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Abstract
Compressive sensing (CS) approaches are useful for end-to-end person re-identification (Re-ID) in reducing the overheads

of transmitting and storing video frames in distributed multi-camera systems. However, the reconstruction quality degrades

appreciably as the measurement rate decreases for existing CS methods. To address this problem, we propose a half-

precision CS framework for end-to-end person Re-ID named HCS4ReID, which efficiently recoveries detailed features of

the person-of-interest regions in video frames. HCS4ReID supports half-precision CS sampling, transmitting and storing

CS measurements with half-precision floats, and CS reconstruction with two measurement rates. Extensive experiments

implemented on the PRW dataset indicate that the proposed HCS4ReID achieves 1.55 � speedups over the single-

precision counterpart on average for the CS sampling on an Intel HD Graphics 530, and only half-network bandwidth and

storage space are needed to transmit and store the generated CS measurements. Comprehensive evaluations demonstrate

that the proposed HCS4ReID is a scalable and portable CS framework with two measurement rates, and suitable for end-to-

end person Re-ID. Especially, it achieves the comparable performance on the reconstructed PRW dataset against CS

reconstruction with single-precision floats and a single measurement rate.
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1 Introduction

Person re-identification (Re-ID) is a challenging and fun-

damental task to retrieve a given person image in the

gallery of all pedestrian images captured across non-over-

lapping camera views. It increasingly receives attention as

a key component of the large-scale intelligent surveillance

[3, 40] and is deployed in smart cities, multi-camera

forensic search, public transportation and object-level

video advertising [46, 47]. Although a variety of powerful

person Re-ID algorithms have been proposed over the past

few years, most of them usually focus on designing
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discriminative features [39, 55] and constructing more

robust metric learning algorithms [18] either individually

or sequentially. Recently, end-to-end person Re-ID

approaches are also exploited in [44]. It performs re-

identification without pre-cropped pedestrian images, and

aims at recognizing a queried person image in a gallery of

pedestrians detected from captured video frames with dis-

tributed multi-camera systems. It can simplify and facili-

tate the applications of person Re-ID in real-world

scenarios. However, there are few research works paying

attention to reduce the storage and transmission of captured

pedestrian images for end-to-end person Re-ID.

Newly created distributed multi-camera surveillance

systems adapt high-resolution cameras, and they generate

an increasing number of high-resolution surveillance ima-

ges and videos. The data collected over these distributed

multi-camera networks make it impractical to transport all

captured raw data to remote servers, and then to analyse

and store them. Even if the storage space on servers is large

enough, consideration must be given to the cost of the

transmission and the availability of the high-speed net-

work. Thus, it becomes one of the stumbling blocks on the

way to wide implementation of person Re-ID in real large-

scale surveillance scenarios.

Compressive sensing (CS) methods demonstrate that

images and videos can be reconstructed with high fidelity

[14]. This acquisition strategy enables image and video

sampling with a sub-Nyquist measurement rate [21, 31].

Meanwhile, CS conducts data sampling and compression at

the same time, which is efficient for limited transmission

bandwidth and storage space, and enables low-cost video

capturing on a range of edge devices. However, existing

CS algorithms focus on improving the performance of CS

reconstruction for an entire image or video frame. As a

result, the reconstruction quality degrades appreciably as

the measurement rate decreases. For end-to-end person Re-

ID, the person-of-interest regions are more critical than the

rest regions, and therefore CS construction quality of image

blocks in these regions significantly affects the perfor-

mance of person Re-ID and its usability in real surveillance

systems.

Meanwhile, low precision data formats are sufficient for

deep learning algorithms and signal processing applica-

tions, since the final results suffer no noticeable loss [9].

For instance, IEEE half-precision floats (FP16) are suffi-

cient not just for the inference of deep learning models but

also for training them. Arithmetic operations with half-

precision floats are faster than the corresponding operations

with single-precision floats when hardware devices

natively support it, e.g. the integrated GPUs in 6th gener-

ation Intel processors or newer ones. OpenCL [16, 26, 36]

is a portable interface for parallel programming on com-

pute devices, and allows the same code to be executed

across a variety of processors and accelerators. It is used to

accelerate computationally intensive applications across

different devices and architectures by writing

portable code. Part of industry-leading hardware vendors

(e.g. Intel, Altera and XILINX) have provided OpenCL

implementations for half-precision routines on their hard-

ware devices. Thus, half-precision applications can be

ported to several hardware platforms with increasing

compute devices supporting half-precision routines. On the

other hand, FP16 has limited numerical range. The data

presented with FP16 takes less storage space and trans-

mission bandwidth than the same data with the 32-bit

single-precision floats (FP32).

It is crucial to sample as few CS measurements as

possible for reconstructing images/videos in person Re-ID,

and still to retain enough local features in the person-of-

interest regions for re-identifying a specific person. To

address this problem, we propose a half-precision CS

framework for end-to-end person Re-ID, which is named

HCS4ReID. The proposed framework supports half-preci-

sion CS with two measurement rates, where the higher one

is used to sample and reconstruct the person-of-interest

regions while the lower one is used on the rest regions.

That is, measurement matrices and CS measurements are

represented with half-precision floats, and the CS sampling

is accelerated with OpenCL [4, 15, 45] when the hardware

devices natively support half-precision arithmetic

operations.

The key contributions in this paper are as follows.

• We propose a half-precision CS framework with two

measurement rates for end-to-end person Re-ID named

HCS4ReID. HCS4ReID utilizes two measurement rates

on different image blocks to sample and reconstruct

RGB video frames. It utilizes a higher one on image

blocks belonging to the person-of-interest regions, and

a lower one on the rest image blocks, which aims to

reduce the cost of transmitting and storing captured

videos in a large-scale distributed multi-camera system.

• We propose a half-precision CS sampling method that

represents the data of measurement matrices and CS

measurements with half-precision floats instead of the

default single-precision floats. This not just reduces the

required transmission bandwidth and storage space, but

also accelerates the process of CS sampling with

OpenCL.

• We present an end-to-end person Re-ID method for

searching the queried person in a gallery of CS

reconstructed images/videos, which are recovered with

the proposed HCS4ReID. The difference from the

existing researches about person Re-ID, the presented

end-to-end person Re-ID method, aims to study the

efficiency of the proposed half-precision CS method in
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the real surveillance scenarios, instead of improving the

performance of end-to-end person Re-ID methods.

