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Abstract—The identification of lncRNA-protein interactions (LPIs) is important to understand the biological functions and molecular

mechanisms of lncRNAs. However, most computational models are evaluated on a unique dataset, thereby resulting in prediction bias.

Furthermore, previous models have not uncovered potential proteins (or lncRNAs) interacting with a new lncRNA (or protein). Finally,

the performance of these models can be improved. In this study, we develop a Deep Learning framework with Dual-net Neural

architecture to find potential LPIs (LPI-DLDN). First, five LPI datasets are collected. Second, the features of lncRNAs and proteins are

extracted by Pyfeat and BioTriangle, respectively. Third, these features are concatenated as a vector after dimension reduction. Finally,

a deep learning model with dual-net neural architecture is designed to classify lncRNA-protein pairs. LPI-DLDN is compared with six

state-of-the-art LPI prediction methods (LPI-XGBoost, LPI-HeteSim, LPI-NRLMF, PLIPCOM, LPI-CNNCP, and Capsule-LPI) under four

cross validations. The results demonstrate the powerful LPI classification performance of LPI-DLDN. Case study analyses show that

there may be interactions between RP11-439E19.10 and Q15717, and between RP11-196G18.22 and Q9NUL5. The novelty of LPI-

DLDN remains, integrating various biological features, designing a novel deep learning-based LPI identification framework, and

selecting the optimal LPI feature subset based on feature importance ranking.

Index Terms—Deep learning, dual-net neural architecture, feature importance ranking, lncRNA-protein interaction

Ç

1 INTRODUCTION

1.1 Motivation

OVER the past decades, the explosion of multiple high-
throughput genomic analyses has suggested that most

noncoding regulatory elements control the developmental
processes regulating organism complexity [1], [2]. Noncoding
elements are generally transcribed into noncoding RNAs
(ncRNAs), thereby implicating the significant regulatory roles
of ncRNAs in complex organisms. In fact, studies demon-
strate that ncRNAs can regulate manymajor biological activi-
ties impacting development, differentiation, and metabolism
[2], [3]. In contrast to small ncRNAs (for example, miRNAs
[4]), which have high conservation and affect transcriptional
and posttranscriptional gene silencing, long noncoding RNAs
(lncRNAs) have poor conservation and control gene expres-
sion based on various unknownmechanisms [5].

Although only a few lncRNAs have beenwell studied, they
have been demonstrated to affect every stage of the gene
expression program [6]. lncRNAs regulate posttranscriptional

genes by controlling biological activities such as protein syn-
thesis and RNA maturation and affect transcriptional gene
silencing by controlling chromatin structures [7]. Given the
vast number of lncRNAs whose biological functions are still
unknown, there is clear significance for finding widespread
regulation of gene expression and chromatinmodification.

Recent studies show that lncRNAs generally regulate cellu-
lar processes to exert their functions through associations with
RNA-binding proteins [8], [9]. Therefore, identifying possible
lncRNA-protein interactions (LPIs) is vital to demonstrate the
functions and mechanisms of lncRNAs. Experimental meth-
ods have uncovered some LPIs; however, the methods require
a large amount of time and resources. Thus, computational
methodswere designed to discover LPI candidates [7], [10].

1.2 Study Contributions

In this manuscript, a deep learning-based framework (LPI-
DLDN) is developed to find new LPIs. This framework uti-
lizes various biological data, feature selection, dimensional
reduction, dual-net neural architecture, Feature Importance
Ranking (FIR), and Multiple-Layer Perceptron (MLP). The
study has the following three main contributions:

1) Multiple biological features of lncRNAs and proteins
are reasonably integrated to more effectively depict
lncRNA-protein pairs.

2) A deep learning model with dual-net neural archi-
tecture, composed of the FIR and MLP nets, is devel-
oped to classify unknown lncRNA-protein pairs.

3) The exploration-exploitation strategy is used to
select the most representative features and boost the
generalization ability of LPI-DLDN.

The remainder of this manuscript is organized as follows.
Section 2 introduces related work. Section 3 describes the LPI-
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DLDN framework. Section 4 gives the results from a series of
comparative experiments. Section 5 discusses the LPI-DLDN
method and provides directions for future research.

2 RELATED WORK

2.1 LPI Prediction

Computational methods for LPI prediction roughly contain
network-based methods and machine learning-based meth-
ods [11]. Network-based methods, for example, random
walk [12], linear neighborhood propagation [13], and bipar-
tite network projection [14], [15], [16], integrated related bio-
logical information and network propagation algorithms to
predict LPI candidates. Machine learning-based methods,
for example, matrix factorization techniques [17], [18] and
ensemble learning-based methods [9], [19], used matrix fac-
torization and ensemble learning to discover potential inter-
actions between lncRNAs and proteins.

In these LPI identification methods, LPI-HeteSim [20], LPI-
NRLMF [21], LPI-XGBoost [22], PLIPCOM [23], LPI-CNNCP
[24], and Capsule-LPI [25] are six state-of-the-art approaches.
LPI-HeteSim utilized theHeteSimmethod to evaluate the rele-
vance between lncRNAs and proteins in the heterogeneous
lncRNA-protein network. LPI-NRLMF employed a neighbor-
hood regularized logistic matrix factorization method to score
unknown lncRNA-protein pairs. LPI-HeteSim and LPI-
NRLMF are two network-based LPI prediction approaches.
PLIPCOM extracted diffusion and HeteSim features from the
heterogeneous lncRNA-protein networks and then developed
a gradient tree boosting approach to find LPI candidates. LPI-
XGBoost used an innovative algorithm to process categorical
LPI features and an ordered boosting technique to predict new
LPIs. PLIPCOM and LPI-XGBoost are two ensemble learning-
based LPI identification methods. LPI-CNNCP exploited a
convolutional neural network model with the copy-padding
trick to investigate potential interactions between lncRNAs
and proteins. Capsule-LPI fusedmultiple protein and lncRNA
features and designed a capsule network for LPI identification.
LPI-CNNCP and Capsule-LPI are two deep learning-based
LPI prediction frameworks.

Although these computational models were effectively
applied to LPI identification, they have a few limitations.
First, the majority were measured on a unique dataset,
thereby possibly resulting in prediction bias. Second, most
of them did not find potential proteins (or lncRNAs) inter-
acting with a new lncRNA (or protein). Finally, the predic-
tion performance has room for improvement.

