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Abstract—Identifying potential associations between drugs and
targets is a critical prerequisite for modern drug discovery and
repurposing. However, predicting these associations is difficult
because of the limitations of existing computational methods. Most
models only consider chemical structures and protein sequences,
and other models are oversimplified. Moreover, datasets used for
analysis contain only true-positive interactions, and experimen-
tally validated negative samples are unavailable. To overcome
these limitations, we developed a semi-supervised based learning
framework called NormMulInf through collaborative filtering
theory by using labeled and unlabeled interaction information.
The proposed method initially determines similarity measures,
such as similarities among samples and local correlations among
the labels of the samples, by integrating biological information.
The similarity information is then integrated into a robust prin-
cipal component analysis model, which is solved using augmented
Lagrange multipliers. Experimental results on four classes of drug-
target interaction networks suggest that the proposed approach
can accurately classify and predict drug–target interactions. Part
of the predicted interactions are reported in public databases. The
proposed method can also predict possible targets for new drugs
and can be used to determine whether atropine may interact with
alpha1B- and beta1- adrenergic receptors. Furthermore, the devel-
oped technique identifies potential drugs for new targets and can
be used to assess whether olanzapine and propiomazine may target
5HT2B. Finally, the proposed method can potentially address
limitations on studies of multitarget drugs and multidrug targets.

Index Terms—Drug similarity, drug–target interaction (DTI),
local correlations among labels of samples, multi-information fu-
sion, robust PCA, semi-supervised learning, similarities among
samples, target similarity.
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I. INTRODUCTION

A. Motivation

IDENTIFYING potential interactions between drugs and tar-
gets is a critical prerequisite for modern drug discovery and

repurposing [1], [2]. Systematic analysis of potential associa-
tions is used to detect multitarget drugs and multidrug targets
[3], elucidate the underlying mechanism of action of existing
drugs [4], distinguish genotype-based resistance or sensitivity
of drugs [5], [6], prevent side effects of drugs [7], and design
effective treatment scheme [5]. However, known drug-target in-
teractions (DTIs) are limited [8]. PubChem [9] contains about
35 million compounds, approximately 7000 of which are link to
target proteins [8]. This phenomenon impels the need for devel-
oping effective techniques to determine underlying associations
between drugs and targets [10].

Current experimental methods of identifying new DTIs are
expensive and time consuming [11], [12], and feature low suc-
cess rates [13]. In this regard, computational approaches have
been increasingly used as a complement for existing meth-
ods [12]. Drug and target data from different sources, such
as DrugBank [14], KEGG [15], Metador [16], and ChEMBL
[17] databases, can be used to analyze potential relationships
between drugs and targets at the systematic level.

Conventional computational techniques include ligand-based
[18], receptor-based [19], and text-mining methods [20]. Al-
though these techniques are widely applied in biology, they
present several limitations. Ligand-based methods rely on the
number of known ligands [21]. Receptor-based methods can-
not be used to infer DTIs when the 3D structures of the target
proteins are unknown [19]. Text-mining methods, which are
performed by searching related keywords, suffer from issues of
compound/gene name redundancy in the literature [20]. There-
fore, this study aims to develop integrative approaches combin-
ing machine learning and biological information to determine
novel associations between drugs and targets [22], [23]. The pro-
posed machine learning-based prediction methods are divided
into two categories:

Supervised Learning-Based Method: Supervised learning
methods are widely applied to discover potential drug-target
relationships. Yamanishi et al. [24] used a two-step supervised
learning approach to identify novel DTIs by integrating chem-
ical and genomic information. Bleakley and Yamanishi [25]
developed bipartite local models (BLM) to predict new DTIs.
Although these approaches achieve high prediction accuracy,
the unlabeled interactions in the training dataset are assumed as
negative samples and cannot be identified [26]. The BLM algo-
rithm was improved by Yamanishi et al. [27], van Laarhoven
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et al. [28], Fakhraei et al. [29], and Mei et al. [12]. Cheng
et al.[30] developed three supervised inference models based on
drug similarities, target similarities, and DTI networks. Gönen
[31] proposed a Bayesian matrix factorization algorithm to clas-
sify unlabeled DTIs. Wang and Zeng [11] proposed a restricted
Boltzmann machine. Whereas Alaimo et al. [3] developed a
bipartite network projection model to mine potential DTIs. Zu
et al. [1] observed that previous studies ignored the competitive
effects between drug chemical substructures or protein domains;
as such, they developed a global optimization-based inference
model to infer associations between chemical substructures and
protein domains. This promising approach provides novel in-
sights into predicting DTIs.

Supervised learning-based models exhibit satisfactory per-
formance and is the representative method for predicting DTIs;
however, these models exhibit the following limitations. 1) The
majority of these methods measure drug and target similarities
by using chemical structures and protein sequences only; the ob-
tained information may not adequately reflect the characteristics
that determine whether a drug acts on a target [2]. Moreover,
these methods disregard significant information such as quan-
titative structure-affinity relationship [32] and dose dependence
[33]. 2) Known DTIs are rare, and negative DTIs are difficult
or even impossible to achieve because experimentally validated
negative samples are not reported and unavailable [8], [21], [34].
3) Model evaluations are usually performed by crossvalidation,
which assumes that potential DTIs are randomly distributed
in a known DTI network [33]. These evaluations may result
in oversimplified formulation, overoptimistic performance, and
selection bias of model parameters during prediction [33]. Fur-
thermore, the rarity of an algorithm requires a time-based eval-
uation, except for those approaches proposed by Fakhraei et al.
[29]. 4) The rarity of techniques is emphasized to predict inter-
actions for new drugs without any known target information and
for new targets without any known drug targeting information.
Considering these limitations, Pahikkala et al. [33] concluded
that problem model, nature of datasets, assessment procedures,
and experimental setup may cause a significant discrepancy in
prediction performance.

Semi-supervised Learning Based Method: Several semi-
supervised based approaches have been recently applied to
identify potential DTIs. Xia et al. [26] evaluated a manifold reg-
ularized Laplacian method and proposed Laplacian regularized
least squares model (LapRLS) and LapRLS based on a network,
which use labeled and unlabeled information; nevertheless,
these methods only consider chemical structures and sequences
to identify drug and target similarities, which may not ade-
quately capture the characteristics that determine whether a drug
acts on a target [2]. Chen et al. [35] assumed that similar drugs
interact with similar targets, and thus, proposed a network-
based random walk with restart on a heterogeneous network.
This approach integrates drug similarity networks, protein
similarity networks, and known DTI data into a heterogeneous
network and implement the random walk on the network.
However, when inferring possible target proteins for new drugs
without any known target information, network-based drug and
target similarity matrices are considered zero, thereby limiting

their applications [21], [35]. Using the framework of random
walk, Chen and Zhang [21] used a network-consistency-based
prediction scheme, namely, NetCBP, to efficiently mine new
DTIs by integrating labeled and unlabeled DTI data. This
scheme highly relies on similarity measures [21]. Generally,
improving prediction performance by using semi-supervised
learning may exhibit less significant because of the rarity
of positive samples, no experimentally validated negative
samples [21], [34], and the imbalance of DTI data. Given this
limitation, Xiao [36] balanced positive and negative samples
through neighbor cleaning theory and synthetic minority
oversampling.

