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ABSTRACT Clustering, which explores the visualization and distribution of data, has recently been widely
studied. Although current clustering algorithms such as DBSCAN, can detect the arbitrary-shape clusters
and work well, the parameters involved in these methods are often difficult to determine. Clustering using a
fast search of density peaks is a promising technique for solving this problem. However, the current methods
suffer from the problem of uneven distribution within local clusters. To solve this problem, we propose a new
density peak based clustering algorithm employing a hierarchical strategy, namely, HCFS, which consists
mainly of two stages. In the first stage, the HCFS estimates the density and distance of each point. The points
with higher density and distance are selected as candidate centers, and then subclusters centered on them
are further obtained. In the second stage, considering that adjacent subclusters based on certain candidate
centers are highly similar and connected within the same cluster, we propose a newmechanism for measuring
dissimilarity and connectivity between the subclusters. Those highly similar and connected subclusters are
merged to increase the dissimilarity between different clusters and to obtain the final clustering results. The
experiments conducted on a large number of datasets show that our method can effectively identify unevenly
distributed clusters and yield better or comparable performance for different datasets.

INDEX TERMS Cluster, candidate center, density peak based, hierarchical, merge, subclusters, two-stage
algorithm, uneven distribution within local clusters.

I. INTRODUCTION
A. MOTIVATION
Clustering plays an important role in data mining due to
the existence of a large number of unlabeled datasets. It is
an effective technique for discovering the potential structure
of these datasets. Hence, clustering algorithms are used in
many applications [1], [2]. The clustering algorithms that are
used to solve different problems are usually based on differ-
ent strategies. The most popular algorithm is K-Means [3],
which detects the spherical clusters by minimizing the dis-
tance objective function iteratively. Although the implemen-
tation of the K-Means algorithm is easy, it has the obvious
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drawback that it cannot work with non-spherical datasets
very well. Then, some density based [4] and hierarchy based
algorithms [5]–[7] that can recognize the non-spherical clus-
ters with multiple appropriate parameters were proposed.
In addition, some attemptsweremade to reduce the number of
parameters, such as employing the reverse nearest neighbors
technique in [8]–[10] and finding the density peaks in [11].
But the performance of these algorithms suffers from the
problem of uneven distribution within local clusters.

B. RELATED RESEARCH
Chameleon [5] is a classical clustering algorithm based
on hierarchy and graph partition, which consists of two
parts. This method first employs the graph-cut technique to
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construct subclusters. Then, the subclusters that are most
likely to be in a same cluster are merged by considering
their interconnectivity and closeness simultaneously. It can
recognize non-spherical clusters. However, it is difficult to set
multiple appropriate parameters in this method. The applica-
tions related to the Chameleon algorithm [12]–[14] are also
affected by this limitation. Unfortunately, there is a lack
of research on how to obtain the appropriate parameters at
present.

In density based algorithms, high density regions are clus-
tered together to construct clusters. A cluster is separated
from the other clusters by a low density region. DBSCAN [4]
can discover the non-spherical clusters and noise points at
the same time. Current studies have shown that DBSCAN
can obtain high quality clustering results with appropriate
parameters [15], [16]. However, this algorithm requires two
parameters to be set manually. One parameter is the neighbor
radius Eps and the other is the minimum vertex number
MinPts within radius Eps. Setting the appropriate values for
these two parameters is difficult.

To reduce the number of parameters used in DBSCAN,
different algorithms were proposed. RECORD [8] employs
the reverse nearest neighbors technique and the strongly
connected components to discover the non-spherical clus-
ters. ISDBSCAN [9] and ISBDBSCAN [10] are variants of
DBSCAN, and they also employ the reverse nearest neigh-
bors technique to estimate the density of points. The above
three algorithms only need to adjust one parameter k , which
is the number of nearest neighbors. Although these algo-
rithms reduce the number of parameters, they cannot effec-
tively discover the underlying structure of some datasets
(e.g., Flame [17], a kind of DNA dataset). There are two
main reasons that contribute to this situation, which are as
follows: 1) a fixed and predetermined threshold is used to
determine the core observation from a global perspective
(Core =

{
v ∈ V | |IS(v)| > 2k

3

}
used in ISDBSCAN and

ISBDBSCAN, Core = {v ∈ V | outdegree(v) ≥ k} used in
RECORD); and 2) these methods do not take the existence of
uneven distribution within local clusters into account.

Clustering by fast search and find of density peaks
(CFS) [11] is another density based algorithm and uses the
decision graph to find the density peaks. CFS can recognize
the non-spherical clusters. There are two basic assumptions
for identifying centers as follows: 1) the cluster centers are
surrounded by neighbors with lower density; 2) the clus-
ter centers have relatively high distance from the nearest
neighbor with higher density. In CFS, only one parameter,
namely, the average percentage of neighbours, is involved,
thus mitigating the effect of parameters to some extent. How-
ever, the CFS algorithm does not consider the problem of
uneven distribution within local clusters, which causes its
performance to still be affected.

A New Density Kernel in Density Peak Based Clustering
(NCFS) [18] is a variant of the CFS algorithm. The NCFS
algorithm points out that it is difficult to determine the centers

using the decision graph, which is due to the difficulty of
differentiating between the ‘high’ and ‘low’ ρ’s and δ’s in
this graph. As a result, the number of clusters can not be
determined automatically. Fortunately, some methods [19]
[20] have been proposed to solve the problem of finding
the correct number of centers. Then the NCFS algorithm
employs the techniques of the reverse nearest neighbors and
density normalization to more accurately determine the cen-
ters. However, the NCFS algorithm does not consider the
problem of uneven distribution within local clusters, which
results in its performance being limited.

C. OUR CONTRIBUTIONS
The performance of the algorithms related to CFS is limited in
two ways, for example, the determination of the centers based
on the decision graph and the uneven distribution within local
clusters. To overcome the above problems, a new density peak
based algorithm employing a hierarchy strategy is proposed.
Our algorithm consists mainly of two stages. In the first
phase, the points with high ρ’s and δ’s on the decision graph
are selected as candidate centers. Then, subclusters centered
on these candidate centers are constructed. Unlike the CFS
algorithm, at this stage, these candidate centers that are not
real centers will also not be directly assigned to other clusters.
Consequently, the subclusters centered on these candidate
centers, which are not real centers, will also not be merged
into the wrong clusters. In the second phase, a new strategy to
estimate the dissimilarity and connectivity between two adja-
cent subclusters is adopted. If the two subclusters are highly
similar and connected, they will be merged. This process is
repeated until the number of the final clusters is decreased to
the correct number of the centers. The contributions of our
work are summarized as follows:

1) We represent a new density peak based clustering algo-
rithm employing a hierarchy strategy to solve the prob-
lem of uneven distribution within local clusters. Our
algorithm only needs to find a set of candidate centers
without determining the real centers, which indirectly
solves the problem of determining the real centers from
the set of candidate centers.