The remainder of this paper is organized as follows. Sec-

tion 2 describes a brief overview of related references on

the end-to-end person Re-ID, CS sampling and recon-

struction, and half-precision floats used in deep neural

networks. Then, Sect. 3 explores the detailed architecture

of the proposed HCS4ReID that is a half-precision CS

framework with two measurement rates for end-to-end

person Re-ID. In Sect. 4, the implementation approaches of

the proposed HCS4ReID framework are presented. Mean-

while, a set of extensive experiments for evaluating the

performance of the proposed HCS4ReID also executed,

and the results are also discussed in detail. Finally, Sect. 5

concludes the paper including the limitations of this paper

and new points for future investigations.

2 Related work

2.1 End-to-end person Re-ID

Deformable Part Model (DPM) [17] and Aggregated

Channel Features (ACF) [12] are the most commonly used

off-the-shelf pedestrian detectors, but they rely on hand-

crafted features and linear classifiers to detect pedestrians.

Driven by the surge of various deep neural networks

(DNNs), a range of DNN-based pedestrian detectors has

been proposed in recent years. For instance, Faster R-CNN

[35] introduces a region proposal network that shares full-

image convolutional features with the detection network, to

enable nearly cost-free region proposals. It is improved and

adapted to detect pedestrians in [24, 50]. On the other hand,

many state-of-the-art object detection networks (e.g.

YOLOv3 [22]) can also be employed as pedestrian detec-

tors. Despite the impressive recent progress in pedestrian

detection, it has been rarely considered with person re-ID

as a whole procedure.

Person Re-ID is usually viewed as an image retrieval

problem, i.e. searching the queried person in a gallery of

pedestrian images. It is fundamental for various surveil-

lance applications, such as finding criminals, cross-camera

person tracking, and person activity analysis. Various deep

learning-based person Re-ID methods have been proposed

in recent years [1, 27]. Ding et al. [10] and Cheng et al. [8]

exploited triplet samples for training person Re-ID models

to minimize the feature distance between the same person

and maximize the distance between different persons. Xiao

et al. [43] proposed to learn features by classifying

identities.

Most existing researches about person Re-ID mainly

focus on learning features and metric learning approaches.

Supervised [19] or unsupervised [2] approaches are also

proposed to extract relevant features and to combine them

into a single similarity function. Several distance learning

approaches are available, a new relative distance compar-

ison was proposed in [59] for maximizing the probability

of a pair of true matches. Li et al. [27] and Ahmed et al. [1]

utilized a pair of cropped pedestrian images as input, and

employed a binary verification loss function to train DNNs

for person Re-ID. Other research works reformulate the

person Re-ID as a ranking problem, where the potential

true match is assigned with the highest rank rather than a

distance metric learning, in this way, the re-identification

problem is cast into a relative ranking problem [6, 7].

Although numerous person Re-ID methods and related

datasets have been proposed, they mainly focus on

matching pre-defined pedestrian images between queries

and candidates. In real-world scenarios, the annotations of

pedestrian bounding boxes are unavailable, and the target

person is needed to be detected and searched from the

gallery of the whole scene video frames [57]. Real person

re-ID applications adopt pedestrian detectors to automati-

cally obtain cropped pedestrian images from captured

video frames, which lead to end-to-end person re-ID

systems.

Thus, there is still a big gap between the ideal problem

setting and real-world applications since most of the

existing person Re-ID methods assume perfect pedestrian

detections. Nevertheless, the manually cropped bounding

boxes are unavailable in practical applications. Pedestrian

detectors inevitably produce false alarms, misdetections,

and misalignments, which could harm the final searching

performance significantly. To close the gap, Zhang

et al. [51] detected persons in photo albums and recogni-

tion-specific person using face and global signatures.

However, the settings in this research are not typical for

person re-ID where pedestrians are observed by surveil-

lance cameras and faces are not clear enough. Xiao

et al. [44] proposed a new deep learning method for person

search to joint pedestrian detection and person Re-ID. The

difference from these existing works, we focus on study

whether the proposed half-precision CS framework is

efficient in terms of end-to-end person Re-ID, and how to

use it in real end-to-end person Re-ID applications.

2.2 CS sampling and reconstruction

Existing CS reconstruction approaches are usually classi-

fied into two categories: iterative optimization-based CS

methods (e.g. D-AMP [29], IWR [11]) and deep network-

based CS methods (e.g. SDA [32], DeepInverse [31],

ReconNet [23], CSNet [37], ISTA-Net [48]).

D-AMP [29] is extended from the approximate message

passing (AMP) framework by integrating multiple types of
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denoisers within its iterations. To improve the CS recon-

struction quality of the block-based CS of video through a

weighting process, Dinh et al. [11] designed a weighting

process to limit the solution space of the recovered signal,

and combined the weighting process with simplified

Landweber iterations to form an iterative weighted recov-

ery (IWR) algorithm. Although there are theoretical con-

vergence guarantees for these iterative optimized-based CS

methods, potentially available training data are not fully

utilized by these methods.

Inspired by the powerful learning ability of DNNs,

several DNN-based CS reconstruction methods have been

proposed to learn the inverse mapping from the CS mea-

surement domain to the original signal domain. SDA [32]

is a stacked denoising auto-encoder that recovers images

from CS measurements. It consists of fully connected

layers, which means a larger network when the signal size

grows. This imposes a large computational complexity and

leads to overfitting. DeepInverse [31] uses fully convolu-

tional layers to build the DNN model for reconstructing CS

images. ReconNet [23] uses fully connected layers and

convolutional layers to create the DNN model for

regressing an image block from its CS measurement.

CSNet [37] applies a neural network to train a sampling

matrix rather than uses a manual-designed one. Then, it

uses a DNN-based method to reconstruct images, and can

get the improved quality by achieving an optimal signal

recovery. ISTA-Net [48] casts the iterative shrinkage-

thresholding algorithm (ISTA) into DNN form, and solves

the proximal mapping associated with the sparsity-induc-

ing regularizer. These DNN-based methods are the data-

driven methods that use no hand-designed models. The

training dataset and test dataset are provided for learning

the structure within the data, such that they can compete

with state-of-the-art methods. Especially, all the parame-

ters in ISTA-Net are learned end-to-end, rather than being

hand-crafted. ISTA-Net can reduce the network complexity

and the training time while ensures a good reconstruction

quality. Unfortunately, they need to be trained for specific

random measurement matrices and noise level, which are

not well designed for CS reconstruction.

2.3 Half-precision floats

Half-precision floats are introduced in the IEEE 754-2008

standard. They have a smaller range and lower precision

than 32-bit single-precision floats and consist of 1 sign bit,

5 bits of exponent, and 10 fractional bits. They are intended

for storing floating-point values in applications where

lower precision is sufficient for performing arithmetic

computations. The arithmetic with half-precision floats is

faster than corresponding one with single-precision floats,

if the hardware devices natively support half-precision

floats routines.

