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A Robust Pseudo Fuzzy Rough Feature Selection
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Abstract—Fuzzy-rough sets (FRS) provide an outstanding the-
oretical tool for feature selection (FS). Whilst promising, the FRS
model is sensitive to noisy information and ineffectively applica-
ble to the data with large class density difference, with existing
FRS-based FS methods only tackling one of these challenges.
Therefore, to overcome both of these issues, this article presents
a robust FS algorithm using linear reconstruction measure for
the first time. First, a pseudo FRS model is proposed, where the
distribution-aware linear reconstruction relation serving as the
fuzzy similarity relation is constructed by considering the insight of
meaningful information (i.e., distribution information of samples
and density information of classes) to enhance the robustness and
the pseudofuzzy rough approximations are further redefined based
on k-Nearest Neighbor (kNN) granules determined by the linear
reconstruction coefficients to empower the antinoise ability. Then,
the pseudo FRS model is employed to guide the robust FS algorithm
from the perspective of redundant filter, strongly relevant priority,
and discriminative selection to determine the final feature subset.
The experimental results on 31 datasets and practical applications
(i.e., cancer diagnosis and face recognition) demonstrate that the
reduct gained by the proposed approach generally outperforms
those attained by alternative implementations of FRS-based FS
and state-of-the-art FS techniques.

Index Terms—Antinoise ability, linear reconstruction measure
(LRM),k-Nearest Neighbor (kNN), pseudofuzzy-rough sets (FRS),
robust feature selection (FS).

I. INTRODUCTION

F EATURE selection (FS) is presently one of the most promi-
nent data preprocessing approaches. By eliminating irrele-

vant and redundant features, FS contributes to achieve a subset of
the original features preserving their original meanings unaltered
while improving performance of a specific task with regard to
efficiency and data comprehension [1], [2]. The implementation

Manuscript received 6 February 2024; revised 21 May 2024; accepted 3
July 2024. Date of publication 9 July 2024; date of current version 8 October
2024. This work was supported in part by the National Key Research and
Development Program of China under Grant 2022YFB4500800, and in part by
the National Natural Science Foundation of China under Grant 62032013 and
Grant 92267206. Recommended by Associate Editor R. Jensen. (Corresponding
author: Xingwei Wang.)

Lin Qiu, Xingwei Wang, Kaimin Zhang, Fei Gao, and Bo Yi are with the Col-
lege of Computer Science and Engineering, Northeastern University, Shenyang
110819, China (e-mail: qiulin960229@163.com; wangxw@mail.neu.edu.cn;
2201918@stu.neu.edu.cn; gaof9264@163.com; yibo@mail.neu.edu.cn).

Yanpeng Qu is with the College of Artificial Intelligence, Dalian Maritime
University, Dalian 116026, China (e-mail: yanpengqu@dlmu.edu.cn).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TFUZZ.2024.3424809

of FS may follow three strategies: embedded, wrapper, and filter.
The key factor of the filter strategy-based ones is to design an
evaluation function in terms of specific criteria to evaluate the
feature subset and select the features that satisfy the defined
conditions. Fuzzy-rough sets (FRS) [3], [4] capture uncertainty
inherent in data, information, or knowledge by integrating the
concepts of vagueness (for fuzzy sets [5]) and indiscernibility
(for rough sets [6]), which are utilized to guide the FS process
with significant success.

In essence, FRS-based FS (FRS-FS) approaches are imple-
mented by making the most of the principles associated with the
dependency degrees, such as, a series of heuristic algorithms
developed by Jensen, Shen, et al. [7], [8], [9], [10], [11], Hu,
et al. [12], [13], [14], Yang et al. [15], and Wang et al. [16]. How-
ever, most existing FRS-FS algorithms neglect meaningful infor-
mation embedded in the possible structure of inherent grouped
features, which may lead to redundant information. Therefore,
FRS-FS algorithms have undergone further refinement through
integration with the consideration of feature grouping [17], [18],
[19], [20]. For instance, correlation coefficient in FRFG [17],
graph theory in GBFG [18] and FGS-RFRAS [19], and k-means
in EL-TSFRFS [20] are employed to group redundant features,
respectively, and distinct FS techniques are implemented subse-
quently to determine the discriminative feature subset by using
FRS.

While promising, the aforementioned methods are sensitive
to noise information and data distribution. In order to overcome
these drawbacks, many researchers are dedicating their efforts
to the exploration of robust FRS-FS algorithms. To improve
the antinoise ability, some robust FRS models have been pro-
posed by improving the calculation of fuzzy approximations
in classical FRS, such as, β-precision FRS model [21], VQRS
model [22], VPFRS model [23], FVPRS model [24], PFRS
model [25], OWA-FRS model [26], SFRS model [27], k-means
FRS model [28], k-trimmed FRS model [28], k-median FRS
model [28], k-order FRS model [29], and RFRS model [28].
These robust models focus on mitigating the impact of the
noisy information in data on the lower approximation, by ne-
glecting some nearest samples to expand the lower approx-
imation (i.e., β-precision FRS, PFRS, SFRS, and k-trimmed
FRS) or substituting the minimum statistics with robust approx-
imation operators (i.e., VQRS, VPFRS, FVPRS, OWA-FRS,
k-means FRS, and k-median FRS). Moreover, some approaches
are proposed to overcome the sensitiveness of noisy data by
conducting with different fuzzy similarity relations, such as,
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kernel function-based metrics [30], [31], [32], and information
theory-based metrics [33], [34], [35], [36].

Another kind of robust FRS-FS technique aims at addressing
the sensitiveness of data distribution [37], [38], [39], [40], [41].
In [37], the relative distance-based FS is developed by integrat-
ing the absolute distance with the class density to relieve the
impact of data distribution on the FRS model. Also, in [38],
the k-Nearest Neighbor (kNN) granules information is used
for designing the relative distance-based uncertainty measure
through which, a robust FRS model proves to be highly effective
for datasets exhibiting significant density variations. In addition,
to improve the generalization of FRS model, the relative simi-
larity is developed by considering the label distribution among
data samples in the proposed model [39]. In [40], a fitting FRS
model is developed by analyzing the data similarity distributions
with respect to the class decisions. In [41], a local composite
entropy to the uncertainty and decision distribution in fuzzy
decision systems is developed to comprehensively account for
the distribution characteristics of imbalanced data.

While showing potential, the abovementioned robust FRS-FS
works concentrate exclusively on addressing either the weakness
of antinoise ability or the sensitiveness of data distribution, yet
both of these issues significantly impact the generalization of
FRS models, subsequently degrading the overall performance
of classification tasks. To combat the potential adverse im-
pacts of noisy information and data distribution concurrently,
a novel Linear Reconstruction Measure-based Robust Pseudo
Fuzzy Rough Feature Selection (LRM-RPFRFS) supported with
a robust pseudo FRS model is presented in this article, enhancing
the performance of FS.

