, ParaCPI
uses a unique neighborhood feature construction method to
extract the structural features of compounds using a novel
approach. Additionally, a DSCNN module is integrated into
ParaCPI to obtain potential feature representations of proteins.
The experimental results show that ParaCPI performs better
than SOTA models in three different settings. In particular,
ParaCPI achieves AUCs of 0.871, 0.970, and 0.724 in three
real-world application settings (cold-start settings), which are
improvements of 26.75%, 23.84%, and 14.68%, respectively,
on average, compared with the GNN-CPI, GNN-PT, GraphDTA,
DeepConv-DTI, TransformerCPI, MolTrans, and HyperAtten-
tionDTI models. Additionally, the case study in this study shows
that ParaCPI can detect CPIs with considerable accuracy, as
ParaCPI accurately predicts the presence of interactions in 31
out of 40 CPCs that had been confirmed by DrugBank. In
the near future, we plan to capture feature representations of
text sequences based on the transformer architecture, expand
the cognitive ability of the model by adding more biological
information, and adopt a self-attention mechanism to increase
the interpretability of the model.

CODE AND DATA AVAILABILITY

The source code for ParaCPI and the experiment dataset can
be found at https://github.com/Zengwenliang0416/ParaCPI.
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