2.2 Deep Learning in Bioinformatics

To obtain knowledge from biomedical data, machine learning
algorithms (i.e., random forests, support vector machines, and
Bayesian networks) have been widely used [26]. Machine
learning uses training data to make predictions by building a
best fit model. However, the performance of these traditional
machine learningmethods relies heavily on data feature repre-
sentation [27]. However, features are generally exploited by
engineers with extensive expertise knowledge, and it is diffi-
cult to uncover features appropriate for a given task [28].
Therefore, deep learning, as a branch of machine learning, is
widely used in the areas of bioinformatics.

Deep learning has overcome the above limitations and
boosted major advances in various fields of bioinformatics
[28], [29]. For example, Shaw et al. [30] adopted a hybrid
framework (DeepLPI) based on a multimodal deep neural
network combinedwith a conditional randomfield. DeepLPI
obtained better prediction performance for LPI discovery
and is a representative LPI identification method. However,
deep learning is very difficult to apply to areas demanding
explainability/interpretability because of its purported
“black box” nature [28], [31].

2.3 Feature Selection

lncRNAs and proteins have diverse biological features,
which possibly results in a dimensional curse due to the
effects of irrelevant features on supervised learning. Gener-
ally, in machine learning methods, an optimal feature sub-
set is selected to maximize the learning ability of a model
based on prespecified criteria. Feature selection methods
provide clearer ways to remove redundant and irrelevant
information and obtain the best feature subset [32]. The
methods help construct a better classifier by extracting sig-
nificant features and reducing computational overload [33].

Traditional feature selection techniques contain filter
methods, embedded methods, and wrapper methods. Filter
methods retain the top features based on the alternating
conditional expectations algorithm. Embedded methods
incorporate their own feature selection process. Wrapper
methods provide a better feature list. However, these con-
ventional methods actually produce interpretability and sta-
bility problems [34]. Stability represents the reproducibility
of feature selection approaches. The strong correlation
among features frequently generates multiple equally opti-
mal signatures, thereby making traditional feature selection
techniques unstable and reducing the confidence level of
the selected features [32], [34], [35].

The FIRmethods facilitate the understanding of classifica-
tion tasks and discovery of key features and thus have been
validated as powerful tools in solving explainable/interpret-
able problems [36]. The methods construct a representative
feature subset by evaluating the role of individual input fea-
ture in a classification model. It helps reduce space and time
complexity and further boosts the purity of a classifier [32].

3 MATERIALS AND METHODS

3.1 Data Preparation

In this manuscript, we collect five different LPI datasets.
Datasets 1, 2, and 3 are fromhumans and the remaining data-
sets are from plants. Dataset 1 was constructed by Li et al.
[12]. ncRNA-protein interactions are downloaded from the
NPInter 2.0 database [37] and filtered by restricting the type
and organism to NONCODE and HOMO sapiens. A total of
3,487 human LPIs between 938 lncRNAs and 59 proteins are
then selected based on the lncRNAs in the NONCODE 4.0
database [38]. Finally, we remove lncRNAs and proteins
without known sequences in the NPInter [37], NONCODE
[38], and UniProt [39] databases and achieve 3,479 LPIs
between 935 lncRNAs and 59 proteins.

Dataset 2 was collected by Zheng et al. [40]. Human
ncRNA-protein interactions and lncRNAs are first down-
loaded from the NPInter 2.0 [37] and NONCODE 4.0
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databases [38], respectively. A total of 4,467 LPIs from 1,050
lncRNAs and 84 proteins are then obtained after preprocess-
ing. Finally, we obtain 3,265 LPIs between 885 lncRNAs and
84 proteins by removing lncRNAs and proteins without any
sequence information.

Dataset 3 was compiled by Zhang et al. [13]. Experimen-
tally confirmed LPIs from 1,114 lncRNAs and 96 proteins
provided by Ge et al. [14] are first downloaded. The sequence
and expression information of lncRNAs and the sequence
information of proteins are extracted from the NONCODE
4.0 [38] and SUPERFAMILY databases [41], respectively.
Finally, a total of 4,158 LPIs between 990 lncRNAs and 27
proteins are selected by manually removing the lncRNAs
and proteins without any sequence or expression informa-
tion or only interactingwith one protein (or lncRNA).

In addition, a protein is regarded as a redundant protein
if it exists in any two human datasets. There are 100 differ-
ent proteins in datasets 1, 2, and 3. That is, there are 100 pro-
teins which only exist in any one human dataset. There are
991 different lncRNAs in datasets 1 and 3. Redundant
lncRNAs between dataset 2 and the other two human LPI
datasets are not analyzed due to the existence of different
versions. More importantly, LPIs in datasets 1, 2, and 3 are
from different publications. Therefore, a known LPI in one
dataset may be unknown lncRNA-protein pair in another
dataset. For example, some unlabeled lncRNA-protein pairs
in dataset 3 are validated in datasets 1 or 2.

Datasets 4 and 5 contain LPI-related information about
Arabidopsis thaliana and Zea mays, respectively. The
sequence data of lncRNAs and proteins can be extracted
from the plant lncRNAdatabase (PlncRNADB [42]) and LPIs
can be obtained at http://bis.zju.edu.cn/PlncRNADB/.
Dataset 4 contains 948 LPIs between 109 lncRNAs and 35
proteins and dataset 5 contains 22,133 LPIs between 1,704
lncRNAs and 42 proteins. These two datasets have no redun-
dant data. The details are shown in Table 1.

We represent an LPI network as a matrix Y with the
element

yij ¼ 1; if lncRNA li interacts with protein pj
0; otherwise

�
: (1)

3.2 Overview of LPI-DLDN

In this study, motivated by the FIR method proposed by
Wojtas and Chen [36], we develop a deep learning model
with a dual-net neural architecture to predict potential LPIs
based on feature extraction, dimension reduction, FIR, and
MLP. Fig. 1 describes the pipeline of LPI-DLDN.

As shown in Fig. 1, the LPI-DLDN framework consists of
three main steps after five LPI datasets are collected. (1) LPI

feature extraction. Pyfeat [43] and BioTriangle [44] are
applied to obtain the original features of lncRNAs and pro-
teins. (2) LPI feature selection. The two types of features are
transformed into two d-dimensional vectors based on Princi-
pal Component Analysis (PCA). The two vectors are
concatenated as a 2d-dimensional vector to represent a
lncRNA-protein pair. (3) LPI classification. A deep learning
model with dual-net neural architecture is developed to dis-
cover possible LPIs. The architecture consists of two nets: the
FIR net and the MLP net. The FIR net selects the optimal LPI
feature subset based on the classification ability obtained
from the MLP net in the last iteration. The MLP net classifies
lncRNA-protein pairs based on the extracted optimal LPI
feature subset in the FIR net. The two nets are alternately
trained on five LPI datasets. Finally, FIR is utilized to identify
an optimal LPI feature subset, whileMLP classifies unknown
lncRNA-protein pairs based on the extracted optimal LPI
feature subset.