Although most of the scientific calculation requires

32-bit single or 64-bit double precision floats, artificial

intelligence approaches can perform with 16-bit half-pre-

cision floats. To decrease the consumption of memory and

reduce the time taken by the training and inference, several

research works explore half-precision representation for

parameters of DNN models. Their results show that both

the training and inference of DNN models can be effi-

ciently performed with lower precision, using 16-bit mul-

tipliers for training and inference with minimal even no

loss in accuracy. For instance, Micikevicius et al. [30]

propose a mixed precision training approach to train DNNs

using half-precision floats and get a significant computa-

tion speedup while their accuracy has no significant loss.

Half-precision allows significantly more programs data

to reside in the same caches, and the data can be moved

faster through the memory hierarchy to maximize compute

resources. Thus, half-precision floats are suitable for better

usage of cache and reduction in bandwidth bottlenecks for

operations like matrix multiplications. Therefore, half-

precision floats are especially suitable to perform CS

sampling and store its results.

3 Architecture of HCS4ReID

A half-precision CS framework with two measurement

rates (MRs) named HCS4ReID is proposed for end-to-end

person Re-ID. It aims at reducing the required network

bandwidth and storage space in the case of both acceler-

ating the process of CS sampling and preserving the

accuracy of end-to-end person Re-ID. It starts from raw

video frames captured by cameras or drones, then the raw

video frames are processed using half-precision CS sam-

pling and reconstruction with two MRs to recovery video

frames. Finally, a gallery of pedestrian images is auto-

matically created with YOLOv3 [22]. Given a specific

person-of-interest image, person Re-ID algorithms are used

to match it with person images in the generated gallery.

Figure 1 shows the architecture of HCS4ReID, which

consists of three parts: (1) half-precision video frames CS

sampling with two MRs, (2) CS reconstruction of video

frames, and (3) end-to-end person Re-ID, which are illus-

trated in detail as follows.

3.1 Half-precision CS sampling

Since the block-based CS reconstruction scheme is capable

to facilitate the low-cost sampling and recovery of images

and videos, the proposed framework HCS4ReID applies

block-based CS sampling and reconstruction methods. In
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real-world applications related to person Re-ID, the video

frames acquired by various cameras are natural images,

which consist of C channels such as red (R), green (G) and

blue (B) channels. The CS sampling of a natural image

consists of three independent CS processes on each chan-

nel, i.e.

yi ¼ Uxi; i 2 fR;G;Bg;

where yi 2 RM denotes the CS measurements on the

channel i, U 2 RM�N is the measurement matrix for each

channel, xi 2 RN denotes the vectorized version of an

image block in the channel i which is normalized to the

range 0–1. AsM�N, the measurement rate is defined as M
N
.

For a given measurement rate, the corresponding mea-

surement matrix U is constructed by generating a random

Gaussian matrix and then orthogonalizing its rows, i.e.

UUT ¼ I, where I is the identity matrix.

3.1.1 Identify person-of-interest image blocks

First, a pedestrian detector (e.g. YOLOv3 [22]) is used to

get the bounding boxes of pedestrians in raw video frames,

and zero-padding is utilized to keep the CS sampled image

blocks constant in each channel. Second, each channel i 2
fR;G;Bg of captured video frames is divided into 33� 33

image blocks with no overlap. Given aW � H video frame,

bounding boxes of n pedestrians in the frame are denoted

as the lists of bj ¼ ½xj; yj;wj; hj�; j ¼ 0; 1; . . .; n, where xj
and yj denote the coordinates of the top-left corner of the

jth predicted bounding box in the frame, wj and hj denote

the width and height of the jth predicted bounding box. To

denote the specific image blocks overlapping with the

predicted pedestrian bounding boxes, a matrix P is intro-

duced, i.e.

P ¼ fpstg; s 2 ½0; ðW � 1Þ=33�; t 2 ½0; ðH � 1Þ=33�; ð1Þ

where pst denote the identifiers of 33� 33 image blocks for

the given frame. pst ¼ 1 denotes the image block pst and

one of pedestrian bounding boxes bj contains the same

pixels, and pst ¼ 0 denotes the opposite case. Thus, it

generates two matrices xip 2 R1089�Mp and xib 2 R1089�Mb

of image regions in the i-th channel by concatenating

vectorized image block size of 1089� 1, where Mp and Mb

denote the number of image blocks in the predicted

pedestrian region and the rest regions of the given video

frame, respectively. Thus, the CS sampling on each chan-

nel performs as two large matrix multiplications instead of

several small matrix multiplications, and this can acceler-

ate the speed of CS sampling of the proposed HCS4ReID.

3.1.2 Half-precision CS measurement matrices

Half-precision is a useful data format for storing floating-

point numbers since it requires half of the storage space

and the memory bandwidth. On the other hand, hardware

devices may enable higher operations per second at half-

precision since these arithmetic operations require less

silicon area and power than single-precision ones.

Fig. 1 Half-precision CS framework with two measurement rates for end-to-end person Re-ID
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Nevertheless, for existing CS methods, values of normal-

ized image vectors and measurement matrices are pre-

sented with 32-bit single-precision floats or 64-bit double

precision floats. Meanwhile, for the block-based CS sam-

pling yi ¼ Uxi, the main computation is the element-wise

product of the measurement matrix U and the normalized

image vector xi. It is the memory-bandwidth limited and

computationally intensive arithmetic operations. Therefore,

the proposed framework HCS4ReID utilizes half-precision

floats to represent and store the values of measurement

matrices and normalized image vectors. This is capable to

accelerate related computations like addition and multi-

plication by reducing memory reads and writes which

usually consume a lot of runtime. Thus, CS sampling is

performed with half-precision floats and is accelerated

when the given hardware devices that natively support the

half-precision arithmetic operations. Meanwhile, the output

measurement values are half-precision floats, which are

suitable for reducing the required network bandwidth and

storage space.

3.1.3 CS sampling with two half-precision MRs

For existing CS methods, the benefits of CS sampling

disappear in terms of reducing the cost of data transmission

over networks and data storage on servers when the mea-

surement rate grows. Besides, for person Re-ID, the

reconstruction quality of the person-of-interest regions is

more critical than the rest regions in video frames.

Therefore, HCS4ReID employs two different MRs to CS

sampling of raw RGB video frames. As shown in Step (1)

of Fig. 1, for each channel of video frames, it uses the

higher measurement rate MRp to sample the image blocks

in the person-of-interest regions that are identified with

pst ¼ 1, while it uses a lower one MRb to sample the rest

image blocks in the given video frames that are identified

with pst ¼ 0.

