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a b s t r a c t 

Non-negative Tensor Factorization (NTF) models are effective and efficient in extracting useful knowl- 

edge from various types of probabilistic distribution with multi-way information. Current NTF models 

are mostly designed for problems in computer vision which involve the whole Matricized Tensor Times 

Khatri − Rao Product (MTTKRP). Meanwhile, a Sparse NTF (SNTF) proposed to solve the problem of sparse 

Tensor Factorization (TF) can result in large-scale intermediate data. A Single-thread-based SNTF (SSNTF) 

model is proposed to solve the problem of non-linear computing and memory overhead caused by large- 

scale intermediate data. However, the SSNTF is not a generalized model. Furthermore, the above methods 

cannot describe the stream-like data from industrial applications in mainstream processors, e.g, Graphics 

Processing Unit (GPU) and multi-GPU in an online way. To address these two issues, a Generalized SS- 

NTF (GSSNTF) is proposed, which extends the works of SSNTF to the Euclidean distance, KullbackLeibler 

(KL)-divergence, and ItakuraSaito (IS)-divergence. The GSSNTF only involves the feature elements instead 

of the entire factor matrices during its update process, which can avoid the formation of large-scale in- 

termediate matrices with convergence and accuracy promises. Furthermore, GSSNTF can merge the new 

data into the state-of-the-art built tree dataset for sparse tensor, and then online learning has the promise 

of the correct data format. At last, a model of Compute Unified Device Architecture (CUDA) parallelizing 

GSSNTF (CUGSSNTF) is proposed on GPU and Multi-GPU (MCUGSSNTF). Thus, CUGSSNTF has linear com- 

puting complexity and space requirement, and linear communication overhead on multi-GPU. CUGSSNTF 

and MCUGSSNTF are implemented on 8 P100 GPUs in this work, and the experimental results from real- 

world industrial data sets indicate the linear scalability and 40X speedup performances of CUGSSNTF than 

the state-of-the-art parallelized approachs. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the rapid development of the Internet and the variety of

information collection approach, i.e., spatio-temporal, optic, ther-

mology, vibration, and voice, multi-way data has gradually become

a major representation form for information, and arises in many

applications, e.g., dimension reduction, clustering, recommender

systems, social network, and modeling on wireless communication

networks, smart city and Internet of Things (IoT), etc, [1] . These
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ype of data is represented by tensor whose number of dimensions

s greater than three. Tensor preserves the interactive information

or each dimension. The more the amount of information a system

as, the higher the dimension a tensor has; however, in addition

o having high dimensions, the data is highly sparse, and the rea-

on for data missing is that the systems are time-varying and it’s

ard to obtain the full information in real-time [2] . We observe

hat the scenes that a system misses information are common

n reality, e.g., information networks, recommender systems, and

uality of Service (QoS), etc. In medical image processing commu-

ities, to obtain a more clear Magnetic Resonance Imaging (MRI)

f a human organ, the doctor should increase the radiation dose;

owever, over-radiation will damage the health. A solution is that

he researcher can recover a clear MRI image from the obscured

nd sparse one, which is obtained by the low radiation dose MRI
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3] . An estimation way for the missing data is via TF, which takes

dvantage of the low-rank structure of the data [4] . Due to the

igh efficiency and low computing complexity, Canonical Polyadic

ecomposition (CPD) becomes the most popular factorization

ethod [5] . Because of the low-rank and non-negativity essence of

any data, NTF has become one of the most popular approaches in

PD communities [6,7] . Meanwhile, something should be observed

hat the MTTKPP is deduced from gradient descent (GD) which

nvolves in the manipulation of unfolding tensor with Khatri-Rao

roduct of N − 1 matrices [8–12] . Due to explosive increased space

nd computational overhead, MTTKPP is a computational bottle-

eck of CPD [8–12] . 

Due to the powerful processing ability for fine-grained and

tream-like tasks, GPU has become a popular processor in indus-

rial application, and in cloud platforms, i.e., Flink and Spark, etc,

PU gradually plays a role as a core processor [13] . However,

NTF suffers the following computing problems on the GPU: (1)

he sparsity will add extra computing burdens. The update pro-

ess for each feature vector of Dense NTF (DNTF), which is de-

igned to computer vision and the image and video present a

ense style [14,15] , shares the same Hessian matrix, which only

eeds a Khatri-Rao product of N − 1 matrices. However, the up-

ate process for each feature vector of SNTF don’t share the same

essian matrix, which only need N Khatri-Rao product of N − 1

atrices; (2) Due to memory limitation, GPU cannot process fre-

uent large-scale matrices manipulation and store non-linear in-

reased intermediate matrices without tuning the update approach

f DNTF; (3) The intermediate Hessian matrices need square com-

unication costs. SSNTF [16] is proposed to solve these prob-

ems which are caused by large-scale intermediate matrices based

n Euclidean distance. However, it is not applied to the general-

zed distance, e.g., KL-divergence and IS-divergence, etc. Thus, it

s also not a generalized model. What’s more, the above methods

annot describe the stream-like data from industrial applications

n mainstream processors, e.g, GPU and multi-GPU in an online

ay. 

The GSSNTF is proposed to perfect the theoretic flaw on large-

cale industrial data. The matrix manipulations will be transformed

nto the needed multiplication and summation operations of fea-

ure vector elements. At the same time, our method benefits from

ts more generalized model and its online processing. The main

ontributions of our study are as follows: 

1. Algorithm analysis . The GSSNTF model is derived theoreti-

cally, which obeys various common probabilistic styles, e.g.,

Gaussian, Poisson, and Exponential distribution styles, and

fine-grained parallelization inherence. And GSSNTF repre-

sents a more generalized update rule for factor matrices.

(see Sections 4.1 and 4.2 ). 

2. CUDA Parallelization and Multi-GPU . CUGSSNTF harnesses 

local memory more instead of increasing the global mem-

ory overhead of the GPU, and CUGSSNTF has linear scalabil-

ity of computation and space overhead (see Section 4.3.1 ).

MCUGSSNTF adopts a multi-GPU model with mode scalabil-

ity for tensor data. GSSNTF and CUGSSNTF have linear time

and space complexities. (see Section 4.3.2 ). 

3. Online Learning . The stream-like computing style of the

single-thread-based model gives the GSSNTF an online

learning ability. Online learning and high efficient CUDA

parallelization are the two byproducts of the single-thread-

based model. (see Section 4.4 ). 

The rest of this paper is organized as follows. Section 2 presents

elated works. Section 3 lays out the problem formulation and

PU computing. Section 4 introduces the GSSNTF model, CUGSS-

TF, MCUGSSNTF and online learning. The experimental results
nd discussion on future works are presented on Sections 5 and 6 ,

espectively. 

. Related work 

Matrix can represent two-way and single modal data [17] , i.e.,

mage, text, and video, etc. However, due to abundant informa-

ion collection equipment, in the industrial era, the source of mod-

rn data comes from heterogeneous and multi-modal informa-

ion. Thus, a real dataset from industrial applications may com-

rise of audio, video, and image, etc, and matrix cannot be com-

etent to the representation ability. However, tensor can repre-

ent those data types [18,19] . Matrix Factorization (MF) and TF

an extract the latent information for matrix and tensor respec-

ively, and then, the latent information can approximate the orig-

nal matrix and tensor. Meanwhile, non-negative MF (NMF) and

TF can keep the non-negative and inherent latent information for

atrix and tensor respectively. NTF has been drawn wide atten-

ion, and NTF is a generalized factor analysis method for multi-

ay data, and it is an extension of NMF, which can only repre-

ent 2-way matrix data [20,21] . NMF is an useful tool for low-

ank representation, which can be used as K-means based image

lustering [22] , subspace based clustering [23] [24] , QoS [25,26] ,

anifold space based clustering [27] , and unmixing for hyperspec-

ral image [28] . Clustering is an unsupervised method in machine

earning communities, which can find the several inherent sim-

larity features; however, when the data increase rapidly, direct

lustering will face the curse of dimensionality [29] and apply-

ng cluster method such as K-means on the projected low-rank

pace can obtain the same clustering accuracy [22] . NMF can mine

he non-negativity and low-rank features of big data, which is a

reparation step for K-means methods [22] . Subspace clustering

an search the clusters in different dimension [23] , and NMF for

ow-rank representation plays a great role in subspace segmen-

ation [24] . When high-dimension data and feature have intrinsic

anifold structure, NMF can cooperate with the manifold informa-

ion with graph regularization [30] . Furthermore, NMF can unmix

he blended information of the satellite obtained a hyperspectral

mage, which can take advantage of low-rank structure [31] . How-

ver, the NMF only consider 2-dimension information and cannot

use the extra information, e.g., Spatio-temporal dynamics informa-

ion, etc [32] . NTF can make up the disadvantage of NMF by intro-

ucing low-rank feature matrices and tensor algebra manipulation

33,34] . 

It can be observed that research on NTF is mainly reflected

n small and dense data sets in the field of computer vision, i.e.,

14,15] . Thus, the formation of the update rules can follow the

atrices operations regardless of memory limitation. However, in

eal-world industrial applications, in addition to having high di-

ensions, the data is highly sparse, and direct matrix manipula-

ions will result in redundant time and space overhead. For ex-

mple, the prior works on SNTF of Euclidean distance [15] , the

onstruction of the intermediate Gram matrices during their pro-

ess, which cannot be shared by each row feature vector of a fac-

or matrix in SNTF, will result in increased time and space over-

ead. Thus, space and computational time overheads will increase

harply. Meanwhile, there are three research topics on accelerating

ensor factorization: (1) Mathematical optimization for basic opti-

ization methods [33] ; (2) Compressive data structure [8–10] ; (3)

arallel and distributed algorithm designing for basic optimization

ethods [11,12] . 

The formation of the update rules for the KL- and IS-divergence

nvolves the formation of the whole approximation tensor, and the

lement is redundant, the position of which is the corresponding

ero elements of the target sparse tensor. Furthermore, the gener-

lized NTF model can extract the low-rank inherence of a dataset;
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Table 1 

Full name and acronym. 