B. Study Contributions

In this study, a semi-supervised based inference method was
developed and designated as NormMulInf. This method uses a
small quantity of available labeled data and abundant unlabeled
data and then integrates biological information related to drugs
and targets into a convex optimization model to determine un-
derlying DTIs. This approach is based on the assumption that
similar drugs interact with similar targets [21], [34], [37]. This
study has the following main contributions.

1) We propose a semi-supervised learning based DTI predic-
tion approach to address difficulties in obtaining negative
DTI samples in practical problems. We also discuss the
rationale and analyze the validity of the proposed method.

2) Biological information, which constitute similarities be-
tween samples and the local correlations between labels
of samples in the DTI network, is integrated into a unified
framework to capture new DTIs.

3) The prediction method can be applied to new drugs with-
out any known target information and new targets without
any known drugs targeting information.

The remaining sections of this paper are organized as fol-
lows. Section II briefly presents a review of related works. Sec-
tion III introduces the DTI prediction approach. Section IV
describes the method used for comparative experiments. Sec-
tion V presents the experimental results. Section VI indicates
the conclusions of the study and provides directions for further
research.

II. BRIEF REVIEW OF RELATED WORKS

A. DTI Prediction

Yu et al. [38] proposed a weak-label learning approach,
namely, protein function prediction with weak-label learning
(ProWL), through guilt-by-association rule by using correla-
tions among features; this approach relies heavily on corre-
lations among functions [39]. Wang et al. [40] assumed that
biological processes are highly inter-related and proposed a
network-based method, namely, function-function correlated
multilabel learning approach (FCML); this approach cannot pre-
dict functions on completely unannotated proteins [38]. Based
on Hilbert–Schmidt independence theory, Yu et al. [39] further
developed a protein function prediction method by using depen-
dency maximization (ProDM) to replenish missing data. ProDM
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relies on relationships among functions [41]. These three meth-
ods are classical multilabel learning methods and can be applied
to predict DTIs.

van Laarhoven et al. [28] introduced a Gaussian interaction
profile kernel and used a regularized least squares classifier
(RLS-Kron) to investigate DTIs by combing related features of
the DTI network. However, this method cannot be applied to in-
fer new interactions for drugs or targets without any known inter-
actions [28]. Chen and Zhang [21] presented a semi-supervised
based learning approach (NetCBP) based on random walk to
rank DTI scores according to their correlations with the labeled
data; this approach relies on similarity measures. Mei et al.
[12] integrated an interaction-profile inferring (NII) method by
using neighbor information through the existing BLM model
(BLM-NII) to determine new DTIs. These three approaches are
represent DTI prediction techniques; of which, BLM-NII is the
current state-of-the-art approach for predicting DTIs.

B. Multi-Information Fusion

Incorporating multiple available data sources related to drugs
and targets can improve DTI prediction performance [22], [23],
[42]. The challenge lies in mining and fusing these heteroge-
neous information [22], [23]. Wang et al. [22] integrated differ-
ent types of information, such as chemical structures, pharma-
cological information, and therapeutic effects of drugs, as well
as sequences of target proteins, and proposed kernel method
based on an SVM predictor to determine novel DTIs. The func-
tional annotation analysis showed that the DTIs predicted by this
approach are worthy of further experimental validation. Perl-
man et al. [42] integrated multiple methods of measuring drug
gene similarities into a similarity-based DTI inference frame-
work by using a logistic regression model to develop a DTI
prediction method named SITAR. Martı́nez-Jiménez and Marti-
Renom [43] assumed that structurally similar binding sites are
likely to bind similar ligands and developed a network-based
inference method, namely, nAnnoLyze, by integrating biologi-
cal knowledge into a bipartite network. The approach provides
examples of DTI prediction at proteome scale and enables an-
notation and analysis of the associations on a large scale. Wang
et al. [23] integrated DTIs, drug ATC codes, drug-disease in-
teractions, and SVM-based algorithm into a unified framework
to predict DTIs, infer associations between drug and its ATC
codes, and identify drug-disease connections. This approach
efficiently integrates various heterogeneous data sources and
promotes related research in drug discovery. Fakhraei et al. [29]
represented a DTI network through BLM augmented with drug
target similarities information to predict unknown interactions
by using probabilistic soft logic. These models yield improved
prediction performance and are considered representative in-
formation fusion methods in predicting DTIs. Based on these
methods, we propose a multi-information fusion approach.

C. Robust Principal component analysis (PCA)

PCA is a prevalent tool for discovering and exploiting low-
dimensional structures in high-dimensional data [44]. However,
gross errors often occur in bioinformatics applications. The lack

of robustness to gross corruption or outliers limits the perfor-
mance and applicability of PCA; even a small portion of large
errors can corrupt the estimation of low-rank structures for bi-
ological data [45]. Robust PCA, a modified PCA method, was
developed to efficiently and accurately recover the low-rank
matrix A from highly corrupted measurements.

D = A + E. (1)

The corrupted entries can be described as the additive error
matrix E, which are unknown and arbitrary in magnitude. Errors
E are sparse and affect only a small portion of the entries of
the observations D in robust PCA [45], [46] compared with
that in classical setting in PCA, where low-rank matrix A is
affected by small but dense noise. Robust PCA can be solved
within polynomial-time via convex optimization by minimizing
a nuclear norm for low-rank recovery and minimizing �1-norm
for error correction [47]:

min
A,E

||A||∗ + λ||E||1 subject to D = A + E. (2)

Wright et al. [45] applied iterative thresholding to precisely
recover the corrupted low-rank matrix; however, the technique
converges extremely slowly [47]. As such, Lin et al. [48] pro-
posed an accelerated proximal gradient method (APG), which
can be applied to the primality and duality of the convex opti-
mization model. The APG algorithm often leaves many small
nonzero terms in the error matrix E and only obtains a close
approximate solution [48]. In this regard, Lin et al. [47] used
the augmented Lagrange multipliers (ALM) and proposed ex-
act ALM and inexact ALM, which are two algorithms with high
accuracy and converge Q-linearly to the optimal solution.

