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a b s t r a c t 

MapReduce is a promising distributed computing platform for large-scale data processing 

applications. Hadoop MapReduce has been considered as one of the most extensively used 

open-source implementations of MapReduce frameworks for its flexible customization and 

convenient usage. Despite these advantages, a relatively slow running task called straggler 

task impedes job progress. In this study, two novel speculative strategies, namely, Estimate 

Remaining time Using Linear relationship model (ERUL) and extensional Maximum Cost 

Performance (exMCP), are developed to improve the estimation of the remaining time of 

a task. ERUL is a dynamic system load-aware strategy; using this strategy, we can over- 

come some drawbacks of the Longest Approximate Time to End (LATE) that misleads spec- 

ulative execution in some cases. In exMCP, different slot values are considered. Extensive 

experiments show that ERUL and exMCP are applied to accurately estimate the remaining 

execution times of running tasks and reduce the running time of a job. 

© 2015 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Distributed computing platforms, such as MapReduce [1] and Dryad [2] , have been considered as the mainstream com-

puting platforms of data processing, data mining, web indexing, and e-business. Interconnected by commodity computers

through networks, these platforms can implement tasks in parallel with high reliability and at low prices, and can also

easily add or remove nodes. Hadoop is an open-source implementation of the MapReduce framework and is fully im-

plemented with Java language, which provides program interfaces, such as C++, Python, Perl, and Shell. Large companies,

Yahoo!, Aliyun, Facebook and so on replace expensive computers with Hadoop to conduct large-scale computing because

Hadoop can be easily customized and used. Hadoop MapReduce includes computing nodes (called TaskTracker) and stor-

age nodes (called DataNodes). In general, a computing node can function as a storage node at the same time. The data

blocks of MapReduce are stored in a Hadoop Distributed File System (HDFS). The HDFS is a distributed file system de-

signed to run on commodity hardware [3] . A MapReduce job is divided into multiple map tasks and reduce tasks by Job-

Tracker. JobTracker then assigns these tasks to TaskTracker to execute. A map task processes a data block by using a user-

customized mapper operator and delivers the corresponding output to reduce tasks. Reduce tasks fetch input data from
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the map output through networks and process data by using a user-customized reducer operator. Since a computing node

can also be a storage node, map tasks and data blocks on which share the same node, it is known as data locality. Ap-

parently, data locality can reduce the execution time of map tasks. Map tasks and reduce tasks can be executed in parallel

because the data of these two types of tasks are independent. 

If a task of a job requires an abnormally long execution time, then the total completion time of the job is affected. Such

a task is called a straggler. A speculative copy of this task (also called a backup task) is run on another faster node to ensure

that this task is finished earlier than the original task [4] . This mechanism is called speculative execution. In heterogeneous

distributed environments, computing nodes differ in terms of computing capability and network bandwidth. In addition, a

specific job may cause bugs. These problems can cause stragglers. Thus, the completion time of a job is affected. As such,

schedulers cannot acquire accurate execution information of nodes and tasks during task assignment. Consequently, the

performance of a scheduling strategy is affected. As a fault-tolerant technology, speculative execution can correct the wrong

decisions of schedulers to some extent, thereby improving computing efficiency. 

An original implementation of speculative execution (as Hadoop-Naive) [5] is examined in Hadoop-0.20 to enhance per-

formance. However, this strategy cannot work well in heterogeneous MapReduce systems. To schedule tasks in heteroge-

neous systems, Li [6] analyzed the performance of heuristic power allocation and scheduling algorithms of parallel tasks

with constrained precedence. Zhang et al. [7] developed algorithms to enhance task reliability when a dynamic voltage

scaling (DVS) technique is applied to achieve low power consumption in heterogeneous computing systems. Xu et al. [8]

proposed a genetic algorithm to perform parallel task scheduling on heterogeneous distributed environments by utilizing

multiple priority queues. Shen et al. [9] presented several methods to schedule necessary computations to trace the vas-

culature in retinal images. Tian et al. [10] explored an adaptive data collection strategy by using different communication

radii for nodes distributed in different locations to balance the energy consumption in heterogeneous wireless sensor net-

works. In terms of task management in Hadoop systems, Longest Approximate Time to End (LATE) is proposed as a strategy

(Hadoop-LATE) to adapt to heterogeneous environments [11,12] . The LATE strategy can yield some improvements but may

cause misjudgment when stragglers are determined. The strategy fails when the misjudgement occurs. Some drawbacks,

including inaccurate estimated time and system resource wastage, also exist. 

Several other components involving MapReduce and HDFS, such as HBase [13] , ZooKeeper [14] , Pig [15] , and Hive [16] ,

constitute the Hadoop system. The nodes should process the tasks of MapReduce and the tasks of other components at the

same time. This process results in an unstable system load of computing nodes, thereby affecting the remaining execution

time. Hadoop-LATE and Maximum Cost Performance (MCP; as Hadoop-MCP), which was described in a previous study [17] ,

does not consider the effect of system load when the remaining execution time is estimated. As a result, the estimated

remaining time becomes inaccurate, thereby affecting the speculation effect. In addition, MCP does not consider the different

values in the slots when the values of cluster resources are evaluated. 