2) We propose a new strategy to estimate the dissimilarity
and connectivity simultaneously between two adjacent
subclusters. In this strategy, only one equation is used
to determine whether the pair of adjacent subclusters
are similar and connected or not, which means that our
algorithm only needs to adjust one parameter.

3) We test our algorithm on eleven datasets containing the
non-spherical clusters and unevenly distributed local
clusters. The experimental results show that our algo-
rithm can obtain better or comparable clustering results
when compared with other comparison algorithms,
which proves the effectiveness of our algorithm.

The remainder of this paper is organized as follows.
In section II, the related concepts of the density peak based
algorithms is presented. Section III describes the details of
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our proposed clustering algorithm. The experimental results
and analysis on several datasets are provided in Section IV.
The conclusion is summarized in Section V.

II. DENSITY PEAK BASED CLUSTERING ALGORITHMS
To describe our algorithmmore clearly, some related concepts
of two density peak based clustering algorithms, such as CFS
and NCFS, will be described next.

A. CFS CLUSTERING ALGORITHM
CFS is a typical density peak based algorithm. It can find the
centers on the decision graph and recognize the non-spherical
clusters. CFS relies on two assumptions. The first is that the
centers might have higher densities and the second is that
the centers are at relatively large distance from the nearest
neighbor with higher local density. Some detailed definitions
are provided as follows.

1) Distance matrixD: The Gauss distance between any two
points in a given dataset constitutes a distance matrix D =(
dij
)
. The symbol dij represents the distance between the i-th

and j-th points and is calculated by the following equation:

dij =

(
dim∑
k=1

(xik − xjk )2
) 1

2

(1)

where dim represents the number of features of the point.
2) The average percentage of neighbours p and cut-off

distance dc: p denotes the average percentage of neighbours,
and it is empirically set to be approximately 1% to 2%. The
cut-off distance dc is the neighborhood radius and can be
calculated as:

dc = sort (X)cut (2)

where

X =
{
dij | i, j ∈ S and i < j

}
(3)

and

cut = round (‖S‖ × p) (4)

In formulas (3) and (4), the name of the function is consistent
with that of the function in MATLAB. S represents the entire
dataset, ‖S‖ denotes the number of the points in S.
3) Density of the point i ρi: There are two kernels to

estimate the density of points, i.e., the cut-off kernel and the
Gaussian kernel. For a point i, its cut-off kernel density is
defined as:

ρi =
∑
j∈S

χ (dij − dc) (5)

where

χ (x) =

{
1, x < 0
0, otherwise

(6)

and its Gauss kernel density is defined as:

ρi =
∑
j∈S

(
−
d2ij
dc

)
(7)

4) The distance of the point i δi: δi is defined as the distance
between point i and its nearest neighbor with higher density
as follows:

δi = min
j∈S,ρj>ρi

dij (8)

Note that if the point i has the highest density, then its
distance δi should be calculated as:

δi = max
j∈S

dij (9)

5) Decision graph: The decision graph is constructed by
the coordinate pairs (ρ, δ) of the points, and the centers are
determined on the decision graph.

CFS first loads the distance matrix D and calculates the
cut-off distance dc by using an artificial parameter p. Based
on the above distance matrix and cut-off distance, the density
ρ’s of all points can be further obtained by Eqs. (5) or (7),
and the distance δ’s of all points can be obtained by Eq. (8).
Then, the decision graph is constructed to find the centers.
Finally, each remaining point is assigned to the same cluster
as its nearest neighbor with higher density.

As shown in Fig. 1(c), most points either have small ρ’s or
small δ’s and are concentrated in a narrow region. Obviously,
only a small number of points have high ρ’s and δ’s, and they
are apart from the narrow region and are suitable as candidate
centers. Therefore, the centers are determined by employing
two thresholds empirically, which is also the core of the
CFS algorithm. However, in this small set, there are usually
other candidate centers in addition to the real centers. How to
choose the appropriate centers from this set is a big challenge
for CFS, which is due to the difficulty of differentiating
between the ‘high’ and ‘low’ on decision graph. The method
further proposes the equation λi = ρi × δi to represent the
qualification of a point as the center. However, this equation is
not able to determine which variable is more important. As a
result, some points with high δ’s but small ρ’s are selected as
the centers by error.

Additionally, it should be mentioned that the impact of sta-
tistical errors (possibly data loss) on performance can bemiti-
gated by increasing the value of the parameter p. For example,
all points can be classified correctly when the parameter p
is increased to the range [2.7%, 4.0%] in the Flame dataset
while many points are misclassified when the average per-
centage of neighbours p is set to 2%. More importantly,
the clustering results are not satisfactory no matter how
the parameter p is adjusted in the other datasets containing
unevenly distributed local clusters. For example, CFS can not
workwell with some relatively complex datasets, such as UCI
datasets Chameleon t4.8k [5] and Pathbased1 [21] even if p
is adjusted in the range of [0%, 4%]. Therefore, adjusting the
value of the parameter is not a typical strategy for the datasets
containing unevenly distributed local clusters.

B. NCFS CLUSTERING ALGORITHM
NCFS is another density peak based clustering algorithm.
In this method, the equation λi = ρi × δi is considered as a
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reasonable way to select the centers. According to Eq. (8) and
the above equation, the local density ρ plays a key role in the
calculation of λ. Different estimation methods of ρ will result
in different δ and then different λ, which will further lead to
the selection of different centers. NCFS proposed a density
estimation method based on the reverse nearest neighbors
technique to determine more appropriate centers. For a point
i, its local density ρi can be calculated as follows:

ρi =
dmax

1
‖S0‖

∑
j∈S0 dij

(10)

where

dmax = maxm,n∈Sdmn (11)

S0 represents a subset of top h farthest points among k nearest
neighbors of point i. In this method, h and k are empirically
determined as 4 and 30, respectively. By Eq. (10), the farthest
neighbors of a point will determine if this point is suitable for
being selected as the center.