D. Collaborative Filtering (CF)

As a widely used technique in building recommendation sys-
tems, CF can effectively solve problems of data sparsity and
scalability and produce high-quality preferences for other users
by using the preferred information of users [49]. Memory-based
CF techniques [50]–[52] can be simply implemented and incre-
mentally add new data. However, these methods exhibit reduced
performance when data are sparse, limited scalability for large
datasets, and inability to predict new interactions for new drugs
and targets [49]. By contrast, model-based CF methods [53] can
efficiently solve issues with regard to data sparsity and scala-
bility, achieve improved prediction performance, and provide
intuitive reasoning for prediction; nevertheless, these models
are expensive [49], [53]. To address the limitations of these CF
models and improve the prediction performance, researchers
developed hybrid CF [54]. To optimize these methods, we in-
tegrated different types of information and measured drug and
target similarities by vector cosine-based similarity [50], which
is a representative similarity computation method in memory-
based CF models. We then infer novel DTIs by using a robust
PCA model based on CF [49], [53].
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TABLE I
DATASET DESCRIPTIONS INVOLVING HUMAN ENZYMES (ENZ), ION CHANNELS

(ION), GPCRS, AND NUCLEAR RECEPTORS (NUC) [24]

Dataset Enz Ion GPCRs Nuc

drugs (n ) 445 210 223 54
targets (m ) 664 204 95 26
interactions 2926 1476 635 90
the ratio (n/m ) 0.67 1.03 2.35 2.08
Nav e t a r 6.58 7.03 2.85 1.67
Nav e d ru g 4.41 7.24 6.68 3.46

III. MATERIALS AND METHODS

A. Data Preparation

1) Chemical Data: Yamanishi et al. [24] achieved chemical
structures of compounds from the DRUG and COMPOUND
sections in the KEGG LIGAND database [15]. The chemical
structure similarity among drugs was obtained with SIMCOMP
[55], which denotes compounds as graphs and calculates the
similarity score according to the number of the common sub-
structures between two compounds. The chemical structure sim-
ilarity between two compounds di and dj can be calculated
based on the Tanimoto coefficient as

SimStruDrug(di, dj ) =
|di ∩ dj |
|di ∪ dj |

. (3)

The chemical structure similarity matrix of drug compounds is
described as SimStruDrug .

2) Genomic Data: Yamanishi et al. [24] extracted sequence
information of target proteins from the KEGG GENES database
[15], and calculated sequence similarity of target proteins by
using a normalized version of the Smith–Waterman score [56].
The sequence similarity can be calculated as

SimSeqTar(tc , td) = SW(tc , td)/
√

SW (tc , tc)SW (td , td)
(4)

where SW (tc , td) denotes the canonical Smith–Waterman score
between the target proteins tc and td . The sequence similarity
matrix of the target proteins is denoted as SimSeqTar .

3) DTI Data: Yamanishi et al. [24] determined that 445,
210, 223, and 54 drugs interact with 664, 204, 95, and 26 pro-
teins from human enzymes, ion channels, GPCRs, and nuclear
receptors, respectively, with known interactions of 2926, 1476,
635, and 90, respectively. Table I presents the details and the
number of drugs (n), number of targets (m), number of inter-
actions, average number of targets interacting with each drug
(Navetar), average number of drugs interacting with each tar-
get (Navedrug ). We use four datasets as the “gold standard” to
evaluate and compared the proposed method with previously
reported methods [21], [24], [25], [27], [30], [31], [35].

B. Problem Description

Given n drugs and m targets, suppose that the original DTI
network B = [b1 , b2 , . . . , bn ] represents n drugs, where bij = 1
if the ith target interacts with the jth drug; otherwise, bij = 0.
To recover the low-rank DTI matrix and identify new DTIs, we

assume that the current DTI data are complete and mask part of
interactions for each sample according to its masked DTI ratio
(MDTIR). Given that MDTIR is 0.2, if a drug interacts with
six targets and INT( 6*0.2 )=1, we can change one interaction
from 1 to 0 and keep only five interactions for the drug. The
masked DTI matrix X = [x1 ,x2 , . . . ,xn ], in which only part
of interactions are kept, is obtained from the original DTI net-
work B. The interactions labeled 0 are unknown pairs that will
be predicted. We represent matrices and vectors by boldface
uppercase and boldface lowercase letters, respectively.

Robust PCA efficiently and precisely recovers the low-rank
matrix A from highly corrupted measurements. DTI data are
sparse, low-rank, and imbalanced. Only few labeled data (true-
positive interactions) but abundant unlabeled data are available,
and negative DTIs are difficult or even impossible to obtain
because experimentally validated negative samples are not re-
ported [8], [21], [34]. Furthermore, a certain degree of simi-
larity exists among row (column) vectors in the DTI matrix.
This similarity causes DTI matrix to become a low-rank matrix.
Therefore, the characteristics of DTI data satisfy the condition
of robust PCA. In this regard, we aim to recover the DTI matrix
based on the robust PCA model.

We intend to identify novel DTIs based on the robust PCA
model by using (5), which minimizes the discrepancy between
the known DTI matrix X and the predicted associated matrix
Pre

min
P re,E

‖Pre‖∗ + λ‖E‖1

s.t. X = Pre + E (5)

where ‖Pre‖∗ represents the nuclear norm of the predicted
DTI matrix Pre, ‖E‖1 denotes the �1-norm of the discrepancy
matrix E, the weight parameter λ represents the weight sparse
error term in the cost function, and 0 ≤ λ ≤ 1. The optimization
model can be solved using the Exact ALM method from a
previous study [47] and expressed as

Pre = RPCA(XLaplacian , λ). (6)

C. Methods for DTI Prediction

Nigam [57] reported that integrating unlabeled data into ma-
chine learning can effectively reduce errors of classifiers and
obtain improved classification performance when using sparse
labeled data. Therefore, we propose a semi-supervised learning
framework by using labeled and unlabeled interaction infor-
mation. Previous studies [12], [22], [23], [42] indicated that
integrating multiple types of data can improve the prediction
performance compared with techniques using unlabeled data.
Therefore, we incorporate multiple types of biological informa-
tion into a semi-supervised learning framework.

Ding et al. [8] performed systematic analysis and compari-
son to comprehensively review state-of-the-art similarity-based
machine learning methods for predicting DTIs. The majority of
the methods disregard the similarities between samples and the
local correlations between the labels of samples in the DTI net-
work. Information regarding a label may contribute to learning
another related label, particularly when the training samples of
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some labels are inadequate [58]. In contrast to similarity-based
machine learning methods [8], the proposed technique measures
drug and target similarities based on various biological informa-
tion, particularly similarities among samples and local correla-
tions among labels of samples. We integrate different informa-
tion fusion methods and robust PCA solved by the augmented
Lagrange approach [47] into a unified framework. Finally, we
conduct extensive experiments to evaluate the performance of
the proposed method compared with that of six state-of-the-art
techniques in the “gold standard” datasets from human enzymes,
ion channels, GPCRs, and nuclear receptors. The results demon-
strate that the proposed approach exhibits superior performance.
In addition, we observed that several strongly predicted DTIs
are reported by public databases.

