
Journal of Systems Architecture 153 (2024) 103194

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Lyapunov-guided deep reinforcement learning for delay-aware online task
offloading in MEC systems
Longbao Dai a, Jing Mei a,∗, Zhibang Yang b, Zhao Tong a,1, Cuibin Zeng a, Keqin Li c,2

a College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
b Hunan Province Key Laboratory of Industrial Internet Technology and Security, Changsha University, Changsha 410022, China
c Department of Computer Science, State University of New York, New Paltz, New York 12561, USA

A R T I C L E I N F O

Keywords:
Deep reinforcement learning
Lyapunov optimization
Mobile edge computing
Task offloading

A B S T R A C T

With the arrival of 5G technology and the popularization of the Internet of Things (IoT), mobile edge
computing (MEC) has great potential in handling delay-sensitive and compute-intensive (DSCI) applications.
Meanwhile, the need for reduced latency and improved energy efficiency in terminal devices is becoming
urgent increasingly. However, the users are affected by channel conditions and bursty computational demands
in dynamic MEC environments, which can lead to longer task correspondence times. Therefore, finding an
efficient task offloading method in stochastic systems is crucial for optimizing system energy consumption.
Additionally, the delay due to frequent user–MEC interactions cannot be overlooked. In this article, we initially
frame the task offloading issue as a dynamic optimization issue. The goal is to minimize the system’s long-
term energy consumption while ensuring the task queue’s stability over the long term. Using the Lyapunov
optimization technique, the task processing deadline problem is converted into a stability control problem
for the virtual queue. Then, a novel Lyapunov-guided deep reinforcement learning (DRL) for delay-aware
offloading algorithm (LyD2OA) is designed. LyD2OA can figure out the task offloading scheme online, and
adaptively offload the task with better network quality. Meanwhile, it ensures that deadlines are not violated
when offloading tasks in poor communication environments. In addition, we perform a rigorous mathematical
analysis of the performance of Ly2DOA and prove the existence of upper bounds on the virtual queue. It is
theoretically proven that LyD2OA enables the system to realize the trade-off between energy consumption
and delay. Finally, extensive simulation experiments verify that LyD2OA has good performance in minimizing
energy consumption and keeping latency low.
1. Introduction

As 5G technology and the Internet of Things (IoT) advance, the
proliferation of smart terminal devices has surged. With this comes a
growing demand for processing delay-sensitive and compute-intensive
(DSCI) applications [1]. This poses new challenges to the traditional
cloud computing paradigm. The centralized structure of cloud data
centers frequently falls short in addressing the business requirements
for low latency and high throughput associated with processing DSCI-
type tasks [2]. To address these challenges, a rising idea called Mobile
Edge Computing (MEC) sinks computing, data storage, and many other
services to the network’s edge [3].

MEC deploys computing resources and services on base stations,
edge servers, and other devices near end-users, and leverages the

∗ Corresponding author.
E-mail addresses: awaken6758@gmail.com (L. Dai), jingmei1988@163.com (J. Mei), yangzb@ccsu.edu.cn (Z. Yang), tongzhao@hunnu.edu.cn (Z. Tong),

202220294009@hunnu.edu.cn (C. Zeng), lik@newpaltz.edu (K. Li).
1 Member, IEEE.
2 Fellow, IEEE.

distributed nature of these devices to process tasks [4]. By moving
computing tasks and data processing closer to the network’s edge,
MEC reduces the latency and network congestion that can occur when
routing all data to remote cloud data centers. This edge-based approach
supports DSCI-type applications including virtual reality, audio and
video streaming, in-vehicle communications, and online gaming for
optimal performance and improved user experience [5].

MEC performs well in handling DSCI-type applications, but there
are still some problems. Firstly, the wireless channel condition in
MEC systems has a direct influence on how much energy is used for
transmission tasks by IoT devices [6], i.e., when the connection is
unreliable, more energy is used to transmit data. Although the system
can employ the greedy algorithm to choose a time slot with enhanced
network conditions for workload offloading, minimizing transmission
vailable online 31 May 2024
383-7621/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.sysarc.2024.103194
Received 26 December 2023; Received in revised form 19 April 2024; Accepted 28
data mining, AI training, and similar technologies.

May 2024

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:awaken6758@gmail.com
mailto:jingmei1988@163.com
mailto:yangzb@ccsu.edu.cn
mailto:tongzhao@hunnu.edu.cn
mailto:202220294009@hunnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.sysarc.2024.103194
https://doi.org/10.1016/j.sysarc.2024.103194

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.

w
w
f
o
a
a
t
t

energy use, the task queue length in the buffer might become extremely
long as a result of this diversion, possibly even exceeding the worst-
case latency. Secondly, in MEC systems with high demand, DSCI-type
tasks could have lengthy queuing delays, which would break their
latency constraints, due to the inability of the system to respond
quickly to certain bursty computational demands [7]. At the same
time, the unpredictability and dynamic nature of network quality and
channel state during real-time wireless communication are significantly
influenced by factors like device location and network congestion [8].
Additionally, the devices’ task arrival rate is also difficult to obtain.
Hence, to optimize energy consumption, it is essential to find an
efficient task-offloading approach in stochastic systems.

To address the aforementioned challenges, we consider the sys-
tem’s dynamic nature and propose a method that combines Lyapunov
optimization with DRL. Lyapunov optimization provides theoretical
guarantees for system stability and long-term performance. However,
Lyapunov methods typically require a precise model of the system,
which is often unattainable in practical applications. Meanwhile, DRL
is capable of learning optimal policies directly from data without
explicit models, but it lacks guarantees for system stability. We use
Lyapunov optimization to guide the DRL learning process, ensuring that
the learned strategies not only optimize immediate rewards but also
maintain system stability and long-term performance. By integrating
these two approaches, we exploit a real-time offloading strategy for
DSCI-type applications.

In this study, by restricting the device’s task queue length threshold,
we manifest the delay-sensitive nature of tasks and manage the task
queue length to satisfy those characteristics. Moreover, most studies
focus solely on optimizing the energy consumption of the terminal
device, neglecting the energy usage of the MEC server. The purpose
of this article is to reduce both devices and the MEC server’s long-term
energy usage. Here, we outline the primary contributions made in this
article.

• We take into account the online task offloading issue for a single-
MEC scenario with several IoT devices. In this scenario, the
microprocessor is built into each device to process the tasks.
Moreover, each device can dynamically adjust its computing abil-
ity and communication power consumption in response to the
system state.

• We frame the online task offloading issue as a dynamic optimiza-
tion problem to minimize energy consumption while upholding
task queue stability in the long term. Concurrently, we set queue
length thresholds for each device to enable efficient processing
of DSCI-type tasks. Utilizing Lyapunov optimization theory, the
original problem that is contingent on further uncertain infor-
mation is reformulated into a new problem solely reliant on the
current system state. To tackle this problem, we develop a novel
Lyapunov-guided DRL for the delay-aware offloading algorithm
(Ly2DOA).

• We validated the effectiveness of Ly2DOA through a series of
experiments, observing the variations in queue lengths and sys-
tem energy consumption when offloading tasks under different
parameters.

The remainder of this paper is structured as follows. In Section 2,
e summarize the work related to task offloading in MEC. In Section 3,
e provide a thorough description of the system model and carefully

rame the optimization problem. In Section 4, we use the Lyapunov
ptimization technique and design a novel Lyapunov-guided DRL for
delay-aware energy-efficient offloading algorithm called Ly2DOA to

ddress this problem. In Section 5, we analyze Ly2DOA performance
hrough a series of simulation experiments. In Section 6, we conclude
2

his article.
2. Related work

In recent years, MEC, as a technology for deploying offloading nodes
at the network edge, has received significant attention from the aca-
demic community. Islam et al. [9] summarized the MEC task offloading
solutions proposed by various researchers, highlighting the deficien-
cies and challenges currently faced in the field of task offloading.
Additionally, they identified future research directions. Wu et al. [10]
proposed a delay-aware energy-efficient online offloading algorithm
that adaptively offloads more tasks when network quality is favorable
while ensuring that tasks do not violate their processing deadlines in
scenarios of poor network quality. Chen et al. [11] investigated a Multi-
User Caching enabled MEC environment that allows for the temporary
storage and deferred execution of user-requested tasks on MEC servers.
They designed a heuristic algorithm to optimize task caching locations
and bandwidth, thereby reducing the overall energy consumption of the
system. Cheng et al. [12] investigated the optimization problem in IoT
fog computing scenarios and proposed an adaptive offloading scheme.
This scheme determines offloading decisions in real time based on the
computational demands of mobile terminals and dynamically allocates
computing and communication resources to minimize system costs. The
aforementioned studies achieve commendable performance in terms of
energy consumption and computational capabilities. Tong et al. [13]
proposed a task offloading algorithm framed within federated learning.
In simulated scenarios, this algorithm reduces device energy consump-
tion and task response times while safeguarding user privacy. However,
most of these studies assume that task and channel states are known in
advance or can be predicted based on historical information. In real-
world scenarios, devices experience dynamic task arrival rates, and
wireless channel quality is influenced by various factors, making it
challenging to precisely predict their specific values.