The NCFS method asserts that if the density distribution of
local clusters is different, then the density will not be accu-
rately estimated since Eq. (10) is a global method obviously.
Therefore, a density estimation method based on density
normalization was further proposed. For a point i, its density
ρ′i can be calculated as follows:

ρ′i =
ρi

1
k

∑
j∈Sknn ρj

(12)

where Sknn is a subset of k nearest neighbors of point i.
According to Eq. (12), the density of a point relies on the
density of its nearest neighbors. Then, the equation λi =
ρi × δi is used to determine the appropriate centers.

The NCFS clustering algorithm employed the reverse near-
est neighbors and density normalization to estimate the local
density of a point, and then further to determine more appro-
priate centers. As a result, its performance is improved com-
pared with the original CFS algorithm. However, the NCFS
algorithm does not consider the existence of uneven distribu-
tion within the local clusters. Hence, the method is not capa-
ble of identifying the underlying structure of some datasets
containing unevenly distributed local clusters.

III. OUR ALGORITHM
A Density Peak Based Clustering Algorithm Employing
a Hierarchical Strategy (HCFS) will be discussed in this
section. HCFS is an improved variant of the CFS algorithm,
and the HCFS algorithm will be represented in the following
aspects: 1) analyzing the reasons of the problem of uneven
distribution within local clusters in detail; 2) determining the
set of candidate centers and constructing subclusters based on
these candidate centers; and 3) merging the subclusters based
on a new dissimilarity estimation strategy. Finally, the overall
process of the algorithm and a simple example are presented.

A. PROBLEM DESCRIPTION
In this section, we first describe the procedure of misclas-
sification. Then, the reasons for this situation will also be
discussed in detail.

The points might be misclassified due to the exis-
tence of uneven distribution within local clusters, as shown
in Fig. 1(a). Fig. 1(b) shows the corresponding ground truth
of the clusters. To describe the misclassification procedure
in detail, more in-depth analysis is conducted. First, 6 points
that are marked as A, B, C, D, E, F are selected as candidate
centers on the decision graph, as shown in Fig. 1(c). These
candidate centers undoubtedly have the highest density in the
respective local subclusters. After these 6 candidate centers
are selected, the clustering results are shown as Fig. 1(d). The
marked points in Fig. 1(c) correspond to the star points of the
same color in Fig. 1(d), respectively. As the correct number of
clusters is 2, and only the brown and green points in Fig. 1(c)
are the real centers. Therefore, a further assignment of points
is in need. For the star points C, D, E and F, their nearest
neighbors with higher density are points I, K, H and G,
respectively. With the Eq. (8), the distance δC , δD, δE , and
δF of points C, D, E, and F, are calculated respectively as
follows:

δC = dCI δD = dDK
δE = dEH δF = dFG (13)

For the point C, its nearest neighbor with higher density is
point I, and the point I is obviously located in the cluster
centered on point A. Therefore, the point C is assigned to the
cluster centered on point A. Then, the red cluster centered on
point C is merged into the brown cluster centered on point A.
Similarly, blue cluster centered on point D are merged into
brown cluster centered on point A, and pale blue and yellow
clusters centered on points E and F are merged into the green
cluster centered on point B. However, points C and D along
with the clusters centered on them should have been assigned
to the same cluster as point B. Therefore, this leads to an error
of the assignment as shown in Fig. 1(a). In the following parts,
the reasons for this situation will be discussed in detail.

There are usually more points with high ρ’s and δ’s on
decision graph in addition to the real centers, which is due to
some statistical errors. And it is also the fundamental reason
for the uneven distribution of density in local clusters. Then,
misclassification will occur in the assignment stage. Gener-
ally, the density of the point that is farther away from the
center should also be smaller within a local cluster. However,
if there is one or several unevenly distributed local clusters
within a dataset, the rule will be broken. For example, all red
points in region N are closer to the real center B than point C
in Fig. 1(d), but their density is significantly lower than point
C. Similarly, the density of all points in regionM is also lower
than the density of point D. Additionally and worse, for some
points, their nearest neighbors with higher density are usually
in the wrong cluster. For example, the nearest neighbor with
higher density of point C is located in the cluster centered on
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FIGURE 1. (a) The clustering results obtained performing CFS algorithm on the flame dataset when only two centers are selected.
(b) Ground truth of the flame dataset; the star points are the real centers; and our algorithm can obtain results as demonstrated in
this figure. (c) The decision graph obtained using CFS algorithm on the flame dataset. 6 central points are colored nonblack, while
the remaining points are black. (d) The result if 6 central points are selected. The star points in the figure correspond to the center
point of each subcluster. For star points B, C, D, E and F, their nearest neighbors with higher density are points J, I, K, H and G,
respectively. The average percentage of neighbours p is set to 2%, and there is no error in constructing subclusters.

point A, whereas the nearest neighbor with higher density of
point C should have been within the same cluster as point B.
The case of point D is similar to that of point C. And then,
points C and D are mistakenly assigned to the same cluster as
point A.

Although many datasets obey the Gauss distribution in
general, the points might be unevenly distributed in some
local clusters, which leads to assigning the points to a wrong
cluster no matter how the parameter p is adjusted. Accord-
ing to the above analysis, a conclusion can be drawn as
follows: If there one or several local clusters that are not
evenly distributed in a dataset, in addition to the real cen-
ters, there will be other noncenter points with high ρ’s and
δ’s. Some of these noncenter points will be assigned to
the wrong clusters as their nearest neighbors with higher
densities exist in the wrong clusters, which can lead to
misclassification.

To alleviate this problem of misclassification caused by
uneven distribution within local clusters, a feasible solution
is presented as follows: All points with higher ρ’s and δ’s
within a local cluster should be selected as the candidate
centers. Then the subclusters centered on these points will
be constructed immediately. Note that each of these points
is not assigned to the same cluster as its nearest neighbor
with higher density. Fortunately, the adjacent subclusters are
usually highly similar and connected within the same cluster
(Even if an uneven distribution occurs in the local clusters).
Based on this situation, if these adjacent subclusters are
similar and connected, they should be merged into the same
cluster.

B. CONSTRUCTING THE SUBCLUSTERS
This section presents a method to find a set of candidate cen-
ters. After this set is determined, each remaining point should
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be assigned to the same subcluster as its nearest neighbor
with higher density. The subclusters will then be constructed
centering on these candidate centers.