To solve these problems, we devise a heuristic speculative execution strategy called Estimate Remaining time Using Lin-

ear relationship model (Hadoop-ERUL). Based on heterogeneous computing systems, the system load used to estimate the

remaining time of tasks is considered in Hadoop-ERUL. Hadoop-ERUL can overcome some deficiencies of Hadoop-LATE; the

former is also more concise and efficient than Hadoop-MCP. Hadoop-ERUL can estimate the remaining time more accurately

and detect stragglers more rapidly and more accurately. Moreover, backup tasks can run on suitable nodes with this strat-

egy. Compared with Hadoop-LATE, Hadoop-ERUL can reduce the execution time of a job by 26%. Hence, we presented the

paper entitled “A Heuristic Speculative Execution Strategy in Heterogeneous Distributed Environments” in the Proceedings

of the Sixth International Symposium on Parallel Architectures, Algorithms, and Programming 2014 (PAAP-2014) [18] . In this

work, a heuristic speculative execution strategy was implemented with ERUL on heterogeneous environments. Another novel

strategy called extensional Maximum Cost Performance (exMCP) is devised in this work by fully using the values of different

slots that were ignored in MCP. 

In our further study, the contents affecting the efficiency of the algorithm are extended. In particular, the conference

paper is significantly extended and composed of more than 30% new contents, including new algorithms, discussions, and

solid experimental results that are not shown in the conference version. The three major contributions of this further study

are listed as follows: 

• We propose a heuristic speculative execution strategy with Hadoop-ERUL on heterogeneous environments. 

• We implement Hadoop-exMCP to overcome the drawback of ignoring the different values of the slots in heterogeneous

computing systems. 

• We consider the system load to estimate the remaining time of tasks. This strategy can overcome some defects of

Hadoop-LATE; this strategy is also more concise and efficient than Hadoop-MCP. 

• We demonstrate that our proposed Hadoop-ERUL can be used not only to estimate the remaining time more precisely but

also to detect stragglers more rapidly and more accurately, as revealed by the experimental results of a set of randomly

generated task graphs and graphs of real-world problems with various characteristics. 

The remainder of this paper is organized as follows: Several related works on speculative execution in the MapReduce

framework and the relationship between system load and execution time of tasks are discussed in Section 2 . Several

drawbacks of previous studies are analyzed in Section 2.3 . Our new strategies, ERUL and exMCP, are presented in detail
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in Section 3 . The performance of ERUL and exMCP is evaluated in Section 4 . The conclusions and future works are pre-

sented in Section 5 . 

2. Related studies 

In this section, related previous studies on speculative execution strategies and their drawbacks, along with the effect of

system load on the execution time of a task, are discussed. At the end of this section, a novel motivation strategy to enhance

the performance in Hadoop is presented. 

2.1. Previous studies 

In the original Hadoop-NAIVE speculation, the progress rates of tasks is calculated and these progress rates are compared

with the average rate. If a large gap exists among the progress rates of tasks, then the slowest task is regarded as a strag-

gler and backed up on a faster TaskTracker, which requires tasks to execute. A major drawback of this strategy is that it

assumes that the nodes in the entire cluster system are homogeneous; the data to be processed by map tasks are uniform.

In fact, different nodes exhibit distinct computing capabilities in realistic MapReduce systems. Moreover, the data processing

capability of the same node is even different over time. Accordingly, the strategy may fail during execution of the tasks. 

To solve this issue, Zaharia et al. [11] developed the Hadoop-LATE strategy. In Hadoop-LATE, specP r ior ity = 

1 −progress 
progressRate is

used as the speculative execution priority of a task. A standard deviation of progress rate is utilized as the threshold value

to determine stragglers. The top 25% nodes in terms of computing capability are selected as candidate nodes to execute

backup tasks, and the number of the tasks undergoing speculative execution is limited to save cluster resources. Hadoop-

ERUL detects stragglers more accurately than Hadoop-NAIVE. Backup tasks are allocated to the nodes with strong processing

capability; as a consequence, these tasks become more suitable to heterogeneous environments. Nevertheless, there are still

several problems in LATE, which are discussed in Section 2.3 . 

The Hadoop-MCP strategy determines the remaining execution time of the task by estimating the remaining time in

different stages. The MCP model is used to ensure that backup tasks finish executing ahead of stragglers. Furthermore, im-

plementing speculative execution on a task can benefit the cluster. This model can be implemented based on a previous

study [17] . The execution load of the cluster is reduced to a significant extent with this type of speculative execution strat-

egy. However, the implementation of the model is complex and its staged estimation may result in a large error. 