Particularly, the distribution-aware linear reconstruction rela-
tion serving as the fuzzy similarity relation is developed using
linear reconstruction measure (LRM) [42] advocating for the
evaluation of a feature subset and the pseudofuzzy rough ap-
proximations are redefined by determining the kNN granules
in terms of the linear reconstruction coefficients. Furthermore,
the robust LRM-k-PFRS model is constructed to improve the
antinoise ability and overcome the sensitiveness of data distri-
bution in this article. In the proposed approach, we integrated the
LRM-k-PFRS model into the RF-SRP-DS selection strategy by
fully considering three aspects: redundant filter (RF), strongly
relevant priority (SRP), and discriminative selection (DS) to
determine the final feature subset.

The proposed LRM-RPFRFS approach is fully investigated
through systematic experimental validation and evaluation. The
experimental studies are implemented in reference to six FRS-
FS methods (i.e., four feature grouping-based FRS-FS methods
and two heuristic FRS-FS methods) and four state-of-the-art
FS methods (i.e., two wrapped strategy-based FS methods and
two filter strategy-based FS methods), including: FRFG [17],
GBFG [18], EL-TSFRFS [20], FGS-RFRAS [19], FRMR [15],
HARCM [16], GSA [43], GWO [44], ReliefF [45], PCC [46].
Furthermore, the determined reducts are evaluated by the follow-
ing four different classifiers: J48 [47], Bagging [48], Jrip [49],
and Part [50], respectively. The comparative results demon-
strate that LRM-RPFRFS outperforms the rest, ensuring the
effectiveness, generalization, and robustness, across 31 datasets,

including: 18 benchmark datasets, 5 noisy datasets, 3 synthetic
datasets with different data distributions, 3 biological datasets
and 2 face datasets.

The contributions of this article are outlined from following
two perspectives.

1) A robust pseudo FRS (i.e., LRM-k-PFRS) model is pre-
sented by utilizing LRM for the first time.
a) Compared to existing fuzzy similarity relations (which

mainly consider the similarity between two samples),
the distribution-aware linear reconstruction relation
serving as the fuzzy similarity relation in LRM-k-
PFRS fully considers the sight of certain meaning-
ful information, including distribution information of
samples and density information of classes. Therefore,
the LRM-k-PFRS model is effectively applicable for
diverse data distributions.

b) The definitions of pseudofuzzy rough approximations
in LRM-k-PFRS do not only use the nearest neighbor
from other decision classes, but also calculates the av-
erage value of dissimilarities between the sample and
kNN granules. Compared to existing kNN granules-
based FRS models (which employ the point-to-point
measures), the linear reconstruction coefficients used
to determine the kNN granules consider not only the
distance information between two samples, but also
the relationship between all samples. Thus, the kNN
granules in LRM-k-PFRS can capture more meaning-
ful information and furthermore, the LRM-k-PFRS
model can effectively alleviate the sensitiveness of
noisy samples.

2) The strategy of RF-SRP-DS is designed to guide the su-
pervised filter-based FS algorithm (i.e., LRM-RPFRFS).
a) Compared to the most existing heuristic FRS-FS ap-

proaches (which only focus on discrimination) and
feature grouping-based FRS-FS approaches (which
ignore the relevance), RF-SRP-DS initially filters out
the redundant features, then ranks the rest based on the
relevance between conditional features and decision
feature (with highly correlated features prioritized).
Subsequently, LRM-k-PFRS model is employed to
determine a more discriminative feature subset. There-
fore, RF-SRP-DS comprehensively considers three es-
sential aspects: redundancy, relevance, and discrimi-
nation.

b) Compared to existing feature grouping-based FRS-
FS approaches (which use correlation coefficient and
threshold setting, information theory & graph the-
ory and k-means), RF-SRP-DS employs LRM and
graph theory to form feature groups, where LRM
thoroughly considers the distributional relationships
between features to evaluate their redundancy, thereby
grouping features that offer parallel discriminative
capabilities.

The rest of this article is structured as follows. In Section II,
the problems of classical FRS model are described. The pseu-
dorobust model called LRM-k-PFRS and the novel FS approach
called LRM-RPFRFS are presented in Sections III and IV,
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respectively. In Section V, the results of comparative experi-
mental studies are presented and discussed. Finally, Section VI
concludes this article.

II. CLASSICAL FRS MODEL AND ITS PROBLEMS

Let DT = (U, C ∪ D) denote a decision table, where U =
{xt|t = 1, . . ., n} is a nonempty set of finite samples; C =
{fi|i = 1, . . .,m} is a nonempty set of condition features;
and D = {yt ∈ {l1, . . ., lr}|t = 1, . . ., n} is the set of deci-
sion feature. Suppose that D partitions the samples in U into
r crisp equivalence classes U/D = {D1,D2, . . .,Dr}, where
∀xk ∈ Dj , yk ∈ lj .

The definitions of the fuzzy lower and upper approximations
of a decision class Dk, k = 1, . . ., r with respect to P ⊆ C are
defined as follows:

RP (Dk)(xi) = min
xj /∈Dk

{1−RP (xi, xj)} (1)

RP (Dk)(xi) = max
xj∈Dk

RP (xi, xj) (2)

with xi ∈ U and RP the fuzzy similarity relation induced by the
subset of features P

RP (xi, xj) = ∩a∈PRa(xi, xj) (3)

whereRa(xi, xj) denotes the degree to which the objects xi and
xj are regarded to be similar with respect to the feature a; and
it is a fuzzy similarity relation as it satisfies

1) Reflexivity: Ra(xi, xi) = 1, ∀xi ∈ U.
2) Symmetry: Ra(xi, xj) = Ra(xj , xi), ∀xi, xj ∈ U.
RP (Dk)(xi) (i.e., the minimum one among the dissimilarities

between xi and all the samples from the domain U− Dk) and
RP (Dk)(xi) (i.e., the maximum one among the similarities
between xi and all the samples from Dk) indicate that the
membership degree of xi certainly and possibly belonging to
the class Dk, respectively.

Furthermore, the fuzzy positive region of D with respect to
P ⊆ C is defined as follows:

POSP (D)(xi) =

r⋃
k=1

RP (Dk)(xi). (4)

Based on the definition of fuzzy positive region, the fuzzy
dependency degree is defined as follows:

γP (D) =

∑n
i=1 POSP (D)(xi)

|U| . (5)

While promising, the definitions of (1) and (2) in the classical
FRS [7] are sensitive to noise in data and do not reflect the
uncertainty information of data precisely when the difference of
class density is significantly obvious. The mentioned problems
are illustrated as follows (taking the lower approximation as the
example).

Sensitiveness to Noise Information: As shown in (1), the
lower approximation in classical FRS is defined based on the
dissimilarity between the sample and the nearest neighbor from
other decision classes. However, in practical applications, data is
often unavoidably accompanied by noise for a variety of reasons.

Fig. 1. Two kinds of data distributions. (a) Data with distribution 1. (b) Data
with distribution 2.

Thus, if the nearest neighbor happens to be the noise sample,
this will not only reduce the reliability and accuracy of the
lower approximation, but also degrade the performance of the
downstream classification task.