As analyzed in Section III.A, if each cluster within a
dataset is approximately evenly distributed, only the real
centers will have high δ’s while the other noncenter points
will have small δ’s. In this case, the candidate centers are also
the real centers. In contrast, in addition to the real centers,
the other points that have higher ρ’s and δ’s should also be
selected as candidate centers. In other words, if there is an
uneven distribution within a cluster, there will be multiple
points with high ρ’s and δ’s within this cluster besides one
real center. This is also the inspiration for us to determine the
set of candidate centers. Next, an approach is represented to
determine the set of candidate centers.

On a decision graph, most of the points are concentrated in
a narrow region, as shown in Fig. 1(c). At the same time, there
are only a small set of the points with high ρ’s and δ’s above
the narrow region. In other words, almost all of the points of
the dataset fall into a one dimensional low rank space, and
the candidate centers can be recognized as the outliers. This
situation also occurs in other datasets. The points within this
set are apart from that narrow region and they are suitable
candidate centers. The candidate centers are selected by two
thresholds that can be determined based on the decision
graph. Then, we will represent the reason why our algorithm
can deal with the problem of uneven distribution within local
clusters.

The number of candidate centers is always greater than or
equal to the number of real centers. Note that each of these
candidate centers is not directly assigned to the same cluster
as its nearest neighbor with higher density. In contrast, all of
these candidate points are used to construct the subclusters for
later merging processes. This avoids assigning the candidate
centers to the wrong clusters. Consequently, the subclusters
centered on these candidate centers will also not be merged
into the wrong clusters, which is also the core reason why our
algorithm can deal with the problem of uneven distribution
within local clusters. Next, a simple example are presented to
describe the process.

As shown in Fig. 1(c), all colored nonblack points that
are located above the narrow region are selected as candi-
date centers, and the remaining points that are located in a
narrow region are noncenters. After the candidate centers are
determined, each remaining point is assigned to the same
subcluster as its nearest neighbor with higher density. Here,
all the candidate centers are not assigned to their nearest
neighbor with higher density, and the subclusters are also
not merged into any other clusters. Then no misclassification
occurs.

Additionally, compared with the other hierarchy based
methods, our method only needs to construct subclusters
through candidate centers that are easily determined. It is con-
venient for our method to construct the subclusters without
complex computation. Note that p is set to be a fixed number
of 1.5% to construct the decision graph, and the experiment

results indicate that strategy of constructing the subclusters
will only lead to very few misclassifications and it will be
discussed in Section IV.C.

C. MERGING THE SUBCLUSTERS
This section presents a method to merge the subclusters con-
structed by the previous steps. Similar to the Chameleon algo-
rithm, the connectivity and similarity between two adjacent
subclusters are also taken into account during this procedure.
The algorithm has its basis in the assumption that if two
adjacent subclusters should have been in the same cluster,
then the intersection region between them should be relatively
dense and their distributions or some statistical information
(such as density distribution) should be similar. Based on
this assumption, we present a new strategy that can mea-
sure the connectivity and dissimilarity between subclusters
simultaneously. As some methods [19], [20] are available to
determine the number of clusters, we assume that the number
of clusters is determined beforehand. Some definitions will
be represented as follows:

1) Intersection set between two subclusters: the intersec-
tion set Cij between subcluster Ci and subcluster Cj can be
calculated as:

∀x ∈ Ci, ∀y ∈ Cj, if dxy ≤ αdc
then:

x ∈ Cij, y ∈ Cij (14)

where dc is the cut-off distance that is calculated by the
average percentage of neighbours p. p is set to be a fixed
number of 1.5% empirically. α is an adjustable coefficient.
αdc is used to determine the size of the intersection area of
two subclusters.

2) Local set of a subcluster to its adjacent subcluster: For a
subcluster Ci with its adjacent subcluster Cj, the related local
set Ci−j can be calculated as:

∀x ∈ Ci, ∀y ∈ Cj, if dxy ≤ dmimj
then:

x ∈ Ci−j, y ∈ Cj−i (15)

where mi is the center of Ci and mj is the center of Cj, and the
related local setCj−i is also calculated at the same time. It can
be seen that only the part of a subcluster that has points on the
side of the center of this subcluster that is close to the center
of the another subcluster will be considered. In other words,
only those points between two central points are considered,
which leads to the improvement of the robustness to a certain
extent. The calculation process is symmetrical for another
subcluster. This is different from the other hierarchy based
algorithms where all of the points within a subcluster are
taken into account when calculating the connectivity or the
similarity [5].

Next, the average density of set Cij, Ci−j and Cj−i will be
calculated as follows:

ρ̄ij =

∑
k∈Cij ρk∥∥Cij∥∥ (16)
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¯ρi−j =

∑
k∈Ci−j ρk∥∥Ci−j∥∥ (17)

¯ρj−i =

∑
k∈Cj−i ρk∥∥Cj−i∥∥ (18)

where
∥∥Cij∥∥, ∥∥Ci−j∥∥ and

∥∥Cj−i∥∥ represent the number of
the set Cij, Ci−j and Cj−i respectively. And they are used to
meansure the connectivity or the dissimilarity of two subclus-
ters by the following equation:

Mij =
∣∣ρ̄ij − ¯ρi−j∣∣+ ∣∣ρ̄ij − ¯ρj−i∣∣ (19)

Note that if Cij is φ, this indicates that the subcluster i is
not connected to the subcluster j. Then, the value ofMij does
not exist and is not zero. We suppose that its value is+∞ and
it is called Mφ .

Relatively small value ofMij indicates the following: 1) the
region between the subcluster Ci and the subcluster Cj is
relatively dense; 2) the distribution of these two subclusters
is more similar. Then, the subcluster Ci and Cj should be
merged; otherwise they should not be merged. During the
merging process, all of Mij are sorted from low to high by
its value, and the pair of subclusters are merged into a same
cluster in the order of Mij repeatedly. There is also a stop
criteria that the number of the remaining clusters decreases
to the correct number of the clusters.

Eq. (19) is used to measure the dissimilarity between the
two adjacent subclusters and determine whether they are
connected. Our merging method reduces the hassle caused
by multiple parameter settings, and it is very efficient as con-
nectivity and dissimilarity between two adjacent subclusters
are also taken into account.