To address the limitations of the aforementioned studies, recent
research has employed various stochastic optimization strategies that
allow for the online determination of offloading decisions without any
prior information. Among these, the Lyapunov method is the widely ap-
plied stochastic optimization technique [14]. In the research literature
on the application of Lyapunov optimization methods, the system first
formulates a quadratic Lyapunov function based on the queue backlog
vector. Next, establish an upper limit for the Lyapunov ‘‘drift-plus-
penalty ’’ function and minimize this limit to maintain overall system
stability while optimizing the system objective function [15]. According
to the perturbed Lyapunov optimization technique and game theory,
Xia et al. [16] designed a real-time offloading scheme for EH-enabled
MEC offloading systems. The scheme allocates on-demand resources
and determines the offloading scheme for heterogeneous tasks online
through an offloading pre-screening criterion. Li et al. [17] studied
offloading strategies in heterogeneous wireless networks, and created
a queueing model to depict the end-user load offloading issue. Besides,
this paper employed the Lyapunov optimization technique to balance
the system optimization objective and the buffer queue length. Using
the Lyapunov optimization technique, Li et al. [18] considered the
spatiotemporal optimality of long-term system cost minimization and
decoupled a series of bidirectional offloading problems by using gap-
preserving transformation. Gao et al. [19] exploited traffic prediction
to formulate the stochastic resource scheduling issue in a multilayer fog
computing system as a dynamic system optimization issue. Their goal
was to optimize average power consumption while ensuring queue sta-
bility throughout the system. Zhang et al. [20] proposed a centralized
resource allocation and distributed task offloading strategy, designed
to optimize resource utilization and reduce energy consumption while
meeting the latency requirements of real-time video applications.

Recently, Lyapunov optimization and artificial intelligence (AI), es-
pecially machine learning (ML), have been combined in various studies
to address dynamic system optimization issues, with deep reinforce-
ment learning (DRL) methods being particularly widely used in MEC.

Du et al. [21] introduced and surveyed AI/ML and its application in

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.
6G based. In a multiuser MEC scenario with time-varying channels, Bi
et al. [22] transformed the problem of maximizing the device offloading
rate into a mixed-integer nonlinear optimization problem (MINOP). A
DRL approach was utilized to construct a real-time offloading scheme
that determines the device’s offloading policy in real time for each time
slot. Different from most literature, this paper used the DRL method
to solve the task offloading scheme without modeling it as a Markov
decision process (MDP). Jia et al. [23] investigated a MEC-assisted
Telematics system with constrained computational resources, to max-
imize the system’s average data processing rate. A locally observed
multi-intelligence proximal policy optimization algorithm was designed
to reduce the collaboration overhead, but the strategy of this paper
cannot efficiently control how quickly each device responds to tasks.
Zhang et al. [24] proposed a collaborative deep neural network (DNN)
inference framework that dynamically determines computational and
network resource allocation schemes to jointly optimize latency and
energy consumption. Gao et al. [25] proposed a hierarchical com-
putational partitioning strategy for the DNN to determine the binary
offloading problem in multi-mobile device MEC networks. The cost
of the whole system is minimized by scheduling the task offloading
strategy for each device, but The cost does not account for the MEC
server’s energy use. Fan et al. [26] considered a DNN model integrating
task offloading, computation, and communication resource allotment,
and designed a DRL algorithm based on deep deterministic policy
gradient (DDPG) to solve the near-optimal solution to optimize the total
system cost. Nevertheless, the majority of prior research on offloading
strategies and task scheduling has considered only computationally
intensive tasks, and few studies have considered both latency-sensitive
and computationally intensive aspects.

This study reflects the delay-sensitive nature of tasks by constraining
the queue backlog thresholds and managing the task queue length
to accommodate these characteristics. The distinctions between this
research and our previous study [27] are as follows:

• This study incorporates the energy consumption of MEC servers
into the optimization model, dynamically adjusting the opera-
tional frequency of MEC servers according to varying workloads.
This improvement helps reduce the power consumption of MEC
servers, save operational costs, and enhance the sustainability
of MEC deployments. Specifically, this paper utilizes a DDPG
algorithm to dynamically adjust task offloading decisions and the
operational states of MEC servers. Following the training of the
DNN, real-time decisions are made based on the current server
load and task demands, aiming to minimize the energy consump-
tion of the entire system. This dynamic adjustment allows for the
reduction of server operations without impacting task processing
latency and reliability, thereby decreasing unnecessary energy
expenditure during periods of low demand.

• Compared to Ref. [27], this study employs DRL methods to si-
multaneously reduce system energy consumption, maintain queue
stability, and dynamically determine task offloading decisions
and operational states of MEC servers. In contrast, the knapsack
problem typically focuses on optimizing a single objective and
is not well-suited to address the complex optimization issues
presented in this manuscript. Moreover, the knapsack problem in
Ref. [27] is structurally simple and fixed, whereas DRL leverages
neural networks to learn from and adapt to highly complex and
nonlinear environmental characteristics.

3. System model and problem formulation

We consider an MEC scenario consisting of 𝑁 IoT devices in a
set  = {1, 2,… , 𝑁} and one MEC server in this paper, which is
depicted in Fig. 1. The IoT devices in the scenario communicate with
the MEC server in the vicinity by the wireless network. Given the
system’s dynamic nature, the entire system operates in discrete time,
with time slots represented as  = 0, 1,… , 𝑇 [28]. Assuming each time
slot, designated as 𝑡, is of equal duration 𝜏, we can approximate the
system as static during each time slot [29].
3

Fig. 1. The system architecture.

3.1. Task model

At the start of each time slot 𝑡, every device within the MEC
system generates computational tasks 𝐴𝑡𝑖 (in Mbits). The tasks are not
macro-level DAG-based multi-stage computations, but a single DNN of-
floading. As mentioned in [30], the tasks generated by the devices have
bit-wise independence, allowing for the application of partial offloading
schemes on each device. The generated task 𝐴𝑡𝑖 is initially placed in the
task buffer queue 𝑞𝑖(𝑡), waiting to be processed. Additionally, the task
buffer queue follows the first-come-first-served (FCFS) principle.

3.2. Computation and energy models

3.2.1. Local computing
In this scenario, individual IoT devices can independently execute

computational tasks locally. For the 𝑖th IoT device, its local CPU
computation frequency is denoted by 𝑓𝑖(𝑡) (in MHz unit), with an upper
bound of 𝑓𝑚𝑎𝑥𝑖 , and the number of CPU cycles required for computing
one bit is 𝜙. Thus, the tasks processed locally in slot 𝑡 is

𝐷𝑡
l,𝑖 =

𝑓𝑖(𝑡) × 𝜏
𝜙

. (1)

The energy expended in local computing is

𝐸𝑡l,𝑖 = 𝜉𝑓 3
𝑖 (𝑡) × 𝜏 + 𝜔0, (2)

where 𝜔0 and 𝜉 denote the constant circuit energy consumption and
effective capacitance coefficient of CPU, respectively.