Sensitiveness to Data Distribution: To clearly illustrate the
problem, a simple example is used as shown in Fig. 1. In Fig. 1,
the data distributions D1 and D2 are generated based on the
feature subsets P1 and P2, respectively, where the distribution
for class 1 (c1) are same and the distribution for class 2 (c2)
are different. The density difference between class 1 and class
2 is small for distribution D1, while that of distribution D2 is
large. The lower approximations of x1

1 and x2
1 can be calculated

according to (1)

RP1
c1(x

1
1) = 1−RP1

(x1
1, y1)

RP2
c1(x

2
1) = 1−RP2

(x2
1, z1).

Suppose that the following fuzzy similarity relation is employed:

R(x, y) = exp

(
−||x− y||2

σ

)
.

or

R(x, y) = 1− ||x− y||2.
It can be seen that RP1

(x1
1, y1) = RP2

(x2
1, z1), thus

RP1
c1(x

1
1) = RP2

c1(x
2
1). That is, x1

1 and x2
1 have the same

uncertainty degree. But, it is obviously that the x1
1 has less

uncertainty (i.e., larger certainty) belonging to c1 than x2
1.

Therefore, the lower approximation of classical FRS performs
poorly for evaluating the certainty of data in this case, where
the data has a large class density difference.

It is crucially important to overcome both of these problems,
which significantly impact the generalization of FRS models,
subsequently degrading the overall performance of the down-
stream classification task. However, most existing FRS-FS meth-
ods only aim at addressing one of the two problems. Therefore,
the robust LRM-k-PFRS model is developed to improve the
antinoise ability and overcome the sensitiveness of data distri-
bution concurrently, by combining the distribution-aware linear
reconstruction relation with kNN granules in this article.

III. ROBUST PSEUDOFRS MODEL

Considering the sensitiveness of the classical FRS model to
noise information and data distribution, the distribution-aware
linear reconstruction relation is developed with the support of
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LRM [42] first and then the robust LRM-k-PFRS model is pro-
posed by integrating the distribution-aware linear reconstruction
relation with kNN granules.

A. Pseudo Fuzzy Similarity Relation

Most fuzzy similarity relations typically only consider the
similarity between two samples, inadvertently ignoring the
meaningful information about certain inherent relationships be-
tween samples, such as the distribution information and density
information. Thus, the distribution-aware linear reconstruction
relation is developed to serve as the fuzzy similarity relation in
this work.

1) Distribution-Aware Linear Reconstruction Relation: The
dataset in a supervised task can be represented as a
decision table DT = (U,C ∪ D). Moreover, X ∈ Rn×m =
[x1, x2, . . . , xn] = [f1; f2; . . . ; fm] represents the data matrix,
where n and m denote the number of samples and features,
respectively, the ith row xi represents the ith sample, and
the jth column fj represents the jth feature. X̄t ∈ Rn×1 =
[x1, x2, . . . , xn] = [ft] consists only of a single conditional
feature ft ∈ C.

For each data sample xi, LRM [42] intends to reconstruct
it with all samples in U by minimizing the Euclidean distance
between wiX and xi, where wi ∈ Rn = [wi,1, wi,2, . . . , wi,n]
represents the linear reconstruction coefficient vector and each
element wi,j ∈ wi represents the similarity relation between xi

and xj , that is, utilizing all samples to represent themselves. In
this way, based on the LRM, the linear reconstruction coefficient
matrix W ∗

t on feature ft ∈ C can be formulated as the linear
reconstruction process with the L2-norm regularization term,
which is also known as ridge regression

W ∗
t = min

W

{
n∑

i=1

‖xi − wiX̄t‖22 + α

√∑n

i=1
||wi||22

}
= min

W
{‖X̄t −WX̄t‖2F + α‖W‖2F }. (6)

where W ∈ Rn×n = [w1, . . ., wn] denotes the reconstruction
coefficient matrix between the samples and themselves; W ∗

t is
the optimal solution of W ; α is the regularization parameter that
is used to balance the loss function and regularization term.

Each coefficientwi,j ofW ∗
t reflects the underlying effect ofxj

on xi, where the positive/zero/negative value of the coefficient
indicates the positive/null/negative correlation between xi and
xj . Especially, a larger absolute value of coefficient indicates
the higher correlation between the two samples. To illustrate
the meaning of the reconstruction coefficient matrix, a random
optimal solution W ∗

t ∈ R5×5 is supposed as follows:

W ∗
t =

⎡⎢⎢⎢⎢⎣
0.6 0.06 0.05 0.09 0.2
0.09 0.7 −0.1 0.25 0.07
0.08 −0.02 0.6 0.17 0.13
0.02 0.15 0.12 0.8 −0.06
0.13 0.05 0.1 −0.12 0.9

⎤⎥⎥⎥⎥⎦ .

In this example, there are five samples {x1, x2, x3, x4, x5}. The
values of coefficients in the ith row of W ∗

t imply the similarity
correlations between the ith sample xi and all samples. For

example, the correlations between x1 and x1, x2, x3, x4, x5 are
0.6, 0.06, 0.05, 0.09, 0.2, respectively.

In order to obtain the distribution-aware linear reconstruction
relation RLRM

ft
, perform the following operations on W ∗

t : For
∀i, j ∈ (0, n], 1) W ∗

t [i][j]=|W ∗
t [i][j]|, which does not impact

the evaluation of membership degree; 2) W ∗
t [i][j] = W ∗

t [j][i]
= min(W ∗

t [i][j],W
∗
t [j][i]), which is implemented to further

improve the robustness. Thus, the linear reconstruction relation
RLRM

{ft} (xi, xj) isW ∗
t [i][j]. For ∀P ∈ C, the linear reconstruction

relation induced by P is computed by

RLRM
P (xi, xj) = ∩ft∈PR

LRM
{ft} (xi, xj). (7)

Obviously, RLRM
P satisfies non-negativity and symmetry, but

does not satisfy reflexivity. Therefore, the proposed model con-
structed using RLRM

P is not a FRS model in the strict sense, we
call it the pseudo FRS model. Since the membership degree of
data sample to a specific class is primarily determined by its
similarity correlation between itself and its neighbors indepen-
dent of reflexivity, RLRM

P can effectively evaluate the similarity
between samples by incorporating the distributional information
of samples, serving as the fuzzy similarity relation. Moreover,
RLRM

P is monotonic, as follows.
Property 1: Let B1 ⊆ B2 ⊆ C, then, RLRM

B2
⊆ RLRM

B1
.