2.2. Effect of system load on the execution time of a task 

System load is defined as the ratio of the summation of the total number of the tasks to be processed and the tasks

being processed over the number of the tasks that can be processed at the same time: 

R systemload = 

T + P 

C 
, (1) 

where T is the total number of the tasks to be processed, P is the number of the tasks being processed, and C is the number

of the tasks that can be processed. 

Each node is running MapReduce tasks because of a large amount of processes running on nodes. Contention for com-

puting resources among the nodes naturally exists. With more processes running, more tasks are handled, thereby affecting

the execution time of running tasks. The relationship between the measured load during execution and the running time

is almost perfectly linear ( R 2 > 0 . 99 ), which was proposed in a previous study [19] . This result is useful and can help us

consider system loads in estimating the remaining time of a running task. 

2.3. Drawbacks in previous studies 

The LATE strategy exhibits many drawbacks, as discussed in a previous study [17] . The LATE strategy fails when data

skew occurs in map tasks. The progress score of the Hadoop map is calculated using the total processed 

Data total 
Data processed 

. As such,

the priority formula is transformed into the following expression: 

specP r ior ity = ( execution _ time ) × Data total 

Data processed − 1 

. (2) 

Small total data correspond to low priority. However, this phenomenon is not due to the processing capability of nodes.

As such, the task is not a real slow task. Thus, misjudgment occurs. As reported in previous studies [20,21] , map tasks can

be divided into three classes based on the distribution of tasks and data. In particular, data and tasks on the same node can

be classified as Data-Local type, data and tasks on the same rack can be classified as Rack-Local type, and data and tasks on

different racks in the same data center can be classified as Off-Rack type. 

The execution of tasks is distinct among the three classes because of the difference among their data transmission rates.

The LATE strategy does not consider this difference. Thus, misjudgment easily occurs when priority and fast or slow nodes
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are determined. Heavy system loads lead to low response rates and execution rates, resulting in a long execution time. The

Hadoop-LATE and Hadoop-MCP strategies do not consider the system load when the remaining execution time is speculated.

As a result, task speculation fails, thereby affecting the determination of slow and fast tasks. 

The Hadoop-ERUL strategy is proposed to overcome the aforementioned problems and to yield improvements in this

work; the points of these improvements can be described as follows: 

• Map tasks are classified into three types based on the distribution of map data. As such, obtaining the statistics and

analyzing the execution information of tasks become easier and more efficient. 

• A solution is provided to determine priority when data skew occurs in map tasks. 

• A more accurate solution is provided to determine reduced priority. 

• The MCP model is used to guarantee the benefits of speculative execution. 

• The fixed threshold is replaced with a dynamic average threshold to determine slow and fast nodes with more accuracy.

• The system load is considered when tasks are executed. 

3. Model and algorithm 

The model and algorithms of this study are presented in detail in this section. 

3.1. Task classification 

As discussed in Section 2.3 , map tasks can be classified into three types, namely, Data-Local , Rack-Local , and Off-Rack .

This classification can facilitate the priority ranking of the tasks of one type and prevent incorrect priority queues caused by

differences in the transmission rates, which will lead to speculation failures. The capability of nodes to process map tasks

is also classified into three types similarly, namely, Data-Local, Rack-Local, and Off-Rack. With regard to reduce tasks, their

input data are assumed to be evenly distributed on data nodes. 

3.2. Speculative execution priority strategy 

In this sub-section, a new speculative execution priority strategy is proposed. Data skew and dynamic system loads are

considered when priority ranking is performed. Therefore, the priority ranking is more accurate and reasonable. 

3.2.1. Handling input data skew of map tasks 

In Section 2.3 , the effect of input data skew on the execution time of map tasks was analyzed. Based on Eq. (2) ,

pr ior ity = ( execution _ time ) × Data rem 
Data processed 

. As such, pr ior ity 
Data rem 

can be used as the priority. This method can weaken the effect

of Data rem 

on the determination of fast and slow tasks. 

3.2.2. Estimation of the remaining time using the linear relationship model 

As reported in a previous study [19] , the relationship between system loads and execution time of tasks (R 2 > 0 . 99) is

linear. Based on extensive statistical analyses, the following relationship can be obtained when the load is regarded as a

continuous signal: 

t exec 

1 + 

1 
t exec 

∫ t start + t exec 

t start 
z(t) dt 

= t nom 

, (3)

where t exec is the execution time of the task under the load z(t) , t nom 

is the running time of the task on a complete

unloaded machine, and t start is the start time of the execution. However, the system load cannot be expressed with an exact

continuous function and the obtained history load information is discrete. The phase in which a task remains is called the

current phase. The remaining time of the current phase is calculated using the remaining data and the bandwidth size, as

shown in (4) : 

t rem 

= t rem , cp + t rem , np = 

data rem , cp 

band wid th cp 
+ 

∑ 

p∈ cp 

est _ time p ∗ factor d , (4)

where t rem , cp is the remaining time in the current phase, t rem , np is the resting time in the next phase, data rem , cp is the size

of the remaining data, band wid th cp is the size of the bandwidth in the current phase, and factor d is a constant factor. 