Full name Acronym 

Compressed Sparse Fiber CSF 

Stochastic Gradient Descent SGD 

Alternative Least Square ALS 

Cyclic Coordinate Descend CCD 

KullbackLeibler divergence KL-divergence 

Itakura-Saito divergence IS-divergence 

Matrix Factorization MF 

Non-negative Matrix Factorization NMF 

Tensor Factorization TF 

Non-negative Tensor Factorization NTF 

Dense Non-negative Tensor Factorization DNTF 

Sparse Non-negative Tensor Factorization SNTF 

Single-thread-based SNTF SSNTF 

Generalized SSNTF GSSNTF 

Compute Unified Device Architecture CUDA 

Graphics Processing Unit GPU 

CUDA parallelizing GSSNTF CUGSSNTF 

Multi-GPU CUGSSNTF MCUGSSNTF 
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however, when the generalized NTF faces the sparse datasets, the

following 3 real application problems should be solved: (1) How to

distinguish the unevenly distributed non-zero and zero values; (2)

How to reduce the computing and memory overheads for the dis-

tinguishing mechanism; (3) How to keep the parallelism. Kim et al.

[35] and Choi et al. [36] introduced a weight tensor strategy. The

strategy used the weight tensor to distinguish the zero and non-

zero values in a sparse tensor; however, the memory overhead of

the weight tensor may overwhelm the amount of non-zero values

and the unevenly distributed non-zero values limit the usage of

the weight tensor. 

The modern computer has the linear access model. Thus, a

tensor with 3 or more ways needs vectorization on computer

memory hardware. Furthermore, sparse tensor from industrial

applications has an uneven distribution of non-zero value. Thus,

high efficient access and vectorization should be considered for

sparse tensor data on computer hardware. Chen et al. [37] . pro-

posed a probabilistic distribution based combinational approach,

which can combine several data structures for compressive sparse

matrix by probabilistic statistical style. This combination model

cannot solve the problem of uneven distribution for non-zero

elements of a sparse tensor and sparse tensor transformation.

Smith et al. [8] . proposed a Compressed Sparse Fiber (CSF)

structure for compressive preservation of a sparse tensor, and

Li et al. [38] . designed a efficient sparse tensor transformation

method. 

Alternative Least Square (ALS) and Cyclic Coordinate Descend

(CCD) are two common optimization algorithms for unconstraint

minimization optimization. ALS needs to consider the relationship

between elements within a feature vector. Due to the O ( R 3 ) cubic

computational complexity for Hessian matrix inverse operations,

ALS is unscalable with the rank R . CCD neglects the relations be-

tween elements within a feature vector. Then, CCD has O ( R ) com-

plexity. However, CCD has a slow convergence rate [11] . Stochas-

tic Gradient Descent (SGD) is a simple optimization method. SGD

can transform the whole needed parameters of the GD into the

part and randomized choice [39–41] . However, the over-writing

problems of SGD on MF and TF make it hard to parallelize [39–

41] . Hogwild! is a parallelization method for SGD [40] , in which

multi-threads select the non-overwriting points with convergence

proof, and Hogwild! converges fast. However, the Hogwild! cannot

make a promise of accuracy. Shin et al. [11] proposed a scalable

algorithm for tensor factorization, which combines with the high

convergence rate of ALS and fine-grained parallelization of CCD,

which is to approximate the original Hessian matrix by a diag-

onal blocked matrix and the inverse operations save more cost.

However, this method needs the inverse operations of the

block matrix which cannot make a promise of linear scalabil-

ity of the communication and computational overheads with

the rank R . Chakaravarthy et al. [10] proposed distributed a

distributed Tucker Decomposition method; however, the gen-

eralized styles are not involved. Since the entire factor ma-

trix is involved in each iteration, these methods are not scal-

able for memory requirements. Smith et al. proposed medium-

grained [8,9] and fine-grained parallelization methods [42] , which 

need to consider the entire factor and Hessian matrices and

the computational overhead of hyper-graph partitioning is expen-

sive. Some works are proposed to accelerate 3-way DNTF for im-

age processing [43] . However, for multi-way SNTF, there are few

studies to effectively reduce the computation and memory over-

head. GSSNTF is a fine-grained algorithm for generalized NTF.

CUGSSNTF takes advantage of the powerful CUDA parallelization;

meanwhile, the compressive method for sparse tensor data be

used. 

a

. Problem formulation 

Some related notations and definitions of NTF are presented in

ections 3.1 and 3.2 , respectively. Then, the preliminary of NTF is

llustrated in Section 3.3 . Computing theory on GPU is discussed in

ection 3.4 . 

.1. Related notations 

To make the notations more clear, the full names and acronyms

re presented in Table 1 and the main notations are presented in

able 2 . 

.2. Definition 

efinition 1 (Tensor Approximation) . Fig. 1 shows that a N -order

ensor X ∈ R 

I 1 ×, ... , ×I N can be approximated by ̂ X ∈ R 

I 1 ×, ... , ×I N ,

s well as a N -order residual tensor E ∈ R 

I 1 ×, ... , ×I N . The low-rank

pproximation problem is defined as 

 = 

̂ X + E, (1)

here ̂ X is denoted by a low-rank tensor. 

efinition 2 (Tensor Factorization) . The low-rank tensor ̂ X can be

btained via CP decomposition and the decomposition is repre-

ented as 

arg min 

 

(1) 
, ... , A (N) 

d = D( X ‖ ̂

 X ) , (2)

here ̂ X = 

∑ R 
r=1 a 

(1) 
r ◦ · · · ◦ a (N) 

r , and the n th mode matrix unfold-

ng format is denoted by ̂ X 

(n ) = A 

(n ) ( A 

(N) 
� · · · � A 

(n +1) 
� A 

(n −1) 
�

· · � A 

(1) ) T ∈ R 

I n ×I 1 ···I n −1 ·I n +1 ···I N 
+ , and 

̂ x (n ) 
i n , j 

= 

∑ R 
r=1 a (n ) 

i n ,r 
· a (1) 

i 1 ,r 
���

 

(n −1) 
i n −1 ,r 

· a (n +1) 
i n +1 ,r 

��� a (N) 
i N ,r 

. X (n ) contains the tensor element x i n , j at

he position in the unfolding matrix (The detail for tensor unfold-

ng is presented in Fig. 2 ) of X and the row index i n and column

ndex j of the X is given by j = 1 + 

∑ N 
k =1 ,n � = k [(i k − 1) 

∏ k −1 
m =1 ,m � = n I m 

] .

ore details about TF are shown in Fig. 3 . 

efinition 3 (Sparse Tensor Approximation) . Given N entity sets

 I 1 , . . . , I N } , X is a tensor whose element x i 1 , ... ,i N describes certain

elationship between N entities { i 1 ≤ I 1 , . . . , i N ≤ I N } . Let � and �

e the known and unknown elements sets, where | �| � | �|. The

roblem of sparse tensor approximation is to obtain 

̂ X , and 

̂ X can

pproximate the unknown elements in X . 
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Table 2 

Table of symbols. 

Symbol Definition 

X input tensor ( ∈ R I 1 ×, ... , ×I N + , I n , n ∈ {1 , . . . , N }) ̂ X the approximation tensor ( ∈ R I 1 ×, ... , ×I N + , I n , n ∈ {1 , . . . , N }) 

X (n ) the n th mode tensor unfolding matrix format R 
I n ×I 1 ···I n −1 ·I n +1 ···I N 
+ ) ̂ X 

(n ) 
the n th mode tensor unfolding matrix format R 

I n ×I 1 ···I n −1 ·I n +1 ···I N 
+ ) for approximation tensor 

A factor matrix ( ∈ R I n ×R ) 

A (k ) k th factor matrix 

a vector 

T matrix transform operation 

� Khatri-Rao product where C = A � B ∈ R I 1 I 2 ×J , c (i 1 −1) I 2 + i 2 , j = a i 1 , j b i 2 , j 
′′ ◦′′ vectors outer product 
′′ · ′′ element-wise (Hadamard) product 

◦
/

(−, / ) element-wise multiplication/element-wise division 

a : ,i n the i n th column of a matrix A 

a i 1 , : the i 1 th row of a matrix A 

a i the i th entry of a vector a 

� the set of indices of observable entries in a sparse tensor X . 

�(n ) 
i n 

the entry indexes subset of n th mode. 

Fig. 1. Tensor approximation with 3-way tensor 

Fig. 2. Tensor unfolding. 

D  

r  

b

A

w  

T

·  

t  

A

3

 

a  

b  
efinition 4 (Sparse Non-negative Tensor Factorization) . If the low

ank tensor has non-negative constraint, the tensor ̂ X is obtained

y 

arg min 

 

(1) 
, ... , A (N) 

d = D 

(
P �( X ) ‖P �( ̂  X ) 

)
, 

s.t. A 

(1) 
, . . . , A 

(N) ≥ 0 , 

here P � is the projection operator on the index set �.

he non-negative ̂ X can be formalized via ̂ X = 

∑ R 
r=1 a 

(1) 
r ◦
· · ◦ a (N) 
r where R � I 1 , . . . , I N with N non-negative factor ma-

rices limitation, A 

(1) = [ a (1) 
1 

, . . . , a (1) 
r , . . . , a (1) 

R 
] ∈ R 

I 1 ×R 
+ , . . . ,

 

(N) = [ a (N) 
1 

, . . . , a (N) 
r , . . . , a (N) 

R 
] ∈ R 

I N ×R 
+ . 

.3. Preliminary 

A probabilistic interpretation of NTF is to take x i 1 , ... ,i N as

n observation from a distribution view. In the following, we

riefly review the likelihood maximization problems of the three
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Fig. 3. Low rank tensor factorization with 3 modes tensor. 
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most popular probabilistic distribution, i.e., Gaussian, Poisson, and

Exponential. When we take x i 1 , ... ,i N ∼ Gaussian ( ̂  x i 1 , ... ,i N , σ
2 ) , x i 1 , ... ,i N 

~ Poisson ( ̂  x i 1 , ... ,i N ) , and x i 1 , ... ,i N ∼ Exponential( ̂  x i 1 , ... ,i N ) maximizing

the likelihood of observing X and { A 

(1) 
, . . . , A 

(N) } [44–46] , and

the three likelihood maximum problems become the followings ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

arg min 

A (1) 
, ... , A (N) 

D Eu ( X ‖ ̂

 X ) = ‖ X − ̂ X ‖ 

2 ;

arg min 

A (1) 
, ... , A (N) 

D KL ( X ‖ ̂

 X ) = 

∑ 

(̂ X − X . log ( ̂  X ) 
)
;

arg min 

A (1) 
, ... , A (N) 

D IS ( X ‖ ̂

 X ) = 

∑ 

(
X ̂ X + log ( ̂  X ) 

)
, 

(3)

respectively, with non-negativity constraints A 

(1) 
, . . . , A 

(N) ≥ 0.