Proof: According to the (7), for ∀x, y ∈ U, B1 ⊆ B2 ⊆ C,
we haveRLRM

B2
(x, y) = ∩a∈B2

RLRM
a (x, y) ≤ ∩a∈B1

RLRM
a (x, y)

= RLRM
B1

(x, y). Thus, it can be concluded that RLRM
B2

⊆ RLRM
B1

.
2) Theoretical Analysis: It is reported that in [42], the linear

reconstruction coefficients can effectively indicate the similarity
correlation between a given sample and the other samples. Let
x0 be a given sample which is represented asx0 =

∑n
i=1 w0,ixi,

where w0 = [w0,1, w0,2, . . . , w0,n] denotes the reconstruction
coefficient vector generated by the LRM. The w0,j is computed
by

w0,j =
1

2

⎛⎝d2

⎛⎝ n∑
i=1,i
=j

w0,ixi, x0

⎞⎠− d2(x0, xj)

⎞⎠ . (8)

where d(x0, xj) represents the Euclidean distance between x0

and xj . The detailed description of the derivation process of (8)
can be consulted in [42]. In (8), the d2(

∑n
i=1,i
=j w0,ixi, x0)

represents the Euclidean distance between x0 and other repre-
senting samples xi, i 
= j. The larger d2(

∑n
i=1,i
=j w0,ixi, x0)

indicates that x0 is more prominent for forming the lin-
ear reconstruction subspace. The larger w0,j (i.e., the larger
d2(
∑n

i=1,i
=j w0,ixi, x0) as well as the smaller d2(x0, xj)), the
larger similarity correlation between x0 and xj is. From (8),
it can be indicated that the linear reconstruction coefficients
obtained by LRM can consider not only the information of Eu-
clidean distance between two samples, but also the relationships
of all data samples. In this way, inherent similarity information
embedded in geometric distribution of data can be captured and
reflected. Thus, the linear reconstruction coefficients coded by
LRM are used as the fuzzy similarity relation to determine the
kNN granules in LRM-k-PFRS, which can select kNN granules
with more meaningful information.
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Following the use of the example in Fig. 1, where the sam-
ples with the label c2 in Fig. 1(a) and 1(b) are denoted as
Y = [y1, . . ., y10] and Z = [z1, . . ., z10], respectively, the lower
approximations of x1

1 and x2
1 can be calculated as follows. First,

according to (6), the LRM of x1
1 and x2

1 can be formulated with
Y and Z, as follows:

w1 = min
w

{‖x1
1 − wY ‖22 + α‖w‖22}

w2 = min
w

{‖x2
1 − wZ‖22 + α‖w‖22}.

where w1 = [w1
1, . . ., w

1
10] and w2 = [w2

1, . . ., w
2
10]. Thus, ac-

cording to (8), the distribution-aware linear reconstruction rela-
tions can be represented approximatively as

RP1
(x1

1, y1) = w1
1 =

1

2

(
d2

(
10∑
t=2

w1
t yt, y1

)
− d2(x1

1, y1)

)

RP2
(x2

1, z1) = w2
1 =

1

2

(
d2

(
10∑
t=2

w2
t zt, z1

)
− d2(x2

1, z1)

)
.

Finally, the pseudofuzzy rough lower approximations of x1
1 and

x2
1 can be obtained

RP1
c1(x

1
1) = 1−RP1

(x1
1, y1)

RP2
c1(x

2
1) = 1−RP2

(x2
1, z1).

For RP1
(x1

1, y1) and RP2
(x2

1, z1), it can be seen from Fig. 1
that, d(x1

1, y1) = d(x2
1, z1) = d, thus d2(x1

1, y1) = d2(x2
1, z1).

Moreover, since the density of c2 with distribution D1 is
larger than that with distribution D2, d2(

∑10
t=2 w

1
t yt, y1) <

d2(
∑10

t=2 w
2
t zt, z1). Therefore, RP1

(x1
1, y1) < RP2

(x2
1, z1). A

further conclusion can be drawn: RP1
c1(x

1
1) > RP2

c1(x
2
1).

Thus, the x1
1 has larger certainty degree of belonging to c1 than

x2
1.
Importantly, it requires that the fuzzy similarity relation in

FRS should be appropriate for different data distributions. The
results analyzed above show the LRM can capture important
information, such as the distribution information of data samples
and the density information of data classes. Thus, distribution-
aware linear reconstruction relation has good generalization
performance and can solve the problem of sensitiveness of data
distribution mentioned in Section II.

B. Pseudo FRS Model

By using the pseudofuzzy similarity relation, a robust pseudo
FRS model called LRM-k-PFRS is proposed.

Definition 1: Given a DT = (U,C ∪ D), P ∈ C and Dj ∈
U/D. In LRM-k-PFRS, the pseudolower and upper approxima-
tions of y ∈ U with respect to P are defined, respectively, as
follows:

Rk
LRM
P

(Dj)(y) =
1

k

k∑
i=1

(1−RLRM
P (y, xi)) (9)

where {x1, x2, . . ., xk} is the set of kNN (i.e., has the k largest
linear reconstruction coefficients) of y ∈ U in subset U− Dj

Rk
LRM
P (Dj)(y) =

1

k

k∑
i=1

RLRM
P (y, xi) (10)

where {x1, x2, . . ., xk} is the set of kNN (i.e., has the k largest
linear reconstruction coefficients) of y ∈ U in subset Dj .

As the calculation of the fuzzy rough approximations of a
sample only cover the dissimilarity information of the nearest
sample in classical FRS, the precision of the membership degree
to the positive domain may be degraded. This will further de-
stroy the accuracy of the lower approximation when the dataset
contains noisy information. To alleviate the problem of sensi-
tiveness of noise in data mentioned in Section II, the strategy
of kNN granules is employed when calculating the pseudo-
fuzzy rough approximations. Moreover, linear reconstruction
coefficients used to determine the kNN granules consider not
only the distance information between two samples, but also
the relationship between all samples, which can capture more
meaningful information.

Definition 2: Given a DT = (U,C ∪ D), P ∈ C and Dj ∈
U/D. In LRM-k-PFRS, the pseudofuzzy dependency degree of
D with respect to P is defined, as follows:

γk
LRM
P (D) =

∑
y∈U maxLj=1 Rk

LRM
P

(Dj)(y)

|U| . (11)

Since the pseudofuzzy rough lower approximation can in-
dicate that the membership degree of a data sample certainly
belongs to a specific class, the pseudofuzzy dependency degree
reflects the percentage of samples that can be exactly classified
in terms of the feature subset P ∈ C.

The Rk
LRM
P

(Dj)(y), Rk
LRM
P (Dj)(y) and γk

LRM
P (D) satisfies

the following properties:
Property 2: Let B1 ⊆ B2 ⊆ C, then, Rk

LRM
B1

(Dj)(y) ≤
Rk

LRM
B2

(Dj)(y).

Property 3: Let B1 ⊆ B2 ⊆ C, then, Rk
LRM
B2

(Dj)(y) ≤
Rk

LRM
B1

(Dj)(y).
Property 4: Let B1 ⊆B2 ⊆C, then, γkLRM

B1
(D)≤ γk

LRM
B2

(D).
Proof: According to the Property 1, for a given k and

∀y ∈ U, since B1 ⊆ B2 ⊆ C and RLRM
B2

⊆ RLRM
B1

, we

have 1
k

∑k
i=1 R

LRM
B2

(y, xi) ≤ 1
k

∑k
i=1 R

LRM
B1

(y, xi). Thus,

Rk
LRM
B2

(Dj)(y) ≤ Rk
LRM
B1

(Dj)(y). Moreover, we have
1
k

∑k
i=1(1−RLRM

B1
(y, xi)) ≤ 1

k

∑k
i=1(1−RLRM

B2
(y, xi)).

Thus, Rk
LRM
B1

(Dj)(y) ≤ Rk
LRM
B2

(Dj)(y). Further, γkLRM
B1

(D) ≤
γk

LRM
B2

(D).
It can be indicated from the above analysis that, the pseudo-

fuzzy dependency degree in LRM-k-PFRS is monotonic, which
can be used to guide the FS process to select the discriminative
features in this article.