3.2.2. Task offloading
Assuming that each device transmits tasks to the MEC server using

Orthogonal Frequency Division Multiple Access (OFDMA) transmission.
We utilize the binary variable 𝑥𝑡𝑖, where 𝑥𝑡𝑖 = 1 or 0, to indicate whether
device 𝑖 participates in task offloading during the specific time slot 𝑡.
Assuming that the devices participating in task offloading in time slot
𝑡 have equal bandwidth, denoted as 𝐵∕∑𝑁

𝑖=1 𝑥
𝑡
𝑖, where 𝐵 represents the

total system bandwidth. Let 𝑝𝑖(𝑡) represent the transmit power, subject
to the constraint 𝑝𝑖(𝑡) ≤ 𝑝𝑚𝑎𝑥𝑖 , where 𝑝𝑚𝑎𝑥𝑖 denotes the maximum power.
The channel power gain is indicated by ℎ𝑡𝑖. Because of the channel’s
stochastic nature, its power gain fluctuates dynamically. Consequently,
we specify 𝑅𝑡𝑖 (in Mbits/s) as the attainable data transmission rate for
tasks, which is denoted as

𝑅𝑡𝑖 =
𝑥𝑡𝑖𝐵

∑𝑁 𝑡
log2

(

1 +
ℎ𝑡𝑖𝑝𝑖(𝑡)
∑𝑁 𝑡

)

,

𝑖=1 𝑥𝑖 𝑁0𝐵∕ 𝑖=1 𝑥𝑖 + 𝜒

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.

t
f
𝑓
t
i

𝐴

w

3

b
c
s

𝑒

s

H
o
d
p
d
a
a
q

4

4

o
i
t
v
l
o
d

t
t

𝑄

(
A
b
𝜌
l
r

l
q
d

𝒁

where 𝑁0 and 𝜒 are the noise power spectral density and average
co-channel interference power [26].

Due to the ability of the MEC server to increase the transmission
power to reduce downlink transmission delay, and considering that the
size of computational results is typically small, we neglect the latency
associated with edge computing and result downloading. Thus, the
number of offloaded tasks during slot 𝑡 is represented as

𝐷𝑡
o,𝑖 = 𝑅𝑡𝑖 × 𝜏𝑥

𝑡
𝑖. (3)

The energy consumed by task offloading for the 𝑖th IoT device is

𝐸𝑡o,𝑖 = 𝑝𝑖(𝑡) × 𝜏𝑥𝑡𝑖. (4)

3.2.3. MEC server processing
For generality, in this study, we use ∑𝑁

𝑖=1𝐷
𝑡
o,𝑖 (in Mbits) to represent

he tasks arriving at the MEC server during time slot 𝑡. The MEC’s CPU
requency, denoted as 𝑓m(𝑡) (in MHz), is subject to an upper bound of
𝑚𝑎𝑥
m , and 𝜓 (in cycles/bit) represents the CPU cycles needed for bit
ask processing. For the MEC server, we assume that all tasks arriving
n time slot 𝑡 must be processed, i.e.,

𝑡
M =

𝑓m(𝑡) × 𝜏
𝜓

=
𝑁
∑

𝑖=1
𝐷𝑡

o,𝑖. (5)

The energy consumed by MEC server processing is

𝐸𝑡M = 𝜁𝑓 3
m(𝑡) × 𝜏, (6)

where the constant parameter 𝜁 varies with chip architecture [30].

3.3. Queue framework evolution model

For the 𝑖th IoT device, 𝑞𝑖(𝑡) represents the queue length in time slot
𝑡, with 𝑞𝑖(0) initialized to 0. Subsequently, 𝑞𝑖(𝑡) is updated to

𝑞𝑖(𝑡 + 1) = max
{

𝑞𝑖(𝑡) + 𝐴𝑡𝑖 −𝐷
𝑡
𝑖 , 0

}

, (7)

where 𝐷𝑡
𝑖 = 𝐷𝑡

l,𝑖 +𝐷
𝑡
o,𝑖.

In this study, our goal is to sustain the stability of task queues among
IoT devices, ensuring that each device’s queue backlog consistently
stays beneath a predetermined threshold for an extended duration. As
tasks arrive and are queued before processing, the device’s queue length
is strongly linked to task waiting times [10]. By rigorously constrain-
ing the queue length, we ensure that tasks are offloaded within the
specified timeframe. Thus, there is a maximum average queue backlog
constraint that applies across multiple time slots in this scenario, i.e.,

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
E
{

𝑞𝑖(𝑡)
}

≤ 𝜌𝑖, ∀𝑖 ∈  ; (8)

here 𝜌𝑖 represents the queue length threshold for device 𝑖.

.4. Problem formulation

Our scheme aims to both maintain the queue length of each device
elow a threshold and minimize the overall energy consumption, en-
ompassing both IoT devices and MEC server. Consequently, in time
lot 𝑡, the energy consumption of the whole system is expressed by

(𝑡) =
𝑁
∑

𝑖=1

(

𝐸𝑡l,𝑖 + 𝐸
𝑡
o,𝑖

)

+ 𝐸𝑡M

=
𝑁
∑

𝑖=1

(

𝜉𝑓 3
𝑖 (𝑡) + 𝑥

𝑡
𝑖𝑝𝑖(𝑡)

)

𝜏 + 𝜁𝑓 3
m(𝑡)𝜏 +𝑁𝜔0.

(9)

Based on the aforementioned model description, one can notice
that wireless channel quality and task arrivals at devices dynamically
change with time. As a result, the overall energy consumption of the
system also experiences fluctuations. Hence, we counteract the system’s
dynamism by estimating the anticipated power usage over an extended
4

time horizon. Since the energy consumption of the entire system is
contingent on device offloading choices and the allocation of compu-
tation and communication resources, the optimization objective can
be accomplished through jointly optimizing task offloading decisions
and resource allocation. Let 𝝅𝑡 = {𝒙𝑡,𝒇 𝑡,𝒑𝑡}, where 𝒙𝑡 = {𝑥𝑡𝑖}

𝑁
𝑖=1, 𝒇

𝑡 =
{𝑓𝑖(𝑡)}𝑁𝑖=1, and 𝒑𝑡 = {𝑝𝑖(𝑡)}𝑁𝑖=1. Then, we can formulate our optimization
problem as

𝐏𝟏 ∶ min
𝝅𝑡

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
E {𝑒(𝑡)}

.t. C1 ∶ 𝑥𝑡𝑖 ∈ {0, 1};

C2 ∶ 𝐷𝑡
l,𝑖 +𝐷

𝑡
o,𝑖 ≤ 𝑞𝑖(𝑡) + 𝐴𝑡𝑖;

C3 ∶ 𝐴𝑡M ≤
𝑓m(𝑡) × 𝜏

𝜓
;

C4 ∶ 𝑓min
𝑖 ≤ 𝑓𝑖(𝑡) ≤ 𝑓max

𝑖 ;

C5 ∶ 𝑝min
𝑖 ≤ 𝑝𝑖(𝑡) ≤ 𝑝max

𝑖 ;

C6 ∶ lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
E
{

𝑞𝑖(𝑡)
}

≤ 𝜌𝑖;

C1 − C6 satisfy 𝑖 ∈  and 𝑡 ∈  .

(10)

ere, C1 indicates whether the device has the capability for remote
ffloading; C2 guarantees that the current processing capacity of the
evice does not surpass its existing workload; C3 specifies that MEC’s
rocessing capacity matches the combined workload offloaded by all
evices; C4 represents the range of local computational resources avail-
ble for the device; C5 represents the range of transmission power
vailable for the device; C6 ensures the threshold constraint of all task
ueues.

. Problem conversion and algorithm exploit

.1. Problem conversion via Lyapunov optimization

Addressing P1 poses a challenge as it necessitates the acquisition
f parameters for every time slot indefinitely in advance. To tackle
t, we employ Lyapunov optimization [15], a stochastic optimization
echnique that allows for the decoupling of spatiotemporally coupled
ariables and enables the attainment of asymptotically optimal so-
utions. The core idea involves transforming P1 into a deterministic
ptimization problem, to minimize the upper bound of the Lyapunov
rift-plus-penalty function for each time slot.

Before employing Lyapunov optimization techniques, it is necessary
o design a virtual queue 𝑄 under the constraint of queue backlog [31],
hat is

𝑖(𝑡 + 1) = max{𝑄𝑖(𝑡) + 𝑞𝑖(𝑡 + 1) − 𝜌𝑖, 0}, (11)

11) shows the deviation of 𝑞𝑖(𝑡) from 𝜌𝑖 at the conclusion of time slot 𝑡.
ccording to [31], we assume that 𝑄𝑖(0) = 0 for all devices. The queue
acklog of 𝑄𝑖(𝑡) grows when the length of 𝑞𝑖(𝑡) surpasses the threshold
𝑖 at time slot 𝑡, and vice versa. Consequently, (8) representing the
ong-term queue length constraint can be translated into a stability
equirement for the virtual queue backlog 𝑄𝑖(𝑡).