The D Eu , D KL , and D IS are the Euclidean distance, KL-divergence,

and IS-divergence, respectively. The low-rank tensor ̂ X comprises

of the Khatri–Rao product of N low-rank factor matrices. Thus, the

optimization problems in (3) are not convex for the N low-rank

factor matrices. If a factor matrix is treated as a list of variables,

and the others are fixed, the original optimization problems in

(3) can be transformed into a convex optimization. 

The update rules are given as follows ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

(
X 

(n ) S (n ) 
)

i n ,r (
A 

(n ) S (n ) ,T S (n ) 
)

i n ,r 

;

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

(
X 

(n ) 

A 

(n ) S (n ) ,T 
S (n ) 

)
i n ,r (

E 

(n ) S (n ) 
)

i n ,r 

;

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

(
X 

(n ) 

A 

(n ) S (n ) ,T 
S (n ) 

)
i n ,r (

E 

(n ) S (n ) 
)

i n ,r 

, 

(4)

respectively, where E 

(n ) ∈ R 

I n ×I 1 ···I n −1 ·I n +1 ···I N 
+ , E (n ) 

i n , j 
= 1 , and 

̂ X 

(n ) =
A 

(n ) ( A 

(N) 
� · · · � A 

(n +1) 
� A 

(n −1) 
� · · · � A 

(1) ) T , and S (n ) = A 

(N) 
�

· · · � A 

(n +1) 
� A 

(n −1) 
� · · · � A 

(1) . { E 

(n ) 
, X 

(n ) 
, ̂  X 

(n ) } are the n th mode

matricized tensor and S (n ) is the n th Khatri–Rao product.

{ E 

(n ) S (n ) 
, X 

(n ) S (n ) 
, ̂  X 

(n ) 
S (n ) } are the MTTKRP. 

Fig. 4 illustrates the computational process of MTTKPP. A small

example is shown to make more illustrations. We take 

X 

(1) = 

⎡ ⎢ ⎢ ⎣ 

3 2 4 

3 5 3 

2 1 4 

3 2 3 

∣∣∣
3 4 5 

2 2 1 

2 1 2 

4 5 3 

⎤ ⎥ ⎥ ⎦ 

, A 

(2) = 

⎡ ⎣ 

1 1 

2 2 

3 3 

⎤ ⎦ , 

A 

(3) = 

[
1 1 

2 2 

]
. 
The Khatri–Rao product matrix and MTTKRP are 

 

(3) 
� A 

(2) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 

2 2 

3 3 

2 2 

4 4 

6 6 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, X 

(1) ( A 

(3) 
� A 

(2) ) = 

⎡ ⎢ ⎢ ⎣ 

71 71 

40 40 

36 36 

80 80 

⎤ ⎥ ⎥ ⎦ 

, 

espectively. 

The difference between MF and TF is presented in Fig. 5 . As

hown in Fig. 5 , MF can be approximated by two low-rank matri-

es manipulation, and 3-way tensor can be approximated by three

ow-rank matrices manipulations. Meanwhile, TF involves the Kha-

ri - Rao product of N − 1 factor matrices and is equivalent to MF

hen N = 2. We observe that the compression effect of TF about
( 
∑ R 

r=1 I r ) R ∏ R 
r=1 I r 

is much better than MF about 
( 
∑ 2 

r=1 I r ) R ∏ 2 
r=1 I r 

. Thus, due to

ore related parameters for TF, the update rule and online learn-

ng for incremental data between MF and TF have a huge distinc-

ion to train the factor matrices. Meanwhile, after introducing the

ntermediate matrix of the Khatri-Rao product results S (n ) 
, we ob-

erve that the update rules in (4) present a little similarity in a

orm with NMF; however, there are several major differences as

ollowing: 

1. NMF only involves two factor matrices and matrix product;

however, NTF with N modes has Khatri–Rao product for N −
1 factor matrices and matrix product; 

2. NTF needs more time and space complexities to building the

intermediate matrix S (n ) than NMF; 

3. NTF can represent multi-way data; however, NMF can only

represent two-way data. 

The difference between sparse TF and dense TF is that the non-

ero data determine the involved feature elements. Thus, the up-

ate rule of each feature vector within a feature matrix A 

( n ) of

ense TF shares the same Hession matrix. However, the update

ule of each feature vector within a feature matrix A 

( n ) of sparse TF

annot share the same Hession matrix. The difference is illustrated

n Fig. 6 . Based on the difference between dense TF and sparse TF,

he update rule of SNTF is introduced. The update rules in (4) only

nvolve dense matrices operations; however, in real industrial ap-

lications, the tensor data is very sparse. Thus, the update rules in

4) cannot be applied in real low-rank representation for industrial

ata. Thus, the update rules in (4) cannot made available for gen-

ralized SNTF without appropriate adjustments. Consequently, the

pdate rules in (4) should be revised. The state-of-the-art solvents

or SNTF with appropriate adjustments of DNTF are presented as

ollows: 

1. A solvent is proposed by for image processing and com-

puter vision [43–45] . The time complexity of each interme-

diate matrix S (n ) is O (| �| (N − 1) R ) , and the space require-
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Fig. 4. Illustration of matricized tensor times Khatri–Rao Poduct (MTTKRP). 

Fig. 5. Illustration of the difference between matrix factorization and tensor factorization. 
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ment is O ( 
∑ N 

n =1 R 
∏ 

k � = n I k ) . For these SNTF models, the time

complexity of each intermediate matrix ̂ X 

(n ) = A 

(n ) S (n ) ,T is

O (| �| NR ), and the space requirement is O ( 
∏ N 

n =1 I n ) ; the

time complexity of each intermediate matrix P 

(n ) = { X 

(n ) /

A 

(n ) S (n ) ,T 
, X 

(n ) 
/ ( A 

(n ) S (n ) ,T ) 2 , 1 / A 

(n ) S (n ) ,T } is O (| �|); the time

complexity of MTTKRP for each intermediate matrix Q 

(n ) =
{ X 

(n ) S (n ) 
, ̂  X 

(n ) 
S (n ) 

, P 

(n ) S (n ) } is O (| �| R ). Thus, the time com-

plexity and space requirement for D Eu , D KL , and D IS to a full

SNTF are intolerable. 

2. The other solvent [47] for X 

(n ) S (n ) ,T S (n ) is proposed for

(3) to the update rules in (4) . The update rules of DNTF

refer to all row indexes of A 

(n ) 
, and G 

(n ) 
i n 

= S (n ) ,T S (n ) is

shared by { a (n ) 
i n , : 

| i n ∈ {1 , . . . , I n }}. However, the composite

of S (n ) and S (n ) ,T S (n ) in update rules (4) cannot follow the

sparsity pattern of X 

(n ) . Thus, the update rules (4) should

be adjusted. The time complexity to building each Gram
 m
matrix G 

(n ) 
i n 

= S (n ) ,T S (n ) is O (| �(n ) 
i n 

| R 2 ) , and O (| �| NR 2 ) for

a full SNTF iteration. { (a (n ) 
i n , : 

G 

(n ) 
i n 

) | i n ∈ {1 , . . . , I n }} need

O ( I n R 
2 ). The time complexity of element division and mul-

tiplication operations are O (2 I n R ), and the space require-

ment for intermediate matrices of nominator and denomina-

tor is O (2 I n R 
2 ). The time complexity and space requirement

of a full SNTF are linear with O ( R 2 ), which are not scalable

linearly. 

SSNTF [16] can solve the problem of non-linear time and space

verhead that due to large-scale intermediate data. However, SS-

TF concentrates mainly on the work of Euclidean distance, and it

s not applied to the KL-divergence and IS-divergence. SSNTF is not

 generalized solvent for that problem. Thus, a generalized single-

hread-based model GSSNTF is proposed to solve the GPU comput-

ng obstacles on large-scale industrial data. At the same time, our

ethod benefits from online processing. 
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Fig. 6. Illustration of the Difference between the sparse TF and dense TF 
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3.4. GPU based computing 

GPU is a highly efficient processor for data-intensive tasks, e.g.,

matrix operations, image processing, and graph mining, etc. For

large-scale sparse tensor computing, there are the following supe-

riorities: (1) Hardware: inside a GPU, each Stream Multi-processor

(SM) which concludes several Stream Processor (SP) can access the

global memory via highway bus. The faster the access speed on

global memory a GPU has, the faster running speed the GPU has;

(2) Programming: kernels , thread , and thread block are the basic

terms in CUDA programming. kernels are functions that are exe-

cuted on GPU. A kernel function is executed by a batch of threads.

These threads are organized into blocks of threads to form grids,

and the blocks are mapped to SMs. In a thread block, 32 threads

are organized into a group to form a warp to execute the same

instructions on the processor synchronously. Furthermore, CUDA

provides abundant libraries, which help the users to perform Ma-

trix Operations, Fast Fourier Transform (FFT), etc, fluently. Mean-

while, in CUDA programming communities, many pioneers have

optimized the common approaches, e.g., vector product, Sparse

Matrix and Vector Multiplication (SPMV), etc; (3) Communication

and load balance: when a GPU cannot provide enough space for

data, a multi-GPU system is a natural choice. The most important

thing for sparse tensor computing is how to divide parallelization

tasks in a load-balanced way, and map those tasks to threads and

thread blocks in kernel in a fine-grained way. Multi-GPU system

can simultaneously perform data transmission between the devices

and hosts , and it provides synchronization instructions. 