Thus, HCS4ReID generates two half-precision CS

measurements yip and yib in the i-th channel, i.e.

yip ¼ Upxip; if pst ¼ 1;

yib ¼ Ubxib; if pst ¼ 0;

�
ð2Þ

where Up 2 RMp�1089 denotes the half-precision measure-

ment matrix corresponding to the measurement ratios MRp,

which is used in image blocks belong to the person-of-

interest regions. Ub 2 RMb�1089 denotes the half-precision

measurement matrix corresponding to the measurement

ratios MRb, which is used in rest image blocks. The size of

yip is Mp � nump while the size of yib is Mb � numb, where

nump and numb are the number of image blocks in the

person-of-interest regions and the number of rest image

blocks in a given video frame, respectively. Combining

two matrices yip and yib, HCS4ReID gets the results of

half-precision CS measurement denoted by yi ¼ yip [ yib
for each channel (1), which is transmitted to remote servers

for reconstructing CS images/videos.

3.2 CS reconstruction with two MRs

As shown in Step (2) of Fig. 1, the CS reconstruction

network can be one of block-based image CS reconstruc-

tion networks like ISTA-Netþ [48], ReconNet [23] and

CSNet [37]. ISTA-Net is a state-of-the-art one that makes

full use of the merits of both optimized-based and deep

network-based CS methods, its enhanced version ISTA-

Netþ is composed of s phases, and each phase corresponds

to one iteration in ISTA. Thus, HCS4ReID adopts its

enhanced version ISTA-Netþ to reconstruct CS video

frames.

When the servers received CS measurements yi ¼ yip [
yib; i 2 fR;G;Bg represented by half-precision floats from

the CS sampling terminals, the CS measurements are first

converted into single-precision floats since most high-per-

formance compute devices do not support half-precision

arithmetic at present.

Second, two CS reconstruction networks ISTA-Netþ

take yip and yib as their inputs respectively, and compute

the corresponding initializations xðp0Þ and xðb0Þ with Eq. 3.

xðp0Þ ¼ XipY
T
ipðYipYipÞ�1yip;

xðb0Þ ¼ XibY
T
ibðYibYibÞ�1yib;

(
ð3Þ

where xðp0Þ is the initialization for the input CS measure-

ment yip, and xðb0Þ is the initialization for the input CS

measurement yib. Xip ¼ ½x1ip; . . .; xsip� denotes input image

blocks in the regions of detected pedestrians, and Yip ¼
½y1ip; . . .; ysip� denotes their corresponding CS measurements.

By contrast, Xib ¼ ½x1ib; . . .; xsib� indicates input image

blocks in the rest regions, and Yib ¼ ½y1ib; . . .; ysib� indicates
their corresponding CS measurements.

Third, the initializations xðp0Þ and xðb0Þ are inferred with

the s phases of iterations, which are shown in Step (3) of

Fig. 1. Its kth ISTA iteration is cast into two separate

modules, named rðkÞ and xðkÞ separately. The former

module aims to generate the immediate reconstruction

results rðkÞ of the k-th phase with the input xðk�1Þ, while the

latter one aims to compute xðkÞ according to the input rðkÞ.
When two MRs are used in the proposed CS4ReID, there

are double rðkÞ and double xðkÞ in the k-th phases, i.e. r
ðkÞ
ip ,

x
ðkÞ
ip , r

ðkÞ
ib and x

ðkÞ
ib . Their values are updated according to

Eqs. 4 and 5, respectively.
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r
ðkÞ
ip ¼ x

ðk�1Þ
ip � qUT

p ðUpx
ðk�1Þ
ip � yipÞ;

x
ðkÞ
ip ¼ argminxip

1

2
jjxip � r

ðkÞ
ip jj22 þ kjjFðxipÞjj1;

8<
: ð4Þ

r
ðkÞ
ib ¼ x

ðk�1Þ
ib � qUT

b ðUbx
ðk�1Þ
ib � yibÞ;

x
ðkÞ
ib ¼ argminxib

1

2
jjxib � r

ðkÞ
ib jj22 þ kjjFðxibÞjj1;

8<
: ð5Þ

where k is the ISTA iteration index, q denotes the pre-

defined step size, and k is the pre-defined regularization

parameter in the ISTA. q and k do not change with k, but

they can be tuned. Fð�Þ denotes a combination of two linear

convolution operators (without bias terms) separated by a

rectified linear unit (ReLU). It is formulated in matrix form

as FðxÞ ¼ BReLUðAxÞ, where A and B correspond to the

two convolution operators [48]. By performing the CS

construction with the above s phases, Step (2) in Fig. 1

outputs the reconstructed blocks x
ðsÞ
ip and x

ðsÞ
ib , correspond-

ing to the input CS measurements yip and yib.

Finally, the reconstructed blocks compose an interme-

diate reconstructed image for each channel, and three

channels are merged into a natural video frame as the final

output of CS reconstruction with ISTA-Netþ in Step (2) of

the proposed CS4ReID.

3.3 End-to-end person Re-ID

End-to-end person Re-ID in Step (3) of CS4ReID contains

two phrases: generation of a gallery of person images and

re-identification of the given queried person in the gener-

ated gallery.

3.3.1 Generation of gallery

Different pedestrian detectors produce galleries of different

sizes, and a good detector is more likely to recall all per-

son-of-interest images and get high precision. The number

of detected pedestrians per image also affects the accuracy

of end-to-end person re-ID. When too few pedestrians are

detected in a video frame, it is highly possible that the

person-of-interest bounding boxes are not detected, so the

performance of end-to-end person Re-ID is compromised.

By contrast, distractors may have a negative influence on

end-to-end person Re-ID when there are too many false

positive detected pedestrians are detected, thus the accu-

racy of overall end-to-end person Re-ID slowly decreases

as the number of pedestrians per video frame increases.

YOLOv3 [22] is a faster detector than other detectors

with relatively high APs performance by using the new

multi-scale predictions. There are significant benefits over

other detection methods in terms of accuracy and speed of

the inference. Thus, to detect pedestrians in reconstructed

video frames, YOLOv3 is utilized to automatically get the

locations of pedestrians. Then, a set of pedestrian images

can be obtained by cropping the regions occupied by

detected pedestrians, and a gallery of automatically

detected pedestrian images can be generated for person Re-

ID.