In this work, delta of 5 s is used as the period to determine the load value. A series of load values are obtained as

〈 Z 〉 = · · · z t−1 , z t , z t+1 , · · · (t ∈ Z ∗) . As such, Eq. (3) can be rewritten as follows: 

t exec 

1 + Z 
= t nom 

, (5)

Z = 

t now + t exec ∑ 

t now 

z t 

t exec 
. (6)
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A relationship exists between the remaining times of the tasks in two different load series 〈 Z 1 〉 and 〈 Z 2 〉 , which can be

formulated as follows: 

tRemain 1 

1 + Z 1 
= t nom 

= 

tRemain 2 

1 + Z 2 
, (7) 

where Z 1 and Z 2 are the average loads of the two load series in the remaining times tRemain 1 and tRemain 2 , respectively. 

We assume that a particular task is characterized by a load series of 〈 Z t 〉 = z 0 , z 1 delta , z 2 delta , . . . , z now −delta , z now 

, where

now = m × delta (m ∈ Z ∗) at time t and the progress of this task is expressed as progress now 

. When z t varies from 0 to t now 

,

the average system load can be calculated and expressed as Eq. (8) : 

Z now 

= 

now ∑ 

0 

z t 

n 

, (8) 

where n represents the number of elements in 〈 Z t 〉 . If the system load is maintained as Z now 

, then the remaining execution

time is denoted as tRemain now 

, which can be computed as follows: 

tRemain now 

= (1 − progress now 

) × t now 

progress now 

. (9) 

As the system load continuously change and shows uncertainty, the average load Z est in the remaining time can be

estimated using the following formula: 

Z est = 

∑ now 

now −k ×delta + Z now 

k + 1 

, (10) 

where k is set at 5 in this work. In future research, a more effective method should be developed to estimate the average

load in the remaining time. 

Hence, a more accurate method to estimate the remaining execution time tRemain est can be written as follows: 

tRemian est = 

(1 + Z ext ) tRemain now 

1 + Z now 

. (11) 

This model is the ERUL, which benefits the estimation of the remaining execution time. Furthermore, the ERUL works

more efficiently. 

3.2.3. Speculative execution priority strategy 

In map tasks, the mapper function of the user is called to process the data block. The map speculative execution priority

can be calculated and expressed as Eq. (12) : 

mapSpecP r ior ity = 

tRemain map 

Data rem 

, (12) 

where tRemain map denotes the remaining time estimated by ERUL. 

The completion rate of fetching data from the map is considered in our scheme to highlight the effect of the copy phase

on the execution time of reduce tasks. The reduce speculative execution priority is estimated as follows: 

reduceSpecP r ior ity = tRemain reduce ×
( Map total + 1) × α

( Map f etched + 1) + β
, (13) 

where tRemain reduce is the remaining time estimated by ERUL, Map total is the total number of map tasks, and Map f etched is

the number of the map tasks from which the reduce task has finished fetching data. 

Considering that no input data are obtained from a map task, we assume that the reduce task has finished data fetching.

α is set at 1/3, β is set at 2/3, and α + β = 1 . 0 . In Eq. (13) , the effect of the data fetching rate is considered in the speculative

execution priority of the reduce stage in the copy phase. As Map f etched increases gradually, reduceSpecPriority decreases

accordingly. The copy phase continues until the condition Map f etched = Map total is satisfied. As such, the speculative priority

of the reduce task may be regarded as only having a relationship with the computing capability of nodes. The calculation

process is the same as that of map task. 

3.3. Selection of candidate nodes 

In the presence of each type of tasks, the processing capabilities of nodes are different. When a task of the same type is

completed on the node, we let preCap be the previous processing capability of the node for this type. exeTime represents the
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execution time of a task, which is executed on a node until the task is successfully completed. The processing capability can

be modeled as follows: 

capability = 

⎧ ⎨ 

⎩ 

α × preCap + (1 − α) × exeT ime 

Data total 

, f or map tasks 

α × preCap + (1 − α) × exeT ime , f or reduce tasks , 

(14)

where α represents the smoothing factor and its value can be set at 0.3. 

If none of the tasks in the same type is completed on the node, then the processing capability is expressed as

follows: 

capability = 

⎧ ⎨ 

⎩ 

( time cost + tRemain ) 

Data total 

, f or map tasks 

time cost + tRemain , f or reduce tasks , 

(15)

where time cost is the time spent by the first running task in the type and tRemain is the remaining time of the task estimated

by ERUL. 

With the processing capability of the node of each type of tasks, fast processing nodes and slow processing nodes can

be more easily identified. If a work node has a slow processing capability with certain type of tasks, then no backup tasks

for such a type are allowed or executed on the slow node. 

3.4. Ensuring effectiveness of speculative execution 

The task with the highest priority is not always worth being speculated. A case may arise when the backup task finishes

later than the original task. Consequently, speculative execution no longer reduces the execution time of the job; instead,

more resources and bandwidths of the working nodes are consumed extravagantly. 