4. A generalized single-thread-based model, CUGSSNTF and 

MCUGSSNTF, and online model 

The GSSNTF is presented in this section, and the needed ele-

ments follow the sparsity model of sparse tensor X . The update

rules of GSSNTF model with L 2 norm regularization are shown in

Sections 4.1 . Algorithm is analysed in Section 4.2 . In Section 4.3 ,

CUGSSNTF and MCUGSSNTF are presented. At last, in Section 4.4 ,

the online learning model is illustrated, which includes an online

learning algorithm and data merging. 
.1. Generalized single-thread-based model 

The probabilistic distribution priors, i.e,. Gaussian, Poisson, and

xponential, are common assumptions in machine learning com-

unities. We present the update rules based these three proba-

ilistic distribution without L 2 norm regularization in Section 4.1.1 ,

he L 2 norm regularized model in Section 4.1.2 . Meanwhile, we

epresent the generalized update rules in Section 4.1.3 . 

.1.1. Without L 2 norm regularization 

The distance measurement tools, i.e., D Eu , D KL and D IS , for

he original X and the approximation 

̂ X with non-negative con-

traints, are given as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

arg min 

A (n ) 
,n ∈{ 1 , ... ,N} 

d Eu = ‖P �( X ) − P �( ̂  X ) ‖ 

2 ;

arg min 

A (n ) 
,n ∈{ 1 , ... ,N} 

d KL = 

∑ 

�

(
P �( ̂  X ) − P �( X ) . log 

(
P �( ̂  X ) 

))
;

arg min 

A (n ) 
,n ∈{ 1 , ... ,N} 

d IS = 

∑ 

�

(
P �( X ) 
P �( ̂  X ) + log 

(
P �( ̂  X ) 

))
, 

(5)

here A 

(1) 
, A 

(2) 
, . . . , A 

(N) ≥ 0 . Supposing that A 

(n ) is fixed,

ll entries in � and their approximation are considered

n (5) . This problem can be split into multiple indepen-

ent parts, i.e., d = 

∑ I n 
i n =1 

d (n ) 
i n 

, I n ∈ { I 1 , I 2 , . . . , I N }, where

(d (n ) 
Eu 

) i n = 

∑ 

(i n , j) ∈ �(n ) 
i n 

(x (n ) 
i n , j 

−̂ x (n ) 
i n , j 

) 
2 
, (d (n ) 

KL 
) i n = 

∑ 

(i n , j) ∈ �(n ) 
i n 

( ̂  x (n ) 
i n , j 

−

 

(n ) 
i n , j 

log ( ̂  x (n ) 
i n , j 

)) , and (d (n ) 
IS 

) i n = 

∑ 

(i n , j) ∈ �(n ) 
i n 

( 
x 
(n ) 
i n , j ̂ x 
(n ) 
i n , j 

+ log ( ̂  x (n ) 
i n , j 

)) . The

bove decomposition analysis for the optimization problems

5) brings out the following truths: (1) the alternative opti-

ization method which is that fixes N − 1 factor matrices and

ptimizes a factor matrix can be decomposed into I n parallel

arts; (2) non-negative constrained optimization problems should

e solved by determining the training step of gradient descent to

aintain the monotonically decreasing and non-negative nature of

he factor matrices. For d (n ) 
i n 

, its form of gradient descent is given
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s  
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r  

t  

c  

m  

a  

S
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G  
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c

a  

w⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
S⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w  

a  

−  

d⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
s 

 

(n ) 
i n ,r 

← a (n ) 
i n ,r 

+ η(n ) 
i n ,r 

( 

−
∂d (n ) 

i n 

∂a (n ) 
i n ,r 

) 

, (6)

here 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂(d (n ) 
Eu 

) i n 

∂a (n ) 
i n ,r 

= 

∑ 

(i n , j) ∈ �(n ) 
i n 

(
( ̂  x (n ) 

i n , j 
− x (n ) 

i n , j 
) S (n ) 

i n , j,r 

)
;

∂(d (n ) 
Eu 

) i n 

∂a (n ) 
i n ,r 

= 

∑ 

(i n , j) ∈ �(n ) 
i n 

( ( 

1 −
x (n ) 

i n , j ̂ x (n ) 
i n , j 

) 

S (n ) 
i n , j,r 

) 

;

∂(d (n ) 
IS 

) i n 

∂a (n ) 
i n ,r 

= 

∑ 

(i n , j) ∈ �(n ) 
i n 

( ( 

1 ̂ x (n ) 
i n , j 

−
x (n ) 

i n , j 

( ̂  x (n ) 
i n , j 

) 2 

) 

S (n ) 
i n , j,r 

) 

, 

(7) 

nd 

 

(n ) 
i n , j,r 

= 

∏ 

k � = n,k ∈{ 1 , 2 , ... ,N} 
a (k ) 

i k ,r 
, (8) 

 

 

(n ) 
i n , j 

and x (n ) 
i n , j 

can be obtained from Definition 2 . The three expres-

ions that appear in all the formulas below are also obtained in

his way. 

Set 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(η(n ) 
Eu 

) i n ,r = 

a (n ) 
i n ,r ∑ 

(i n , j) ∈ �(n ) 
i n 

̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

;

(η(n ) 
KL 

) i n ,r = 

a (n ) 
i n ,r ∑ 

(i n , j) ∈ �(n ) 
i n 

S (n ) 
i n , j,r 

;

(η(n ) 
IS 

) i n ,r = 

a (n ) 
i n ,r ∑ 

(i n , j) ∈ �(n ) 
i n 

1 ̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

, 

(9) 

here { A 

(1) 
, . . . , A 

(N) } is initialized non-negatively. Since the neg-

tive item {−̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

, −S (n ) 
i n , j,r 

, − 1 ̂ x 
(n ) 
i n , j 

S (n ) 
i n , j,r 

} in − ∂d 
(n ) 
i n 

∂a 
(n ) 
i n ,r 

of update

ules (12) can be eliminated, the update rules for optimization

roblems (5) are reformated into 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

x (n ) 
i n , j 

S (n ) 
i n , j,r ∑ 

(i n , j) ∈ �(n ) 
i n 

̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

;

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

x (n ) 
i n , j ̂ x (n ) 
i n , j 

S (n ) 
i n , j,r ∑ 

(i n , j) ∈ �(n ) 
i n 

S (n ) 
i n , j,r 

;

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

x (n ) 
i n , j 

( ̂  x (n ) 
i n , j 

) 2 
S (n ) 

i n , j,r ∑ 

(i n , j) ∈ �(n ) 
i n 

1 ̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

, 

(10) 

espectively. A single-thread-based model for GSSNTF can be ob-

ained by the strategy with auto modified learning step, which

an keep non-negativity with non-negative and original N factor

atrices. L 2 norm regularization can make a more smoothed and

ccurate result and can avoid the over-fitting problem. Thus, in

ection 4.1.2 , the L 2 norm regularization method is presented. 

.1.2. L 2 Norm regularization 

With L 2 norm regularization, the optimization problem for

aussian, Poisson, and Exponential distribution styles can be writ-
en as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

arg min 

A (n ) 
,n ∈{ 1 , ... ,N} 

d Eu = 

∑ 

(i n , j) ∈ �(n ) 
i n 

(x i n , j −̂ x i n , j ) 
2 

+ 

∑ N 

n =1 
(λ

A (n ) 

∑ R 

r=1 
a 2 

i n ,r 
) ;

arg min 

A (n ) 
,n ∈{ 1 , ... ,N} 

d KL = 

∑ 

(i n , j) ∈ �(n ) 
i n 

(̂ x i, j − x i, j log ( ̂  x i, j ) 
)

+ 

∑ N 

n =1 
(λ

A (n ) 

∑ R 

r=1 
a 2 

i n ,r 
) ;

arg min 

A (n ) 
,n ∈{ 1 , ... ,N} 

d IS = 

∑ 

(i n , j) ∈ �(n ) 
i n 

(
x i, j ̂ x i, j 

+ log ( ̂  x i, j ) 
)

+ 

∑ N 

n =1 
(λ

A (n ) 

∑ R 

r=1 
a 2 

i n ,r 
) . 

(11) 

Applying GD on optimization objectives { d Eu , d KL , d IS } without

onstant 2 is given as 

 

(n ) 
i n ,r 

← a (n ) 
i n ,r 

+ η(n ) 
i n ,r 

( 

−
∂d (n ) 

i n 

∂a (n ) 
i n ,r 

) 

, (12)

here 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂(d (n ) 
Eu 

) i n 

∂a (n ) 
i n ,r 

= 

∑ 

(i n , j) ∈ �(n ) 
i n 

( ̂  x (n ) 
i n , j 

− x (n ) 
i n , j 

) S (n ) 
i n , j,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

;

∂(d (n ) 
Eu 

) i n 

∂a (n ) 
i n ,r 

= 

∑ 

(i n , j) ∈ �(n ) 
i n 

( 

1 −
x (n ) 

i n , j ̂ x (n ) 
i n , j 

) 

S (n ) 
i n , j,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

;

∂(d (n ) 
IS 

) i n 

∂a (n ) 
i n ,r 

= 

∑ 

(i n , j) ∈ �(n ) 
i n 

( 

1 ̂ x (n ) 
i n , j 

−
x (n ) 

i n , j 

( ̂  x (n ) 
i n , j 

) 2 

) 

S (n ) 
i n , j,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

. 

(13) 

et 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(η(n ) 
Eu 

) i n ,r = 

a (n ) 
i n ,r ∑ 

(i n , j) ∈ �(n ) 
i n 

̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

;

(η(n ) 
KL 

) i n ,r = 

a (n ) 
i n ,r ∑ 

(i n , j) ∈ �(n ) 
i n 

S (n ) 
i n , j,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

;

(η(n ) 
IS 

) i n ,r = 

a (n ) 
i n ,r ∑ 

(i n , j) ∈ �(n ) 
i n 

1 ̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

, 

(14) 

here { A 

(1) 
, . . . , A 

(N) } is initialized non-negatively. Since the neg-

tive item {−̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

− a (n ) 
i n ,r 

, −S (n ) 
i n , j,r 

− a (n ) 
i n ,r 

, − 1 ̂ x 
(n ) 
i n , j 

S (n ) 
i n , j,r 

− a (n ) 
i n ,r 

} in

∂d 
(n ) 
i n 

∂a 
(n ) 
i n ,r 

of update rules in (14) can be cancelled out, and the up-

ate rules for (11) are reformulated into 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

x (n ) 
i n , j 

S (n ) 
i n , j,r ∑ 

(i n , j) ∈ �(n ) 
i n 

̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

;

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

x (n ) 
i n , j ̂ x (n ) 
i n , j 

S (n ) 
i n , j,r ∑ 

(i n , j) ∈ �(n ) 
i n 

S (n ) 
i n , j,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

;

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

x (n ) 
i n , j 

( ̂  x (n ) 
i n , j 

) 2 
S (n ) 

i n , j,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

1 ̂ x (n ) 
i , j 

S (n ) 
i n , j,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

. 