3.3.2 Person Re-ID with MGN

Multiple granularities network (MGN) [41] is a multi-

branch deep network for person Re-ID. Its backbone is

ResNet-50 [20] for achieving competitive performances in

existing person Re-ID algorithms [38]. It divides the sub-

sequent part after res_conv4_1 block into three indepen-

dent branches, i.e. one Global Branch for learning global

feature representations without any partition information,

and two local branches (Part-2 Branch and Part-3 Branch)

for learning local feature representations. To obtain the

most powerful pedestrian discrimination, global and multi-

granularity local features are concatenated as the output

feature representation of a pedestrian image. Thus, MGN is

more efficient and robust to scenarios with large variances

than other person Re-ID methods. It utilizes softmax loss

for classification, and triplet loss for metric learning as loss

functions in the training phase. During the testing phase,

the generated gallery and the given queried person image

are inputs of MGN, the output results are the re-identified

pedestrian images as shown in Step (3) of Fig. 1.

3.4 Algorithmic description of CS4ReID

In summary, the proposed framework performs as descri-

bed in Fig. 2. Its three steps correspond to the three parts in

the proposed half-precision CS framework CS4ReID dis-

cussed in above, respectively.

4 Experimental results

4.1 Dataset

To evaluate the performance of the proposed framework

HCS4ReID, a large-scale person Re-ID dataset is needed.

Most of person Re-ID datasets (e.g. CUHK03 [27], Mar-

ket1501 [57] and MARS [56]) only contain pre-cropped

pedestrian bounding boxes images without the complete

video frames, but our experimental evaluation needs a

person Re-ID dataset which contains whole scene images

related to pedestrians. The person re-identification in the

wild (PRW) dataset [58] is a large-scale dataset with

comprehensive baselines for pedestrian detection and per-

son Re-ID in raw video frames, acquiring with six cameras

Neural Computing and Applications

123



in the summer of 2014. It contains 11,816 raw video frames

in which pedestrians are annotated with their bounding box

positions and identities for evaluating both pedestrian

detection and person re-ID, and annotated 932 identities

belong to 34,304 pedestrian bounding boxes. It is divided

into a training set with 5704 raw video frames and 482

pedestrian IDs, and a testing set with 6112 raw video

frames and 450 pedestrian IDs. Thus, the PRW dataset is

suitable for the performance evaluation of end-to-end

person Re-ID methods.

4.2 Implementation approaches

The implementation of the proposed framework

HCS4ReID contains half-precision CS sampling with two

MRs, CS reconstruction with two MRs, and end-to-end

person Re-ID, which respectively corresponds to the three

steps shown in Fig. 1.

First, the pedestrian detector for CS sampling with two

MRs and end-to-end person Re-ID is implemented with the

state-of-the-art object detector YOLOv3 [22], which is

named YOLOv3-PRW. It uses the 416� 416 sized

Fig. 2 Algorithmic diagram for

the proposed CS4ReID
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YOLOv3 model and is retrained on the PRW dataset with

the OpenCL-based deep neural network framework UHCL-

Darknet [25, 28, 49].

Second, half-precision CS sampling is implemented

with OpenCL [5, 45, 52] and C to compute CS measure-

ments on an OpenCL device, i.e. Intel HD Graphics 530.

The computations of two CS measurements in each chan-

nel shown in Eq. 2 are mainly general matrix multiply

(GEMM) routines. They are implemented with half-preci-

sion GEMM kernels, which are tuned on the OpenCL

device according to the size of measurement matrices (i.e.

Up and Ub) and normalized image matrices (i.e. xip and xib)

[13, 33, 53]. On the other hand, the corresponding CS

reconstruction of video frames is implemented based on

ISTA-Netþ with Tensorflow. ISTA-Netþ with s ¼ 9 phases

and a batch size of 64 is trained for a range of measurement

rates f0:01; 0:04; 0:10; 0:25; 0:40; 0:50g respectively, using

the same set of 91 images in [23] as the training dataset.

Third, the MGN for person Re-ID is implemented with

PyTorch, which is trained on the PRW dataset. To capture

more detailed information from pedestrian images, input

images are resized to 384� 128. The weights of ResNet-50

are used to initialize the backbone and branches of MGN.

The training of MGN uses the same settings and strategies

in [41], e.g. each mini-batch is sampled with randomly

selected 16 identities and randomly sampled four images

for each identity to cooperate the requirement of triples

loss. For the testing, it extracts the features corresponding

to original pedestrian images and the horizontally flipped

versions, and uses the average of these extracted features as

the final features.

The experiments are performed on a workstation that

consists of an Intel Core i7-6700 CPU (integrating an Intel

HD Graphics 530), a NVIDIA GTX 1080Ti GPU and a

8 GB DDR4 memory, and runs Ubuntu 16.04.5 with the

GCC compiler 5.3.2 and Intel OpenCL driver 5.0.

4.3 Evaluation protocols

First, average precision (AP) under intersection over union

(IoU) [ 0:5 is usually used to evaluate pedestrian detec-

tion [34, 42, 54]. However, Zheng et al. [58] found that

IoU [ 0:7 is more effective than IoU [ 0:5 for measuring

influences of detected pedestrians on the accuracy of per-

son Re-ID, since the localization ability of pedestrian

detectors affect the performance of end-to-end person Re-

ID. Thus, AP under IoU [ 0:7 is utilized to evaluate the

performance of trained pedestrian detector YOLOv3-PRW.

Second, the speedup over the corresponding single-

precision CS sampling and mean compression ratio (mCR)

on reconstructed video frames are used to measure the

performance of the proposed half-precision CS sampling

method. They aim to evaluate the influence on accelerating

CS sampling and reducing the overheads of required net-

work transmission and storage space. The speedups are

measured with the time taken by half-precision CS sam-

pling over the time taken by corresponding single-precision

CS sampling on the same hardware device (e.g. Intel HD

Graphics 530 in the Intel Core i7-6700 CPU). The mCRs

are calculated by the size of RGB video frames against the

size of the corresponding CS measurements generated by

HCS4ReID.

Third, mean peak signal-to-noise ratio (mPSNR) is used

to measure the reconstruction quality of the proposed

framework HCS4ReID. It is calculated with the average of

PSNR in terms of the reconstructed video frames against

the corresponding original video frames coming from the

gallery of the PRW dataset.

Finally, as PSNR mainly indicates the quality of CS

reconstruction in terms of a whole image using the same

measurement rate, and is limited in evaluating the quality

of CS reconstruction when two different measurement rates

are concurrently used in single image reconstruction.