1) NormDrug for DTI Prediction: In this section, we con-
sider drugs as samples and each target as a label. The proposed
method assumes that drugs shared by many targets may be sim-
ilar in the DTI network [21], [38], [39]. The prediction model
based on drugs is presented by integrating biological informa-
tion related to drugs (NormDrug) into robust PCA method,
which minimizes the combination of nuclear norm for low-
rank recovery and �1-norm for error correction. The method is
categorized into three parts: the first part masks part of inter-
actions for each sample according to MDTIR; the second part
computes the Laplacian matrix [59] by combining the chemi-
cal structure similarities between samples (drugs) and the local
correlations between the labels of samples in the DTI network;
and the third part achieves the predicted DTI matrix.

In contrast to similarity measures in a previous study [8], drug
similarity is measured in the present study by considering each
drug as a vector of the frequency of interaction with the targets;
we then calculate the cosine value of the angle formed by two
drug vectors [49], [50].

Suppose that SimNetDrug denotes the drug similarity matrix
according to the local correlations between the labels of samples
in the DTI network, we calculate drug similarity by (7) through
a vector cosine-based similarity method [49], [50]

SimNetDrug(i, j) =
xix

T
j

‖xi‖ ‖xj‖
. (7)

We can conclude that the value of SimNetDrug(i, j) is higher
than that of SimNetDrug(i, k) if the ith and jth drugs are si-
multaneously associated with abundant targets; however, the ith
and kth drugs act only on few targets or no targets, as shown
in (7). We obtain the likelihood that a drug interacts with a tar-
get, considering that this drug interacts with another target by
normalizing SimNetDrug(i, j)

SimNetDrugNorm(i, j) =
SimNetDrug(i, j)∑n

k=1 SimNetDrug(i, k)
. (8)

By combining the similarity in the chemical structure of drugs
and the local associations between the labels of drugs in the DTI
network, we obtain the final drug similarity matrix by

SimDrug = SimNetDrugNorm + αSimStruDrug (9)

where the weighted parameter α balances the importance be-
tween the similarities in the chemical structures of drugs and

the local associations of their labels

α =

∑n
i=1

∑n
j=1 SimNetDrugNorm(i, j)

∑n
i=1

∑n
j=1 SimStruDrug(i, j)

. (10)

We define the Laplacian matrix LDrug with (11) by using the
final drug similarity matrix

LDrug = IDrug − D
− 1

2
DrugSimDrugD

− 1
2

Drug (11)

where IDrug is an n × n identity matrix, DDrug is a diagonal
matrix which entries

DDrug(i, i) =
n∑

j=1

SimDrug(i, j). (12)

Suppose that (13) represents the association matrix by label
propagation [60] after masking parts of the interactions for each
sample

XDrugLap = XLDrug . (13)

We view DTI prediction as a special case of the model by
(5) to identify potential interactions by using limited number of
known interactions through robust PCA with

PreDrug = RPCA(XDrugLap , λ). (14)

The model can be solved using the Exact ALM method from a
previous study [47]. We summarize DTI prediction approaches
based on drug information and develop Algorithm 1 to determine
novel DTIs from the original DTI network B.

Algorithm 1: NormDrug for DTI prediction

Input:SimStruDrug , B = {b1 , b2 , . . . , bn} ∈ �m×n , λ;
Output:PreDrug ;

Obtain the masked DTI matrix X;
Compute SimDrug using (9);
Compute LDrug using (11);
Compute XDrugLap using (13);
Obtain PreDrug through robust PCA model with (14)
solved by using the Exact ALM method [47];
Sort DTIs in PreDrug in descending order;
Return obtained DTI ranking list;

2) NormTarget for DTI Prediction: Similar to that in Norm-
Drug, we consider targets as samples and each drug as a label.
We predict novel DTIs by using biological information related
to Targets (NormTarget) through robust PCA, which minimizes
the combination of nuclear norm for low-rank recovery and �1-
norm for error correction. The method is categorized into three
parts: The first and the third parts are similar to those in Nor-
mDrug. We compute the Laplacian matrix based on the target
similarity by combining the similarities between the samples
(targets) and the local correlations between the labels(drugs) of
the samples in the second part.

Suppose that X = [x1 ,x2 , . . . ,xn ] represents the masked
DTI matrix. SimNetTar denotes the similar matrix between tar-
gets according to the local correlations between the labels of
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samples in the DTI network. We calculate the matrix by (15)
based on the vector cosine-based similarity measure method

SimNetTar(i, j) =
X i.X

T
j.

‖X i.‖ ‖Xj.‖
(15)

where X i. represents the ith row of X . We then normalize
SimNetTar(i, j) with (16) as follows:

SimNetTarNorm(i, j) =
SimNetTar(i, j)∑m

k=1 SimNetTar(i, k)
. (16)

By combining the sequence similarities of target proteins and
the local correlations of labels between samples in the DTI
network, we obtain the final target similarity matrix by

SimTar = SimNetTarNorm + βSimSeqTar (17)

where weighted parameter

β =

∑m
i=1

∑m
j=1 SimNetTarNorm(i, j)

∑m
i=1

∑m
j=1 SimSeqTar(i, j)

. (18)

We determine the association matrix by label propagation
[60] after masking parts of the interactions for each sample

XTarLap = LTarX (19)

where the Laplacian matrix

LTar = ITar − D
− 1

2
TarSimTarD

− 1
2

Tar (20)

and the calculations of ITar and DTar are similar to those in
NormDrug.

3) NormMulInf for DTI Prediction: In the preceding two
sections, NormDrug considers drugs as samples and targets as
labels, whereas NormTarget uses targets as samples and drugs
as labels. In this section, we consider all factors and propose
NormMulInf based on NormDrug and NormTarget as follows:

Pre = PreDrug + γPreTar (21)

where PreTar denotes the DTI score matrix by NormTarget,
γ represents the balance between the score matrix PreDrug by
NormDrug and that of PreTar by NormTarget

γ =

∑m
i=1

∑n
j=1 PreDrug(i, j)∑m

i=1
∑n

j=1 PreTar(i, j)
. (22)

IV. EXPERIMENTS

In this study, we conduct extensive experiments to compare
the performance of the proposed method with those of the six
state-of-the-art methods for determining possible DTIs. We con-
firm the predicted DTIs via retrieving public databases which
are not applied in the learning stage. We conduct two cases,
which predict targets of new drugs and drugs targeting new pro-
teins, respectively, to elucidate the prediction performance of
the proposed method on new drugs and targets.