IV. FEATURE GROUPING AND SELECTION

LRM-k-PFRS model is employed to guide a robust FS algo-
rithm called LRM-RPFRFS from the perspective of RF, SRP
and DS (i.e., the selection strategy of RF-SRP-DS) to determine
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TABLE I
ORIGINAL DATASET

the final feature subset. After implementing the feature grouping
as a pretreatment, the process of FS is implemented.

A. Feature Grouping

As an essential step for implementing LRM-RPFRFS, po-
tentially redundant features are grouped. First, the correlation
matrix WCM ∈ Rm×m is calculated, where we design to use all
features in C to reconstruct themselves, i.e., reconstruct each
conditional feature ft ∈ C with all features, as follows:

WCM = min
W

{
m∑
t=1

‖fi −Xwi‖22 + γ

√∑m

t=1
||wi||22

}
= min

W
{‖X −XW‖2F + γ‖W‖2F } (12)

where W ∈ Rm×m = [w1, . . ., wm] denotes the reconstruction
coefficient matrix between each feature and themselves; WCM

is the optimal solution of W ; γ is the regularization parameter.
Similar to the W ∗

t , WCM is also subjected to the following
treatments: For ∀i, j ∈ (0,m], 1) WCM[i][j] = |WCM[i][j]|; 2)
WCM[i][j]=WCM[j][i]=min(WCM[i][j],WCM[j][i]). Then, the
undirected correlation graph G = {ϑ, ε,WCM} is constructed,
where ϑ = {ft|t = 1, . . .,m} is the vertex set with m features;
ε is the edge set; the weight of the edge between pairwise
features fi, fj ∈ C(i 
= j) is WCM[i][j]. The G is quite complex
in analysing the redundancy between features, particularly when
the number of features is large. Thus, a maximum spanning tree
(MST) of G is generated by using the same mentality of the
Kruskal’s algorithm for creating the minimum spanning tree
to streamline the number of edges, where the generated MST
covers all vertices with the least edges. After that, a pruning
strategy is implemented. Because a vertex may be connected to
more than one node in MST, in this case, each vertex retains the
only edge with the largest weight and the other edges are deleted
in the pruning strategy. Finally, features that are connected each
other are the members of the same group.

To illustrate this process, a simple dataset is used as in
Table I, consisting of eight objects, each involving nine con-
ditional features and one decision feature. In advance of feature
grouping, the values of each feature are normalized using the
min–max normalization method, mapping the original feature
measurements made on different scales onto a notionally com-
mon scale, as in Table II. According to theWCM ∈ R9×9, theG is
constructed. After that, the process of feature grouping is shown
in Fig. 2. First, the MST is created using Kruskal’s algorithm.
Then, the edges between pairwise features (f3, f5) and (f3, f8)

Fig. 2. Process of feature grouping.

are deleted after implementing the pruning strategy. Thus, all
features are partitioned into three groups, which are {f1, f2, f3},
{f4, f5, f6}, {f7, f8, f9}. It can be seen from the Table II,
the features within the same group possess nearly redundant
information, leading to parallel discriminative capabilities.

Graphs provide an intuitive representation of relationships
between features, enhancing the comprehension of how features
interrelate. In addition, graph theory-based feature grouping
techniques can effectively identify groups of features that are
highly correlated or redundant. Compared to existing feature
grouping-based FRS-FS approaches [18], [19], RF-SRP-DS em-
ploys LRM to calculate the relationships between features to
construct the undirected correlation graph, which thoroughly
considers the distributional relationships and captures more
important information.

B. Feature Selection

Given the resulting groups of features, the selection strategy
of RF-SRP-DS is employed to implement the robust FS, com-
prehensively considering three essential aspects: redundancy,
relevance, and discrimination.

Redundant Filter: Exclusive lasso (EL) is utilized to select
the representative features from each group, which formulates
the process of linear reconstruction with the L1,2-norm. The m
features are partitioned into g groups in the process of feature
grouping

ŵ = min
w

{‖y −Xw‖22 + λ‖w‖21},

‖w‖21 =

√∑g

i=1

(∑Ni

j=1
|wij |

)2

. (13)

Here, ŵ = [ŵ1, ŵ2, . . . , ŵm]T is the reconstruction coefficients
of EL; y represents the class labels of all instances; λ is the
regularization parameter and Ni is the quantity of the features
in the ith group. The L1,2-norm enforces intergroup nonsparsity
via L2-norm over members within each group and intragroup
sparsity via L1-norm over groups. In this manner, EL performs
FS by guaranteeing the inclusion of at least one feature will be
selected from each group. Consequently, any redundant features
within these groups concerning the decision-making process
will be eliminated, that is, the features with zero reconstruction
coefficients are discarded within each group.

Strongly Relevant Priority: The representative features with
the nonzero linear reconstruction coefficients are ranked in
terms of the absolute value of their coefficients, where the more
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TABLE II
NORMALIZED DATASET

relevant features associated with the decision feature are granted
the higher rankings within each group.

Discriminative Selection: LRM-RPFRFS utilizes the interior
rankings of the representative features within their own groups
to implement the search for determining the final discrimina-
tive feature subset of the original dataset. The pseudofuzzy
dependency degree defined in LRM-k-PFRS model [i.e., (11)]
is employed to measure the discriminative capacity of the can-
didate subset for guiding the FS process. During each itera-
tion, priority is given to the top-ranked representative features
within each group when updating the selected features. The
feature contributing the most significant growth in pseudofuzzy
dependency degree is then added to the current subset and
removed from its original group. If a group becomes empty
as a result of the feature removal, no further operations are
conducted on that specific group. The stopping criteria con-
sists of two aspects: 1) the improvement of the pseudofuzzy
dependency degree between two successive iterations is neg-
ligibly small; 2) the pseudofuzzy dependency degree of the
selected feature subset reaches that of the entire set of conditional
features.

Following the use of the example dataset in Table I, the
optimal solution of (13) is

ŵ = [0,−0.801, 0, 0,−0.105, 0, 0.536, 0.002, 0].

It can be seen from ŵ that features f2, f5, f7, f8 are selected due
to the nonzero coefficients. The ranking results of representative
features in each group are

{f2}, {f5} and {f7, f8}.
After that, the top-ranked features in each group including f2,
f5, f7 are considered in the first iteration, whose pseudofuzzy
dependency degree values are calculated first

γk
LRM
{f2}(D) = 0.96250

γk
LRM
{f5}(D) = 0.86074

γk
LRM
{f7}(D) = 0.88377.

As the feature f2 results in the greatest increase in pseudofuzzy
dependency degree, it will be selected and added to the candidate
feature subset, and then removed from its group. The first feature
group becomes empty, therefore, this group will not be consid-
ered in any future iterations. In the next iteration, the values of
pseudofuzzy dependency degree on {f2, f5} and {f2, f7} are

TABLE III
TIME COMPLEXITY ANALYSIS

considered

γk
LRM
{f2,f5}(D) = 0.99699

γk
LRM
{f2,f7}(D) = 0.96533.