Therefore, following [57], mean average precision (mAP)

and the rank-1, 3, 5, 10 accuracies are used to evaluate the

performance of person Re-ID, which indicate the applica-

bility and efficiency of the proposed HCS4ReID in terms of

end-to-end person Re-ID. The mAP is the mean across all

queries’ average precision to determine the correctness of

detected bounding boxes, where the average precision is

calculated for each query based on the precision-recall

curve. The rank-1, 3, 5, 10 accuracies denote the possibility

to locate at least one true positive retrieve result in the top-

1, 3, 5, 10 ranks respectively, where a true positive retrieve

result is a matching, the queried person bounding box

overlaps with the annotated person ground truths in test

dataset with IoU which is greater or equal to 0.5.

4.4 Evaluation results

The performance of half-precision CS sampling with two

MRs, the quality of corresponding CS reconstruction and

APs of pedestrian detection on the reconstructed testing set

of the PRW dataset are shown in Table 1, where AP0:7

denotes AP under IoU [ 0:7 of pedestrian detection on

reconstructed video frames. Apart from mPSNR and APs

used to evaluate the quality of reconstructed video frames,

the performance of person Re-ID on the CS reconstructed

video frames is shown in Table 2. As the person-of-interest

regions are more critical than the rest regions for video

frames in real applications like end-to-end person Re-ID,

MRp �MRb is used in this experiments. MRp ¼ MRb is a

special case that HCS4ReID is used as the traditional CS
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methods, which suggests that HCS4ReID only uses single

MR in CS sampling and reconstruction.

4.4.1 Performance of half-precision CS sampling

As shown in Tables 1 and 2, the proposed half-precision

CS framework HCS4ReID gets the nearly same perfor-

mance with the traditional single-precision CS, e.g. they

get the relatively high mPSNR for CS reconstruction,

similar AP for pedestrian detection, comparable mAP and

Rank-1, 3, 5, 10 accuracies for person Re-ID on recon-

structed video frames of the PRW dataset. This suggests

that half-precision CS sampling is sufficient for CS

reconstruction and end-to-end person Re-ID on the recon-

structed video frames.

Especially, the half-precision CS sampling achieves

1.37 � � 1:96� speedups against the corresponding sin-

gle-precision CS sampling, e.g. the time of CS sampling

with half-precision floats reduces from 11.26 ms/frame to

7.87 ms/frame when MRp=MRb ¼ 0:40=0:01. Thus, the

average speedup of 1.55 � is provided by the half-preci-

sion CS sampling over the corresponding single-precision

one. This denotes that the proposed half-precision CS

sampling not just provides the comparable reconstruction

quality with the corresponding single-precision CS sam-

pling, but also accelerates the CS sampling compared with

the single-precision one. The reason of this is that half-

precision floats have inherent advantages over 32-bit sin-

gle-precision floats: (1) they are half the size and fit into a

lower level of cache with lower latency for accessing

memory. (2) They take up half the cache space, which frees

up cache space for other related data in a running program.

(3) They require half the memory bandwidth, which frees

up the bandwidth for other operations in the given program.

On the other hand, HCS4ReID saves approximately a

half of network bandwidth and storage space against the

corresponding single-precision CS sampling. For instance,

the mCR of CS measurements sampled with the half-pre-

cision floats is 12.31 while the counterpart sampled with

the single-precision floats is 6.16 when

MRp=MRb ¼ 0:10=0:10. The reason for this is that half-

precision floats only require half the storage space and

memory bandwidth of the single-precision floats.

4.4.2 Performance of CS reconstruction with two MRs

The construction quality of video frames is improved as the

used measurement rates increase, and the size of CS

measurement data also significantly increases, i.e. the

corresponding mCR significantly decreases. For instance,

the size of CS measurements increases 54.32 times on

average when MRp and MRb grow from 0.01 to 0.50.

Table 1 Performance of half-

precision CS sampling and

reconstruction

MRp=MRb Half-precision CS Single-precision CS Speedup

mCR mPSNR (dB) AP0:7(%) mCR mPSNR (dB) AP0:7 (%)

0.50/0.50 0.97 41.10 71.45 0.48 41.10 71.45 1.90 9

0.40/0.40 1.21 38.68 71.40 0.60 36.68 71.35 1.96 9

0.25/0.25 1.94 34.79 70.57 0.97 34.79 70.50 1.66 9

0.10/0.10 4.86 28.64 67.06 2.43 28.64 67.02 1.44 9

0.04/0.04 12.31 23.93 52.53 6.16 23.93 52.35 1.58 9

0.01/0.01 52.70 20.53 14.44 26.43 20.53 14.37 1.43 9

0.50/0.40 1.19 38.90 71.46 0.60 38.90 71.42 1.88 9

0.50/0.25 1.80 35.20 71.16 0.91 35.20 71.18 1.40 9

0.50/0.10 3.79 29.13 70.17 1.90 29.13 70.20 1.40 9

0.50/0.04 7.12 24.46 68.38 3.57 24.46 68.22 1.61 9

0.50/0.01 13.92 21.13 65.62 7.03 21.13 65.62 1.56 9

0.40/0.25 1.86 35.09 71.19 0.93 35.10 71.16 1.47 9

0.40/0.10 3.99 29.11 70.14 2.00 29.11 70.14 1.55 9

0.40/0.04 7.75 24.45 68.30 3.89 24.45 68.30 1.69 9

0.40/0.01 16.07 21.13 65.62 8.11 21.13 65.62 1.43 9

0.25/0.10 4.36 29.02 69.76 2.19 29.02 69.78 1.50 9

0.25/0.04 9.01 24.42 67.84 4.52 24.42 67.83 1.46 9

0.25/0.01 21.14 21.12 65.46 10.67 21.11 65.49 1.38 9

0.10/0.04 10.99 24.28 64.88 5.52 24.28 64.93 1.37 9

0.10/0.01 31.97 21.05 62.68 16.16 21.05 62.68 1.37 9

0.04/0.01 41.93 20.88 50.14 21.23 20.88 50.00 1.42 9
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However, when MRp and MRb decrease to 0.01, the

reconstruction quality is too low compared with the origi-

nal video frames, and thus the reconstructed video frames

are less useful for applications in real scenarios (e.g. end-

to-end person Re-ID). The AP is only 14.37 on the

reconstructed video frames, and the AP only reaches

20.07% of the AP obtained on the corresponding raw video

frames. Meanwhile, the mAP and Rank-1, 3, 5, 10 accu-

racies are only 54.95%, 61.56%, 70.44%, 75.16%, 80.74%

of the corresponding ones obtained on the raw video

frames for end-to-end person Re-ID.