The HFCS algorithm is proposed to solve the problem of
uneven distribution within local clusters by employing a hier-
archy strategy, and the general procedures of the presented
HCFS clustering algorithm are shown as follows:
1) Calculate the Gauss distance among the points of the

entire dataset to constitute the distance matrix D by
Eq. (1);

2) Calculate the local density ρ and the distance δ respec-
tively by Eq. (7) and Eqs. (8) and (9) for each point;

3) Construct δ − ρ decision graph, then determine the set
of the candidate centers on the decision graph and con-
struct the subclusters based on these candidate centers;

4) Calculate the dissimilarity between subclusters by
Eq. (19). All Mij are sorted from low to high by its
value. We assume that each subcluster is a separate
cluster, then the subclusters i and j are merged into a
same cluster in the order of Mij repeatedly. The stop
condition is that the number of the remain clusters
decreases to the correct number of the clusters. Note
that if the subclusters i and j which meet the merging
conditions are located in two different clusters, these
two clusters should be merged.

An example is used to illustrate how the presented HCFS
clustering algorithm works (Figs. 1(b), (c), (d)). Fig. 1(b)

TABLE 1. Datasets.

shows that the HCFS algorithm performs well on the Flame
dataset. Themain process is as follows: First, the colored non-
black points are selected as the candidate centers, as shown
in Fig. 1(c). Then, each remaining point is assigned to its near-
est neighbor with higher density to construct the subclusters
in Fig. 1(d). Finally, as MDE < MCF < MBF < MBE <

MAE < MFA < MAB < Mφ = +∞ and the correct number
of the cluster is 2, the subclusters are merged in the following
order:
Start −→ {{A} , {B} , {C} , {D} , {E} , {F}}

Ope (MDE )
−−−−−−−→

{{D,E} , {A} , {B} , {C} , {F}}
Ope (MCF )
−−−−−−−→

{{D,E} , {C,F} , {A} , {B}}
Ope (MBF )
−−−−−−−→

{{D,E} , {C,F,B} , {A}}
Ope (MBE )
−−−−−−−→

{{D,E,C,F,B} , {A}} −→ Stop.
Ope (MDE ) represents the operation of merging adjacent sub-
clusters centered on D and E. The final clustering results are
shown in Fig. 1(b).

IV. EXPERIMENTAL RESULTS
In this section, multiple datasets are used to evaluate our
proposed algorithm as comprehensively as possible. In detail,
Aggregation, D31, Jain, Pathbased, R15, chameleon t4.8k,
and chameleon t7.10k are artificial datasets; Flame, iris,
Thyroid, and seeds are real datasets. Table 1 provides an
overall description of these datasets. Among them, two unla-
beled chameleon datasets [5] and pathbased dataset contain
unevenly distributed local clusters obviously. All datasets can
be conventionally obtained from [22]. The experiment in this
paper consists of two parts. First, the proposed HCFS clus-
tering algorithm are compared with two other density peak
based clustering algorithms, i.e, CFS and NCFS, on three
typical datasets containing unevenly distributed local clus-
ters. Second, the algorithms HCFS, NCFS, CFS, ISDBSCAN
and ISBDBSCAN that need to adjust only one parameter are
evaluated on all labeled datasets.

A. DENSITY PEAK BASED CLUSTERING ALGORITHMS
To evaluate the performance of our method to deal with
unevenly distributed local clusters, the pathbased dataset
and two chameleon datasets t4.8k and t7.10k are used.
These datasets contain unevenly distributed local clusters.
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FIGURE 2. (a) Decision graph obtained on pathbased dataset by employing gauss kernel and p is set to 2%. 6 candidate centers are coloured
non-black while the rest points are coloured black. (b) Decision graph obtained on chameleon dataset t4.8k by employing gauss kernel and p is set
to 2%. 13 candidate centers are coloured non-black while the rest points are coloured black. (c) Decision graph obtained on chameleon dataset
t7.10k by employing gauss kernel and p is set to 1%. 29 candidate centers are coloured non-black while the rest points are coloured black.

FIGURE 3. (a) The clustering result of pathbased dataset using the presented HCFS clustering algorithm by employing gauss kernel and p is set to
2.0%. (b) The clustering result of pathbased dataset using CFS clustering algorithm by employing gauss kernel and p is set to 2.0%. (c) The
clustering result of pathbased dataset using NCFS clustering algorithm.

We compare our method with two density peak based
algorithms CFS and NCFS. Each algorithm has its own
appropriate parameter search space. For the CFS algorithm,
the average percentage of neighbours is selected from the
range [0%, 4%]. For the HCFS algorithm, the coefficient α
is selected from the range [0, 4], and parameter k is selected
from the range [1, 150] for NCFS.

As shown in Figs. 2(a), (b), and (c), there are 13, 13, 29
nonblack points located above the black narrow region corre-
sponding to datasets pathbased, chameleon t4.8k and t7.10k,
respectively. Obviously, the nonblack points have higher ρ’s
and δ’s. In addition, all of these points are suitable candi-
date centers. However, the correct numbers of these three
datasets are 3, 6, 9 respectively. These results indicate that
there are several unevenly distributed local clusters in these
three datasets. This is because the number of the points with
higher ρ’s and larger δ’s is more than the correct number of
the centers within these datasets.

When employing the original CFS algorithm on these
datasets, as the nearest neighbors with higher densities of
the partial points within the set of the candidate centers
are in the wrong clusters, these partial candidate points are
assigned to the wrong clusters. The subclusters in which

these partial candidate points are located are also immediately
merged into those wrong clusters. As a result, misclassifica-
tion occurs, as shown in Fig. 3(b), 4(b), and 5(b). By employ-
ing the reverse nearest neighbor, although NCFS chooses
more appropriate central points than CFS, it still achieve
unsatisfactory results, as shown in Fig. 3(c), 4(c), and 5(c).
The reason for this phenomenon is that NCFS does not have
the ability to handle unevenly distributed local clusters.When
employing the proposed HCFS algorithm on these datasets,
all the candidate centers are not directly assigned to their
nearest neighbor with higher density. Then, the adjacent
subclusters are merged based on the dissimilarity estimation
between them. As a result, the proposed HCFS algorithm
is able to accurately distinguish between local clusters with
uneven distribution, as shown in Fig. 3(a), 4(a), and 5(a).