Thus, the feature f5 is selected and added to the candidate subset,
and then removed from its group. In the next iteration, the respec-
tive value of pseudofuzzy dependency degree on {f2, f5, f7} is
calculated

γk
LRM
{f2,f5,f7}(D) = 0.99699.

Since the improvement of the pseudofuzzy dependency degree
is zero, that is, the feature f7 can not increase the value of pseudo
fuzzy dependency degree, the LRM-RPFRFS algorithm termi-
nates. The final reduct returned by LRM-RPFRFS is {f2, f5}.

C. Algorithm

The LRM-RPFRFS algorithm is summarized in psuedocode
as given in Algorithm 1, where the value of ε in Line 27 is
fixed at 0.0005. The time complexity of each step is listed
in Table III, where the maximum number of iterations is de-
noted by I during the optimization for solving the EL [i.e.,
(13)]; the number of features returned by EL is denoted as s
(g ≤ s ≤ m). In general, the worst case of time complexity
of LRM-RPFRFS is therefore, O(n×m2 +m× (m− 1)/2×
log(m× (m− 1)/2) +m+ I × g +m2).

V. EXPERIMENTAL EVALUATION

This section presents a systematic evaluation of LRM-
RPFRFS experimentally. After an introduction to the experi-
mental setup in Section V-A, the parameters training and the
experimental results are presented and discussed in Sections V-B
and V-C, respectively.
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Algorithm 1: Linear Reconstruction Measure-Based Robust
Pseudo Fuzzy Rough Feature Selection.

A. Experimental Setup

1) Datasets: A total of 31 datasets1,2,3,4 are used for the
following experimental evaluation. The basic information about
these datasets are summarized in Table IV. Note that these
datasets are normalized via the min–max normalization method

1[Online]. Available: https://archive.ics.uci.edu/ml/index.php
2[Online]. Available: https://jundongl.github.io/scikit-feature/datasets.html
3[Online]. Available: https://github.com/klainfo/NASADefectDataset
4[Online]. Available: https://www.kaggle.com/datasets

TABLE IV
DATASETS USED FOR EVALUATION

in this article. Stratified 10 × 10-fold cross validation (10-FCV)
is employed in the following experimentation.

2) Comparison Approaches: In this article, we present a
comparison on the reduced size and the classification accuracy
of the selected features, between LRM-RPFRFS and six FRS-FS
methods (i.e., four feature grouping-based FRS-FS methods and
two heuristic FRS-FS methods) and four state-of-the-art FS
methods (i.e., two wrapped strategy-based FS methods and two
filter strategy-based FS methods).

1) Feature grouping-based FRS-FS methods: FRFG [17],
GBFG [18], EL-TSFRFS [20], FGS-RFRAS [19];

2) Heuristic FRS-FS methods: FRMR [15], HARCM [16].
3) Wrapped strategy-based FS methods: GSA [43],

GWO [44].
4) Filter strategy-based FS methods: PCC [46], ReliefF [45].
3) Classifiers: The determined reducts are evaluated by the

following four different classifiers: J48 [47], Bagging [48],
Jrip [49], and Part [50], respectively.

B. Training Parameters

As shown in Sections III and IV, LRM-RPFRFS has four
parameters: 1) The regularization parameter γ in (12) is used to
form feature groups. 2) The regularization parameter λ in (13)
is used to filter redundant features in each group. 3) The regular-
ization parameter α in (6) is used to construct the distribution-
aware linear reconstruction relation. 4) The number of nearest
neighbors k in (9) is used to calculate the pseudofuzzy rough
approximations. Ideally, for each dataset, we should search
throughout the entire range space to determine the optimal values
of the four parameters, which results in a significant amount of
time consumption. Fortunately, we have discovered that these
four parameters can be divided into two independent groups for
training, i.e., γ & λ and α & k, since the FS process guided by
LRM-k-PFRS (which involves two parameters α and k) relies
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Fig. 3. Classification accuracy (%) versus regularization parameter γ versus regularization parameter λ, by J48. (a) PAB. (b) LEA. (c) DIA. (d) VEH. (e) SOB.
(f) PAR. (g) WPB. (h) ION. (i) CEL. (j) NAS. (k) STA. (l) CM1. (m) PC1. (n) MC2. (o) KC3. (p) SPE. (q) LIB. (r) BAK.

on the result obtained by filtering out the redundant ones from
each resulted feature group (which involves two parameters γ
and λ) as input.

The values of regularization parameters α, λ, and γ are,
respectively, set to 0.1, 0.3, 0.5, 0.7, and 0.9. The values of
k are, respectively, set to 1, 3, 5, 7, and 9. As indicated in a
substantial amount of literatures, to approximately achieve the
optimal performance of the proposed approach, we can fix a
parameter at a specific value while searching the optimal value
of another parameter across its entire range. Next, we will deter-
mine which parameter of each group to fix through experimental
analysis. Due to space constraints, this article primarily presents
the results obtained on the 18 benchmark datasets.

1) γ & λ: We validate the impact of γ and λ on the experi-
mental results by evaluating the classification accuracies of the
obtained feature subsets on the J48 classifier. In the following
experimental results as shown in Fig. 3, we fix the values of α
at 0.1 and k at 1. It can be seen from Fig. 3 that, there are five
cases in the experimental results: 1) for four datasets, i.e., PAB,
CEL, NAS, BAK, the values of both γ and λ have no impact
on the experimental results; 2) for one dataset, i.e., LEA, the
values of γ have an impact on the experimental results; 3) for
five datasets, i.e., ION, STA, CM1, PC1, KC3, the values of λ

have an impact on the experimental results; 4) for six datasets,
i.e., DIA, VEH, SOB, PAR, WPB, MC2, the values of both γ and λ

have an impact on the experimental results, where the effect of λ

is more significant; 5) for two datasets, i.e., SPE, LIB, the values

of both γ and λ have a significant impact on the experimental
results.

In summary, we fix γ at a specific value and search for the op-
timal value of λ, since γ has a minor impact on the experimental
results for most cases. For different values of λ, except for three
datasets, i.e., VEH, SPE, LIB (accuracy losses are 4.7%, 0.36%,
and 2.8%, respectively, which are acceptable), all other datasets
can achieve their maximum values when γ is set to 0.1. In
addition, for the majority of datasets, as γ increases, the number
of feature groups either remains constant or increases. Due to
the impact of the number of feature groups on the computational
complexity of the subsequent FS process, we set γ to 0.1 in order
to enhance the efficiency of the LRM-RPFRFS.