The proposed HCS4ReID supports CS sampling and

reconstruction with two different MRs, and it uses higher

measurement rate in the person-of-interest regions than the

rest regions in the same video frame, i.e. MRp [MRb, to

sample and reconstruct video frames. Thus, for the same

MRb in HCS4ReID, APs significantly increase with the

growth of MRp, while the corresponding mPSNRs slightly

increase. For example, the mPSNR and AP are 20.53 dB

and 14.44% when MRp ¼ 0:01 and MRb ¼ 0:01, while

they increase to 21.13 dB and 65.62% when MRp ¼ 0:40

and MRb ¼ 0:01. On the other hand, for the same MRp, the

mPSNR increases more significantly than the AP as MRb

grows. For instance, when MRp ¼ 0:40, the mPSNR

increases from 21.13 to 35.09 dB while the AP only

increases from 65.62 to 71.19% as MRb increase from 0.01

to 0.25. This means that the increase of MRp is more

efficient than the increase of MRb for improving the per-

formance of pedestrian detection when MRp [MRb, since

the construction quality of the person-of-interest regions

has more influences than the rest regions on the accuracy of

pedestrian detection in end-to-end person Re-ID.

As shown in Table 2, MRp nearly determines the per-

formance of end-to-end person Re-ID, while MRb has few

influences on the performance of end-to-end person Re-ID.

Especially, the results obtained with MRp [MRb

approximately equal to or even better than the corre-

sponding results obtained when MRb increases to MRp. For

instance, the mAP and Rank-1, 3, 5, 10 accuracies are

68.97%, 84.62%, 90.85%, 92.99%, 95.13% respectively

when MRp ¼ 0:25 and MRb ¼ 0:01. Most of them are

higher than the corresponding ones when MRp ¼ 0:25 and

MRb ¼ 0:25. Besides, for the same MRp, there is only a

slight improvement on the performance of end-to-end

person Re-ID when MRb increases. This suggests that the

minimum of MRb (e.g. 0.01) is enough for end-to-end

person Re-ID, while MRp can be determined according to

the size of available network bandwidth and storage space

in real scenarios.

Table 2 Performance of

HCS4ReID for end-to-end

person Re-ID

MRp=MRb Half-precision CS Single-precision CS

mAP (%) Rank (R) (%) mAP (%) Rank (R) (%)

R-1 R-3 R-5 R-10 R-1 R-3 R-5 R-10

0.50/0.50 69.27 84.54 90.67 92.76 95.28 69.24 84.88 90.86 92.85 95.08

0.40/0.40 69.07 84.92 90.56 92.70 95.23 69.05 84.34 90.90 92.51 95.23

0.25/0.25 68.42 84.68 90.42 92.90 95.09 68.41 84.68 90.32 92.56 94.94

0.10/0.10 64.34 83.74 90.36 92.65 95.08 64.27 83.84 90.41 92.65 94.89

0.04/0.04 54.51 80.90 87.67 90.40 93.57 54.46 80.70 87.27 90.55 93.57

0.01/0.01 38.10 52.11 63.77 69.72 76.74 38.17 52.27 64.73 68.58 77.59

0.50/0.40 69.31 84.49 90.67 92.71 95.14 69.29 84.69 90.71 92.95 94.99

0.50/0.25 69.30 84.34 90.76 92.70 95.04 69.28 84.49 90.91 92.76 95.04

0.50/0.10 69.52 84.39 90.71 92.81 94.99 69.48 84.39 90.76 92.76 95.09

0.50/0.04 69.47 84.48 90.71 92.90 94.99 69.48 84.18 90.80 93.09 94.94

0.50/0.01 69.87 84.67 90.75 92.99 95.18 69.54 84.39 90.76 92.76 95.09

0.40/0.25 69.13 84.29 90.56 92.61 94.94 69.13 84.34 90.47 92.80 95.04

0.40/0.10 69.29 84.14 90.52 92.70 95.04 69.34 84.39 90.52 92.76 95.19

0.40/0.04 69.32 84.53 90.41 92.75 94.99 69.27 84.14 90.61 92.99 95.09

0.40/0.01 69.72 84.67 90.61 92.94 95.43 69.71 84.78 90.71 93.00 95.18

0.25/0.10 68.61 84.81 90.51 93.14 95.03 68.60 84.76 90.31 92.89 95.03

0.25/0.04 68.50 84.81 90.75 93.18 95.08 68.54 84.86 90.65 92.99 94.94

0.25/0.01 68.97 84.62 90.85 92.99 95.13 69.00 94.87 90.95 93.04 95.18

0.10/0.04 64.56 84.13 90.80 92.50 95.03 64.52 84.03 90.56 92.50 95.13

0.10/0.01 64.90 84.47 90.56 92.16 95.08 64.87 83.98 90.51 92.60 95.18

0.04/0.01 55.07 79.82 87.04 89.81 93.71 55.06 79.68 87.43 90.01 93.47
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Therefore, the proposed HCS4ReID accelerates the CS

sampling with half-precision floats and significantly

improves mCR while mPSNR and AP decrease slightly.

Besides, it is sufficient for CS sampling and reconstruction

with the lowest MRb and higher MRp to achieve compa-

rable performance, which is obtained with MRb and MRp

equalling to the selected MRp. That is, the construction

quality of the person-of-interest regions is more important

for determining the performance of end-to-end person Re-

ID. Interestingly, when MRp ¼ 0:25 and MRp ¼ 0:01,

HCS4ReID reaches the comparable performance of end-to-

end person Re-ID on the reconstructed PRW dataset, while

the mCR reaches 21.14.

4.4.3 Comparison to state-of-the-art CS methods

Table 3 compares the performance of HCS4ReID with

three state-of-the-art DNN-based CS algorithms (e.g.

DeepInverse [31], ReconNet [23] and CSNet [37]) for end-

to-end person Re-ID. For a fair comparison, all compared

methods are trained on the same dataset consisting of 91

images [23] with the default parameter settings.

HCS4ReID uses 0.01 as the low measurement rate MRb to

obtain the highest mCR for various MRp, while all com-

pared methods use the same measurement rates MRp ¼
MRb since the conventional CS approaches only support a

single measurement rate.

The mCR of HCS4ReID significantly improves by 4.11–

30.26 times compared to the mCR of three compared CS

approaches when they use the same MRp. Especially, the

mCR of HCS4ReID achieves 13.92 while the mCRs of the

compared methods only achieves 0.46–0.47 when

MRp ¼ 0:5. HCS4ReID also achieves the mCR of 41.93

when MRp ¼ 0:04 compared to the mCR of 4.49 obtained

by the method DeepInverse.