(15) 
n 
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respectively. For weighted L 2 norm regularization, the update rules

are presented as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

x (n ) 
i n , j 

S (n ) 
i n , j,r ∑ 

(i n , j) ∈ �(n ) 
i n 

̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

+ λ
A (n ) | �(n ) 

i n 
| a (n ) 

i n ,r 

;

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

x (n ) 
i n , j ̂ x (n ) 
i n , j 

S (n ) 
i n , j,r ∑ 

(i n , j) ∈ �(n ) 
i n 

S (n ) 
i n , j,r 

+ λ
A (n ) | �(n ) 

i n 
| a (n ) 

i n ,r 

;

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

x (n ) 
i n , j 

( ̂  x (n ) 
i n , j 

) 2 
S (n ) 

i n , j,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

1 ̂ x (n ) 
i n , j 

S (n ) 
i n , j,r 

+ λ
A (n ) | �(n ) 

i n 
| a (n ) 

i n ,r 

, 

(16)

respectively. 

4.1.3. Generalized update rules 

Then, a generalized formation is presented to merge these up-

date rules-based in a generalized way, which can drastically sim-

plify the formulas and analysis. Let the intermediate parameters

{ p Eu 
i n , j,r 

, p KL 
i n , j,r 

, p IS 
i n , j,r 

} denote { x (n ) 
i n , j 

S (n ) 
i n , j,r 

, 
x 
(n ) 
i n , j ̂ x 
(n ) 
i n , j 

S (n ) 
i n , j,r 

, 
x 
(n ) 
i n , j 

( ̂  x 
(n ) 
i n , j 

) 2 
S (n ) 

i n , j,r 
} , re-

spectively, and let the intermediate parameters { p Eu 
i n , j,r , p 

KL 
i n , j,r , p 

IS 
i n , j,r }

denote { ̂  x (n ) 
i n , j 

S (n ) 
i n , j,r 

, S (n ) 
i n , j,r 

, 1 ̂ x 
(n ) 
i n , j 

S (n ) 
i n , j,r 

} , respectively. Thus, the general-

ized forms for the update rules (15) and (16) are reformulated into⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

p i n , j,r ∑ 

(i n , j) ∈ �(n ) 
i n 

p i n , j,r + λ
A (n ) a 

(n ) 
i n ,r 

;

a (n ) 
i n ,r 

← a (n ) 
i n ,r 

∑ 

(i n , j) ∈ �(n ) 
i n 

p i n , j,r ∑ 

(i n , j) ∈ �(n ) 
i n 

p i n , j,r + λ
A (n ) | �(n ) 

i n 
| a (n ) 

i n ,r 

, 

(17)

respectively. Algorithm 1 describes a complete iteration to ana-

lyze the serial version of single-thread-based GSSNTF, which al-

ternately updates a (n ) 
i n , : 

, n ∈ {1 , . . . , N }. The generalized parame-

Algorithm 1: Serial Version of GSSNTF. 

Input : factor matrices A 

(n ) of all n , X , Down , U p 

Output : A 

(n ) for all n 

1 for n from 1 to N do 

2 set Down (n ) = 0 , U p (n ) = 0 ; 

3 for i n from 1 to I n do 

4 for (i n , j) ∈ �(n ) 
i n 

do 

5 for r from 1 to R do 

6 S (n ) 
i n , j,r 

= 

∏ 

k � = n 
a (k ) 

i k ,r 
; 

7 ̂ x (n ) 
i n , j 

= 

∑ R 
r=1 a 

(n ) 
i n ,r 

S (n ) 
i n , j,r 

; 

8 for r from 1 to R do 

9 up (n ) 
i n ,r 

← up (n ) 
i n ,r 

+ p i n , j,r ; 

10 d own (n ) 
i n ,r 

← d own (n ) 
i n ,r 

+ p i n , j,r 

11 d own (n ) 
i n ,r 

← d own (n ) 
i n ,r 

+ λ
A (n ) a 

(n ) 
i n ,r 

d own (n ) 
i n ,r 

← 

down (n ) 
i n ,r 

+ λ
A (n ) | �(n ) 

i n 
| a (n ) 

i n ,r 
% Weight update rule 

12 for r from 1 to R do 

13 a (n ) 
i n ,r 

← a (n ) 
i n ,r 

(U p i n ,r /Down i n ,r ) ; 
g  
ers {{ p Eu 
i n , j,r 

, p KL 
i n , j,r 

, p IS 
i n , j,r 

} , { p Eu 
i n , j,r , p 

KL 
i n , j,r , p 

IS 
i n , j,r }} of NTF are similar

o that of NMF in [17] . We observe that NTF involves N ≥ 3 factor

atrices. However, the updated parameters of NMF only involves 2

actor matrices. Meanwhile, due to N -way data presentation of ten-

or, the form of the incremental data may present different forms,

hich can obtain the same conclusion with Section 3.3 . In this

ork, we only present dynamic form in one way data of online

earning for incremental data. 

.2. Theoretical analysis 

The time complexity and space requirement of GSSNTF will be

nalyzed next. 

heorem 1 (Time complexity and space overhead of GSS-

TF) . The time complexity of (17) , to a full GSSNTF are O (| �| N 

2 R +
 | �| NR + 2 

∑ N 
n =1 I n R ) , O (| �| N 

2 R + 2 | �| NR + 2 | �| N + 2 
∑ N 

n =1 I n R ) ,

nd O (| �| N 

2 R + 2 | �| NR + 3 | �| N + 2 
∑ N 

n =1 I n R ) , respectively, and

he space requirement is O (3 
∑ N 

n =1 I n R ) , on a full iteration. 

heorem 2 (Space overhead of CUGSSNTF) . The memory overhead

f CUGSSNTF is O ( 
∑ N 

n =1 I n R ) . 

Normally, since N � R , the time complexity O (| �| N 

2 R +
 | �| NR + 2 

∑ N 
n =1 I n R ) of (17) is less than O (| �| (N 

2 R + NR 2 ) +
 N 
n =1 I n R 

2 + 2 
∑ N 

n =1 I n R ) , and the space requirement O (3 
∑ N 

n =1 I n R )

s less than O ( 
∏ 

n I n + 

∑ N 
n =1 R 

∏ 

k � = n I k + 3 
∑ N 

n =1 I n R ) , and

 ( 
∑ N 

n =1 I n R 
2 + 3 

∑ N 
n =1 I n R ) . GSSNTF has linear time complexity

nd space requirements relative to rank R . 

.3. CUDA parallelization approach 

CUGSSNTF is presented in Section 4.3.1 , then MCUGSSNTF is

resented in Section 4.3.2 . 

.3.1. Parallelization approach 

As shown in Fig. 7 , CSF has the hierarchy and fiber-

entralization features; meanwhile, CSF can save memory cost and

mprove addressing efficiency for CUGSSNTF. Thus, CSF is an effi-

ient sparse compressive format. In CUGSSNTF, a thread block can

pdate a (n ) 
i n , : 

by { (a (n ) 
i n , : 

, x (n ) 
i n , j 

) | (i 1 , . . . , i N ) ∈ �(n ) } , and the fids and val

ectors store index ( i 1 , . . . , i N ) and x (n ) 
i n , j 

in order, respectively. Thus,

y sequentially accessing the element in fptr, fids , and val vectors,

ultiple thread blocks update the n th feature matrix, and a thread

lock updates a feature vector; meanwhile, a thread within the

hread block updates a feature element within the feature vector

Lines 3 - 13, Algorithm 1). Supposing that there are Tb thread

locks, a (n ) 
i n , : 

, i n ∈ {1 , . . . , I n } can be updated by the Tb thread blocks

n parallel, and the thread block mod ( i n , Tb ) can update the a (n ) 
i n , :

ithout contention for resources or interlocks. 

.3.2. Multi-GPU parallelization 

When a GPU cannot load a real dataset, the multi-GPU is an

ppropriate substitute choice. These GPUs make up a ( J 1 × , . . . ,

J N ) array for processing the tiled X and its tiled corre-

ponding factor matrix A 

(n ) . The sub-tensor and factor sub-

atrices { X j 1 , ... , j N 
, A 

(1) 
j 1 

, . . . , A 

(N) 
j N 

} is distributed to GPU ( j 1 , . . . , j N ),

 n ∈ {1 , . . . , J n }, and n ∈ {1 , . . . , N }. The communication strategy is

erived from the tiling strategy, and the communication group is

efined by the alternative update rule of GSSNTF. Then, GPU ( j n , j )

roadcasts local nominator and denominator to other GPUs, while

pdating its local A 

(n ) 
j n , j 

. At last, GPU ( j n , j ) broadcasts A 

(n ) 
j n , j 

to other

PUs within the same group. Fig. 8 shows a toy example, 8 GPUs

a 2 × 2 × 2 GPU array) update A 

(1) . 8 GPUs are divided into two

roups. GPUs {(1, 1, 1), (1, 2, 1), (1, 2, 2), (1, 1, 2)} update { A 

(1) 
1 , 1 

,
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Fig. 7. Compressed Sparse Fiber. 