A. Experimental Setup and Evaluation Metrics

We compare the performance of NormMulInf with those of
the six state-of-the-art methods, namely, FCML [40], ProWL

TABLE II
PREDICTION PERFORMANCE COMPARISON ON ENZYME DATASET

Metric MDTIR FCML NetCBP ProWL ProDM RLS-Kron BLM-NII NormMulInf

AUC 0.2 .8827 .8102 .8739 .9293 .9589 .9643 .9583
0.4 .8563 .7694 .8475 .8912 .9246 .9295 .9251
0.6 .8126 .7214 .8093 .8523 .8687 .8859 .8862
0.8 .7459 .6607 .7438 .7815 .8030 .8284 .8316

AUPR 0.2 .8676 .7342 .8627 .9063 .8975 .9217 .9324
0.4 .8164 .6901 .8252 .8715 .8649 .8939 .9058
0.6 .7581 .6454 .7740 .8273 .8161 .8506 .8635
0.8 .6952 .5726 .7218 .7628 .7512 .8023 .8149

[38], ProDM [39], RLS-Kron [28], NetCBP [21], and BLM-
NII [12]. The parameters of these methods are set as proposed
by the corresponding authors in their codes or in the papers.
For NormDrug, NormTarget, and NormMulInf, we search the
optimal λ values within the range of [0.1, 1] with an interval
of 0.05 and then set λ as 0.6. The performances of these three
methods does not obviously change when we vary λ around
the fixed value. We mask part of interactions for each sample
according to MDTIR in the experiments, except for predicting
targets of new drugs and drugs targeting new proteins.

DTI prediction can easily result in overfitting problem, and
the prediction results are not accurate when the samples size
is relatively small. Based on the method proposed by Yu et al.
[38], we consider all samples within the dataset as training and
testing data to decrease bias caused by small samples in the
experiments.

Various evaluation metrics have been proposed to evaluate
DTI prediction approaches; of which, AUC and AUPR are exten-
sively used. AUC is the average area under the receiver operating
characteristic curve and can be calculated using true positives
as a function of false positives; this parameter is also a quality
measure [61]. High AUC values result in improved performance.
AUPR is the area under the precision-recall curve and calculated
by the plot of the ratio of true interactions among all predicted
DTIs for each given recall rate. AUPR is a quantitative measure
that determines how well, on average, the predicted scores of
true interactions are separated from the predicted scores of true
noninteractions. Higher AUPR value results in improved per-
formance. For DTI prediction, known interactions are relatively
rare. As such, AUPR is a more effective quality assessment tool
than AUC because the former adopts several measures to reduce
the influence of predicted false DTI data among highest ranked
scores [62]. In particular, the AUPR score is a more reasonable
evaluation metric than the AUC score in certain instances [63].
We used these two metrics to evaluate the performance of the
proposed method.

B. Performance on Predicting Interactions Data

In this section, we performed experiments to evaluate and
compare the performance of NormMulInf with FCML [40],
NetCBP [21], ProWL [38], ProDM [39], RLS-Kron [28], and
BLM-NII [12]. We varied the MDTIR from 0.2 to 0.8 for each
sample, with an interval of 0.2. We performed the experiments
20 times and calculated the average performance. Tables II–V
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TABLE III
PREDICTION PERFORMANCE COMPARISON ON ION CHANNEL DATASET

Metric MDTIR FCML NetCBP ProWL ProDM RLS-Kron BLM-NII NormMulInf

AUC 0.2 .7508 .7936 .8828 .9402 .9097 .9683 .9389
0.4 .7116 .7418 .8401 .9087 .8674 .9254 .9112
0.6 .6673 .6925 .8014 .8535 .8256 .8819 .8721
0.8 .5837 .6053 .7495 .7818 .7569 .8241 .8234

AUPR 0.2 .7190 .7501 .8451 .8833 .8662 .9248 .9125
0.4 .6826 .7237 .8094 .8618 .8450 .8917 .8869
0.6 .6432 .6754 .7645 .8182 .8031 .8491 .8487
0.8 .5647 .5780 .6979 .7296 .7154 .7839 .7862

TABLE IV
PREDICTION PERFORMANCE COMPARISON ON GPCRS DATASET

Metric MDTIR FCML NetCBP ProWL ProDM RLS-Kron BLM-NII NormMulInf

AUC 0.2 .7852 .8083 . 8496 .9247 .8980 .9624 .9481
0.4 .7474 .7604 .8113 .8906 .8568 .9287 .9215
0.6 .7035 .7156 .7517 .8419 .8073 .8812 .8824
0.8 .6296 .6445 .6764 .7721 .7397 .8194 .8253

AUPR 0.2 .7025 .7551 .7439 .8784 .7752 .8586 .8789
0.4 .6643 .7130 .7037 .8340 .7396 .8235 .8467
0.6 .6130 .6649 .6445 .7718 .6881 .7802 .8071
0.8 .5336 .5962 .5853 .7052 .6119 .7164 .7458

TABLE V
PREDICTION PERFORMANCE COMPARISON ON NUCLEAR RECEPTOR DATASET

Metric MDTIR FCML NetCBP ProWL ProDM RLS-Kron BLM-NII NormMulInf

AUC 0.2 .7689 .8313 .8616 .9439 .8725 .9529 .9412
0.4 .7230 .7992 .8263 .9122 .8367 .9134 .9125
0.6 .6695 .7494 .7782 .8563 .7829 .8663 .8698
0.8 .5616 .6514 .6835 .7685 .7042 .7962 .8051

AUPR 0.2 .7175 .7681 .7958 .8583 .6612 .8532 .8569
0.4 .6602 .7174 .7469 .8175 .6201 .8114 .8193
0.6 .6034 .6616 .6917 .7725 .5738 .7638 .7745
0.8 .5326 .5842 .6335 .6859 .5123 .7005 .7136

summarize the performance of all methods in terms of AUC and
AUPR. The highest and comparable performances are presented
in boldface. As shown in Tables II–V, NormMulInf generates
promising performance under the majority of conditions or re-
mains the same in the few remaining conditions.

As a state-of-the-art approach in predicting DTIs, Norm-
MulInf performs more efficiently than the other methods and
exhibits a significant advantage. The results explain that Norm-
MulInf can efficiently mine underlying DTIs when known DTI
data decrease. For example, AUPR values are used in the en-
zyme dataset. The AUPR values in NormMulInf increase by
6.95%, 21.26%, 7.48%, 2.80%, 3.74%, and 1.15% compared
with those in FCML, NetCBP, ProWL, ProDM, RLS-Kron, and
BLM-NII when MDTIR is 0.2; the values also increase by 9.9%,
23.81%, 8.90%, 3.79%, 4.52%, and 1.31%, respectively, when
MDTIR is 0.4. The values also increase by 12.21%, 25.26%,
10.34%, 4.20%, 5.49%, and 1.49%, respectively, when MDTIR
is 0.6 and further increase by 14.69%, 29.73%, 11.42%, 6.39%,
7.82% and 1.55%, respectively, when MDTIR is 0.8.