Next, we utilize Lyapunov optimization method [15] for prob-
em transformation. Denoting 𝛩(𝑡) ≜ {𝑄1(𝑡),… , 𝑄𝑁 (𝑡)}, we employ a
uadratic Lyapunov function to represent the fulfillment of C6, which
efined as

(𝛩(𝑡)) ≜ 1
2

𝑁
∑

𝑖=1
𝑄2
𝑖 (𝑡).

Using the quadratic Lyapunov functions from successive time slots, we
establish a one-slot Lyapunov drift function to capture queue variations
between them, which formulated as

𝛥(𝛩(𝑡)) ≜ E 𝒁(𝛩(𝑡 + 1)) −𝒁(𝛩(𝑡))|𝛩(𝑡) .
[]

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.
Fig. 2. Conversion of virtual queue 𝑄.

By leveraging the virtual queue 𝑄, this study aims to design an
efficient online offloading approach that maintains the stability of the
virtual queue, which is shown in Fig. 2. For this purpose, we define the
Lyapunov drift plus penalty function as 𝛥(𝛩(𝑡))+𝑉 𝑒(𝑡) by merging virtual
queue stability and energy consumption [32]. This setup implies that
the task offloading decision for slot 𝑡 continues to rely on information
from the subsequent slot 𝑡+1. Consequently, we introduce Theorem 1 to
address this, offering an upper bound for the drift-plus-penalty function.

Theorem 1. If 𝐴𝑡𝑖 is limited to 𝐴
max
𝑖 across time slots, the drift-plus-penalty

value satisfies

𝛥(𝛩(𝑡)) + 𝑉 𝑒(𝑡) ≤ 𝐵1 + 𝐵2 + 𝑉 𝑒(𝑡) + 𝑌 (𝑡), (12)

for any task offloading algorithm. Here,

𝑌 (𝑡) =
𝑁
∑

𝑖=1

⎛

⎜

⎜

⎝

(

𝐷𝑡
𝑖
)2

2
+
(

𝜌𝑖 − 𝑞𝑖(𝑡) − 𝐴𝑡𝑖 −𝑄𝑖(𝑡)
)

𝐷𝑡
𝑖

⎞

⎟

⎟

⎠

,

𝐵1 =
1
2

𝑁
∑

𝑖=1

(

(

𝐴max
𝑖

)2 +
(

𝜌𝑖
)2
)

,

and

𝐵2 =
𝑁
∑

𝑖=1

(1
2
𝑞2𝑖 (𝑡) + 𝐴

max
𝑖 𝑞𝑖(𝑡)

)

+

𝑁
∑

𝑖=1
𝑄𝑖(𝑡)

(

𝑞𝑖(𝑡) + 𝐴max
𝑖 − 𝜌𝑖

)

.

Proof. Taking the square of (11), we have

𝑄𝑖(𝑡 + 1)2 −𝑄𝑖(𝑡)2

≤ (𝑄𝑖(𝑡) + 𝑞𝑖(𝑡 + 1) − 𝜌𝑖)2 −𝑄𝑖(𝑡)2

= (𝑞𝑖(𝑡 + 1) − 𝜌𝑖)2 + 2𝑄𝑖(𝑡)(𝑞𝑖(𝑡 + 1) − 𝜌𝑖)

= 𝑞𝑖(𝑡 + 1)2 − 2𝑞𝑖(𝑡 + 1)𝜌𝑖 + 2𝑄𝑖(𝑡)𝑞𝑖(𝑡 + 1)

+ (𝜌𝑖)2 − 2𝑄𝑖(𝑡)𝜌𝑖.

(13)

Taking square on (7), we have

𝑞𝑖(𝑡 + 1)2 ≤ (𝑞𝑖(𝑡) −𝐷𝑡
𝑖 + 𝐴

𝑡
𝑖)
2

=
(

𝑞𝑖(𝑡) −𝐷𝑡
𝑖
)2 +

(

𝐴𝑡𝑖
)2 + 2𝐴𝑡𝑖(𝑞𝑖(𝑡) −𝐷

𝑡
𝑖)

= 𝑞𝑖(𝑡)2 − 2𝑞𝑖(𝑡)𝐷𝑡
𝑖 +

(

𝐷𝑡
𝑖
)2 +

(

𝐴𝑡𝑖
)2

+ 2𝐴𝑡𝑖𝑞𝑖(𝑡) − 2𝐴𝑡𝑖𝐷
𝑡
𝑖 .

(14)

In addition, because 𝐷𝑡
𝑖 ≤ 𝑞𝑖(𝑡) + 𝐴𝑡𝑖, we can also obtain

− 2𝑞𝑖(𝑡 + 1)𝜌𝑖 = 2𝐷𝑡
𝑖𝜌𝑖 − 2𝜌𝑖(𝑞𝑖(𝑡) + 𝐴𝑡𝑖), (15)

and

2𝑄 (𝑡)𝑞 (𝑡 + 1) = 2𝑄 (𝑡)(𝑞 (𝑡) + 𝐴𝑡) − 2𝑄 (𝑡)𝐷𝑡. (16)
5

𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
Substituting (14), (15), (16) to (13), we have

𝑄𝑖(𝑡 + 1)2 −𝑄𝑖(𝑡)2

≤
(

𝐷𝑡
𝑖
)2 + 2

(

𝜌𝑖 − 𝑞𝑖(𝑡) − 𝐴𝑡𝑖 −𝑄𝑖(𝑡)
)

𝐷𝑡
𝑖

+ 𝑞𝑖(𝑡)2 +
(

𝐴𝑡𝑖
)2 + 2𝐴𝑖(𝑡)𝑞𝑖(𝑡) − 2𝜌𝑖

(

𝑞𝑖(𝑡) + 𝐴𝑡𝑖
)

+ 2𝑄𝑖(𝑡)
(

𝑞𝑖(𝑡) + 𝐴𝑖(𝑡) − 𝜌𝑖
)

+ (𝜌𝑖)2,

≤
(

𝐷𝑡
𝑖
)2 + 2

(

𝜌𝑖 − 𝑞𝑖(𝑡) − 𝐴𝑖(𝑡) −𝑄𝑖(𝑡)
)

𝐷𝑡
𝑖

+ 𝑞𝑖(𝑡)2 + (𝐴max
𝑖)2 + 2𝑞𝑖(𝑡)𝐴max

𝑖 + (𝜌𝑖)2

+ 2𝑄𝑖(𝑡)(𝑞𝑖(𝑡) + 𝐴max
𝑖 − 𝜌𝑖).

Let

𝐵1 =
1
2

𝑁
∑

𝑖=1

(

(𝐴max
𝑖)2 + (𝜌𝑖)2

)

,

and

𝐵2 =
𝑁
∑

𝑖=1

(1
2
𝑞2𝑖 (𝑡) + 𝐴

max
𝑖 𝑞𝑖(𝑡)

)

+

𝑁
∑

𝑖=1
𝑄𝑖(𝑡)

(

𝑞𝑖(𝑡) + 𝐴max
𝑖 − 𝜌𝑖

)

.

The objective function (12) can be upper bounded as

𝛥(𝛩(𝑡)) + 𝑉 𝑒(𝑡) ≤ 𝐵1 + 𝐵2 + 𝑉 𝑒(𝑡)

+
𝑁
∑

𝑖=1

⎛

⎜

⎜

⎝

(

𝐷𝑡
𝑖
)2

2
+
(

𝜌𝑖 − 𝑞𝑖(𝑡) − 𝐴𝑡𝑖 −𝑄𝑖(𝑡)
)

𝐷𝑡
𝑖

⎞

⎟

⎟

⎠

.

The theorem is proven. ■

Now, in each time slot, P1 is transformed into P2 by eliminating
the constant components (𝐵1 and 𝐵2).

𝐏𝟐 ∶ min
𝝅𝑡

𝑉 𝑒(𝑡) + 𝑌 (𝑡)

s.t. C1 − C5
(17)

The optimal solution to P2 exhibits asymptotically optimum prop-
erties according to the Lyapunov optimization theory [15].

4.2. DDPG-based algorithm design

Clearly, P2 resembles a MINOP as previously introduced in Ref.
[22]. Given the non-convex nature of the optimization objective func-
tion and the mixed continuous-discrete variables in the proposed prob-
lem, solving P2 directly is an exceedingly challenging task. Further-
more, utilizing iterative numerical methods to solve P2 will result in
excessively high computational complexity. Accordingly, we develop
an online offloading algorithm that leverages a DRL approach, specifi-
cally the DDPG technique [33], to achieve the asymptotically optimal
solution for the given problem.