B. PARAMETER REDUCTION ALGORITHMS
In this section, the algorithms HCFS, NCFS, CFS, ISDB-
SCAN and ISBDBSCAN that only need to adjust one param-
eters are compared on the datasets in Table 1, except for two
unlabeled datasets chameleon t4.8k and t7.10k. Three density
peak based algorithms, i.e., CFS, NCFS and HCFS, select the
same parameters, as in Section IV.A. The ISDBSCAN and
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FIGURE 4. (a) The clustering result of chameleon dataset t4.8k using HCFS clustering algorithm by employing gauss kernel and p is set to 2%.
(b) The clustering result of chameleon dataset t4.8k using CFS clustering algorithm by employing gauss kernel and p is set to 2%. (c) The clustering
result of chameleon dataset t4.8k using NCFS clustering algorithm.

FIGURE 5. (a) The clustering result of chameleon dataset t7.10k using HCFS clustering algorithm by employing gauss kernel and p is set to 1%.
(b) The clustering result of chameleon dataset t7.10k using CFS clustering algorithm by employing gauss kernel and p is set to 1%. (c) The
clustering result of chameleon dataset t7.10k using NCFS clustering algorithm.

ISBDBSCAN algorithms employ the reverse nearest neigh-
bors to select the parameter k from the range [1, 150]. To eval-
uate the performance of these algorithms, the Adjusted Rand
Index (ARI) [23] and Normalized Mutual Information (NMI)
[24] are used, which measure the agreement between the
clustering results produced by an algorithm and the ground
truth. We assumed that there were k clusters produced by
an algorithm and m real classes. The NMI is calculated as
follows:

NMI =

∑k
c=1

∑m
p=1 n

p
c log((n · n

p
c)/(nc · np))√

(
∑k

c=1 nclog(nc/n))(
∑m

p=1 nplog(np/n))
(20)

where n denotes the total number of points, nc denotes the
number of points in the cth cluster in experiment results, np
denotes the number of points in the pth class in ground truth,
and npc denotes the number of common points in class p and
cluster c. ARI is calculated as follows:

ARI

=

∑k
i=1

∑m
j=1

(nij
2

)
− [
∑k

i=1
(ai
2

)∑m
j=1

(bj
2

)
]/(
(n
2

)
)

1
2 [
∑k

i=1
(ai
2

)
+
∑m

j=1
(bj
2

)
]− [

∑k
i=1

(ai
2

)∑m
j=1

(bj
2

)
]/(
(n
2

)
)

(21)

TABLE 2. ARI performance.

where ai denotes the sum of the common points in the ith
cluster in experimental results and all classes in ground truth,
bj denotes the sum of the common points in the jth classes in
ground truth and all clusters in experimental results, and nij
denotes the number of common points in class j and cluster i.

Table 2 shows the ARI performance for the HCFS, NCFS,
CFS, ISDBSCAN and ISBDBSCAN clustering algorithms
on the different datasets. The first six datasets in Table 2 are
2D datasets, and the last three datasets are non-2D datasets.
From these results, the proposed HCFS algorithm is shown
to not only performs well on the 2D datasets but also per-
forms better than the other algorithms on the non-2D datasets.
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FIGURE 6. The clustering results in constructing subclusters by setting p to 1.00(a), 1.05 6 α 6 1.10(b), 1.15 6 α 6 1.20(c),
1.25 6 α 6 1.40(d), 1.45(e), 1.50 6 α 6 1.70(f), 1.75 6 α 6 1.95(g), 2.00(h) on the chameleon dataset t4.8k.

FIGURE 7. The clustering results in constructing subclusters by setting p to 1.00(a), 1.05 6 α 6 1.15(b), 1.20 6 α 6 1.25(c),
1.30 6 α 6 1.55(d), 1.60 6 α 6 1.65(e), 1.70 6 α 6 1.85(f), 1.90 6 α 6 1.95(g), 2.00(h) on the chameleon dataset t7.10k.

TABLE 3. NMI performance.

As the clusters of high dimensional datasets may exist in
subspaces, then our algorithm does not perform as well on
non-2D datasets as it does on 2D datasets. Overall, the three

density peak based algorithms are shown to perform better
than the ISDBSCAN and ISBDBSCAN algorithms. This is
most likely due to the use of the fixed predetermined thresh-
old for determining the core observation. We wondered if
adjusting the predetermined threshold would be a solution for
the problem.

Both CFS and NCFS algorithms attempt to use more infor-
mation to reduce the statistical errors. In addition, the CFS
algorithm attempts to reduce the statistical errors by increas-
ing the value of the average percentage of neighbours p.
In the same way, the NCFS algorithm attempts to reduce
statistical errors by selecting the top four farthest neighbors
rather than one neighbor. Unfortunately, regardless of how
the parameters are adjusted, the CFS and NCFS algorithms
cannot perform well on more complex datasets, such as the
pathbased dataset. However, we can detect the more detail
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TABLE 4. Number of subclusters and number of misclassification points in constructing subclusters.

FIGURE 8. The coefficient α versus NMI performance for HCFS clusterings produced over the range 0 6 α 6 4 on the Pathbased(a), Flame(b),
Aggregation(c), Jain(d), r15(e), d31(f) datasets.

distribution information about the datasets by adjusting the
parameter to a smaller value. In addition, the HCFS algorithm
then uses this information to construct the subclusters and to
merge the adjacent subclusters that are similar and connected.
The distribution of the local clusters are taken into account
by the HCFS algorithm. Therefore, the HCFS algorithm per-
forms better.

There is an obvious difference in the densities between
the local clusters, as the average density of one cluster is
2.181 and that of the other cluster is 8.670 in the Jain dataset.
The proposed HCFS algorithm can also perform very well

on the Jain dataset, while the original CFS algorithm cannot,
which indicates that our method is capable of classifying the
datasets containing different clusters with different densities.

Table 3 shows the NMI performance results on the same set
of datasets and clustering algorithms, and it indicates that the
NMI performance results are similar to the ARI performance
results.

C. PARAMETER ANALYSIS
The proposed HCFS algorithm employs one fixed parameter
(the average percentage of neighbours p) and one adjustable
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parameter (the coefficient α). Additionally, dc, which is cal-
culated though p, is used to compute the density of the points
and to construct the decision graph. αdc is used to determine
the size of the intersection area of two subclusters. First,
we will represent the reasons why the average percentage of
neighbours p can be set to a fixed decimal.