The efficiencies of these methods decrease gradually when the
MDTIR increases from 0.2 to 0.8. However, the robust of Nor-
mMulInf performs more efficiently than the other comparative

approaches when masked DTI increases. For example, AUPR
values are used in the enzyme dataset. When the MDTIR in-
creases from 0.2 to 0.8, the AUPR scores of FCML decreases by
6.27%, 7.69%, and 9.05%. NetCBP is reduced by 6.39%, 6.93%,
and 12.71%. ProWL decreases at ratios of 4.54%, 6.59%, and
7.26%. ProDM decreases from 4.0% to 5.34% and then 8.46%.
RLS-Kron declines by 3.77%, 5.98%, and 8.64%. BLM-NII
declines by 3.11%, 5.1%, and 6.02%. The decreased ratios in
NormMulInf are considerably lower than those of the other six
methods, which are 2.94%, 4.90%, and 5.97%.

NormMulInf remains more efficient than BLM-NII, which
is the current state-of-the-art DTI prediction approach, but is
found to be inferior in the ion channel dataset. NormMulInf is
distinctly superior to BLM-NII in GPCR and nuclear receptor
datasets. Meanwhile, BLM-NII outperforms the other five com-
petitors over the two evaluation metrics. ProDM significantly
outperforms ProWL, which agrees with the conclusion in a
previous study [38] and confirms the advantage of considering
dependences between drugs and targets.

The performance of NormMulInf is improved at different
levels among the different datasets. For instance, NormMulInf
generally obtains higher significant improvement in the enzyme
dataset and less distinct improvement in the nuclear recep-
tor dataset than ProDM. In contrast to NetCBP, NormMulInf
obtains a more remarkable improvement in the ion channel
dataset and a less prominent improvement in the nuclear re-
ceptor dataset. These differences in the rate of improvement can
be attributed to variation in data structures in the four datasets.
Based on the comprehensive evaluation of the experimental re-
sults, NormMulInf performs the optimal performance, followed
by BLM-NII, ProDM, RLS-Kron, ProWL, NetCBP, and FCML.

In the enzyme dataset, we predict that drug D00437 interacts
with target hsa:1559; this pair obtains the highest score. D00437
is annotated as nifedipine(JP16/USP/INN), which acts mainly
on vascular smooth muscle cells and is used for treatment of
hypertension and chronic stable angina [14]. Hsa:1559 is anno-
tated as cytochrome P450, family 2, subfamily C, polypeptide 9.
Cytochrome P450, which consists of heme-thiolate monooxy-
genases, oxidizes various structurally unrelated compounds and
contributes to the wide pharmacokinetics variability of drug
metabolism [64]. This interaction was also predicted by Gönen
[31], Xia [26], and Laarhoven [28], which is ranked 1, 3 and
5, respectively, and validated in the DrugBank, Metador, and
ChEMBL databases. D00437 interacts with hsa:1555, hsa:1558,
hsa:1562, hsa:1565, hsa:1571, hsa:1572, and hsa:1573 in the
“gold standard” datasets. The target proteins are all annotated
as cytochrome P450, family 2. Their functions are very similar
to hsa:1559. Therefore, we conclude that D00437 may interact
with hsa:1559.

In the ion channel dataset, we determine that the DTI pair
with the highest score is D00538-hsa:6331. D00538 is anno-
tated as zonisamide (JAN/USAN/INN), which is the approved
adjunctive therapy in adults with partial onset seizures [14].
Hsa:6331 is annotated as sodium channel, voltage-gated, type
V, alpha subunit. The protein mediates the voltage-dependent
permeability of the sodium ions of the excitable membranes
[64]. This interaction was also predicted by van Laarhoven and
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Marchiori [65] and Gönen [31], which are both ranked 2, and
reported in the ChEMBL and DrugBank databases. D00538 in-
teracts with hsa:6323, hsa:6328, hsa:6329, and hsa:6336 in the
“gold standard” datasets. The target proteins are all annotated
as sodium channel protein and their functions are very similar
to hsa:6331. Therefore, we conclude that D00538 may interact
with hsa:6331.

In the GPCR dataset, we predict that the pair with the highest
interaction score is D00283 and hsa:1814. D00283 is annotated
as clozapine (JAN/USP/INN), which is an atypical antipsychotic
agent that binds to several types of central nervous system recep-
tors and exhibits a unique pharmacological profile. Hsa:1814 is
annotated as dopamine receptor D3 [14], [17], whose activity
is mediated by G proteins, and inhibits adenylyl cyclase. The
protein promotes cell proliferation [64]. This interaction was
also predicted by Gönen [31], Xia [26], Laarhoven [28], and
Laarhoven [65], which is ranked 3, 5, 1, and 1, respectively,
and can be retrieved from the ChEMBL, Metador, and Drug-
Bank databases. D00283 interacts with hsa:1812, hsa:1813, and
hsa:1815 in the “gold standard” datasets. The target proteins are
all annotated as dopamine receptor and their functions are very
similar to hsa:1814. Therefore, we conclude that D00283 may
interact with hsa:1814.

In the nuclear receptor dataset, we predict that the interaction
of D00348 with hsa:5915 obtains the highest score. D00348 is
annotated as isotretinoin (USP), which is a compound used to
treat severe acne and prevent certain skin cancers types [14].
The target protein hsa:5915 is annotated as the retinoic acid
receptor. In the absence or presence of a hormone ligand, the
protein acts mainly as gene expression activator because of weak
binding to corepressors. Combined with RARG, it is required
for skeletal growth, matrix homeostasis and growth plate func-
tion [64]. This interaction was also predicted by Xia et al.[26],
van Laarhoven and Marchiori[65], and Gönen [31], which is
ranked 1, 3, and 2, respectively, and reported in the ChEMBL
and KEGG databases. Very similar to the function of hsa:5915,
hsa:5914 is also annotated as the retinoic acid receptor. D00348
interacts with hsa:5914 in the “gold standard” datasets. There-
fore, we conclude that D00348 may interact with hsa:5915.

C. Other Performance Evaluations

In this section, we further analyze the performance of the
proposed approach.

1) Performance Comparison Considering Local Correla-
tions Among Labels of Samples or Not: In this section, we
compare the method considering local correlations among the
labels of samples in the DTI network (NormLocal) with the
method that does not consider local correlations (NormNoLo-
cal). NormNoLocal measures drug and target similarities by
using the chemical structures of drugs and the sequences of tar-
get proteins. By contrast, NormLocal measures drug and target
similarities by combining the chemical structures of drugs, the
sequences of target proteins, and the local correlations among
the labels of samples in the DTI network. We present the com-
parative results in the four datasets in terms of AUC and AUPR
scores (see Figs. 1 and 2). The results confirm the feasibility of

Fig. 1. Performance comparison of prediction considering local correlation
of labels between samples or not in terms of AUC on four datasets.