The MCP model is utilized to guarantee the effectiveness of speculative execution. The following condition should be

satisfied: 

rem _ time 

backup _ time 
> 

(1 + 2 η) 

1 + η
, η ∈ (0 , + ∞ ) . (16)

If we let η be the load _ factor of the Hadoop cluster, then we obtain the following expression: 

η = load _ factor = 

numpending _ tasks 

num f ree _ slots 
, (17)

where numpending _ tasks represents the number of pending tasks and num f ree _ slots denotes the number of the free slots

in the cluster. 

In this work, rem _ time is the remaining time of the task estimated by ERUL and backup _ time is computed on the basis

of the following expression: 

backup _ time = 

{
procCap × Data total , f or map tasks 

procCap , f or reduce tasks , 
(18)

where procCap denotes the processing capability of the candidate node for this type of tasks. 

3.5. Hadoop-ERUL speculative execution strategy 

When the JobTracker receives a heartbeat from the TaskTracker, the Hadoop-ERUL speculative execution strategy is ap-

plied as follows: 

• Select the task with the highest priority as a candidate based on the order of non-rack map, non-locality map, locality

map, and reduce task types. 

• Determine the type of the task on the TaskTracker and its capability to process this type of tasks. 

• Determine whether the TaskTracker is a fast node; otherwise, go back to the first step. 

• Determine whether the task can do speculative execution on this node; otherwise, go back to the first step. 

• Backup the candidate task on the TaskTracker. 

A detailed description of the Hadoop-ERUL strategy is provided in Algorithm 1 . 
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Algorithm 1. Hadoop-ERUL 

Require : A task object. 
Ensure : A remaining time tRemain . 

1: startTime ← getSystemCurrentTime(); 
2: currentTime ← startTime; 
3: preTime ← startTime; 

4: loadSum ← getSystemLoad(); 

5: loadCount ← 1; 
6: Initial all array lastLoadSerial[] elements by loadSum; 

7: while isRunning do 

8: preTime ← currentTime; 

9: currentTime ← getSystemCurrentTime(); 

10: if currentTime - preTime ≥ δ then 

11: currentLa ← getSystemLoad(); 

12: loadSum ← loadSum + currentLa; 
13: loadCount ← loadCount + 1; 

14: avgLa ← loadSum/loadCount; 

15: for i ← 1 to lastLoadSerial.length − 1 do 

16: lastLoadSerial i -1 ← lastLoadSerial i ; 

17: end for 
18: lastLoadSerial length -1 ← currentLa; 

19: lastLoad ← 

∑ length 
0 

lastLoadSerial i + avgLa 

lastLoadSerial . length +1 
; 

20: tRemain ← 

(1 −task . progress ) ×task . executT ime 
task . progress 

; 

21: tRemain ← 

(1+ lastLoad ) ×tRemain 
1+ avgLa ; 

22: else 

23: sleep( δ/ 2 ); 
24: end if 
25: end while 

26: return a remaining time tRemain . 

3.6. Hadoop-exMCP speculative execution strategy 

Differences are among the capabilities of the slots in distinct nodes. The value of each slot should be considered when

the cost and profit of the slot are calculated. Based on a previous study [17] , such a conclusion is obtained as follows: 

profit backup > profit not _ backup ⇔ rem _ time > t B + 

η

1 + η
× t A , (19) 

where η is the load factor in a Hadoop cluster, as formulated in Eq. (17) . 

To improve the performance of the speculative strategy MCP, we develop Hadoop-exMCP strategy. The processes of

Hadoop-exMCP are as follows: 

The information of each task in a job is stored in a JobTracker, which includes the progress of the allocated tasks. The

TaskTracker sends its heartbeat, which includes information on the running task and node status, to the JobTracker. The

received information is combined with the type of the task, and the JobTracker updates the remaining execution time of

these nodes. Based on the reported information, the computation capability of the node for executing the corresponding

tasks is calculated. The threshold for determining the fast and slow nodes is obtained. The fast node, not the slow node, is

assigned to implement backup tasks. 

When a node executes a task, each task is filtered with the Hadoop-exMCP strategy to determine whether it satisfies the

following requirements of the backup task: 

• The tasks are filtered in accordance with Off-Rack map tasks, Rack-Local map tasks, Data-Local map tasks, and reduce

tasks. The reduce task cannot enter the reduce phase until the map task is completed. Therefore, the priority of a map

task is higher than that of a reduce task. In addition, the execution time decreases in the order of Off-Rack map tasks,

Rack-Local map tasks, and Data-Local map tasks. As such, a high priority corresponds to a long execution time. 

• A sequential task is selected to ensure that this task has been executed for a period of time (such as

speculativeLag = 30 s). This point guarantees that a task is more accurate when the corresponding Exponentially

Weighted Moving Average (EWMA) speed is evaluated. The task remains stable after a stretch is run. The remaining

time t rem 

of the task can be calculated on the basis of Eq. (4) . 
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• The type of the task, which is executed in the node, is verified. The time t backup required for executing this type of tasks

in the requested node is then evaluated. The required time t original for the selected task running in the original node is

also calculated. 