As shown in Table 4, N1 and N2 represent the number
of subclusters and the number of misclassification points
in the process of constructing subclusters, respectively. The
results of column N2 on these labeled datasets indicate that
at most only about 1% of the points are misclassified when
the average percentage of neighbours p is located at the range
of [1%, 2%]. In addition, Figs. 6 and 7 show the effect of p on
performance to construct subclusters for unlabelled datasets.
The results indicate that high quality subclusters are obtained
on chameleon dataset t4.8k when the average percentage of
neighbours p is located at the range of [1%, 2%], and on
chameleon dataset t7.10k when the average percentage of
neighbours p is located at the range of [1%, 1.85%]. This
indicates that the average percentage of neighbours p in the
range of [1%, 1.85%] are reasonable. Here are some minor
misclassification, such as region O in Fig. 6(h), regions P and
S in Fig. 7(g) and regions R and Q in Fig. 7(h). This indicates
that the misclassification rate in constructing subclusters will
increase with the increase of the parameter p. The results of
column N1 indicate that the number of subclusters decreases
with the increase of parameter p. As a small number of
subclasses can reduce the computational cost, then setting p to
1.85% will be a good compromise choice. However, in order
to make our algorithm work with more complex datasets
with fewer errors in constructing subclusters, we can set the
parameter to a smaller fixed number of 1.5%.

Fig. 8 shows the effect of coefficient α on the performance
of the algorithm. Meanwhile, The HCFS clustering algorithm
has a probability of more than 25% to achieve maximum
NMI performance when the coefficient α is located at the
range of [0, 4], which indicates that it is convenient for
us to find appropriate parameters for a dataset within this
range. That also indicates that there is a great reduction in the
dependence of our algorithm’s performance on coefficient α.
In addition, if all candidate centers within a dataset are also
real centers, then the NMI performance will not be affected
by the coefficient α, as shown in Figs. 8(e), (f).

V. CONCLUSION
This paper describes the procedure of misclassification
caused by uneven distributions of local clusters. The rea-
son for this procedure was also analyzed in detail. Then,
a density peak based algorithm employing the hierarchy
strategy (HCFS) was proposed, which is capable of recog-
nizing unevenly distributed local clusters. The HCFS algo-
rithm consists mainly of two stages. First, the points with
high ρ’s and δ’s are selected as candidate centers. In this
stage, each remaining candidate center is used to construct
the subclusters instead of being assigned to the same cluster
as their nearest neighbor with higher density. This not only

avoids the misclassification caused by uneven distribution
of local clusters, but also indirectly solves the problem of
determining the real centers from the set of candidate centers.
Second, the subclusters are merged by a new dissimilarity
estimation strategy proposed in this paper. This new dis-
similarity estimation method can measure the dissimilarity
between two adjacent subclusters and determine whether two
subclusters are connected simultaneously using one equation,
which means that our algorithm only needs to adjust one
parameter. Through these works, the problem of the misclas-
sification due to uneven distribution within local clusters has
been alleviated.

As the clusters of high dimensional datasets may exist in
subspaces, our method does not perform as well on non-2D
datasets as it does on 2D datasets. What’s more, more and
more applications produce large amounts of high dimensional
data without labels. And there will be some unevenly dis-
tributed local clusters in these datasets. This inspire us to
combine subspace clustering algorithms [25], [26] to extend
our method to deal with these high dimensional datasets.

ACKNOWLEDGMENT
The authors would like to thank the two anonymous reviewers
for their valuable and helpful comments on improving the
manuscript.

REFERENCES
[1] H. Gao, C. Ding, C. Song, and J. Mei, ‘‘Automated inspection of E-shaped

magnetic core elements using K-tSL-center clustering and active shape
models,’’ IEEE Trans. Ind. Informat., vol. 9, no. 3, pp. 1782–1789,
Aug. 2013.

[2] D. Wijayasekara, O. Linda, M. Manic, and C. Rieger, ‘‘Mining build-
ing energy management system data using fuzzy anomaly detection
and linguistic descriptions,’’ IEEE Trans. Ind. Informat., vol. 10, no. 3,
pp. 1829–1840, Aug. 2014.

[3] J. Macqueen, ‘‘Some methods for classification and analysis of multivari-
ate observations,’’ in Berkeley Symposium on Mathematical Statistics and
Probability, 1965, pp. 281–297.

[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters a density-based algorithm for discovering clusters
in large spatial databases with noise,’’ in Proc. 2nd Int. Conf. Knowl.
Discovery Data Mining, Aug. 1996, pp. 226–231.

[5] G. Karypis, E.-H. Han, and V. Kumar, ‘‘Chameleon: Hierarchical clus-
tering using dynamic modeling,’’ Computer, vol. 32, no. 8, pp. 68–75,
Aug. 1999.

[6] A. Y. Ng, M. I. Jordan, and Y.Weiss, ‘‘On spectral clustering: Analysis and
an algorithm,’’ in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 849–856.

[7] C. Deng, ‘‘Compressed spectral regression for efficient nonlinear dimen-
sionality reduction,’’ in Proc. Int. Conf. Artif. Intell., 2015, pp. 3359–3365.

[8] S. Vadapalli, S. R. Valluri, and K. Karlapalem, ‘‘A simple yet effective
data clustering algorithm,’’ in Proc. 6th Int. Conf. Data Mining (ICDM),
Dec. 2006, pp. 1108–1112.

[9] C. Cassisi, A. Ferro, R. Giugno, G. Pigola, and A. Pulvirenti, ‘‘Enhancing
density-based clustering: Parameter reduction and outlier detection,’’ Inf.
Syst., vol. 38, no. 3, pp. 317–330, 2013.

[10] Y. Lv, T.Ma,M. Tang, J. Cao, Y. Tian, A. Al-Dhelaan, andM.Al-Rodhaan,,
‘‘An efficient and scalable density-based clustering algorithm for datasets
with complex structures,’’ Neurocomputing, vol. 171, pp. 9–22, Jan. 2016.

[11] A. Rodriguez and A. Laio, ‘‘Machine learning. clustering by fast search
and find of density peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496,
2014.

[12] M. Hahsler and M. Bolaños, ‘‘Clustering data streams based on shared
density between micro-clusters,’’ IEEE Trans. Knowl. Data Eng., vol. 28,
no. 6, pp. 1449–1461, Jun. 2016.

VOLUME 7, 2019 74623



L. Zhuo et al.: HCFS: Density Peak-Based Clustering Algorithm Employing A Hierarchical Strategy

[13] A. Prasanth and S. Valsala, ‘‘Semantic chameleon clustering analysis
algorithm with recommendation rules for efficient web usage mining,’’
in Proc. IEEE-GCC 9th Conf. Exhib. (GCCCE), May 2017, pp. 1–9.