Fig. 2. Performance comparison of prediction considering local correlation
of labels between samples or not in terms of AUPR on four datasets.

integrating local correlation information of the labels between
the samples. As the number of masked interactions increases, the
reliability of prediction efficiency decreases, and replenishment
of the missing data becomes difficult.

2) Performance Comparison Incorporating Various Infor-
mation: We investigate the performances of the proposed ap-
proaches, namely, NormDrug, NormTarget, and NormMulInf.
Figs. 3–4 indicate that the performance of the three approaches
gradually declines with decreasing MDTIR for each sample.
NormMulInf is superior to NormDrug and NormTarget proba-
bly because it incorporates more information compared with the
latter two. The experimental results confirm that the known bio-
logical information can improve prediction efficiency. Further-
more, NormTarget outperforms NormDrug in the ion channel,
GPCRs, and nuclear receptor dataset, in which the average num-
ber of drugs for each target is higher than the average number
of targets for each drug.
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Fig. 3. Performance comparison of prediction in terms of AUC on four
datasets based on multi-information fusion.

Fig. 4. Performance comparison of prediction in terms of AUPR on four
datasets based on multi-information fusion.

3) Case Predicting Targets of New Drugs: To investigate the
prediction performance of NormMulInf for new drugs, we con-
ducted a case study on atropine, an antimuscarinic agent that
binds and inhibits muscarinic acetylcholine receptors, thereby
producing various anticholinergic effects. Adequate doses of at-
ropine can eliminate various types of reflex vagal cardiac slow-
ing or asystole [14]. Therefore, mining the potential targets of
this drug is important.

Masking performed in this part differs from that in Norm-
MulInf. We consider atropine as a new drug and keep all DTIs,
except that the labels associated with the drug are set as 0 in
the original DTI network. Thus, we do not know its targets and
intend to identify them. The 95 potential targets from human
GPCRs are scored according to NormMulInf. The five biochem-
ical experimentally validated targets, namely, hsa:1128 (cholin-
ergic receptor, muscarinic 1), hsa:1129 (cholinergic receptor,
muscarinic 2), hsa:1131 (cholinergic receptor, muscarinic 3),

hsa:1132 (cholinergic receptor, muscarinic 4), and hsa:1133
(cholinergic receptor, muscarinic 5), are ranked 1, 3, 15, 23,
and 26, respectively. This observation indicates that two of the
five targets are included in the top 4% of the 95 potential targets.
All known targets are also included in the top 28% of the tar-
gets. Meanwhile, we predict that atropine interacts with hsa:147
(Alpha-1B adrenergic receptor) and hsa:153 (Beta-1 adrenergic
receptor), which are ranked 2 and 4, respectively.

4) Case Predicting Drugs Targeting New Proteins: We
also evaluated the prediction performance of NormMulInf
for new targets. A case study about the target hsa:3357
(5-hydroxytryptamine receptor 2B, 5HT2B) was conducted.
5HT2B functions as a receptor for various ergot alkaloid deriva-
tives and psychoactive substances and affects neural activity.
5HT2B regulates behavior, including impulsive behavior, and
is involved in the adaptation of pulmonary arteries to chronic
hypoxia. 5HT2B is also required for normal proliferation of
embryonic cardiac myocytes and normal heart development to
ensure normal osteoblast function and proliferation, as well as
for maintaining normal bone density [64]. Therefore, identify-
ing potential drugs targeting 5HT2B exhibits great significance.

We consider 5HT2B as a new target protein and keep all DTIs,
except that the labels associated with the target are set as 0 in
the original DTI network. Thus, we do not know its targeting
drugs and intend to identify them. All 223 potential targeting
drugs from human GPCRs are scored according to NormMulInf.
The six biochemical experimentally validated targeting drugs,
namely, D00283 (Clozapine (JAN/USP/INN)), D00451 (Suma-
triptan (JAN/USP/INN)), D00513 (Pindolol (JP16/USP/INN)),
D00726 (Metoclopramide (JP16/INN)), D01164 (Aripipra-
zole (JAN/USAN/INN)), D01973 (Eletriptan hydrobromide
(JAN/USAN)), are ranked 1, 6, 3, 4, 15, and 19, respectively.
This result indicates that four of the six targeting drugs are in-
cluded in the top 3% of the 223 potential drugs. All known
targeting drugs are also included in the top 9% of the drugs.
We also predict that 5HT2B is targeted by drug olanzapine
(JAN/USAN/INN) and propiomazine (USAN/INN), which are
ranked 2 and 5, respectively.

V. DISCUSSION

In this section, we discuss the experimental results described
in the preceding section.

In the “gold standard” datasets, the DTI data are sparse, low-
rank, and imbalanced. The number of known interactions are
lower than that of unknown ones. Therefore, various compu-
tational methods can be used to determine potential DTIs. We
compare the performance of the proposed approach with those of
other comparative methods on four benchmark datasets, which
include human enzymes, ion channels, GPCRs, and nuclear re-
ceptors. The originality of the proposed approach remains, that
is, making full use of unlabeled data, integrating various bio-
logical information, and applying robust PCA method, which
minimizes the combination of nuclear norm and �1-norm, to
DTI prediction. The experimental results reveal the merits of
the model. High increases in AUC and AUPR indicate that the
DTIs predicted using the proposed approach are likely to be
more accurate than those predicted by other methods.
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NormMulInf can achieve superior results regardless of the
AUC or AUPR results. This observation may be attributed to
the following features of the algorithm. 1) The algorithm incor-
porates various biological information, particularly similarities
among the samples and the local correlations among the labels
of samples in the DTI network. 2) The method makes full use
of unlabeled data in the DTI network. 3) Robust PCA solved by
ALMs exhibits good convergence and can converge to the opti-
mal solution [47]. 4) To decrease bias caused by small sample,
the algorithm considers all samples in the dataset as training and
testing data.

The proposed approach is also beneficial in the design and
interpretation of pharmacological experiments, particularly in
identifying novel DTIs and addressing problems related to deter-
mining multitarget drugs and multidrug targets. The technique
can be further used to investigate other biological associations
similar to DTI, such as microRNA-disease, gene-disease, and
drug-complex associations.

VI. CONCLUSION AND FURTHER RESEARCH

In this study, we developed a novel approach for DTI pre-
diction, which integrates robust PCA with various biological
information into a unified framework. We conducted a compar-
ative evaluation of the proposed approach using four benchmark
datasets. The experimental results suggest that the proposed ap-
proach can achieve superior classification results and can com-
petitively predict DTIs. Further analysis showed that the DTIs
predicted by the proposed method are worthy of further experi-
mental validation.

Using large amount of biological information related to drugs
and targets can improve the efficiency of the technique. Integrat-
ing various biological information can help identify new DTIs;
however, in this study, we do not fully use this additional biolog-
ical information. Therefore, with additional information related
to drug and target validated by biochemical experiments, we will
integrate a large amount of information in subsequent investi-
gations, for example, drug–drug interactions, protein–protein
interactions, and side effects of drugs. Furthermore, we will ex-
tend similarity measures as a regression to make model be more
general.