3.3 Feature Selection

3.3.1 Feature Selection of lncRNAs

To describe DNAs and RNAs, Pyfeat [43] ensembles thirteen
types of features, including zCurve, gcContent, atgcRatio,
cumulativeSkew, pseudoKNC, monoMonoKGap, mono-
DiKGap, monoTriKGap, diMo-noKGap, diDiKGap, diTriK-
Gap, triMonoKGap, and tri-DiKGap. In this study, we use
Pyfeat to extract lncRNA features and obtain a 14,892-dimen-
sional vector.

3.3.2 Feature Selection of Proteins

BioTriangle [44] uses fourteen types of features to represent
proteins: amino acid composition, dipeptide composition, tri-
peptide composition, CTD composition, CTD transition, CTD
distribution, M-B autocorrelation, Moran autocorrelation,

TABLE 1
The Statistics of LPI Data

Dataset lncRNAs Proteins LPIs

Dataset 1 935 59 3,479
Dataset 2 885 84 3,265
Dataset 3 990 27 4,158
Dataset 4 109 35 948
Dataset 5 1,704 42 22,133

Fig. 1. The Flowchart of the LPI-DLDN framework. (1) LPI feature selec-
tion. (2) LPI dimension reduction. (3) LPI classification.
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Geary autocorrelation, conjoint triad features, quasi-sequence
order descriptors, sequence order coupling number, pseudo
amino acid composition 1, and pseudo amino acid composi-
tion 2. Features generated by BioTriangle can effectively cap-
ture the discriminatory information of amino acids. In this
study, we utilize BioTriangle to extract protein features and
obtain a 10,029-dimensional vector.

3.4 Dimension Reduction

We separately carry out dimensional reduction for lncRNA
and protein features based on PCA and obtain two d-dimen-
sional vectors. The two vectors are then concatenated, and
thus, a lncRNA-protein pair is represented as a 2d-dimen-
sional vector xx.

3.5 LPI Prediction Framework

3.5.1 Problem Formulation

Assume thatD ¼ ðX;Y Þ denotes an LPI dataset, where ðxx; yyÞ
represents a training example (a lncRNA-protein pair), xx 2
X denotes a 2d-dimensional LPI feature vector and yy 2 Y
denotes the corresponding label of the lncRNA-protein pair.
We aim to find labels for unknown lncRNA-protein pairs.

Let mm 2 M represent a 2d-dimensional binary mask
vector composed of the elements with values of 0 or 1,
where jjmmjj0 ¼ s, s < 2d, and jMj ¼ 2d

s

� �
. A mask vector

fxx�mmgxx2X is used to denote an LPI feature subset of s fea-
tures for any lncRNA-protein pair xx, where � indicates the
Hadamard product. Suppose that Qðxx;mmÞ denotes the pre-
diction performance obtained from MLP trained on D via
the masked feature subset, we rank the features based on
their importance

ðmm�; Scoreðmm�ÞÞ ¼ argmax
mm2M

X
xx2X

Qðxx;mmÞ; (2)

where mm� denotes the indicators of the learned optimal LPI
feature subset identified by Eq. (2) and Scoreðmm�Þ denotes
the importance scores of all the extracted features in the
optimal subset. The labels for each lncRNA-protein pair can
be computed based on the selected optimal LPI feature sub-
setmm� and an MLP.

3.5.2 Model Description

The model in Eq. (2) describes a combinatorial optimization
problem. No algorithm can outperform a random strategy
in the combinatorial optimization problem based on the the-
ory of no free lunch. Noise is thus injected into candidate
LPI feature subsets M

0 � M to enhance a stochastic local
search procedure [45], where M

0
may change during learn-

ing. Each training sample ðxx; yyÞ 2 D is converted into jM 0 j
samples: fðxx�mm; yyÞgmm2M 0 .

The MLP net is trained on D based on different LPI fea-
ture subsets to learn fMLP : X �M ! Y . The loss functions
on jM 0 j for the MLP net are defined as Eq. (3)

LMLPðD;M
0
;aÞ ¼ 1

jM 0 jjDj
X
mm2M 0

lðxx�mm; yy;aÞ; (3)

where lðxx�mm; yy;aÞ with the parameter a denotes a binary
cross-entropy loss during LPI classification. The loss is uti-
lized to characterize its learning performance, Qðxx;mmÞ. In

the MLP net, sigmoid and softmax are used as the activation
functions in all intermediate layers and the final output layer,
respectively. After learning, the trainedMLP, fMLPða�;xx;mm�Þ
with an optimal parameter a�, is used to uncover possible
LPIs on the test dataset.

The FIR net selects the optimal LPI feature subset based
on the prediction ability from the MLP net. For each
lncRNA-protein pair xx 2 X, the extracted optimal LPI fea-
ture subset should maximize the performance of MLP quan-
tified by Qðxx;mmÞ. An exploration-exploitation strategy is
exploited to rank features and produce an optimal LPI fea-
ture subset with the index of mm� via Scoreðmm�Þ. The loss
function on jM 0 j for the FIR net is defined as Eq. (4)

LFIRðM 0
;bÞ ¼ 1

2jM 0 j
X
mm2M 0

ðfFIRðb;mmÞ

� 1

jDj
X

ðxx;yyÞ2D
lðxx�mm; yy;aÞ:

(4)

In the FIR net, sigmoid and linear functions are used as
the activation functions in all intermediate layers and the
final output layer, respectively. After learning, the trained
FIR, fFIRðb�;xx;mm�Þ with an optimal parameter b�, is used to
extract the optimal LPI features on the test dataset.

In the alternative learning process, the FIR net assists in
MLP to provide an optimal LPI feature subset jM 0 j, while
the MLP net feeds back the performance lðxx�mm; yy;aÞ to the
FIR net for all mm 2 jM 0 j. The detailed procedures are
described as Fig. 1.