[14] U. Gupta and N. Patil, ‘‘Recommender system based on hierarchical
clustering algorithm chameleon,’’ in Proc. IEEE Int. Adv. Comput. Conf.
(IACC), Jun. 2015, pp. 1006–1010.

[15] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, ‘‘DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN,’’ ACM
Trans. Database Syst., vol. 42, no. 3, p. 19, Aug. 2017.

[16] J. Hou, C. Sha, L. Chi, Q. Xia, and N.-M. Qi, ‘‘Merging dominant sets and
DBSCAN for robust clustering and image segmentation,’’ in Proc. IEEE
Int. Conf. Image Process., Oct. 2014, pp. 4422–4426.

[17] L. Fu and E. Medico, ‘‘FLAME, a novel fuzzy clustering method for the
analysis of DNA microarray data,’’ BMC Bioinf., vol. 8, no. 1, p. 3, 2007.

[18] J. Hou and M. Pelillo, ‘‘A new density kernel in density peak based
clustering,’’ in Proc. 23rd Int. Conf. Pattern Recognit., Dec. 2017,
pp. 468–473.

[19] C. Fraley and A. E. Raftery, ‘‘How many clusters? which clustering
method? answers via model-based cluster analysis,’’ Comput. J., vol. 41,
no. 8, pp. 578–588, 1998.

[20] G. Evanno, S. Regnaut, and J. Goudet, ‘‘Detecting the number of clusters of
individuals using the software structure: A simulation study,’’ Mol. Ecol.,
vol. 14, no. 8, pp. 2611–2620, 2005.

[21] H. Chang and D.-Y. Yeung, ‘‘Robust path-based spectral clustering,’’
Pattern Recognit., vol. 41, no. 1, pp. 191–203, 2008.

[22] M. Lichman, ‘‘Uci machine learning repository,’’ Tech. Rep. 2013.
[23] L. Hubert and P. Arabie, ‘‘Comparing partitions,’’ J. Classification, vol. 2,

no. 1, pp. 193–218, 1985.
[24] A. Strehl and J. Ghosh, ‘‘Cluster ensembles—A knowledge reuse frame-

work for combiningmultiple partitions,’’ J.Mach. Learn. Res., vol. 3, no. 3,
pp. 583–617, 2003.

[25] I. Khan, J. Z. Huang, N. T. Tung, and G. Williams, ‘‘Ensemble clustering
of high dimensional data with fastmap projection,’’ in Trends and Appli-
cations in Knowledge Discovery and Data Mining, W.-C. Peng, H. Wang,
J. Bailey, V. S. Tseng, T. B. Ho, Z.-H. Zhou, and A. L. Chen, Eds., Cham,
Switzerland: Springer, 2014, pp. 483–493.

[26] I. Khan and J. Z. Huang, ‘‘Fastmap in dimensionality reduction: Ensemble
clustering of high dimensional data,’’ Int. J. Data Sci., vol. 2, no. 1,
pp. 15–28, 2017.

LINLIN ZHUO is currently pursuing the Ph.D.
degree with Hunan University, China. His research
interests include clustering algorithm, object
detection, and multi-GPU computing.

KENLI LI received the Ph.D. degree in computer
science from the Huazhong University of Science
and Technology, China, in 2003. He was a Visiting
Scholar with the University of Illinois at Urbana–
Champaign, from 2004 to 2005. He is currently a
Full Professor of computer science and technology
with Hunan University and the Deputy Director
of the National Supercomputing Center, Chang-
sha. His current research interests include parallel
computing, high-performance computing, and grid

and cloud computing. He has published more than 130 research papers in
international conferences and journals, such as the IEEE-TC, the IEEE-
TPDS, the IEEE-TSP, JPDC, ICPP, and CCGrid. He is an Outstanding
Member of CCF. He serves on the Editorial Board of the IEEE TRANSACTIONS

ON COMPUTERS.

BO LIAO received the Ph.D. degree in com-
putational mathematics from the Dalian Univer-
sity of Technology, Dalian, China, in 2004. From
2004 to 2006, he was a Postdoctoral Fellow with
the University of Chinese Academy of Sciences,
Beijing, China. He is currently a Full Professor
of information engineering with Hunan Univer-
sity, Changsha, China. He has authored more than
100 papers in international conferences and jour-
nals. His current research interests include bioin-

formatics, image processing, and big data processing.

HAO LI is currently pursuing the Ph.D. degree
with Hunan University, China. He has published
six journal and conference papers in the IEEE-
TPDS, InforSci, the IEEE-TII, CIKM, and ISPA.
His research interests include large-scale sparse
matrix and tensor factorization, recommender
systems, social networks, data mining, machine
learning, and GPU and multi-GPU computing.

XIAOHUI WEI is currently pursuing the Ph.D.
degree in computer science and technology with
Hunan University, Changsha, China. His research
interests include subspace learning, multi-view
clustering, and hyperspectral image classification.

KEQIN LI is currently a SUNY Distinguished
Professor of computer science with the State Uni-
versity of New York. He has published more
than 620 journal articles, book chapters, and
refereed conference papers, and has received
several best paper awards. He currently serves
or has served on the Editorial Boards for the
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, the IEEE TRANSACTIONS ON COMPUTERS,
the IEEE TRANSACTIONS ON CLOUD COMPUTING,

the IEEE TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING. His current research interests include cloud com-
puting, fog computing and mobile edge computing, energy-efficient com-
puting and communication, embedded systems and cyber-physical systems,
heterogeneous computing systems, big data computing, high-performance
computing, CPU-GPU hybrid and cooperative computing, computer archi-
tectures and systems, computer networking, machine learning, and intelli-
gent and soft computing.

74624 VOLUME 7, 2019


	INTRODUCTION
	MOTIVATION
	RELATED RESEARCH
	OUR CONTRIBUTIONS

	DENSITY PEAK BASED CLUSTERING ALGORITHMS
	CFS CLUSTERING ALGORITHM
	NCFS CLUSTERING ALGORITHM

	OUR ALGORITHM
	PROBLEM DESCRIPTION
	CONSTRUCTING THE SUBCLUSTERS
	MERGING THE SUBCLUSTERS

	EXPERIMENTAL RESULTS
	DENSITY PEAK BASED CLUSTERING ALGORITHMS
	PARAMETER REDUCTION ALGORITHMS
	PARAMETER ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	LINLIN ZHUO
	KENLI LI
	BO LIAO
	HAO LI
	XIAOHUI WEI
	KEQIN LI