• t rem 

, t backup , and t original of the selected task are substituted in Eq. (19) . Then, whether this task should be run on the

requested node is determined by applying the exMCP strategy. 

4. Experiments and evaluation 

Several important performance metrics are introduced in this section to evaluate the proposed strategies. Hadoop-NONE,

Hadoop-NAIVE, and Hadoop-LATE are compared with Hadoop-ERUL. Hadoop-NONE, Hadoop-NAIVE, and Hadoop-LATE are

also compared with Hadoop-exMCP. 

4.1. Performance metrics 

4.1.1. Makespan 

Makespan, or scheduling length, is defined as the completion time of the latest task in a job. For most scheduling algo-

rithms in a Hadoop cluster, makespan is one of the main metrics used to evaluate performance. 

4.1.2. Throughput 

The throughput of jobs in a Hadoop cluster is the amount of jobs that the cluster can handle per unit time, that is, the

number of jobs that correspond to the cluster. 

4.2. Results of the evaluation of the ERUL model of the remaining time and the analysis 

We acquire the progress rate of the task and the remaining time estimated by the LATE and ERUL strategies at time

intervals of 5 s. The real remaining time is acquired once the task is completed. The relative error between the estimated

time and the real time can be calculated as follows: 

RelativeError = 

| estim _ time − real _ time | 
real _ time 

. (20)

Fig. 1 shows the comparison of the evaluation effects between ERUL and LATE. The images on the left show the load changes

in the system. The images on the right show the relative error of the evaluation. Fig. 1 (a) shows the system load in a

basically stable situation, whereas Fig. 1 (b) shows the system load in a dynamically changing situation. In the basically

stable situation, ERUL and LATE with a relative error of less than 0.05 can estimate the remaining time. In the dynamically

changing situation, ERUL is more efficient than LATE because the former reduces the relative error to 0.25 and consumes

58% less time than the latter. 
Fig. 1. Evaluation effects of ERUL and LATE. 
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4.3. Hadoop-ERUL strategy experiments in heterogeneous environments 

Clusters in heterogeneous environments include seven physical nodes; each node contains a dual processor (2.2 GHz

AMD Opteron 

TM Processor 4122 with four physical cores), 8 GB of RAM, and 500 GB disk. Three of these physical nodes

run on virtual machine nodes in VirtualBox. The three virtual nodes are distributed on two physical nodes; each vir-

tual machine is equipped with a dual core processor, 2 GB of RAM, and 100 GB disk. We use the default configuration

of the HDFS. In heterogeneous environments, five map slots and five reduce slots are assigned to each physical node Task-

Tracker; two map slots and two reduce slots are assigned to each virtual node. Sort, Grep, and WordCount in Hadoop

are used as primary workloads. Furthermore, 5 GB data randomly generated by RandomWriter are utilized as the input

of Sort Job. A 4 GB text file generated by words and random character strings with lengths not longer than 12 is used

as input of Grep and WordCount. In addition, “hello” is utilized as the statistical string of Grep. Three strategies, namely,

Hadoop-NONE, Hadoop-NAIVE, and Hadoop-LATE, are compared with Hadoop-ERUL. The performance of the Hadoop-ERUL 

strategy is evaluated on the basis of the number and rate of execution successes of the speculative tasks and the com-

pletion time of the job. Each workload is tested six times. The performances of the strategies are compared in terms

of the average, the most efficient, and the least efficient cases to prevent the changing environments from affecting

the results. 

The Sort workload generates 140 map tasks and 36 reduce tasks. Table 1 shows the maximum and minimum execution

times of the tasks running with different strategies. The com parison results show that Hadoop-ERUL affects the cluster

performance to a less extent than other strategies. Hadoop-ERUL can effectively reduce the maximum execution time of

map and reduce tasks. 

The performance of these strategies is determined by calculating the number of the speculative execution tasks and by

counting the success rate of the tasks under the speculative strategies. Table 2 shows the Sort workload speculation effects

when different strategies are used. This result is obtained from the summation of the number of backup tasks with the jobs

running six times in each strategy. The comparison results also show that the number of the speculations of the reduce task

in Hadoop-ERUL decreases significantly, and the success rate of reduce tasks improves significantly. However, misjudgment

still occurs in Hadoop-ERUL. The main reason for misjudgment is the inaccurate estimation of the progress of reduce tasks,

which should be improved. As such, ERUL can be used not only to control the number of tasks to be speculated effectively

but also to detect and backup the stragglers accurately for execution on suitable nodes. Therefore, the response time of the

job can be shorter than that of other strategies. 

The purpose of all types of optimization strategies for scheduling is to reduce the execution time of the job. Fig. 2 shows

the comparison of the execution times of sorting workloads with different strategies. Notably, the Hadoop-ERUL strategy

results in 16% more improvements than Hadoop-NONE and 14% more improvements than Hadoop-LATE. 