4.2.1. Markov decision process of P2
In each time slot, P2may also be characterized as a Markov Decision

Process (MDP) with the following definitions for the states, actions, and
reward function [34].

• State space : The state set includes the task arrival rates 𝑨𝑡 =
{𝐴𝑡𝑖}

𝑁
𝑖=1, the task queue lengths 𝒒𝑡 = {𝑞𝑡𝑖}

𝑁
𝑖=1, the queue thresholds

𝒒c = {𝜌𝑖}𝑁𝑖=1, the virtual queue lengths 𝑸𝑡 = {𝑄𝑡𝑖}
𝑁
𝑖=1, and

the channel conditions 𝒉𝑡 = {ℎ𝑡𝑖}
𝑁
𝑖=1. We express it as 𝑠𝑡 =

{

𝑨𝑡, 𝒒𝑡, 𝒒c,𝑸𝑡,𝒉𝑡
}

, where 𝑠𝑡 ∈ .
• Action space : The action set includes the remote offloading

decision, local computing resource and communication power
allocation, and MEC computing resource distribution, i.e., 𝑎𝑡 =
{

𝒙𝑡,𝒇 𝑡,𝒑𝑡, 𝑓 𝑡m
}

, where 𝑎𝑡 ∈ . is action space.
• The reward function corresponds to the negative of P2’s objective,

i.e., 𝑟 = −𝑉 𝑒(𝑡) − 𝑌 (𝑡).
𝑡

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.
Fig. 3. The DDPG framework.
4.2.2. DDPG-based algorithm
The algorithm we propose is an extension of the widely recognized

DDPG technique and operates on the MEC. At the start of each time
slot, MEC gathers device state information and subsequently transmits
the offloading policy to the devices. As the DDPG algorithm follows
an actor-critic architecture, our algorithm similarly comprises an actor-
network and a critic-network. The actor-network decides the real-time
action policy based on the present state information. Considering the
current state, the critic-network evaluates the action policies provided
by the actor-network, i.e., Q-values, which determines whether the
action strategy is good or bad. The pseudo-code for the proposed algo-
rithm is displayed in Algorithm 1, operating in a time-slotted manner
and involving four deep neural networks.

The actor-network makes actions on remote offloading decisions,
local computing resources and communication power allocation, and
MEC computing resource allocation based on 𝑠𝑡, and adds Ornstein–
Uhlenbeck (OU) noise. Then, the system executes 𝑡, engaging with
the environment to acquire 𝑟𝑡 and the subsequent state 𝑠𝑡+1. Finally, the
set

{

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1
}

is formed into a tensor, which is used to update the
network parameters stored in the experience replay memory . Fig. 3
depicted the detailed operational structure.

To cut off the relevance of experience during the network learning
process, LyD2OA randomly selects 𝐼 training samples

{

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1
}

from . Denote 𝜇(𝑠; 𝜃𝜇) and 𝑄(𝑠, 𝑎; 𝜃𝑄) as the current actor and critic
networks with weights 𝜃𝜇 and 𝜃𝑄, respectively. Likewise, 𝜇′(𝑠; 𝜃𝜇′) and
𝑄′(𝑠, 𝑎; 𝜃𝑄′) correspond to the target actor and critic networks with
weights 𝜃𝜇′ and 𝜃𝑄′ , respectively. Hence, the target Q-value is defined
as

𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄′
(

𝑠𝑡+1, 𝜇
′(𝑠𝑡+1; 𝜃𝜇′

)

; 𝜃𝑄′

)

, (18)

where 𝛾 ∈ [0, 1] is the discount factor. Thus, the loss function is defined
as


(

𝜃𝑄
)

= E
[

𝑦𝑡 −𝑄
(

𝑠𝑡, 𝑎𝑡; 𝜃𝑄
)

]2
. (19)

Notice that 
(

𝜃𝑄
)

is the loss function of critic’s current network.
Instead, the actor’s current network strives to achieve a higher Q-value
wherever feasible. Consequently, the policy objective function of the
actor’s current network can be expressed by

𝐽
(

𝜃𝜇
)

= E
[

𝑄
(

𝑠𝑡, 𝜇(𝑠𝑡; 𝜃𝜇); 𝜃𝑄
)

]

. (20)

Thus, we employ the gradient descent method to modify the weights
𝜃𝜇 and 𝜃𝑄 of the current actor and networks. Furthermore, to enhance
the learning process’s stability, we employ soft target updating to
ensure gradual updates of the network weight parameters, which is,

𝜃𝑄′ = 𝛼𝜃𝑄 + (1 − 𝛼)𝜃𝑄′ , (21a)

𝜃𝜇′ = 𝛼𝜃𝜇 + (1 − 𝛼)𝜃𝜇′ . (21b)
6

Algorithm 1: The LyD2OA Algorithm
Input: System environment parameters;
Output: Optimal offloading strategy 𝝅∗;

1 Randomly initialize the weights 𝜃𝑄 and 𝜃𝜇 of the current
network;

2 Initialize experience replay memory  and the target network’s
weights 𝜃𝑄′ ← 𝜃𝑄, 𝜃𝜇′ ← 𝜃𝜇 ;

3 for each episode do
4 Reset the system environment, and initialize the task and

virtual queue 𝑞𝑖(𝑡) and 𝑄𝑖(𝑡) according to (7) and (11) for
each device 𝑖;

5 for t = 1 to T do
6 Obtain 𝑎𝑡 = {𝒙𝑡,𝒇 𝑡,𝒑𝑡, 𝑓 𝑡m} according to the current actor

network and OU noise;
7 Send {𝒙𝑡,𝒇 𝑡,𝒑𝑡} to each device, and run it;
8 Run 𝑓 𝑡m on the MEC;
9 Observe the reward 𝑟𝑡 and the next time slot’s state 𝑠𝑡+1;
10 Store the tensor 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1 in ;
11 Sample a random minibatch of 𝐼 tensors from ;
12 Update the current networks of the critic and actor

based on (19) and (20) with the learning rate 𝑙𝑐 and
𝑙𝑎, respectively;

13 Update the target networks of the critic and actor
according to (21a) and (21b);

14 end
15 end

4.3. LyD2OA computational complexity analysis

Given that the actor and critic networks comprise fully connected
layers, the computational complexity of LyD2OA in time slot 𝑡 is solely
determined by the network’s neuron count. Let the actor network have
𝛷 fully connected layers and the critic network have 𝛹 fully connected
layers. Therefore, The computational complexity of the algorithm we
propose is similar to [25], denoting a complexity of 𝑂(∑𝛷

𝑖=0 𝑓𝑐𝑙
𝑎
𝑖 ⋅

𝑓𝑐𝑙𝑎𝑖+1 +
∑𝛹
𝑗=0 𝑓𝑐𝑙

𝑐
𝑗 ⋅ 𝑓𝑐𝑙

𝑐
𝑗+1). Here, the number of neurons in the actor

network’s 𝑖th layer is represented by the constant 𝑓𝑐𝑙𝑎𝑖 (𝑖 > 0); the
number of neurons in the critic network’s 𝑗 th layer is represented
by the constant 𝑓𝑐𝑙𝑐𝑗 (𝑗 > 0). 𝑓𝑐𝑙𝑎0 and 𝑓𝑐𝑙𝑐0 is the input size of two
networks. Regarding performance analysis for LyD20A, an in-depth
proof methodology has been provided in [27], and we will refrain from
duplicating it here.

5. Results analysis for Ly2DOA

This section presents a sequence of experiments designed to assess
the performance of LyD2OA. We evaluate the system’s efficiency by

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.
Table 1
Experimental simulation parameters.

Parameters Value Parameters Value

𝑁0 −174 dBm/Hz episode 100
𝜆 [0.8, 1.5] Mbit/s 𝑇 500
𝑓m(𝑡) [0, 2 × 104] MHz 𝛾 0.99
𝑓𝑖(𝑡) [0, 500] MHz 𝛼 0.001
𝑝𝑖(𝑡) [0, 500] mW 𝑙𝑎 10−4

𝜒 10−10 mW 𝑙𝑐 10−3

𝜌𝑖 32 Mbit  64
𝐵 1 MHz 𝐼 8
𝜔0 10 μW 𝑁 10
𝜉 10−26 𝜙 1000
𝜁 10−28 𝜓 1000

adjusting various parameters, including task arrival rates, which signify
the computational load and are usually quantified by the data vol-
ume within each task. This reflects real-world manufacturing scenarios
where varying amounts of data are collected. Additionally, we examine
the system’s robustness by setting different task queue thresholds.