3.5.3 Initial LPI Classification in the MLP Net

First, we train the MLP net based on several random LPI fea-
ture subsets for a few epochs until it can stably produce differ-
ent performances on different LPI feature subsets. In each
epoch, an LPI feature subset with different masks,M

0
1, is ran-

domly extracted fromM,M
0
1 ¼ fmmijmmi ¼ RandomðM;sÞgjM

0 j
i¼1

whereRandomðM;sÞ denotes a function applied to randomly
extract a 2d-dimensional maskwith s one-elements and ð2d-sÞ
zero-elements from M. a is trained by the Nesterov-acceler-
ated adaptive moment estimation algorithm and updated
by Eq. (5)

a
00 ¼ a

0 � hraLMLPðD;M
0
1;aÞja¼a

0 ; (5)

where h denotes a learning rate. After E epochs,

a1 ¼ a
00 ðEÞ (6)

mm
0
1;opt ¼ argmin

mm2M 0
1

X
ðxx;yyÞ2D

lðxx�mm; yy;a1Þ: (7)

The above parameters is used as the input of the FIR net.

3.5.4 Optimal LPI Feature Subset Construction via

MLP Feedback

As shown in Fig. 1, the training samples in the FIR net
were provided by the MLP net at the tth step: fðmm; 1

jDjP
ðxx;yyÞ2D lðxx�mm; yy;atÞÞgmm2M 0

t
. The parameters b are first

updated based on the adaptive moment estimation algo-
rithm with random initialization b1
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btþ1 ¼D bt � hrbLFIRðM 0
t ;bÞjb¼bt

: (8)

An exploration-exploitation strategy is then adopted to
produce a new masked LPI feature subset M

0
tþ1 applied to

the FIR net at the ðt+1)th step. The feature subset M
0
tþ1

is separated into two mutually exclusive subsets: M
0
tþ1 ¼

M
0
tþ1;1 [M

0
tþ1;2. In terms of the role of noise data in the

stochastic local search [45], a random function M
0
tþ1;1 ¼

fmmijmmi ¼ RandomðM; sÞgjM
0
tþ1;1

j
i¼1 is applied to generateM

0
tþ1;1

and reduce overfitting. Inspired by the input gradient tech-
nique proposed by Hechtlinger et al. [46],M

0
tþ2;1 is produced

based onAlgorithm 1.

Algorithm 1. Generation of the Optimal LPI Feature Sub-
setM

0
tþ1;2

Input:mm0, s, and sp;
Output: The integrated optimal LPI feature subsetM

0
tþ1;2;

_______________________________________________
Phase I: Generate initial optimal LPI feature subsetmmtþ1;opt

1: Compute dmm0
¼ @fFIRðbtþ1;mmÞ

@mm jmm¼mm0

2: Select the top s LPI featuresmmtþ1;opt via
ðmmopt;mmoptÞ ¼ arg sortðdmmopt ; sÞ based on the
following four-step procedure:

(1) Re-measure the contributions of the selected top
LPI features by ðmmopt;mmoptÞ ¼ arg sortðdmmopt ; sÞ
where dmmopt ¼ @fFIRðbtþ1;mmÞ

@m@m jmm¼mmopt
;

(2) Re-generate the optimal LPI feature subset by
replacing an LPI feature with negative gradient inmmopt with
a feature with the largest gradient inmmopt if there exists;

(3) Generate the optimal LPI feature subsetmm
0
opt by

ðmm0
opt;mm

0
optÞ ¼ swapðmmopt;mmoptÞ.

(4) Repeat Steps (1)-(3) until
fFIRðbtþ1;mmoptÞ � fFIRðbtþ1;mm

0
optÞ and obtain the

optimal LPI feature subsetmmtþ1;opt.

Phase II: Generate multiple optimal LPI feature subsets via
perturbation

1: Randomly convert spðsp < sÞ different elements in
mmopt/mmopt from 1=0 to 0=1 based on the perturbation function
Perturbðmmopt; spÞ and swap the corresponding elements in
mmopt andmmopt;

2: Repeat perturbation and obtain multiple optimal LPI
feature subset candidates fmmijmmi ¼ Perturbðmmtþ1;opt; spÞg.

Phase III: Integrate optimal LPI feature subset candidates
1: Letmmt;best represent the LPI feature subset candidate,

which contributes to the best predictive performance in the
MLP net at the tth step;

2: Obtain the feature subset
M

0
tþ1;2 ¼ fmmt;bestg [ fmmtþ1;optg [ fmmijmmi ¼

Perturbðmmtþ1;opt; spÞg
jM 0

tþ1;2
j�2

i¼1 based on the above Phases I and II.

In phase I, as illustrated in Algorithm 1, an initial
2d-dimensional LPI feature vector mm0 ¼ ð12 ; . . . ; 12Þ is used to
demonstrate that every LPI feature can be selected with
equal opportunity. The input features with larger gradients
can better boost the learning ability in theMLP net; therefore,
we select the top s LPI features based on their gradients via
ðmmopt;mmoptÞ ¼ arg sortðdmmopt ; sÞ, wheremmopt denotes the mask
of the top s features and mmopt represents the mask of the
remaining ð2d-sÞ features. mmopt can be selected based on the

four-step validation procedure in phase I. The function
ðmm0

opt;mm
0
optÞ ¼ swapðmmopt;mmoptÞ denotes that an LPI feature

with the least gradient in mopt is swapped with the feature
with the largest gradient inmmopt.

In phase II, to avoid the local optimum produced by
mmtþ1;opt and obtain multiple better LPI feature subsets, noise
is injected based on a perturbation functionPerturbðmmopt; spÞ.

In phase III, the optimal LPI feature subset candidates
M

0
tþ1;2 are integrated based on the obtained optimal subset

candidates mmt;best in the tth step, the optimal subsets mtþ1;opt

in the (t+1)th step, and the subsets fmmijmmi ¼ Perturbðmmtþ1;opt;
spÞg via perturbation.

3.5.5 MLP Training via Optimal LPI Feature Subset

Candidates

The FIR net provides the optimal LPI feature subset M
0
tþ1 ¼

M
0
tþ1;1 [M

0
tþ1;2 for the MLP net based on the training pro-

cess in the above section. The MLP net was then trained
on M

0
tþ1 via the stochastic local search method: atþ1 ¼D

at � hraLMLPðD;M
0
tþ1;aÞja¼at

. The two nets are alternately
trained until a predefined iterative stops.