The number of reduce tasks is not limited when speculation is performed using the Hadoop-NAIVE strategy. Hadoop-

NAIVE consumes more time than Hadoop-NONE. In addition, the backup tasks in Hadoop-NAIVE do not select nodes with a

high processing speed to execute. Therefore, many backup tasks are executed not as rapidly as the original tasks. 

Misjudgment and false negatives inevitably exist in Hadoop-LATE because the method by which square deviation is used

to determine whether a task is a straggler exhibits certain defects. However, Hadoop-LATE performs more efficiently than

Hadoop-NAIVE because the former has a limited number of tasks to be speculated compared with the latter. Hadoop-ERUL

considers the effect of system loads on execution time; thus, Hadoop-ERUL can estimate the remaining time of tasks more

accurately to determine stragglers. In this strategy, nodes are classified more accurately as fast and slow nodes based on the

time consumed on processing different types of tasks. 

Pressure tests are conducted on two machines by increasing the system load and running Grep workloads. Fig. 3 shows

the Grep workload running under dynamic system loads. The performance of Hadoop-ERUL is improved by 33%, which

is 26% more than that of Hadoop-NONE and Hadoop-LATE. Accordingly, Hadoop-ERUL can yield better speculation results

under variable load and produce notable improvements on the execution time of a job than Hadoop-LATE. Experiments

are conducted on the data skew of map tasks in the WordCount workload. The input data blocks are divided into two

groups: one group has a size of 128 MB and the other group has a size of 64 MB. The corresponding performance under the

Hadoop-ERUL strategy is compared with that of the Hadoop-NONE and Hadoop-LATE strategies. 

Fig. 4 shows the comparison of the execution time of a job when data skew occurs in map tasks. Hadoop-ERUL consumes

approximately 11% less execution time than Hadoop-NONE and 7% less execution time than Hadoop-LATE. The success rate

of the speculation of the map tasks in Hadoop-LATE is 58%; by contrast, The success rate of the speculation of the map

tasks in Hadoop-ERUL is up to 97%. 
Table 1 

Comparisons of Sort workload’s executive time under different strategies. 

Strategy Max map execution time (s) Min map execution time (s) Max reduce execution time (s) Min reduce execution time (s) 

Hadoop-NONE 238 3 661 174 

Hadoop-NAVIE 48 3 735 178 

Hadoop-LATE 49 3 638 173 

Hadoop-ERUL 46 3 498 171 
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Table 2 

Speculation effects of Sort workload with different strategies. 

Strategy Sum of backup Sum of success Backup success rate 

Map Reduce Map Reduce Map (%) Reduce (%) 

Hadoop-NAIVE 10 71 9 28 90 39.4 

Hadoop-LATE 14 43 11 21 78.6 48.8 

Hadoop-ERUL 12 34 12 33 100 97.1 

Fig. 2. Comparisons of job’s execution time of Sort workload under different strategies. 

 

 

 

 

 

 

These results show that Hadoop-ERUL is more accurate than the other strategies in determining stragglers when data

skew occurs in map tasks. However, several failure cases still occur when the input of reduce tasks is assumed as even,

which will be investigated in our future work. 

Cridmix2 is utilized to compute the throughput of a cluster under different speculative strategies. Fig. 5 shows that

Hadoop-ERUL enhances the throughput by 10% and 17% more than that of Hadoop-LATE and Hadoop-NAIVE, respectively.

As Hadoop-ERUL effectively reduces the makespan of each job, the execution efficiency is significantly improved and the

throughput of the cluster is increased. 

4.4. Experiments of the Hadoop-exMCP strategy in heterogeneous environments 

The performance of the Hadoop-exMCP strategy in heterogeneous systems is evaluated in this section. The makespan

and the throughput of the jobs in a cluster are the main metrics to assess Hadoop-NONE, Hadoop-LATE, and Hadoop-MCP. 
Fig. 3. Comparisons of Grep Workload under dynamic system loads. 
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Fig. 4. Comparisons of WordCount Workload with data skew in map tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cluster used in our experiments runs with Ubuntu Server 12.04 (64 bit OS). The version of Hadoop is configured with

Hadoop-1.2.0. Three different types of computers with diverse calculating capabilities are used to establish a heterogeneous

computer system. The detailed configuration is shown in Table 3 . Therefore, this Hadoop cluster contains 60 map slots and

60 reduce slots. We keep the default configuration for the HDFS and use the FairScheduler as the task scheduler. 