5.1. Experiment and parameter settings

In LyD2OA, the actor network is deployed as a five-layer Fully
Connected Neural Network (FCNN) with [5𝑁, 800, 400, 200, 3𝑁 + 1]
neurons, and the critic network is deployed as a five-layer FCNN
with [801 + 8𝑁, 800, 300, 10, 1] neurons. The actor network employs the
tanh activation function in its output layer, while the Relu activation
function is used in all other layers of the actor network as well as in
all layers of the critic network. The Adam optimizer is responsible for
updating all model parameters.

In terms of the environmental parameter configuration, the task
arrival rate of device 𝑖 in each time slot follows an exponential dis-
tribution, i.e., 𝐴𝑡𝑖 ∼ E(𝜆) Mbit. ℎ𝑡𝑖 refers the channel power gain model
in [22], and time slot length 𝜏 = 1. The simulation experiments make
use of the default parameter values, as detailed in Table 1, with the
majority of these values sourced from [26,30].

5.2. Performance evaluation and comparative schemes

5.2.1. Convergence performance and energy-delay tradeoff
In this group of experiments, given the tasks arrival rate 𝜆 = 1

Mbit/s, we plot the results of four trainings to illustrate the convergence
performance of LyD2OA, and the average virtual queue length and
the system energy consumption under different values of 𝜈. The queue
threshold 𝜌𝑖 is set to 32. Here, 𝜈 = 𝑉 ∕max𝝅𝑡 𝑌 (𝑡), and the reward
function is converted to

𝑟′𝑡 = 𝑒(𝑡) +
𝑌 (𝑡)

𝜈 × max𝝅𝑡 𝑌 (𝑡)
.

Therefore, the value range of the reward function is scaled to a reason-
able order of magnitude, which is conducive to updating the weight of
DNN [33].

The four curves in Fig. 4(a) represent the average energy con-
sumption per episode during the training phase. From Fig. 4(a), It is
evident that during the initial phases of training, there is a significant
energy consumption fluctuation in each episode. This is primarily due
to the agent’s actor and critic network parameters being initialized
with random values at the outset. As training advances, the parameters
are iteratively fine-tuned to minimize the system’s energy consump-
tion. During the latter phases of training, the energy consumption per
episode gradually reaches a stable state, signifying that after about 40
episodes, the Q-value obtained by the agent also stabilizes. Fig. 4(b)
illustrates a trend where energy consumption experiences an initial
rapid decrease, followed by a gradual stabilization, while the queue
length grows linearly with 𝜈.
7

Table 2
Task processing delay (s).

𝜌 = 30 𝜌 = 35 𝜌 = 40 𝜌 = 45 𝜌 = 50

Device 1 29.2668 38.3471 43.4299 44.9710 47.4126
Device 2 30.6943 40.6263 41.1090 49.9282 52.4134
Device 3 31.9883 37.4893 43.9698 46.1077 47.0206
Device 4 29.1149 35.3380 40.7044 42.8673 48.5008
Device 5 32.1484 34.5065 39.1554 48.7956 50.0020
Device 6 30.9905 34.1802 44.5535 46.0622 57.7057
Device 7 31.0879 34.4146 45.0259 46.9513 54.3541
Device 8 28.9552 35.0359 39.8948 45.7691 50.3947
Device 9 28.0375 36.2060 42.4484 46.8214 50.5976
Device 10 34.4007 35.9845 39.1025 47.1505 56.3855
Average 30.6685 36.2129 41.9394 46.5424 51.4787

5.2.2. Effect of the queue threshold 𝜌
In this set of experiments, we plot the system queue lengths and

energy consumption under different queue thresholds. Additionally, we
calculated the task processing delays for each device after the queue
stabilized. As shown in Fig. 5(a), the LyD2OA algorithm effectively
controls the system queue length. After 100 time slots, LyD2OA ensures
that the task queue remains stable under all conditions. Under various
queue thresholds, the system queue length rapidly converges to near
the threshold values. Table 2 presents the task processing delays for
devices after the queue stabilization, with the last row indicating the
average processing delay. From Table 2, it is evident that there is
a direct correlation between the device queue length and the task
processing delay. Longer device queue lengths result in longer waiting
times for task processing. By strictly controlling the task queue length,
the average waiting time for tasks can be reduced. Fig. 5(b) shows
that under different queue thresholds, the system’s energy consumption
fluctuates within specific intervals. It is noteworthy that in the first
100 time slots, the system energy consumption appears to rise briefly
and then decreases as the slots progress. This is due to the DNN’s
inability to establish an optimal offloading strategy based on the initial
environment. As the agent continues to interact with the environment,
the DNN gradually finds the optimal offloading strategy and stabilizes
the queue near the threshold.

5.2.3. Effect of the task arrival rate 𝜆
Under different task arrival rates, we depict the dynamic trends of

task queues and virtual queues. Fig. 6(a) gives the average length of
the queue, presented as a bar chart. From Fig. 6(a), we can observe
that with the growth in the task arrival rate, both the task queue and
virtual queue length of the system expand. When 𝜆 = 0.8, the average
queue length of the system is less than 𝜌. Therefore, the virtual queue
length is very small. Besides, with the increase in task arrival rate,
the queue length gradually surpasses the threshold constraint. This is
because the number of arriving tasks per unit of time slot gradually
increases and is temporarily stored in the tail of the queue, while the
system cannot process the tasks in the head of the queue in time.
Thus the queue length starts to increase slowly, leading to a slow
increase in the size of the virtual queue. Fig. 6(b) gives the trend of the
queue under different task arrival rates, presented as a graph. From
Fig. 6(b), we know that the task queue length gradually starts to be
unstable as the task arrival rate increases. The queue length cannot
be effectively constrained around the threshold value. When 𝜆 = 1.5,
the task queue length fluctuates with large ups and downs and cannot
be well constrained. This is because the number of arriving tasks is
approaching the critical value of the system’s processing capacity, and
the system cannot handle the upcoming tasks within the designated
time frame.

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.
Fig. 4. Convergence performance and energy-delay tradeoff.
Fig. 5. Impact of the different parameter 𝜌.
Fig. 6. Impact of the different parameter 𝜆.
5.2.4. Comparison of different offloading schemes
We compare LyD2OA with two other algorithms to assess the prac-

tical effectiveness of the algorithm.

• Lyapunov-guided DRL for Online Computation Offloading (LyDROO)
[22]
In each time slot, all tasks follow a binary offloading princi-
ple. Utilizing the Lyapunov optimization method, task offloading
decisions are determined in real-time under the condition of
maintaining stability of both the task and energy queues, thereby
maximizing the computation rate of tasks.

• Energy Efficient Dynamic Offloading Algorithm with Queue Length
Constraint (QC-EEDOA) [27]
In each slot, all tasks adhere to the principle of partial offloading.
By employing the Lyapunov optimization method to establish
8

virtual queues, the constraint of task backlog thresholds is trans-
formed into a stability constraint for the virtual queue. The knap-
sack principle is utilized to dynamically determine task offloading
decisions while maintaining the stability of the virtual queue.
Energy Efficient Dynamic Offloading Algorithm (EEDOA) [35]
In each time slot, all tasks are offloaded to MEC. By applying
Lyapunov optimization, the offloading decision is generated in
each time slot to maintain system stability.

In this experiment, the parameters for each algorithm were kept
consistent with those of LyD2OA, with the experimental data for
LyD2OA corresponding to 𝜌 = 30 in Fig. 5.

Fig. 7(a) presents the queue length of the four algorithms. From
Fig. 7(a), it is evident that the LyD2OA algorithm’s queue length
quickly converges to the vicinity of the threshold, whereas the EEDOA

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.
Fig. 7. The comparison of queue length and energy consumption of different algorithms.
F

algorithm fails to effectively control queue length in this scenario due
to its sole reliance on remote offloading without considering local
processing. For LyDROO, the queue length gradually increases, as
this approach only aims to stabilize the task queue length without
imposing strict constraints on it. For QC-EEDOA, although the queue
length is effectively maintained near the threshold, the fluctuations are
considerable. This is attributed to the QC-EEDOA algorithm’s use of the
knapsack problem for solving, which cannot learn from and adapt to
changes in the environment, thereby failing to efficiently control the
variability of the queue. In contrast, DRL methods can learn optimal
decisions amidst uncertainty by exploring different strategies, thereby
further constraining the fluctuation of task queues within the threshold
limits.