3.5.6 Classification of lncRNA-Protein Pairs

The optimal parameters a� and b� in the MLP and FIR nets
can be obtained based on the above three sections. In addi-
tion, an optimal feature subsetmm� is extracted by Algorithm
1. Thus, all lncRNA-protein pairs can be classified based on
Algorithm 2.

Algorithm 2. Classification of lncRNA-Protein Pairs

Input: LPI feature vector, LPIs, lncRNA-protein pairs, a�, and b�;
Output: The labels of lncRNA-protein pairs;

1: Calculate the gradient dmm0
¼ @fFIRðb� ;mmÞ

@m@m jmm¼mm0
with

mm0 ¼ ð12 ; . . . ; 12Þ
2: Find the top s LPI features and obtain the optimal feature

subsetmm� composed of the s features
by ðmm�;mm�Þ ¼ arg sortðdmm0

; sÞ
3: Ensure the optimality ofmm� based on Algorithm 1
4: Obtain the optimal LPI feature subset based on

Scoreðmm�Þ ¼ @fFIRðb�;mmÞ
@m@m jmm¼mm�

5: Predict the label for each lncRNA-protein pair x̂̂x in the test
set with the trained MLP, fMLPða�; x̂̂x;mm�Þ via x̂̂x�mm�, in the
MLP net

4 RESULTS

4.1 Evaluation Metrics

Six measurements are utilized to evaluate the performance
of our proposed LPI-DLDN framework: precision, recall,
accuracy, F1-score, Area Under the ROC curve (AUC) and
Area Under the Precision-Recall curve (AUPR). The six met-
rics are statistically consistent criteria. Higher precision,
recall, accuracy, F1-score, AUC and AUPR denote better
performance. The comparative experiments are repeated 20
times and the final performance is obtained by averaging
the results from the 20 iterations.

In the deep learning-based prediction model, an LPI with
an association probability greater than 0.5 is classified to the
positive class, while those less than 0.5 are classified to the
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negative class. In this study, we adopt the function sklearn.
metrics.roc_curve in the sklearn package to generate a
threshold array. The thresholds in the array are used to cal-
culate the six measurements, and finally, the average perfor-
mance is computed.

4.2 Experimental Settings

Pyfeat is used to extract lncRNA features and the parameters
are set as follows: kGap = 5, kTuple = 3, opti-mumDataset =
0, pseudoKNC = 1, zCurve = 1, gcContent = 1, cumulative-
Skew = 1, atgcRatio = 1, monoMono = 1, monoDi = 1, mono-
Tri = 1, diMono = 1, diDi = 1, diTri = 1, triMono = 1, and triDi
= 1. All features in BioTriangle are applied to represent pro-
teins. The parameters in LPI-HeteSim are set as the default
values provided by Zhou et al. [47]. The parameters in the
other six LPI prediction models are set to the corresponding
values where the models obtain optimal performance
through grid search. The details are shown in Table 2.

We adopt grid search and found that when d ¼ 100, LPI-
DLDN obtains better performance. Therefore, we extract
two 100-dimensional vectors to represent lncRNA and pro-
tein features. Four different 5-fold cross-validations (CVs)
are performed to measure the performance of LPI-DLDN.

1) 5-fold CV on lncRNAs (CV1): random rows in Y are
masked for testing, that is, 80% of lncRNAs are
selected as train set and the remaining 20% are
selected as test set in each round.

2) 5-fold CV on proteins (CV2): random columns in Y
are masked for testing, that is, 80% of proteins are
selected for the train set and the remaining 20% are
selected as test set in each round.

3) 5-fold CV on lncRNA-protein pairs (CV3): random
lncRNA-protein pairs in Y are masked for testing,
that is, 80% of lncRNA-protein pairs are selected as
the train set and the remaining 20% are selected as
the test set in each round.

4) 5-fold CV on independent lncRNAs and indepen-
dent proteins (CV4) [48]: First, 20% of lncRNAs and
20% of proteins are randomly selected to form the
“node test set”. Second, the remaining nodes
(lncRNAs or proteins) are regarded as the “node
train set”. Third, all edges connecting a node from
the node train set to a node from the node test set
are discarded and excluded from the analysis.
Finally, one classifier is trained only on edges
within the node train set to predict edges within
the node test set.

The above four CVs refer to LPI prediction for (1) new
(unknown) lncRNAs (that is, lncRNAs that do not interact
with any protein), (2) new proteins (that is, proteins that do
not interact with any lncRNA), (3) new lncRNA-protein
pairs, and (4) new independent lncRNAs and independent
proteins.

In addition, negative LPIs are randomly selected from
unlabeled lncRNA-protein pairs. The ratio of the selected
negative samples to positive samples is 1, that is, the num-
ber of negative LPIs is the same as that of known LPIs.

4.3 Comparison With Six State-of-the-Art LPI
Prediction Methods

We compare our proposed LPI-DLDNmethodwith six state-
of-the-art LPI prediction methods, that is, LPI-XGBoost, LPI-
HeteSim, LPI-NRLMF, PLIPCOM, LPI-CNNCP, and Cap-
sule-LPI, to evaluate the prediction ability and robustness of
LPI-DLDN. The ROC curves and the PR curves of the seven
LPI prediction methods on 5 datasets under four different
cross validations are shown in Figs. 2, 3, 4, and 5,
respectively.

Table 1 in the Supplementary Materials, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2021.3116232, shows
the performance of seven LPI prediction models in terms of
precision, recall, accuracy, F1-score, AUC and AUPR under
CV1. LPI-DLDN obtains the highest average precision, F1-
score, and AUC over the five datasets, significantly outper-
forms LPI-XGBoost, LPI-HeteSim, LPI-NRLMF, PLIPCOM,
LPI-CNNCP, and Capsule-LPI. Although the average recall,
accuracy and AUPR computed by LPI-DLDN are slightly
lower than those computed by Capsule-LPI, LPI-XGBoost
and LPI-HeteSim, respectively, the differences are small
enough to be negligible. For example, the average recall calcu-
lated by Capsule-LPI is 0.7722, while the value obtained by
LPI-DLDN is 0.7687, which is less than the 0.46% of Capsule-
LPI. The average accuracy computed by LPI-XGBoost is
0.8199, while the value from LPI-DLDN is 0.8165, which is
only smaller than 0.40% for LPI-XGBoost. The average AUPR
obtained by LPI-HeteSim is 0.8185 while the value obtained
by LPI-DLDN is 0.8150, which is only smaller than 0.43%.
Fig. 2 demonstrates the ROC curves and the precision-recall
(PR) curves of seven LPI prediction models on five datasets
under CV1. LPI-XGBoost, LPI-HeteSim, LPI-NRLMF, PLIP-
COM, LPI-CNNCP, and Capsule-LPI are state-of-the-art LPI
predictionmethods and obtain superior performance for new
LPI identification. LPI-DLDNeither significantly outperforms
the six competing models or has very few differences. There-
fore, LPI-DLDN is powerful for finding proteins that interact
with a new lncRNA.