For the average PSNR reconstruction performance of

entire video frames, HCS4ReID obtains lower mPSNR

than other state-of-the-art DNN-based CS approaches. For

the pedestrian detection performance, HCS4ReID also

obtains lower APs than the ones obtained by ReconNet and

CSNet when MRp is 0.50, 0.40, 0.25 and 0.10. Especially,

CSNet nearly obtains the highest mPSNR and AP since it

uses a convolution layer to implement CS sampling instead

of performing CS sampling based on a random Gaussian

matrix. The reason for this is that the compared CS algo-

rithms use MRp to sample the entire video frames, while

Table 3 Performance comparison of DNN-based CS algorithms for end-to-end person Re-ID

MRp=MRb Algorithm mCR mPSNR (dB) AP0:7(%) mAP (%) Rank (R) (%)

R-1 R-3 R-5 R-10

0.50/0.50 DeepInverse [31] 0.47 25.86 64.08 56.82 81.12 87.79 91.00 94.01

0.50/0.50 ReconNet [23] 0.46 31.86 66.78 63.25 81.31 89.37 91.62 94.07

0.50/0.50 CSNet [37] 0.46 35.66 70.15 67.21 84.24 90.61 92.85 95.14

0.50/0.01 HCS4ReID 13.92 21.13 65.62 69.87 84.67 90.75 92.99 95.18

0.40/0.40 DeepInverse 0.59 24.76 59.57 53.46 79.20 86.99 89.72 93.08

0.40/0.40 ReconNet 0.60 31.25 63.19 60.14 81.41 88.65 91.01 93.62

0.40/0.40 CSNet 0.62 34.92 69.87 67.99 84.19 90.71 93.04 95.14

0.40/0.01 HCS4ReID 16.07 21.13 65.62 69.72 84.67 90.61 92.94 95.43

0.25/0.25 DeepInverse 0.92 23.19 59.29 52.32 77.99 85.25 89.00 92.45

0.25/0.25 ReconNet 0.97 29.85 69.68 65.53 84.29 90.81 92.51 94.70

0.25/0.25 CSNet 0.98 34.53 69.86 68.03 84.44 90.95 92.51 95.28

0.25/0.01 HCS4ReID 21.14 21.12 65.46 68.97 84.62 90.85 92.99 95.13

0.10/0.10 DeepInverse 2.12 23.01 45.38 47.98 73.27 82.15 86.15 91.22

0.10/0.10 ReconNet 2.43 25.87 63.17 57.64 81.51 88.66 91.53 93.92

0.10/0.10 CSNet 2.51 27.72 63.16 62.59 84.03 90.17 92.21 94.89

0.10/0.01 HCS4ReID 31.97 21.05 62.68 64.90 84.47 90.56 92.16 95.08

0.04/0.04 DeepInverse 4.49 21.09 30.87 42.47 64.71 75.33 80.13 95.27

0.04/0.04 ReconNet 6.46 23.06 45.75 48.46 74.13 82.82 86.24 90.09

0.04/0.04 CSNet 6.24 26.20 57.14 59.61 82.56 89.53 92.53 94.69

0.01/0.01 DeepInverse 10.20 19.87 12.67 36.78 49.85 63.15 69.45 76.25

0.01/0.01 ReconNet 26.51 20.51 13.33 38.93 53.13 65.66 69.82 76.85

0.01/0.01 CSNet 25.60 23.17 30.15 51.61 74.00 82.94 86.07 90.18

0.04/0.01 HCS4ReID 41.93 20.88 50.14 55.07 79.82 87.04 89.81 93.71
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HCS4ReID uses MRp to sample the person-of-interest

regions and utilizes the lower measurement rate (i.e.

MRb ¼ 0:01) to sample the other regions of a frame.

However, HCS4ReID obtains the highest mAP when MRp

is 0.50, 0.40, 0.25 and 0.10, and also achieves comparable

end-to-end person Re-ID performance on the reconstructed

frames for the Rank-1, 3, 5, 10 accuracies. The mAP and

Rank-1, 3, 5, 10 accuracies of HCS4ReID achieve 55.07%,

79.82%, 87.04%, 89.81% and 93.71% respectively when

MRp ¼ 0:04 and MRb ¼ 0:01. They outperform the cor-

responding performance obtained by the compared CS

methods when MRp ¼ 0:01 and MRb ¼ 0:01. Meanwhile,

they are higher than the corresponding ones obtained by

DeepInverse and ReconNet when MRp ¼ 0:04 and

MRb ¼ 0:04, and there is no significant Rank accuracy loss

compared to the performance obtained by CSNet when

MRp ¼ 0:04 and MRb ¼ 0:04.

Therefore, compared to the state-of-the-art CS algo-

rithms, the proposed HCS4ReID significantly improves

mCR and then reduces the required transmission bandwidth

and storage space of CS measurements, while preserving

the end-to-end person Re-ID performance (e.g. mAp and

Rank accuracies) on the reconstructed frames.

5 Conclusion

The proposed CS framework HCS4ReID supports half-

precision CS sampling with two measurement rates, which

accelerates the process of CS sampling and reduces the

overheads of network transmission and storage space for

the generated CS measurements. It achieves 1.55 �
speedups over the corresponding single-precision CS

sampling, and only need half-network bandwidth and

storage space. It also supports CS reconstruction with two

different measurement rates for end-to-end person Re-ID.

Thus, it is more suitable than existing CS approaches for

end-to-end person Re-ID on the reconstructed video

frames. Besides, HCS4ReID is a scalable and portable CS

framework supporting half-precision sampling and recon-

struction with two measurement rates. Its mCR achieves

21.14, while its mAP and Rank-1, 3, 5, 10 accuracies

achieve 68.97%, 84.62%, 90.85%, 92.99%, 95.13% for

end-to-end person Re-ID on the reconstructed video

frames, respectively. HCS4ReID can be easily extended to

video CS sampling and reconstruction using other block-

based CS algorithms and pedestrian detectors. It also can

be ported to more OpenCL-accelerated platforms with an

increasing number of compute devices with half-precision

routines supported.

For the limitation, the proposed CS framework HCS-

4ReID is more suitable for the image CS than the video CS.

The reason for this is that the proposed CS framework does

not take into account the fact that the spatial locations of

moving objects are continuous, and these moving objects

generally form a region of a surveillance video frame with

a stationary background. Then, object tracking methods are

more suitable than object detection ones to locate the

continuous region of moving objects in video frames dur-

ing video CS sampling and reconstruction with multiple

measurement rates. Therefore, we will explore an approach

to sampling and recovering CS surveillance video with

multiple measurement rates based on object tracking in

future papers. The approach will be utilized in large-scale

distributed video surveillance scenarios, such as smart city,

intelligent transportation, etc.
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