Fig. 7(b) presents the energy consumption of the four algorithms. It
is observed that EEDOA consumes the least energy because it focuses
solely on remote offloading, neglecting local offloading. LyDROO ex-
hibits the highest energy consumption since it is a binary offloading
algorithm optimized for maximizing the offloading rate. When channel
conditions are favorable, more tasks are offloaded to the MEC server,
inevitably increasing the server’s power demand and thus elevating
the average energy consumption of the system. Under poor channel
conditions, the algorithm attempts to process more tasks to maxi-
mize the offloading rate, which results in increased energy usage. For
QC-EEDOA, while the average system energy consumption remains
relatively stable, this algorithm does not manage the operational power
of the MEC servers. In poor channel conditions, it fails to reduce
server operations and minimize unnecessary energy expenditure. In
contrast, LyD2OA dynamically generates offloading policies by thor-
oughly considering channel conditions, queue sizes, and system energy
consumption. Regardless of the task arrival rate, LyD2OA ensures that
the queue size remains close to the threshold while optimizing the over-
all system energy consumption. Based on observations from Fig. 7(a)
and (b), we can infer that LyD2OA performs well in optimizing system
energy consumption and constraining queue lengths.

6. Conclusion

In this paper, we propose a novel Lyapunov-guided DRL for the
delay-aware offloading algorithm (LyD2OA) by considering the dy-
namic characteristics of IoT systems. This algorithm can make real-time
decisions for system offloading, adapting dynamically to offload tasks
with better network quality. Meanwhile, it ensures that deadlines are
not violated when offloading tasks in poor communication environ-
ments. Relevant simulation experiments indicate the algorithm’s capac-
ity to control long-term energy consumption and average task queue
length within the system through adjustments of parameter 𝑉 . Com-
parative analysis against alternative offloading schemes reveals that
LyD2OA effectively minimizes long-term energy consumption while
9

maintaining low latency, making it a suitable choice for addressing
DSCI-type tasks.

In future work, we will explore MEC systems with multiple edge
servers, addressing challenges related to limited computational re-
sources and devising an appropriate resource allocation scheme. In
other words, offloading will be delayed only when the communication
conditions are poor to minimize the transmission delay of the tasks and
avoid violating the deadlines for task processing.

CRediT authorship contribution statement

Longbao Dai: Writing – review & editing, Writing – original draft,
Resources, Methodology. Jing Mei:Writing – review & editing, Method-
ology, Investigation, Funding acquisition, Formal analysis. Zhibang
Yang: Methodology, Funding acquisition, Formal analysis, Conceptu-
alization. Zhao Tong: Writing – review & editing, Funding acquisition,
ormal analysis, Conceptualization. Cuibin Zeng: Writing – review &

editing, Investigation, Conceptualization. Keqin Li: Writing – review &
editing, Conceptualization.

Declaration of competing interest

We wish to draw the attention of the Editor to the following facts
which may be considered as potential conflicts of interest and to
significant financial contributions to this work. [OR]

We wish to confirm that there are no known conflicts of interest
associated with this publication and there has been no significant
financial support for this work that could have influenced its outcome.

We confirm that the manuscript has been read and approved by all
named authors and that there are no other persons who satisfied the
criteria for authorship but are not listed. We further confirm that the
order of authors listed in the manuscript has been approved by all of
us.

We confirm that we have given due consideration to the protection
of intellectual property associated with this work and that there are
no impediments to publication, including the timing of publication,
with respect to intellectual property. In so doing we confirm that we
have followed the regulations of our institutions concerning intellectual
property.

We further confirm that any aspect of the work covered in this
manuscript that has involved either experimental animals or human
patients has been conducted with the ethical approval of all rele-
vant bodies and that such approvals are acknowledged within the
manuscript.

We understand that the Corresponding Author is the sole contact
for the Editorial process (including Editorial Manager and direct com-
munications with the office). He/she is responsible for communicating
with the other authors about progress, submissions of revisions and
final approval of proofs.

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.
Data availability

The authors are unable or have chosen not to specify which data
has been used.

Acknowledgments

The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work was supported by
the Program of National Natural Science Foundation of China (grant
No. 62072174, 61502165), Provincial Natural Science Foundation of
Hunan, China (grant No. 2020JJ5370, 2022JJ40278, 2023JJ30083),
Scientific Research Fund of Hunan Provincial Education Department,
China (Grant No. 22A0026, 22A0592).

References

[1] H. Duan, Y. Zheng, C. Wang, X. Yuan, Treasure collection on foggy islands:
Building secure network archives for internet of things, IEEE Internet Things J.
6 (2) (2019) 2637–2650.

[2] H.R. Chi, M.F. Domingues, A. Radwan, Complex network analysis for ultra-large-
scale mec small-cell based peer-offloading, in: 2021 IEEE Global Communications
Conference, GLOBECOM, 2021, pp. 1–6.

[3] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence: Paving
the last mile of artificial intelligence with edge computing, Proc. IEEE 107 (8)
(2019) 1738–1762.

[4] H. Zhao, S. Deng, C. Zhang, W. Du, Q. He, J. Yin, A mobility-aware cross-edge
computation offloading framework for partitionable applications, in: 2019 IEEE
International Conference on Web Services, ICWS, 2019, pp. 193–200.

[5] X. Xu, B. Shen, X. Yin, M.R. Khosravi, H. Wu, L. Qi, S. Wan, Edge server
quantification and placement for offloading social media services in industrial
cognitive iov, IEEE Trans. Ind. Inform. 17 (4) (2021) 2910–2918.

[6] G. Qu, N. Cui, H. Wu, R. Li, Y. Ding, Chainfl: A simulation platform for joint
federated learning and blockchain in edge/cloud computing environments, IEEE
Trans. Ind. Inform. 18 (5) (2022) 3572–3581.

[7] H. Tang, H. Wu, Y. Zhao, R. Li, Joint computation offloading and resource
allocation under task-overflowed situations in mobile-edge computing, IEEE
Trans. Netw. Serv. Manag. 19 (2) (2022) 1539–1553.

[8] H. Wu, Y. Sun, K. Wolter, Energy-efficient decision making for mobile cloud
offloading, IEEE Trans. Cloud Comput. 8 (2) (2020) 570–584.

[9] A. Islam, A. Debnath, M. Ghose, S. Chakraborty, A survey on task offloading in
multi-access edge computing, J. Syst. Archit. 118 (2021) 102225.

[10] H. Wu, J. Chen, T.N. Nguyen, H. Tang, Lyapunov-guided delay-aware energy
efficient offloading in iiot-mec systems, IEEE Trans. Ind. Inform. 19 (2) (2023)
2117–2128.

[11] J. Chen, H. Xing, X. Lin, S. Bi, Joint cache placement and bandwidth alloca-
tion for fdma-based mobile edge computing systems, in: ICC 2020-2020 IEEE
International Conference on Communications, ICC, IEEE, 2020, pp. 1–7.

[12] Z. Chang, L. Liu, X. Guo, Q. Sheng, Dynamic resource allocation and computation
offloading for iot fog computing system, IEEE Trans. Ind. Inform. 17 (5) (2020)
3348–3357.

[13] Z. Tong, J. Wang, J. Mei, K. Li, K. Li, Fedto: Mobile-aware task offloading in
multi-base station collaborative mec, IEEE Trans. Veh. Technol. (2023).

[14] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, L. Guo, Computation offloading in
mobile edge computing networks: A survey, J. Netw. Comput. Appl. 202 (2022)
103366.

[15] M. Neely, Stochastic Network Optimization with Application to Communication
and Queueing Systems, Morgan & Claypool Publishers, 2010.

[16] S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing
resource management with energy harvesting for heterogeneous mec-enabled iot,
IEEE Trans. Wireless Commun. 20 (10) (2021) 6743–6757.

[17] Y. Li, S. Xia, M. Zheng, B. Cao, Q. Liu, Lyapunov optimization-based trade-
off policy for mobile cloud offloading in heterogeneous wireless networks, IEEE
Trans. Cloud Comput. 10 (1) (2022) 491–505.

[18] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, X. Wang, Learning-aided computation
offloading for trusted collaborative mobile edge computing, IEEE Trans. Mob.
Comput. 19 (12) (2020) 2833–2849.