TABLE 2
Parameter Settings

Method Parameter Setting

LPI-XGBoost

num_boost_round=10, evals=(), obj=None,
callbacks=None, feval=None, maximize=False,
learning_rates=None, evals_result=None,
verbose_eval=True, xgb_model=None,
early_stopping_rounds=None

LPI-NRLMF
cfix=5, K1=5, K2=5, num_factors=10, alpha=0.1,
beta=0.1, theta=1.0, lambda_d=0.625,
lambda_t=0.625, max_iter=100

PLIPCOM
learning_rate=1, n_estimators=100, random_state= 10
max_depth=3, min_samples_leaf=10,
min_samples_split= 2, max_features=30

LPI-DLDN

max_batches = 2500, N_FEATURES = 200,s = 150,
FEATURE_SHAPE = 200, dataset_label = RNA_PRO,
data_batch_size = 32, mask_batch_size = 32, s_p = 2,
phase_2_start = 200, early_stopping_patience = 200

LPI-CNNCP filters1 = 24, kernel_size1 = (49, 10), strides1 = (1, 1),
filters2 = 24, kernel_size2 = (64, 10), strides2 = (1, 3)

Capsule-LPI EPOCH = 30, BATCH_SIZE = 100, lr = 0.001
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Table 2 in the Supplementary Materials, available online,
demonstrates the comparison results under CV2. As shown
in Table 2 in the Supplementary Materials, available online,
although the average performances obtained from LPI-Hete-
Sim and LPI-NRLMF are slightly better than those of LPI-
DLDN, they are two network-based LPI prediction models,
which have one severe shortage: network-based models can-
not find possible interaction information for an orphan
lncRNA (or protein). More importantly, under the majority

of conditions, LPI-DLDN outperforms LPI-XGBoost and
PLIPCOM, which are two better ensemble learning-based
LPI inference approaches. In particular, AUPR is a more
important measurement than the other five metrics. The
average AUPR of LPI-DLDN outperforms LPI-XGBoost and
PLIPCOM. The results suggest that LPI-DLDN may be an
effective supervised learning method applied to identify
potential lncRNAs associated with a new protein. In addi-
tion, LPI-DLDN outperforms LPI-CNNCP, which is a deep

Fig. 2. The ROC curves and the PR curves of different methods under
CV1.

Fig. 3. The ROC curves and the PR curves of different methods under
CV2.
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learning-based LPI identification technique, again demon-
strating the superiority of LPI-DLDN. Fig. 3 describes the
ROC curves and the textcolorredPR curves of seven LPI pre-
dictionmethods on five datasets under CV2.

The comparative results under CV3 are described in
Table 3 in the Supplementary Materials, available online.
The results demonstrate that LPI-DLDN significantly out-
performs the other six LPI prediction models over all data-
sets in terms of precision, recall, F1-score, AUC, and AUPR.

For example, LPI-DLDN computes the best average AUC
value of 0.9110, which is 1.22%, 11.27%, 2.29%, 2.65%,
7.40%, and 0.95% better than LPI-XGBoost, LPI-HeteSim,
LPI-NRLMF, PLIPCOM, LPI-CNNCP, and Capsule-LPI,
respectively. More importantly, for the AUPR metric, LPI-
DLDN achieves the best average AUPR of 0.8984, which is
1.46% superior to the second-best method and 2.0% supe-
rior to the third-best method. Fig. 4 illustrates the ROC
curves and the PR curves of seven LPI prediction models on

Fig. 4. The ROC curves and the PR curves of different methods under
CV3.

Fig. 5. The ROC curves and the PR curves of different methods under
CV4.
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five datasets under CV3. The results demonstrate the pow-
erful classification ability of LPI-DLDN. Therefore, LPI-
DLDN can be used to find new interactions between
lncRNAs and proteins based on known LPIs.

The experimental results under CV4 are shown in Table 4
in the Supplementary Materials, available online. CV4 can
ensure that no data leakage occurs in the analysis and that
the training model has not seen any of the nodes in the test
set by means of connection to another node in the train set.
LPI-DLDN significantly outperforms LPI-XGBoost, LPI-
HeteSim, LPI-NRLMF, PLIPCOM, and LPI-CNNCP under
the majority of conditions. More importantly, LPI-DLDN
obtains the optimal average AUC and AUPR on five data-
sets although Capsule-LPI computes better precision, recall,
accuracy, and F1-score. AUC and AUPR are two more rep-
resentative measurements compared to the other four eval-
uation metrics. LPI-DLDN calculates the best average AUC
of 0.6527, 3.7% higher than Capsule-LPI, and the best AUPR
of 0.6372, 0.78% higher than Capsule-LPI. Fig. 5 shows the
ROC curves and the PR curves of seven LPI prediction
methods on five datasets under CV4.

4.4 The Degree of LPI Networks

Inspired by the description of the data distribution pro-
vided by Lan et al. [49], the degree in each LPI network is
investigated. In this section, lncRNAs are taken as nodes
and used to analyze five LPI networks. The results are
shown as Fig. 6. In datasets 1-3, the distribution of the
degrees of the nodes is very uneven. For example, the
degrees of the majority of nodes are less than 12 in datasets

1-3. The number of nodes with a degree of 2 is 360, 340, and
378, respectively, accounting for a large proportion of the
three human datasets. In dataset 4, the distribution of the
degrees of the nodes is relatively even. The degrees of most
of nodes are less than 20 and there are 22 nodes with a
degree of 1. In dataset 5, the distribution of degrees of nodes
is even, while the number of nodes with a degree of 42 is
603. The nonuniformity and imbalanced features of data
result in prediction bias when data are not screened. That is,
the prediction result will favor a certain category. Therefore,
we select the same number of positive and negative samples
in the train set and the test set to reduce the prediction bias.