Fig. 8. Multi-GPU structure of MCUGSSNTF. 
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(1) 
1 , 2 

, A 

(1) 
1 , 3 

, }, GPUs {(2, 1, 1), (2, 2, 1), (2, 2, 2), (2, 1, 2)} update {

 

(1) 
2 , 1 

, A 

(1) 
2 , 2 

, A 

(1) 
2 , 3 

, }, The space overhead is O ( | �| ∏ N 
n =1 J n 

+ 6 
∑ N 

n =1 
I n 
J n 

R )

f a GPU, which consists of { X j 1 , ... , j N 
, U p (n ) 

j n 
, Down (n ) 

j n 
, A 

(n ) 
j n 

} , and

he cache area for { U p (n ) 
j n 

, Down (n ) 
j n 

, A 

(n ) 
j n 

} , and the communication

verhead is O (3 
∑ N 

n =1 

I n ( 
∏ 

k � = n J k −1) 

J n 
∏ 

k � = n J k 
R ) , which consists of the com-

unication cost for { U p (n ) 
j n 

, Down (n ) 
j n 

, A 

(n ) 
j n 

}, j n ∈ {1 , . . . , J n }, and

 ∈ {1 , . . . , N }. The space requirement and communication over-

ead scale with the rank R linearly. 

.4. Data merging and online learning 

In this section, online learning for the incremental data process-

ng is presented. Tree storage structure for sparse tensor has higher

ccess efficiency than the common data structure styles, e.g., COO,

tc. Furthermore, in large-scale data systems, online learning for

SSNTF should cooperate with the incremental building process of

 tree storage structure for sparse tensor. Thus, an efficient online

pproach should include: 

1. How to update the factor matrices in an online and real-time

way and keep high accuracy? ( Sections 4.4.1 –4.4.3 ); 

2. How to merge the newly arrived data into the built data
structure? ( Section 4.4.4 ). p  
Online learning is used to track the low-rank style of incremen-

al data. 

.4.1. Online learning algorithm 

The single-thread-based processing style gives the GSSNTF

he ability of first-coming-first-computing. In this section, online

earning for stream-like sparse tensor data is presented, which

s derived from the single-thread-based processing style [17,48] .

irst, Supposing that the length of the N th ( N ≥ 3) dimension

rows over time, which follows the assumption in. Some notations

bout online learning are introduced. An online sparse tensor

 ∈ R 

I 1 ×···×I 
t 1 + t 2 
N + comprises of X 

t 1 ∈ R 

I 1 ×···×I 
t 1 
N + and X 

t 2 ∈ R 

I 1 ×···×I 
t 2 
N + ,

hich represents the built tensor in t 1 time and new data in

 2 time, respectively. { �(N) ,t 1 
i N 

, { �(n ) ,t 1 
i n 

| n ∈ { 1 , . . . , N − 1 }}} and

 �
(N) ,t 2 
i N 

, { �(n ) ,t 2 
i n 

| n ∈ { 1 , . . . , N − 1 }}} are the corresponding index

or X 

t 1 ∈ R 

I 1 ×···×I 
t 1 
N + and X 

t 2 ∈ R 

I 1 ×···×I 
t 2 
N + , respectively. In real online

ystems, the data scale in t 2 is much smaller than the scale

n t 1 . Thus, we assume that I 
t 2 
N 

� I 
t 1 
N 

and | �(N) ,t 2 
i N 

| � | �(N) ,t 1 
i N 

| .
he online GSSNTF finds the temporal factor matrix A 

(N) ,t 2 for

he time parameter t 2 , which are based on the following data

 X 

(n ) , (t 2 ) , A 

(N) ,t 2 , { A 

(n ) ,t 1 | n ∈ { 1 , . . . , N − 1 }}} . The update process

or temporal factor vectors is obvious; Because the update process

hould consider the changes of the temporal data, the update

rocess for the un-temporal factor vectors is more complex than
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Fig. 9. Data merging process of OnCSF. 
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the temporal conditions. Thus, the approximation problem is

give by D ( X 

(n ) ‖ ̂  X 

(n ) 
) = D ( X 

(n ) ,t 1 ‖ ̂  X 

(n ) ,t 1 ) + ηD ( X 

t 2 
(n ) 

‖ ̂  X 

t 2 
(n ) ) , n

∈ { 1 , . . . , N − 1 } , where η is a coefficient and it can represent the

effect of the incoming elements at time t 2 . 

4.4.2. Update temporal factor matrix A 

( N ) 

By fixing the non-temporal factor matrices { A 

(n ) | n ∈ { 1 , . . . , N −
1 }} , if the divergence D( X 

(n ) ,t 1 ‖ ̂  X 

(n ) ,t 1 ) is minimized, then the fac-

tor matrices { A 

(n ) | n ∈ { 1 , . . . , N}} are updated. Thus, the problem

of updating A 

(N) ,t 2 is equivalent to minimize D( X 

(N) ,t 2 ‖ ̂  X 

(N) ,t 2 ) .

By appending the projection A 

(N) ,t 2 of X 

(n ) ,t 2 via loading the fac-

tor matrices { A 

(n ) ,t 1 | n ∈ { 1 , . . . , N − 1 }} of the previous time step,

A 

(N) ,t 2 is updated. The update rule for A 

(N) ,t 2 in generalized

element-wise and weighted forms for online learning are given as⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a t 2 
i N ,r 

← 

a t 2 
i N ,r 

∑ 

j∈ �(N) ,t 2 
i N 

p t 2 
i N , j,r ∑ 

j∈ �(N) ,t 2 
i N 

p 
t 2 
i N , j,r + λ

A (N) a 
t 2 
i N ,r 

;

a t 2 
i N ,r 

← 

a t 2 
i N ,r 

∑ 

j∈ �(N) ,t 2 
i N 

p t 2 
i N , j,r ∑ 

j∈ �(N) ,t 2 
i N 

p 
t 2 
i N , j,r + λ

A (N) | �(N) ,t 2 
i N 

| a t 2 
i N ,r 

, 

(18)

respectively. 

4.4.3. Update non-temporal factor matrix { A 

(n ) | n ∈ { 1 , . . . , N − 1 }} 
The online problem is rewrited as 

arg min 

A (n ) 

D 

(
X 

(n ) ‖ ̂

 X 

(n ) 
)

= D 

(
X 

(n ) ,t 1 ‖ ̂

 X 

(n ) ,t 1 
)

+ ηD 

(
X 

(n ) ,t 2 ‖ ̂

 X 

(n ) ,t 2 
)
. 

(19)
Applying GD to minimize the error d j (h j ) can be written as 

 

t 1 
i n ,r 

← a t 1 
i n ,r 

+ γW 

⎛ ⎝ 

∂D 

(
X 

(n ) ‖ ̂

 X 

(n ) 
)

∂a t 1 
i n ,r 

+ η
∂D 

(
X 

(n ) ,t 2 ‖ ̂

 X 

(n ) ,t 2 
)

∂a t 1 
i n ,r 

⎞ ⎠ . 

(20)

The update rules of non-temporal factor matrix 
{

A 

(n ) | n ∈
 1 , . . . , N − 1 } } in element-wise and weighted form are given as 

 

t 1 
i n ,r 

← 

a t 1 
i n ,r 

(∑ 

j∈ �(n ) ,t 1 
i n 

p t 1 
i n , j,r 

+ η
∑ 

j∈ �(n ) ,t 2 
i n 

p t 2 
i n , j,r 

)
(∑ 

j∈ �(n ) ,t 1 
i n 

p 
t 1 
i n , j,r + η

∑ 

j∈ �(n ) ,t 2 
i n 

p 
t 2 
i n , j,r 

)
+ λ

A (n ) a 
t 2 
i n ,r 

, (21)

nd 

 

t 1 
i n ,r 

← 

a t 1 
i n ,r 

(∑ 

j∈ �(n ) ,t 1 
i n 

p t 1 
i n , j,r 

+ η
∑ 

j∈ �(n ) ,t 2 
i n 

p t 2 
i n , j,r 

)
(∑ 

j∈ �(n ) ,t 1 
i n 

p 
t 1 
i n , j,r + η

∑ 

j∈ �(n ) ,t 2 
i n 

p 
t 2 
i n , j,r 

)
+ λ

A (n ) | �(n ) ,t 2 
i n 

| a t 2 
i n ,r 

, 

(22)

espectively. 

.4.4. Data merging 

CSF structure has more access efficiency than COO format; how-

ver, when the new data arrive in the system, the original CSF can

ardly adopt the data immediately. OnCSF can process the stream-

ike data, and transform the online COO data into the built CSF

ata structure. In this section, the OnCSF is introduced, which in-

ludes the details about building the new CSF data structure in a

eal-time and online way. Fig. 9 shows the principle of OnCSF. As

hown in Fig. 9 , the 1th mode tensor unfolding matrix X 

(1) , 2 and
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Fig. 10. Scalability and memory requirement of GSSNTF Eu are scalable with R on CPU ( Fig. 10 (a) and 10 (b),time on second (s)). Scalability and memory requirement of 

CUGSSNTF Eu are scalable with R on GPU ( Fig. 10 (c) and 10 (d), time on second (s)). 

Table 3 

The details for real data sets. 

Data set Movielens 3 D Movielens 4 D Netflix 

I 1 71, 567 71, 567 480, 189 

I 2 10, 681 10, 681 17, 770 

I 3 1, 038 169 2, 150 

I 4 / − 24 / −
	 Train 9, 301, 274 9, 301, 274 99, 072, 112 

	 Test 698, 780 698, 780 1, 408, 395 
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(1) , 3 follow the 

 

(1) , 2 = 

⎡ ⎣ 

0 0 5 

2 2 0 

3 0 3 

∣∣∣2 3 0 

0 0 1 

0 0 0 

∣∣∣0 4 2 

0 0 0 

1 3 1 

⎤ ⎦ , 

 

(1) , 3 = 

⎡ ⎣ 

0 0 1 

0 3 0 

2 0 0 

⎤ ⎦ , 

espectively. The Fig. 9 reveals the following 3 features of online

earning: 

1. As the Fig. 9 (2) and (3) show, the merged CSF data structure

can only has small modification compared with original CSF

data structure. The amount of newly arrived data is much

less than the amount of the existed data. However, the time

cost of rebuilding the CSF data structure cannot satisfy the

real-time requirement; 

2. Meanwhile, if only one mode is dynamic, e.g., time ( t ),

the modification scope is limited in three arrays in 1 th

mode unfolding pattern, e.g., fptr [1], fids [2], and val [].