[19] X. Gao, X. Huang, S. Bian, Z. Shao, Y. Yang, Pora: Predictive offloading and
resource allocation in dynamic fog computing systems, IEEE Internet Things J.
7 (1) (2020) 72–87.

[20] X. Zhang, A. Pal, S. Debroy, Effect: Energy-efficient fog computing framework
for real-time video processing, in: 2021 IEEE/ACM 21st International Symposium
on Cluster, Cloud and Internet Computing, CCGrid, IEEE, 2021, pp. 493–503.

[21] J. Du, C. Jiang, J. Wang, Y. Ren, M. Debbah, Machine learning for 6
g wireless networks: Carrying forward enhanced bandwidth, massive access,
and ultrareliable/low-latency service, IEEE Veh. Technol. Mag. 15 (4) (2020)
122–134.
10
[22] S. Bi, L. Huang, H. Wang, Y.-J.A. Zhang, Lyapunov-guided deep reinforcement
learning for stable online computation offloading in mobile-edge computing
networks, IEEE Trans. Wireless Commun. 20 (11) (2021) 7519–7537.

[23] Y. Jia, C. Zhang, Y. Huang, W. Zhang, Lyapunov optimization based mobile edge
computing for internet of vehicles systems, IEEE Trans. Commun. 70 (11) (2022)
7418–7433.

[24] X. Zhang, M. Mounesan, S. Debroy, Effect-dnn: Energy-efficient edge framework
for real-time dnn inference, in: 2023 IEEE 24th International Symposium on a
World of Wireless, Mobile and Multimedia Networks, WoWMoM, IEEE, 2023,
pp. 10–20.

[25] M. Gao, R. Shen, L. Shi, W. Qi, J. Li, Y. Li, Task partitioning and offloading in
dnn-task enabled mobile edge computing networks, IEEE Trans. Mob. Comput.
22 (4) (2023) 2435–2445.

[26] W. Fan, Z. Chen, Z. Hao, Y. Su, F. Wu, B. Tang, Y. Liu, Dnn deployment, task
offloading, and resource allocation for joint task inference in iiot, IEEE Trans.
Ind. Inform. 19 (2) (2023) 1634–1646.

[27] J. Mei, L. Dai, Z. Tong, L. Zhang, K. Li, Lyapunov optimized energy-efficient
dynamic offloading with queue length constraints, J. Syst. Archit. 143 (2023)
102979.

[28] J. Mei, L. Dai, Z. Tong, X. Deng, K. Li, Throughput-aware dynamic task offloading
under resource constant for mec with energy harvesting devices, IEEE Trans.
Netw. Serv. Manag. 20 (3) (2023) 3460–3473.

[29] S. Xia, Z. Yao, G. Wu, Y. Li, Distributed offloading for cooperative intelligent
transportation under heterogeneous networks, IEEE Trans. Intell. Transp. Syst.
23 (9) (2022) 16701–16714.

[30] Y. Ye, L. Shi, X. Chu, R.Q. Hu, G. Lu, Resource allocation in backscatter-assisted
wireless powered mec networks with limited mec computation capacity, IEEE
Trans. Wireless Commun. 21 (12) (2022) 10678–10694.

[31] C. Qiu, Y. Hu, Y. Chen, Lyapunov optimized cooperative communications
with stochastic energy harvesting relay, IEEE Internet Things J. 5 (2) (2018)
1323–1333.

[32] M.J. Neely, et al., Stability and probability 1 convergence for queueing networks
via lyapunov optimization, J. Appl. Math. 2012 (2012).

[33] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, 2015, arXiv:
1509.02971.

[34] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer
Science & Business Media, 2012.

[35] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, X. Shen, Energy efficient dynamic
offloading in mobile edge computing for internet of things, IEEE Trans. Cloud
Comput. 9 (3) (2019) 1050–1060.

Longbao Dai received the B.S. degree in computer science
and technology from Hunan University of Science and
Engineering, Yongzhou, China, in 2021. He is currently
working toward the M.S. degree at the College of Infor-
mation Science and Engineering, Hunan Normal University,
Changsha, China. His research interests focus on distributed
parallel computing, modeling and resource pricing and allo-
cation in mobile edge computing systems, and combinatorial
optimization.

Jing Mei received the Ph.D. degree in computer science
from Hunan University, China, in 2015. She is currently
an associate professor in the College of Information Sci-
ence and Engineering in Hunan Normal University. Her
research interests include cloud computing, fog computing
and mobile edge computing, high performance computing,
task scheduling and resource management, etc. She has
published more than 30 research articles in international
conference and journals, such as IEEE Transactions on Com-
puters, IEEE Transactions on Parallel and Distributed System,
IEEE Transactions on Service Computing, Cluster Computing,
Journal of Grid Computing, Journal of Supercomputing.

Zhibang Yang received the Ph.D. degree in computer
science from Hunan University, China. His major research
contains data management, parallel computing and network
security. He is currently a professor at Changsha University.

http://refhub.elsevier.com/S1383-7621(24)00131-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb9
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb9
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb9
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb11
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb13
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb13
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb13
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb21
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb22
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb23
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb24
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb30
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb32
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb34
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb34
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb34
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00131-0/sb35

Journal of Systems Architecture 153 (2024) 103194L. Dai et al.
Zhao Tong received the Ph.D. degree in computer science
from Hunan University, Changsha, China in 2014. He was a
visiting scholar at the Georgia State University from 2017 to
2018. He is currently an associate professor at the College
of Information Science and Engineering of Hunan Normal
University, the young backbone teacher of Hunan Province,
China. His research interests include parallel and distributed
computing systems, resource management, big data and
machine learning algorithm. He has published more than 25
research papers in international conferences and journals,
such as IEEE-TPDS, Information Sciences, FGCS, NCA, and
JPDC, PDCAT, etc. He is a senior member of the China
Computer Federation (CCF) and a Member of the IEEE.

Cuibin Zeng received the B.S. degree in computer science
and technology from Jishou University, Jishou, China, in
2022. He is currently pursuing the M.S. degree at the
College of Information Science and Engineering, Hunan
Normal University, Changsha, China. His research focuses
on resource scheduling and price allocation in mobile edge
computing.
11
Keqin Li is a SUNY Distinguished Professor of Computer
Science with the State University of New York. He is
also a National Distinguished Professor with Hunan Uni-
versity, China. His current research interests include cloud
computing, fog computing and mobile edge computing,
energy-efficient computing and communication, embed-
ded systems and cyber-physical systems, heterogeneous
computing systems, big data computing, high-performance
computing, CPU-GPU hybrid and cooperative computing,
computer architectures and systems, computer networking,
machine learning, intelligent and soft computing. He has
authored or co-authored over 850 journal articles, book
chapters, and refereed conference papers, and has received
several best paper awards. He holds over 70 patents an-
nounced or authorized by the Chinese National Intellectual
Property Administration. He is among the world’s top 5
most influential scientists in parallel and distributed com-
puting in terms of both single-year impact and career-long
impact based on a composite indicator of Scopus citation
database. He has chaired many international conferences.
He is currently an associate editor of the ACM Comput-
ing Surveys and the CCF Transactions on High Performance
Computing. He has served on the editorial boards of the
IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the IEEE Transactions on Cloud
Computing, the IEEE Transactions on Services Computing, and
the IEEE Transactions on Sustainable Computing. He is an
IEEE Fellow and an AAIA Fellow. He is also a Member
of Academia Europaea (Academician of the Academy of
Europe).

	Lyapunov-guided deep reinforcement learning for delay-aware online task offloading in MEC systems
	Introduction
	Related Work
	System Model and Problem Formulation
	Task Model
	Computation and Energy Models
	Local Computing
	Task Offloading
	MEC Server Processing

	Queue Framework Evolution Model
	Problem Formulation

	Problem Conversion and Algorithm Exploit
	Problem Conversion via Lyapunov Optimization
	DDPG-Based Algorithm Design
	Markov Decision Process of P2
	DDPG-Based Algorithm

	LyD2OA Computational Complexity Analysis

	Results Analysis for Ly2DOA
	Experiment and Parameter Settings
	Performance Evaluation and Comparative Schemes
	Convergence Performance and Energy-Delay Tradeoff
	Effect of the queue threshold ρ
	Effect of the Task Arrival Rate λ
	Comparison of Different Offloading Schemes

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