4.5 Evaluation of the Effect of Hyperparameter

In this section, we measure the effect of hyperparameter s
on the prediction performance. s denotes the highest s fea-
tures selected from 2d LPI features and s < 2d. To evaluate
the effect of s on the classification performance, we set it
in the range of (1, 200) with an interval of 25 and investigate
the performance of LPI-DLDN on the five LPI datasets
under the four cross validations. The results are shown in
Fig. 7. From Fig. 7, we can find that LPI-DLDN computes
the optimal AUCs and AUPRs when the feature number s is
set as 150. Therefore, we choose s as 150.

Fig. 6. The degrees of LPI networks in five LPI datasets.

Fig. 7. AUCs and AUPRs based on different feature number s under four
cross validations.
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4.6 Comparison of the Dual-Net Architecture With
the MLP Network

In the LPI-DLDN framework, we use a dual-net architecture
composed of the MLP network and the FIR network, to
select the best features and predict labels for each lncRNA-
protein pair. To compare the performance of the dual-net
architecture (LPI-DLDN) with the MLP network (LPI-MLP),
we investigate the AUC and AUPR values of LPI-DLDN
and LPI-MLP. The results are shown in Fig. 8. From Fig. 8,
we can observe that LPI-DLDN obtains better AUCs and
AUPRs than LPI-MLP on five LPI datasets under the four
cross validations. The results suggest that the dual-net
architecture significantly outperforms the MLP net and
demonstrate the optimal classification capability of deep
learning. Therefore, it is necessary to use the dual-net struc-
ture during LPI classification.

4.7 Case Study

In the last section, the performance of LPI-DLDN is vali-
dated. We further discover potential LPIs, especially possi-
ble proteins (or lncRNAs) for a new lncRNA (or protein).

4.7.1 Finding Associated Proteins for New lncRNAs

lncRNA FGD5 antisense RNA 1 (FGD5-AS1) has an impor-
tant effect on multiple human cancers. For example, FGD5-
AS1 can be used as a possible therapeutic target for colorec-
tal cancer by suppressing cell migration, invasion, and pro-
liferation, and accelerating cell apoptosis in colorectal
cancer [50]. It may serve as a possible diagnostic biomarker
for oral squamous cell carcinoma through binding to miR-
520b against USP21 [51]. It could regulate human gastric
cancer via the downstream epigenetic axis of hsa-miR-153-
3p/CITED2 [52] and promote the cell proliferation of non-
small cell lung cancer by sponging hsa-miR-107 to upregu-
late FGFRL1 [53].

In datasets 1-3, FGD5-AS1 (NONHSAT088370, n384228,
and NONHSAT088370) interacts with 6, 6, and 8 proteins,
respectively. To identify new proteins interacting with
FGD5-AS1, all its association information is masked and it is
taken as a new lncRNA. The seven LPI identification meth-
ods are then used to identify potential proteins associated
with FGD5-AS1. The experiments are repeated 10 times, and
the top 5 predicted proteins interacting with FGD5-AS1 are
selected. The results are shown in Table 5 in the Supplemen-
tary Materials, available online. We observe that O00425,
Q9Y6M1, and Q9NZI8 are predicted to interact with FGD5-
AS1 in dataset 3. Although the associations between the
above three proteins and FGD5-AS1 are unknown in dataset

3, O00425 has been validated to interact with FGD5-AS1 in
dataset 1 and Q9Y6M1 and Q9NZI8 have been reported to
interact with FGD5-AS1 in datasets 1 and 2. More impor-
tantly, all the top 5 predicted proteins interacting with FGD-
AS1 have higher ranking in LPI-XGBoost, LPI-NRLMF,
PLIPCOM, LPI-CNNCP, and Capsule-LPI. The results show
the powerful interaction prediction ability of LPI-DLDN for
a new lncRNA.

4.7.2 Finding Potential lncRNAs Interacting With a New

Protein

We intend to identify possible lncRNAs that interact with a
new protein. Q9H9G7 is required for RNA-mediated gene
silencing. The protein binds to short RNAs and represses
the translation of mRNAs complementary to them. This
process involves the stabilization of small RNA derivates in
stem cells and the siRNA-dependent degradation of RNA
polymerase II-transcribed coding mRNAs. Meanwhile, it
still possesses RNA slicer activity [54].

Q9H9G7 interacts with 126, 126, and 137 lncRNAs in
datasets 1, 2 and 3, respectively. We mask all association
information for Q9H9G7 and use the proposed LPI-DLDN
method to identify potential lncRNAs interacting with the
protein. We repeatedly perform the experiment 10 times
and obtain the average association scores for all lncRNA-
protein pairs. The top 5 associated lncRNAs for Q9H9G7 on
three human datasets are listed in Table 6 in the Supplemen-
tary Materials, available online. We predict that lncRNA
n343060 may link to Q9H9G7 with a ranking of 3 on dataset
2. In addition, among 885 lncRNAs possibly associated with
Q9H9G7, the interaction between n343060 and Q9H9G7 is
ranked as 18, 207, 322, 2, 820, and 738 on the other six LPI
prediction methods. The results suggest that n343060 may
interact with Q9H9G7 but this remains to be further experi-
mentally validated.

4.7.3 Finding New LPIs Based on Known LPIs

We further predict new LPIs based on LPI-DLDN. We
repeat the experiment 10 times and compute the average
interaction probabilities for all lncRNA-protein pairs on
datasets 1-5. The predicted top 50 LPIs on five datasets,
which contain known LPIs, are illustrated in Fig. 9. In the
figure, sky blue solid lines and black dotted lines represent
known and unknown LPIs obtained from LPI-DLDN,
respectively. Deep sky blue circles and dark orange hexa-
gons represent lncRNAs whose association information is
known and unknown, respectively. Green diamonds denote
proteins.

The interactions betweenNON-HSAT011709 (RPI001_
236932) and Q15717, n338615 (RP11-439E19.10) and Q15717,
NONHSAT006254 (RP11-196G18.22) and Q9NUL5, Athlnc
RNA309 (TCONS_00051077) and F4JLJ3, and ZmalncRNA
1625 and B8A305 have the highest probability among
unknown lncRNA-protein pairs on five datasets. There are
55,165, 74,340, 26,730, 3,815, and 71,568 lncRNA-protein pairs
in the five datasets. Among all lncRNA-protein pairs, the five
predicted interactions are ranked as 3, 13, 7, 583, and 853.