The jobs used for the test consist of Sort, WordCount, Grep, and Gridmix2. Sort executes the function of sorting a large

amount of data and outputting the ordered results. Sort is classified as computational and I/O-intensive operations. Grep is

used to count the times that the specified word or regular expression appears in the text file. The word that satisfies the

condition and the number of appearances is outputted in the HDFS. The input data of Sort jobs is generated randomly by

the RandomWriter job. The size of the random data for the test is approximately 5 GB. This 5 GB text file comprises the

string with a length of less than 12. This text file is also the input job of WordCount and Grep. Furthermore, this text file

starts with “helloast”, which is the regular expression used to count Grep jobs. Gridmix2 includes three small-scale jobs and

three large-scale jobs. The small job is set with 10 reduce tasks, whereas the large job is set with 70 reduce tasks. Each

of the following comparisons is the result of the jobs running six times under different strategies. The least efficient, most

efficient, and average values of the three cases are utilized to prevent the effect of various environments on the text results.

The performance of the strategies is evaluated by speculating the number of execution tasks and the success rate of tasks.

Reducing the makespan of the jobs in a Hadoop cluster is one of the major metrics of optimization strategies. The makespan

is considered as the standard to evaluate different strategies when diverse jobs are scheduled. One of the important reasons

for a long makespan is the misjudgment of slow tasks. Fig. 6 shows the comparison of the makespan of Sort jobs running

with diverse speculative strategies. Hadoop-exMCP surpasses Hadoop-MCP and Hadoop-LATE with makespan reductions of 

13% and 26%, respectively. 

With respect to the WordCount jobs, 81 map tasks are generated and 30 reduce tasks are set. Fig. 7 shows the per-

formance of the four strategies. Hadoop-MCP can reduce the makespan by 6% and 12% of Hadoop-MCP and Hadoop-LATE,

respectively. 
Fig. 5. The throughput of jobs in a cluster under different strategies. 
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Table 3 

Parameter configuration. 

Node styles CPU Memory (GB) Disk (GB) Numbers Slots assignment Use 

Sugon server 2.2 GHz, 8 500 5 Map: 7 1 master node 

8 cores Reduce:7 4 storage and computer node 

Dell workstation 3.07 GHz, 4 500 4 Map: 5 storage and computer node 

4 cores Reduce: 5 

PC 3.2 GHz, 2 500 4 Map: 5 storage and computer node 

2 cores Reduce: 5 

Fig. 6. Comparisons of Sort jobs in a cluster under different strategies. 

Fig. 7. Comparisons of WordCount jobs under different strategies. 

 

 

 

 

 

 

 

For the Grep jobs, approximately 81 map tasks are generated and 16 reduce tasks are set. Two sub-jobs are included. One

sub-job is used to search and account for Grep-search jobs. The other sub-job is used to sort and account for Grep-search

jobs. As such, the makespan of Grep jobs is the summation of the execution time of the two sub-jobs. As shown in Fig. 8 ,

the makespan of Grep jobs with Hadoop-exMCP is decreased by 8% and 21% compared with Hadoop-MCP and Hadoop-LATE,

respectively. 

Fig. 9 shows the comparison of the throughput of Gridmix2 jobs in a Hadoop cluster under different strategies. Hadoop-

exMCP improves the throughput of Gridmix2 jobs by 11% and 18% against Hadoop-MCP and Hadoop-LATE, respectively. As

the value of the slot is considered in Hadoop-exMCP, the values of the original node and the selected node as a backup are

considered when the backup tasks are processed. The throughput is then improved. 
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Fig. 8. Comparisons of Grep jobs under different strategies. 

Fig. 9. The throughput of Gridmix2 jobs in a Hadoop cluster under different strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed Hadoop-ERUL and Hadoop-exMCP strategies can be implemented easily in Yet Another Resource Negotiation 

(YARN) [22] , which is the latest MapReduce framework. Based on our experimental results, our conclusion is that Hadoop-

exMCP significantly surpasses Hadoop-MCP and Hadoop-LATE in terms of the makespan and throughput of jobs. 

5. Conclusion 

The impact of system loads is important while making the speculative strategy in a MapReduce system. Straggler tasks

are speculatively backed up on other nodes to execute in some speculative execution strategies in order to reduce the

completion time of a job. Considering the linear relationship between the system load and execution time of tasks, we

presented the ERUL model. The model functions more accurately in estimating the remaining running time of reduce tasks

than LATE. Based on this model, a heuristic speculative execution strategy called Hadoop-ERUL is established. Hadoop-ERUL

is devised to provide some improvements to address the existing problems in LATE, including data skew in map tasks and

poor effects of speculative execution. Considering the different values of slots and making full use of them, we proposed the

Hadoop-exMCP strategy. Both Hadoop-ERUL and Hadoop-exMCP are implemented on Hadoop-1.2.0 and can be implemented

easily on Apache Hadoop NextGen MapReduce, such as YARN . Extensive experiments show that the running time of the job

can be reduced by 26% and 19% with Hadoop-ERUL and Hadoop-exMCP, respectively. The response time of the job is also

decreased effectively. 

Scheduling optimization in heterogeneous distributed environments, such as Hadoop, is in the initial development stage.

Further studies should be conducted to develop a more robust and accurate speculative execution strategy to estimate the

remaining time of a running task and to address the problems caused by the input data skew of reduce tasks. 
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