2) α & k: We validate the impact of α and k on the experi-
mental results by evaluating the classification accuracies of the
obtained feature subsets on the J48 classifier. In the following
experimental results as shown in Fig. 4, we fix the values of
γ and λ at 0.1. It can be seen from Fig. 4 that, there are five
cases in the experimental results: 1) for three datasets, i.e., CEL,
NAS, BAK, the values of both α and k have no impact on the
experimental results; 2) for four datasets, i.e., PAB, CM1, PC1,
KC3, the values of k have an impact on the experimental results;
3) for two datasets, i.e., LEA, PAR, the values of both α and k
have an impact on the experimental results, where the effect of
α is more significant; 4) for eight datasets, i.e., DIA, VEH, SOB,
ION, STA, MC2, SPE, LIB, the values of both α and k have an
impact on the experimental results, where the effect of k is more
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Fig. 4. Classification accuracy (%) versus number of nearest neighbors k versus regularization parameter α, by J48. (a) PAB. (b) LEA. (c) DIA. (d) VEH.
(e) SOB. (f) PAR. (g) WPB. (h) ION. (i) CEL. (j) NAS. (k) STA. (l) CM1. (m) PC1. (n) MC2. (o) KC3. (p) SPE. (q) LIB. (r) BAK.

significant; 5) for one dataset, i.e., WPB, the values of both α
and k have a significant impact on the experimental results.

In summary,k has a more significant impact on the experimen-
tal results than α for most cases. Therefore, we fix α at a specific
value and search for the optimal value of k. For different values
ofα, except for four datasets, i.e., LEA, PAR, SPE, LIB (accuracy
losses are 3.24%, 2.55%, 0.64%, and 1.53%, respectively, which
are acceptable), all other datasets can achieve their maximum
values when α is set to 0.1. Moreover, as long as the value of α
is fixed at 0.1, the variation of k can cover all or more possible
selected feature subsets for most datasets.

3) Parameters Setting: Based on the above analysis, the val-
ues of γ and α are set to 0.1. Next, we proceed to set the values
of λ and k.

Taking the Bagging classifier as representative, the classifica-
tion accuracies on 18 benchmark datasets are shown in Fig. 5.
Looking into Fig. 5, the classification accuracies do not exhibit
any specific pattern with the variation of λ and k. Moreover, for
the different values of λ and k, the change of the parameters may
lead to different gaps in classification accuracy: 1) two datasets,
i.e., LEA, WAR, are significant gap (12.59% of LEA and 11.70%
of WAR); 2) two datasets, i.e., PC1, BAK, are tiny gap (0.61% of
PC1 and 0.90% of BAK); 3) the remaining datasets are small gap
(the maximum is 4.63% of PAB and the minimum is 1.00% of
CEL). Thus, the values of λ and k are set to the values associated
with the highest classification accuracies achieved by the specific
classifier. In addition, given four different classifiers (i.e., J48,
Bagging, Jrip, and Part), the values of k and λ corresponding
to the highest classification accuracies are typically different.
Consequently, distinct values of k and λ are set for each classifier
on 31 datasets, as displayed in Tables VI–IX.

TABLE V
REDUCT SIZE

As in general, the choice of the values for λ and k affects the
performance of LRM-RPFRFS slightly. Thus, if the requirement
of classification accuracy for the current task is not very high, the
parameters can be selected randomly. Otherwise, a careful of-
fline selection of the appropriate parameters is necessary before
LRM-RPFRFS is applied.

C. Results and Analysis

1) Size of Reduct: By summarizing the size of the reducts
over each dataset, Table V presents a comparison on the reduced
size of the selected features, between LRM-RPFRFS and 10
comparison approaches. The experimental results collectively
show that, the reduct size obtained by the LRM-RPFRFS ap-
proach is smaller than or comparable to those achievable with
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Fig. 5. Classification accuracy (%) versus number of nearest neighbors k versus regularization parameter λ, by Bagging. (a) PAB. (b) LEA. (c) DIA. (d) VEH.
(e) SOB. (f) PAR. (g) WPB. (h) ION. (i) CEL. (j) NAS. (k) STA. (l) CM1. (m) PC1. (n) MC2. (o) KC3. (p) SPE. (q) LIB. (r) BAK.

TABLE VI
J48 CLASSIFICATION ACCURACY (%) WITH REDUCTS RETURNED BY DIFFERENT FS METHODS

alternative methods on most of the 31 datasets. Only for three
datasets, i.e., VEH, D3S, D5S, the reduct size obtained by
LRM-RPFRFS is the largest among all methods. Although in
some cases, the reduct size of LRM-RPFRFS is not the small-
est, the classification performance of the reduct generated by
LRM-RPFRFS is superior.

2) Potential of Reduct: It is important to ascertain whether
the small reducts generated by LRM-RPFRFS retains sufficient
information of the original datasets to entail high discriminating

ability. A systematic comparison has been made, regarding the
classification accuracy based on the use of raw datasets and
reduced datasets returned by LRM-RPFRFS and 10 comparison
approaches. The experimental results obtained by four popular
classifiers including: J48 [47], Bagging [48], Jrip [49], and
Part [50], which are shown in Tables VI–IX, respectively, where
the average classification accuracies are obtained using the
averaged results of 10-FCV with the best results per dataset
underlined. Within each of these tables, the average accuracies
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TABLE VII
BAGGING CLASSIFICATION ACCURACY (%) WITH REDUCTS RETURNED BY DIFFERENT FS METHODS

TABLE VIII
JRIP CLASSIFICATION ACCURACY (%) WITH REDUCTS RETURNED BY DIFFERENT FS METHODS

and ranks of the 31 datasets are displayed in the “AVE_ACC”
and “AVE_RANK” row, respectively, and the number of the best
performances is summarized in the “#BEST” row.

1) It can be seen that in conjunction with the use of either
J48, Bagging, Jrip, or Part, across all datasets (the number
of samples ranges from 62 to 12 000 and the number
of features ranges from 11 to 7130), the classification
performance achieved by the proposed method is superior
to those attainable by the others for a great majority of

cases (on 19 datasets for J48; 16 datasets for Bagging;
18 datasets for Jrip; 16 datasets for Part). In addition,
the average accuracy rates and the average ranks gained
by LRM-RPFRFS are the best for different classifiers.
Importantly, such an outstanding performance is achieved
with the utilization of the smaller feature subsets, forming
a sharp contrast with the rest. For those datasets, where the
utilization of features returned by LRM-RPFRFS does not
result in the highest accuracy, the performance remains
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TABLE IX
PART CLASSIFICATION ACCURACY (%) WITH REDUCTS RETURNED BY DIFFERENT FS METHODS

comparable to alternative methods while predominantly
involving significantly fewer features. Particularly, the
averaged differences between the accuracies obtained by
LRM-RPFRFS and the highest accuracies are approxi-
mately 2.23% (on 12 datasets for J48), 2.31% (on 15
datasets for Bagging), 2.12% (on 13 datasets for Jrip), and
2.14% (on 15 datasets for Part), respectively. Furthermore,
the reducts returned by LRM-RPFRFS does not lead to any
weakest performance across all examined cases.

2) To investigate the antinoise ability of LRM-RPFRFS,
the experiment is carried out on five noisy datasets (i.e.,
LEA_N , DIA_N , V EH_N , SOB_N, and PAR_N ),
artificially generated by adding 10% noise randomly.
As can be seen from Tables VI–IX, LRM-RPFRFS ob-
tains highest classification performance among 11 feature
reducts obtained by 11 FS methods and the raw data in
terms of accuracy on 3, 3, 4, and 3 datasets, respectively, by
using four different classifiers. Moreover, for the remain-
ing classification results, the gaps between the accuracy
of LRM-RPFRFS and the best one are 3.12%, 0.78%;
1.14%, 2.69%; 5.36%; 3.42%, 0.21% for each classifier,
where LRM-RPFRFS not only avoids the weakest perfor-
mance, but also demonstrates results comparable to the
best-performing methods. Therefore, the LRM-RPFRFS
algorithm is robust to noisy information in data.