The pointer array fptr [1] should change the values in

{ f ptr[1][6] , . . . , f ptr[1][11] } . The identity array fids [2] should
change the values { fids [2][5], fids [2][9], fids [2][12] }. The

value array val [] should change the values { val [5], val [9],

val [12]}. The time cost of OnCSF is much less the rebuilding

a new CSF data structure; 

3. In Fig. 9 , we observe that the merging process do not be il-

lustrated for the unfolded matrix of the sparse tensor in the

2 nd and 3 rd mode. We conclude that the reasons are that

(1) the merging process styles of the CSF data structure for

2 nd and 3 rd mode sparse tensor are similar; (2) As shown

in the Fig. 9 (3b),the OnCSF for the time mode ( 3 rd mode)

only involves in building a new sub-tree with the vertex la-

belled by 3, and the pointer arrays, e.g., { fptr [0], fptr [1]} and

the identity arrays { fids [0], fids [1], fids [2], val } only need add

elements in the tail. 

. Experiments 

Multiple sets of experiments will be constructed to analyze

he following issues: (1) Memory scalability with the value of

ank and computing time scalability ( Section 5.2 ); (2) Convergence

nalysis and the performances on multi-GPU and online learning

 Section 5.3 ). 

.1. Experimental settings 

The accuracy of tensor factorization is evaluated by Root Mean

quare Error (RMSE) [47] , which is defined as 

MSE = 

√ ∑ 

(i 1 , ... ,i n ) ∈ 

(X (i 1 , ... ,i n ) − ̂ X (i 1 , ... ,i n ) ) 

2 

| 
| (23) 

here | 
| denotes the amount of the non-zero entries in test

ets. In order to evaluate the experimental performances, we
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Fig. 11. Scalability and memory requirement of GSSNTF KL are scalable with R on CPU ( Fig. 11 (a) and 11 (b),time on second (s)). Scalability and memory requirement of 

CUGSSNTF KL are scalable with R on GPU ( Fig. 11 (c) and 11 (d), time on second (s)). 
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1  
adopt two data sets to demonstrate the performances of tensor

factorization, e.g., MovieLens 1 , Netflix 2 , which is shown in Table 3 .

We conduct our experiments and comparison codes on 8 P100

GPUs, each of them has 56 SMs and OpenMP. On each GPU, there

are 128 SPs per SM, and each NVIDIA Tesla P100 GPU works at

a 1.33 GHz clock rate. OpenMP platform has two 16 cores CPUs.

The global memory, bandwidth and memory clock rate are 16 GB,

4096 bits and 715 MHz, respectively. For simplification, we use

GSSNTF Eu , GSSNTF KL , and GSSNTF IS to denote the GSSNTF approach

on Euclidean distance, KL- and IS-divergence, respectively, and

we use CUGSSNTF Eu , CUGSSNTF KL , and CUGSSNTF IS to denote the

responding CUDA parallelization approaches. We compare the

accuracy of GSSNTF Eu , GSSNTF KL and ALS on 3-way tensor data

(10 0 0 × 10 0 0 × 100 with sparsity 0.1%) with Poisson distribution

which is generated by MATLAB and we compare the accuracy of

GSSNTF Eu , GSSNTF IS and ALS on 3-way tensor data (1, 0 0 0 × 1,

0 0 0 × 100 with sparsity 0.1%) with Exponential distribution

which is generated by MATLAB. We use simulation datasets of

Poisson and Exponential distribution styles to test the accuracy

of GSSNTF Eu , GSSNTF KL , GSSNTF IS and ALS [49] . Meanwhile, We

use the corresponding MATLAB code of [49] for tensor operations

which are proposed on Section 3.3 . We test the scalability with

the rank of feature matrices. Thus, we set the rank value R as {32,

64, 128, 256, 512, 1024} for scalability test, which is the multiple

of the warp . We choose uniform distribution as the initial value

for factor matrices { A 

(i ) | i ∈ { 1 , . . . , N}} , which are the same as the

comparison approaches. 
1 http://files.grouplens.org/datasets/movieLens 
2 http://www.netflixprize.com 

t  

G  

t  

a  
.2. Scalability and parameter selection 

We test the scalability for computational time and space over-

ead on this section. The scalability performances of computa-

ional time on CPU for GSSNTF Eu , GSSNTF KL and GSSNTF IS are pre-

ented on Figs. 10 (a), 11 (a) and 12 (a), respectively. The scalability

erformances of space overhead on CPU for GSSNTF Eu , GSSNTF KL 

nd GSSNTF IS are presented on Figs. 10 (b), 11 (b) and 12 (b), re-

pectively. The scalability performances of computational time on

PU for CUGSSNTF Eu , CUGSSNTF KL and CUGSSNTF IS are presented

n Figs. 10 (c), 11 (c) and 12 (c), respectively. The scalability perfor-

ances of space overhead on GPU for CUGSSNTF Eu , CUGSSNTF KL 

nd CUGSSNTF IS are presented on Figs. 10 (d), 11 (d) and 12 (d), re-

pectively. With the rapid increasing of web data, processing scal-

bility becomes a core index. Scalability in the research commu-

ities of tensor factorization includes time scalability and memory

calability. Time scalability comprises of: (1) The scalability per-

ormance with the scale of a data set; (2) The scalability with the

alue of R . The choice of R can influence the approximation degree.

he small value of R cannot approximate the original tensor appro-

riately; However, a big value of R may make an over-fitting prob-

em due to more number of training parameters. In this work, only

he scalability performance of tensor factorization is considerd, and

he R is selected as {32, 64, 128, 256, 512, 1024} or log 2 ( R ) ∈ {5, 6,

, 8, 9, 10}. 

The testing results of time scalability ( Figs. 10 (a), 11 (a) and

2 (a)) on CPU show that GSSNTF is scalable. However, we found

hat the results of time scalability ( Figs. 10 (c), 11 (c) and 12 (c)) on

PU are not scalable between R = 64 and R = 128 . We conclude

he reason is that when GPU is running on R = { 32 , 64 } , the SPs

re more idle than the GPU runs on R = { 128 , 256 , 512 , 1024 } . From

http://files.grouplens.org/datasets/movieLens
http://www.netflixprize.com
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Fig. 12. Scalability and memory requirement of GSSNTF IS are scalable with R on CPU ( Fig. 12 (a) and 12 (b), time on second (s)). Scalability and memory requirement of 

CUGSSNTF IS are scalable with R on GPU ( Fig. 12 (c) and 12 (d), time on second (s)). 

Table 4 

The computational time (minute) on a training iteration (Netflix data set), with R = 

{ 32 , 64 , 128 , 256 , 512 , 1024 } on 32-core shared memory platform. Speedup refers to 

the ratio of SPLATT to GSSNTF Eu . 

Rank GSSNTF Eu NTF SPLATT Speedup 

R = 32 0.10 0.87 0.62 6.24 

R = 64 0.20 3.30 2.36 11.81 

R = 128 0.39 12.58 8.99 22.93 

R = 256 0.78 49.36 35.26 45.21 

R = 512 1.56 195.99 139.99 89.74 

R = 1024 3.12 781.05 557.89 178.81 
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which means that CUGSSNTF on MovieLens4D obtains somewhat 
he results of time scalability ( Figs. 10 (a), 11 (a) and 12 (a)) on CPU

nd the results of time scalability ( Figs. 10 (c), 11 (c) and 12 (c)) on

PU, the running time of GSSNTF IS is longer than GSSNTF KL ; Mean-

hile the running time of GSSNTF KL is longer than GSSNTF Eu . Be-

ause more number of parameters need longer time of data fetch-

ng, the running results support that more parameters output more

omputational time. The Figs. 10 (b), 11 (b) and 12 (b) show that the

emory requirement on CPU for GSSNTF is increased linearly with

 . Meanwhile, the Figs. 10 (d), 11 (d) and 12 (d) show that the mem-

ry requirement on GPU for CUGSSNTF is increased linearly with R .

able 4 shows the speedup. Table 4 demonstrates that GSSNTF has

inear scalability with R . Meanwhile, we observe that, due to the

omputational process of the intermediate Hession matrix G with

he discussion on Section 3.3 , the computational overhead of NTF

nd SPLATT for SNTF on Euclidean Distance is scalable with O ( R 2 ). 

.3. Convergence, multi-GPU and online learning 

We compare the convergence performances of CUGSSNTF, NTF

11] , Hogwild! [40] and SPLATT [8,9] . From the results on Fig. 13
a-c), CUGSSNTF has the same convergence performances with NTF

nd SPLATT, and CUGSSNTF Eu can converge to the same RMSE

alue as NTF, and SPLATT. Hogwild! is a framework of paralleliza-

ion SGD, which can avoid the over-writing problem with conver-

ence promise and initial parameters sensitivity. However, Hog-

ild! cannot obtain the same accuracy level as NTF, SPLATT, and

SSNTF. We conclude the reason is that we choose the original

ersion of Hogwild! and don’t consider other information. In the

uture, we may improve this condition. The Fig. 13 (a-c) illustrate

hat: 1) Three prior assumption styles, i.e., Gaussian, Poisson, and

xponential, present different accuracy results; 2) CUGSSNTF Eu has

he best RMSE performance result. We conclude the result is that

he data follow the Gaussian . Meanwhile, we found that in the dis-

ussion of [50] , if we carefully choose the distance styles for a ma-

rix data, the methods of non-negative and low-rank factor for ma-

rix data on Poisson and Exponential may obtain higher accuracy

erformance than the matrix data on Gaussian . In this work, we

ot only explore the linear scalability improvement for the gener-

lized algorithm but also conduct the further explorations for the

etail performance. From the experimental results, because the ac-

uracy results demonstrate the convergency performance of GSS-

TF, the proposed GSSNTF is correct and linear scalable. Thus, the

SSNTF can be adopted by large-scale industrial data for low-rank

nalysis of tensor data. At last, CUGSSNTF runs faster than the NTF

nd SPLATT. We conclude the reason is that CUGSSNTF can avoid

requent matrix manipulations and the formations of intermediate

atrices. 