RP11-439E19.10 has been revealed to be upregulated. The
lncRNA may promote ovarian tumor initiation and progres-
sion by interacting with proinflammatory cytokines [55]. More

Fig. 8. AUCs and AUPRs of LPI-DLDN and LPI-MLP.
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importantly, it may be associated with the radiosensitivity of
esophageal cancer stem cells and could possibly be used as a
new target of esophageal squamous carcinoma. Q15717 is a
RNA-binding protein [56], that assists in embryonic stem cell
differentiation, regulates p53/TP53 expression, mediates the
CDKN2A antiproliferative activity, and increases the stability
of leptinmRNA [39].

In dataset 2, RP11-439E19.10 is verified to interact with
Q13148, P35637, and Q01844. Q13148 regulates the splicing
of proteins related to neuronal survival and mRNAs encod-
ing proteins in neurodegenerative diseases. It can control
mRNA stability and plays an important role in maintaining
circadian clock periodicity and mitochondrial homeostasis.
It also participates in the formation and regeneration of nor-
mal skeletal muscle [39]. P35637 is densely associated with
various cellular processes. The protein can bind its own
pre-mRNA and autoregulate its expression. It plays a key
role in dendritic spine formation and stability, mRNA sta-
bility and synaptic homeostasis in neuronal cells [39].
Q01844 plays an important role in the tumorigenic process.
The protein may disturb gene expression and assist in aber-
rant activation of fusion protein target genes [39]. Q15717
has similar functions to Q13148, P35637, and Q01844. Based
on the “guilt-by-association” principle, similar lncRNAs
may interact with similar proteins. More importantly,
among all 55,165 lncRNA-protein pairs in dataset 1, the
interaction between RP11-439E19.10 and Q15717 is ranked

as 3 by LPI-DLDN. Therefore, we infer that RP11-439E19.10
may have dense linkage with Q15717.

In addition, we predict that RP11-196G18.22 may be
closely associated with lung adenocarcinoma and adjacent
normal samples [57]. Q9NUL5 can inhibit programmed -1
ribosomal frameshifting (-1PRF) of multiple mRNAs from
viruses and cellular genes. The protein may cause prema-
ture translation termination. It may prevent the translation
of DENV RNA, interrupt Zika virus replication, and limit
hepatitis C virus replication [39]. We infer that RP11-
196G18.22 may interact with Q9NUL5 with a ranking of 7
among all 26,730 lncRNA-protein pairs; however, further
validation is needed.

5 DISCUSSION AND FURTHER RESEARCH

lncRNAs have been validated to play significant roles in
many biological processes. Furthermore, lncRNAs have
close linkages with the origin and development of multiple
human complex diseases. However, themajority of lncRNAs
have not obvious functional annotations because of their
poor evolutionary conservation. Therefore, it is instrumental
to find the associations between lncRNAs and other biologi-
cal entities (for example, proteins) and further interpret their
biological functions andmolecularmechanisms.

Recently, researchers have focused on constructing various
computational models to identify new LPIs. Based on compu-
tational methods, the interaction probabilities between lnc-
RNAs and proteins can be quantified and lncRNA-protein
pairs with top rankings can be applied to further biomedical
experimental validation, thereby reducing the time and cost
of experiments. Therefore, computational methods provide
effective guidance and support for newLPI identification.

In this manuscript, we exploit an LPI prediction method
(LPI-DLDN) based on deep learning with a dual-net neural
architecture. First, five LPI datasets are integrated based on
existing data resources. Second, the features of lncRNAs and
proteins are extracted via Pyfeat and BioTriangle, respec-
tively. Third, the features are subjected to dimensional
reduction based on PCA and concatenated as a vector to rep-
resent a lncRNA-protein pair. Finally, a deep learningmodel
composed of the FIR and MLP nets is explored to predict
new LPIs. We compare LPI-DLDN with six state-of-the-art
LPI prediction models, LPI-XGBoost, LPI-HeteSim, LPI-
NRLMF, PLIPCOM, LPI-CNNCP, and Capsule-LPI, on five
LPI datasets under three cross validations. The experimental
results show its powerful classification ability for unknown
lncRNA-protein pairs. We further apply case studies to dis-
cover potential proteins (or lncRNAs) for a new lncRNA (or
protein) and new LPIs based on known LPIs.

We investigate the classification ability of different mod-
els under four different cross validations. In particular, CV4
can ensure that no data leakage occurs in the analysis. LPI-
DLDN obtains the best average performance on five data-
sets under four cross validations, especially for CV4. It may
be attributed to the following features. First, it reasonably
integrates multiple biological features of lncRNAs and pro-
teins. Second, in three human LPI datasets, known LPIs are
obtained from different resources. Some unlabeled lncRNA-
protein pairs in one dataset have been reported in another
dataset, thereby increasing the antiinterference capability of

Fig. 9. The predicted top 50 LPIs on five LPI datasets.
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models. Third, a deep learning model with dual-net neural
architecture, composed of the FIR and MLP nets, demon-
strates extreme classification power and interpretability.
Fourth, the FIR method is designed to select the optimal LPI
features and further boost the generation ability of the pro-
posed LPI-DLDN model. Finally, the exploration-exploita-
tion strategy used in LPI prediction can simultaneously
utilize different feature subsets, which generates more train-
ing samples with fewer random LPI features.

In addition, LPI-DLDN obtains slightly lower perfor-
mance under CV2. Compared to the other six LPI identifica-
tion methods, LPI-DLDN performs better on datasets 4 and
5, while it achieves relatively lower performance on datasets
1, 2 and 3. This may be caused by different data structures.
Under 5-fold cross validation, CV2 selects 20% of proteins
as the test set. However, the number of proteins on five LPI
datasets is 59, 84, 27, 35, and 42, respectively. That is, pro-
teins are very small on the datasets, so the lack of samples
may lead to unstable performance of LPI-DLDN under
CV2. In addition, the degree of each protein (i.e., the num-
ber of lncRNAs interacting with each protein) on five data-
sets is unevenly distributed, thereby resulting in uneven
data distribution during 5-fold cross validation.

In the future, we will integrate LPI data from multiple
different species to more effectively probe the biological
functions and mechanisms of lncRNAs. More impor-
tantly, we will design a better LPI feature selection
model combining available data resources and the FIR
algorithm. In addition, LPI-DLDN produces a high
computational burden because of the computational
complexity of the dual-net neural architecture. We will
address this issue via the newest deep learning tech-
nique in subsequent research.

6 DATA AVAILABILITY

Source codes and datasets are freely available for download
at https://github.com/plhhnu/LPI-DLDN.
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