3) To investigate the adaptation of LRM-RPFRFS for differ-
ent distributions, the experiment is carried out on three
synthetic datasets (i.e., D1S, D2S, and D3S) containing
four classes but each with 1, 3, and 5 standard deviation of
the clusters (denoted as cluster_std), respectively (shown
in Fig. 6). As can be seen from Tables VI–IX, LRM-
RPFRFS can achieve higher classification accuracies than
the others on the three datasets. In particular, it exhibits

Fig. 6. Synthetic datasets with different distributions.

obvious superiorities on D2S and D3S. Therefore, the
LRM-RPFRFS algorithm is effectively applicable to the
datasets with large class density difference.

4) To investigate the performance of LRM-RPFRFS in prac-
tical applications, the experiment is carried out on 3 bio-
logical datasets (i.e., COL, PRO and ALL) and two face
datasets (i.e., GEN and WAR). As can be seen from
Tables VI–IX, although LRM-RPFRFS does not achieve
the highest classification accuracy in most cases, it consis-
tently obtains classification results comparable to the best
ones while the comparison approaches only occasionally
achieve better performance. Therefore, the LRM-RPFRFS
algorithm has better generalization performance in the
practical applications, such as, cancer diagnosis and face
recognition.

Together, all of the above results illustrate that the LRM-
RPFRFS algorithm entails an overall stronger performance, due
to the following reasons.

1) Compared with the above six FRS-FS methods, LRM-
RPFRFS constructs a more robust pseudo FRS model
where the distribution-aware linear reconstruction rela-
tion is developed by fully considering the distribution
information of samples and density information of classes
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Fig. 7. Comparisons of the classification accuracy of eleven approaches
against each other with the Nemenyi test using four classifiers. (a) J48.
(b) Bagging. (c) Jrip. (d) Part.

to better fit different data distributions, and the pseudo-
fuzzy lower approximation is calculated by determining
the kNN granules in terms of linear reconstruction coeffi-
cients to empower the antinoise ability.

2) Compared with the above four state-of-the-art FS meth-
ods, LRM-RPFRFS is a filter strategy-based algorithm
guided from the perspective of RF, SRP, and DS. However,
existing filter strategy-based FS methods (e.g., PCC and
ReliefF) primarily focuses on the relationships between
features, neglecting the insight of meaningful information
including direct relevance between conditional features
and the decision feature, and redundancy between fea-
tures. Wrapped strategy-based FS methods (e.g., GWO
and GSA) are distinct from the filter strategy-based FS
methods in that they usually select feature subset by eval-
uating the performance associated with the final predictive
model, thereby seriously impacting generalization.

In conclusion, LRM-RPFRFS can achieve significant im-
provements in terms of effectiveness, generalization, and ro-
bustness. Particularly, on noisy datasets and synthetic datasets
with different distributions, the classification accuracies of the
LRM-RPFRFS algorithm demonstrates the outstanding robust-
ness of utilizing the proposed robust LRM-k-PFRS model.
Moreover, the systematic experiments have been carried out on
both benchmark datasets and practical applications (including
cancer diagnosis and face recognition), where LRM-RPFRFS
can achieve better performance than the others on most cases.
Therefore, these experimental results collectively demonstrate
both the effectiveness and generalization.

3) Statistical Test: The statistical tests are conducted to val-
idate the above experimental results.

T-Test: In order to prove that experimental results are not
obtained accidentally, a paired T -test is conducted to provide
statistical analysis of the classification accuracies on each dataset
under the significance level of 0.05. For each dataset, the clas-
sification accuracy obtained by LRM-RPFRFS is the baseline
reference for other methods in the tests. In Tables VI–IX,
the summary of the statistical outcomes is displayed in the
“Summary” row within each of these tables, where the count
of the number of statistically better (v), equivalent (), or worse
(*) cases for each method on all the datasets compared to
LRM-RPFRFS is displayed. For example, in Table VI, (1/26/4)
in the “FRFG” column indicates that this method performs better
than LRM-RPFRFS on 1 datasets, performs equivalently to it
on 26 datasets, and performs worse than it on 4 datasets. As
can be seen from Tables VI–IX, the number of occurrences
of “*” is much higher than that of “v.” That is, the employ-
ment of the reduct returned by LRM-RPFRFS leads to statis-
tically better or equal results as compared to the application
of the reducts produced by the alternative methods in most
cases.

Friedman Test: The Friedman test is performed to compare
the performance among multiple methods in terms of the clas-
sification accuracy. Under the null hypothesis that “the multiple
methods have the same performance,” the Friedman statistics
can be calculated by using the ranks of the classification accu-
racies on 31 dataset of Tables VI–IX. The Friedman statistics
(and p-value) of the four classifiers including J48, Bagging,
Jrip, and Part are 52.67 (2.06× 10−7), 50.47 (5.14× 10−7),
54.21 (1.07× 10−7), and 51.18 (3.82× 10−7), respectively.
Moreover, corresponding critical difference (CD) value under
α = 0.05 is 2.99. Thus, the null hypothesis that “the multiple
methods have the same performance” should be rejected with
a 0.95 confidence interval. Further, the performance of these
approaches is significantly different.

Nemenyi’s Post-Hoc Test: The Nemenyi’s post-hoc test is per-
formed to distinguish the differences of the eleven FS methods
using pairwise comparisons. The CD is 2.99 for a confidence
level of α = 0.05. The hypothesis that “the performance of the
two approaches is the same” is rejected with the corresponding
confidence if the difference between the average ranks shown in
the “AVE_RANK” row in Tables VI–IX of the two approaches
exceeds the CD. As can be seen from Fig. 7, the employment
of either J48, Bagging, Jrip, or Part, the accuracies of LRM-
RPFRFS is statistically better than those with the comparison
approaches.

VI. CONCLUSION

This article has presented a novel FS approach, entitled LRM-
RPFRFS, which is proposed from the perspective of RF, SRP,
and DS to determine the final feature subset. Moreover, a robust
pseudo FRS model called LRM-k-PFRS is proposed where the
distribution-aware linear reconstruction relation is constructed
by considering the insight of meaningful information (i.e., dis-
tribution information of samples and density information of

Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:58:16 UTC from IEEE Xplore.  Restrictions apply. 



QIU et al.: ROBUST PSEUDO FUZZY ROUGH FS USING LRM 5701

classes) to enhance the robustness and the pseudofuzzy lower
approximation is calculated based on kNN granules to empower
the antinoise ability. Experimental results have demonstrated
in general that LRM-RPFRFS can achieve significant improve-
ments in terms of effectiveness, generalization, and robustness
While promising, the work also opens up an avenue for further
development. For instance, it would be useful to investigate how
to construct a robust pseudo FRS model with a sparse LRM
model to strengthen the interpretability and generalization.
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