Due to the higher sparsity of MovieLens4D than MovieLens3D,

he RMSE of CUGSSNTF on MovieLens4D obtains a somewhat

igher value than the RMSE of CUGSSNTF on MovieLens3D,
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Fig. 13. RMSE versus computational time on a 32-core shared memory system for NTF, SPLATT, and Hogwild!. A P100 GPU for CUGSSNTF (Time on Seconds (s)). 

Fig. 14. RMSE vs training epoches for ALS, GSSNTF Eu and GSSNTF KL are tested on Possion simulation data ( Fig. 14 (a)). RMSE vs training epoches for ALS, GSSNTF Eu and 

GSSNTF IS are tested on Exponential simulation data ( Fig. 14 (b)). 
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higher accuracy than CUGSSNTF on MovieLens3D. We observe

that the sparsity on MovieLens3D is 
(
9 , 301 , 274 / (71 , 567 ∗

10 , 681 ∗ 1 , 038) 
)
= 0 . 0017% and the sparsity on MovieLens4D is(

9 , 301 , 274 / (71 , 567 ∗ 10 , 681 ∗ 169 ∗ 24) 
)
= 0 . 0 0 04% . However, the

number of training parameters of CUGSSNTF on MovieLens4D (71,

567 ∗10, 681 ∗169 ∗24 ∗R ) is much larger than on the number of

training parameters of MovieLens3D (71, 567 ∗10, 681 ∗1, 038 ∗R ).

Although the higher sparsity results in the decreasing of accuracy,

4-way tensor factorization present more robust than 3-way tensor

factorization in the condition of information missing. 

H

We compare GSSNTF Eu , GSSNTF KL and GSSNTF IS on Poisson and

xponential distribution styles. As shown in Fig. 14 (a), the accuracy

erformance of GSSNTF KL outperforms the accuracy performance

f GSSNTF Eu and ALS on Poisson distribution style. Meanwhile,

s shown in Fig. 14 (b), the accuracy performance of GSSNTF IS 
utperforms the accuracy performance of GSSNTF Eu and ALS on

xponential distribution style. The results demonstrate the versa-

ility of the proposed generalized model. From the illustration of

ig. 14 (a) and Fig. 14 (b), ALS runs faster than GSSNTF Eu , GSSNTF KL 

nd GSSNTF IS . However, ALS involves the inversion operations of

ession matrix and the computational complexity is O ( R 3 ). 
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Fig. 15. The time overhead of MCUGSSNTF on one, four, and eight GPUs. 

Table 5 

Training time influence of η on GSSNTF Eu in obtaining a baseline RMSE (Time on second (s)). 

Data sets CUGSSNTF Eu SPLATT Online η = 0 . 5 Online η = 1 . 0 Online η = 1 . 5 Online η = 2 . 0 

Movielen 3 D 2.130 9.163 0.00596 0.00603 0.00636 0.00589 

Movielen 4 D 2.369 10.960 0.00693 0.00856 0.00785 0.00586 

Netflix-100M 86.69 635.34 0.5212 0.6370 0.5720 0.6806 

Table 6 

Training time influence of η on GSSNTF KL in obtaining a baseline RMSE (Time on second (s)). 

Data sets CUGSSNTF KL Online η = 0 . 5 Online η = 1 . 0 Online η = 1 . 5 Online η = 2 . 0 

Movielen 3 D 2.562 0.00698 0.00663 0.00636 0.00609 

Movielen 4 D 2.639 0.00783 0.00757 0.00774 0.00701 

Netflix-100M 91.43 0.6013 0.6040 0.6532 0.6924 

Table 7 

Training time influence of η on GSSNTF IS in obtaining a baseline RMSE (Time on second (s)). 

Data sets CUGSSNTF IS Online η = 0 . 5 Online η = 1 . 0 Online η = 1 . 5 Online η = 2 . 0 

Movielen 3 D 2.940 0.00756 0.00785 0.00754 0.00742 

Movielen 4 D 2.876 0.00743 0.00790 0.00774 0.00743 

Netflix-100M 92.75 0.7365 0.7453 0.7425 0.7123 
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MCUGSSNTF is the multi-GPU version of CUGSSNTF. MCUGSS-

TF considers the data with 3-way and 4-way. As shown in

ig. 15 , due to the sparsity of Movielens and Netflix data sets,

here is load unbalance within each GPU. Thus, MCUGSSNTF on 4

nd 8 GPU can only obtain the {3.78 X , 3.68 X , 3.76 X } on 4 GPUs

or Movielens 3 D , Movielens 4 D , and Netflix, respectively, and {7.4 X ,

.2 X , 7.41 X } on 8 GPUs for Movielens 3 D , Movielens 4 D , and Netflix,
espectively. MCUGSSNTF defines more complex communication 

attern on 4-way data than on 3-way data. Thus, the speedup

erformance of MCUGSSNTF on Movielens 4 D is lower than the

peedup performance of MCUGSSNTF on Movielens 3 D . 

The results of online learning performance reveal the real-time

erformances and parameter influences. In Table 5 , η represents

he weight of the new data, which is used in Formulas (21) and
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(22); Columns 2 to 3 represent the total time cost for GSSNTF Eu 

and SPLATT [8] to process new and old data without an online way,

respectively; Columns 4 to 7 represent the time cost required for

GSSNTF Eu to process new data under different values of η in an

online way. It can be observed that GSSNTF Eu has less time cost

than SPLATT. As described in sections III and IV, GSSNTF Eu and

SSNTF have the same time cost as GSSNTF Eu inherits the advan-

tages of SSNTF based on single thread method. Obviously, if we use

our online processing algorithm, it takes very little time to process

new data according to Columns 4 to 7. And the parameter η in-

fluences the time cost of GSSNTF Eu for online version. Meanwhile,

we extend the work of online processing to the KL-divergence, and

IS-divergence. We perform the same experiment on GSSNTF KL and

GSSNTF IS , and the experimental results can also draw similar con-

clusions as shown in Tables 6 and 7 . From the results of Tables 5 –7 ,

the strategy of online learning for GSSNTF is workable. 

6. Conclusion and future work 

This paper is an extension of our previous work [16] from a

single Euclidean distance to generalized divergence styles, and the

main works are presented as follows: 

1. We analyze that the main computing bottlenecks for SNTF

are frequent matrix manipulation and large-scale intermedi-

ate matrices; 

2. The GSSNTF model is discussed, which can reduce to linear

time complexity and space requirement with convergence

promise. And we present a more generalized update rule for

factor matrices; 

3. An online model for GSSNTF is presented, which includes

data merging for built data structure and newly arrived data

and online learning algorithm; 

4. When the GSSNTF faces a large-scale dataset, a CUDA par-

allelization model for GSSNTF is presented on GPU (CUGSS-

NTF) and multi-GPU (MCUGSSNTF). 

CUGSSNTF and online learning approach are the deep exten-

sions of the GSSNTF. Experimental results demonstrate the perfect

performances of the CUGSSNTF and the online learning approach

of the GSSNTF. 

In the future works, we will mine the further performance of

the parallelization features on cloud platforms, i.e., Flink, Spark and

so on. We will combine the accelerating approach, i.e., Alternative

Direction Method (ADM) to improve the convergence rate. Mean-

while, we will explore how to combine the manifold learning and

NTF to improve the accuracy and we will extend the MCUGSSNTF

to the sparse data styles with 5 or more modes. Furthermore, deep

learning is a new perspective that can capture the inherent infor-

mation via a neural network. Thus, in the future, we explore how

to combine deep learning and tensor learning. 

Authors’ Contributions 

Non-negative Tensor Factorization models (NTF) are effective

and efficient in extracting useful knowledge from various types

of probabilistic distribution with multi-way information. Current

NTF models are mostly designed for problems in computer vi-

sion which involve the whole Matricized Tensor Times Khatri - Rao

Product (MTTKRP). Meanwhile, a Sparse NTF (SNTF) proposed to

solve the problem of sparse Tensor Factorization (TF) can results

in large-scale intermediate data. A model of Single-thread-based

SNTF (SSNTF) is proposed to solve the problem of non-linear time

and space overhead caused by large-scale intermediate data. How-

ever, the SSNTF is not a generalized model. Furthermore, the above

methods cannot describe the stream-like data from industrial ap-

plications in mainstream processors, e.g, Graphics Processing Unit
GPU) and multi-GPU in an online way. To address these two is-

ues, a Generalized SSNTF (GSSNTF) is proposed, which extends

he works of SSNTF to the Euclidean distance, KullbackLeibler (KL)-

ivergence, and Itakura-Saito (IS)-divergence. The GSSNTF only in-

olves the feature elements rather than on the whole factor matri-

es, and can avoid the formation of large-scale intermediate matri-

es with convergence and accuracy promises. Furthermore, GSSNTF

an merge the new data into the state-of-the-art built tree dataset

or sparse tensor, and then the online learning has the promise of

orrect data format. At last, a model of Compute Unified Device

rchitecture (CUDA) parallelizing GSSNTF (CUGSSNTF) is proposed

n GPU and Multi-GPU (MCUGSSNTF). Thus, CUGSSNTF has lin-

ar computing complexity and space requirement, and linear com-

unication overhead on multi-GPU. We implement CUGSSNTF and

CUGSSNTF on 8 P100 GPUs, and the experimental results from

eal-world industrial data sets demonstrate the linear scalability

nd 40X speedup performances of CUGSSNTF than the state-of-

he-art parallel and distributed methods. 

The main contributions of our study are as follows: 

(1) Algorithm analysis . The GSSNTF model is derived theo-

etically, which obeys various common probabilistic styles, e.g.,

 aussian, Poisson, and E xponential distribution styles, and fine-

rained parallelization inherence. And GSSNTF represents a more

eneralized update rule for factor matrices. 

(2) CUDA Parallelization and Multi-GPU . CUGSSNTF harnesses

ocal memory more instead of increasing the global memory over-

ead of the GPU, and CUGSSNTF has linear scalability of computa-

ion and space overhead. MCUGSSNTF adopts a multi-GPU model

ith mode scalability for tensor data. GSSNTF and CUGSSNTF have

inear time and space complexities. 

(3) Online Learning . The stream-like computing style of the

ingle-thread-based model gives the GSSNTF the online learning

bility. Online learning and high efficient CUDA parallelization are

he two byproducts of the singlethread-based model. 
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