There are a small quantity of available labeled data validated
by biomedical experiments and abundant unlabeled data. We
make a correct point about the unlabeled interactions, which are
not truly negative DTIs and should be identified with an unsu-
pervised model. However, Negative DTI data are not reported
and are unavailable. When using AUPR and AUC for evalua-
tion, part of unlabeled interactions are being assumed negative
samples, which may affect the accuracy of the method. There-
fore, another way to improve the performance is by building
a negative dataset; investigation of this technique is currently
underway.
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Abstract—Identifying potential associations between drugs and
targets is a critical prerequisite for modern drug discovery and
repurposing. However, predicting these associations is difficult
because of the limitations of existing computational methods. Most
models only consider chemical structures and protein sequences,
and other models are oversimplified. Moreover, datasets used for
analysis contain only true-positive interactions, and experimen-
tally validated negative samples are unavailable. To overcome
these limitations, we developed a semi-supervised based learning
framework called NormMulInf through collaborative filtering
theory by using labeled and unlabeled interaction information.
The proposed method initially determines similarity measures,
such as similarities among samples and local correlations among
the labels of the samples, by integrating biological information.
The similarity information is then integrated into a robust prin-
cipal component analysis model, which is solved using augmented
Lagrange multipliers. Experimental results on four classes of drug-
target interaction networks suggest that the proposed approach
can accurately classify and predict drug–target interactions. Part
of the predicted interactions are reported in public databases. The
proposed method can also predict possible targets for new drugs
and can be used to determine whether atropine may interact with
alpha1B- and beta1- adrenergic receptors. Furthermore, the devel-
oped technique identifies potential drugs for new targets and can
be used to assess whether olanzapine and propiomazine may target
5HT2B. Finally, the proposed method can potentially address
limitations on studies of multitarget drugs and multidrug targets.
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I. INTRODUCTION

A. Motivation

IDENTIFYING potential interactions between drugs and tar-
gets is a critical prerequisite for modern drug discovery and

repurposing [1], [2]. Systematic analysis of potential associa-
tions is used to detect multitarget drugs and multidrug targets
[3], elucidate the underlying mechanism of action of existing
drugs [4], distinguish genotype-based resistance or sensitivity
of drugs [5], [6], prevent side effects of drugs [7], and design
effective treatment scheme [5]. However, known drug-target in-
teractions (DTIs) are limited [8]. PubChem [9] contains about
35 million compounds, approximately 7000 of which are link to
target proteins [8]. This phenomenon impels the need for devel-
oping effective techniques to determine underlying associations
between drugs and targets [10].

Current experimental methods of identifying new DTIs are
expensive and time consuming [11], [12], and feature low suc-
cess rates [13]. In this regard, computational approaches have
been increasingly used as a complement for existing meth-
ods [12]. Drug and target data from different sources, such
as DrugBank [14], KEGG [15], Metador [16], and ChEMBL
[17] databases, can be used to analyze potential relationships
between drugs and targets at the systematic level.

Conventional computational techniques include ligand-based
[18], receptor-based [19], and text-mining methods [20]. Al-
though these techniques are widely applied in biology, they
present several limitations. Ligand-based methods rely on the
number of known ligands [21]. Receptor-based methods can-
not be used to infer DTIs when the 3D structures of the target
proteins are unknown [19]. Text-mining methods, which are
performed by searching related keywords, suffer from issues of
compound/gene name redundancy in the literature [20]. There-
fore, this study aims to develop integrative approaches combin-
ing machine learning and biological information to determine
novel associations between drugs and targets [22], [23]. The pro-
posed machine learning-based prediction methods are divided
into two categories:

Supervised Learning-Based Method: Supervised learning
methods are widely applied to discover potential drug-target
relationships. Yamanishi et al. [24] used a two-step supervised
learning approach to identify novel DTIs by integrating chem-
ical and genomic information. Bleakley and Yamanishi [25]
developed bipartite local models (BLM) to predict new DTIs.
Although these approaches achieve high prediction accuracy,
the unlabeled interactions in the training dataset are assumed as
negative samples and cannot be identified [26]. The BLM algo-
rithm was improved by Yamanishi et al. [27], van Laarhoven

2168-2194 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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et al. [28], Fakhraei et al. [29], and Mei et al. [12]. Cheng
et al.[30] developed three supervised inference models based on
drug similarities, target similarities, and DTI networks. Gönen
[31] proposed a Bayesian matrix factorization algorithm to clas-
sify unlabeled DTIs. Wang and Zeng [11] proposed a restricted
Boltzmann machine. Whereas Alaimo et al. [3] developed a
bipartite network projection model to mine potential DTIs. Zu
et al. [1] observed that previous studies ignored the competitive
effects between drug chemical substructures or protein domains;
as such, they developed a global optimization-based inference
model to infer associations between chemical substructures and
protein domains. This promising approach provides novel in-
sights into predicting DTIs.

Supervised learning-based models exhibit satisfactory per-
formance and is the representative method for predicting DTIs;
however, these models exhibit the following limitations. 1) The
majority of these methods measure drug and target similarities
by using chemical structures and protein sequences only; the ob-
tained information may not adequately reflect the characteristics
that determine whether a drug acts on a target [2]. Moreover,
these methods disregard significant information such as quan-
titative structure-affinity relationship [32] and dose dependence
[33]. 2) Known DTIs are rare, and negative DTIs are difficult
or even impossible to achieve because experimentally validated
negative samples are not reported and unavailable [8], [21], [34].
3) Model evaluations are usually performed by crossvalidation,
which assumes that potential DTIs are randomly distributed
in a known DTI network [33]. These evaluations may result
in oversimplified formulation, overoptimistic performance, and
selection bias of model parameters during prediction [33]. Fur-
thermore, the rarity of an algorithm requires a time-based eval-
uation, except for those approaches proposed by Fakhraei et al.
[29]. 4) The rarity of techniques is emphasized to predict inter-
actions for new drugs without any known target information and
for new targets without any known drug targeting information.
Considering these limitations, Pahikkala et al. [33] concluded
that problem model, nature of datasets, assessment procedures,
and experimental setup may cause a significant discrepancy in
prediction performance.

Semi-supervised Learning Based Method: Several semi-
supervised based approaches have been recently applied to
identify potential DTIs. Xia et al. [26] evaluated a manifold reg-
ularized Laplacian method and proposed Laplacian regularized
least squares model (LapRLS) and LapRLS based on a network,
which use labeled and unlabeled information; nevertheless,
these methods only consider chemical structures and sequences
to identify drug and target similarities, which may not ade-
quately capture the characteristics that determine whether a drug
acts on a target [2]. Chen et al. [35] assumed that similar drugs
interact with similar targets, and thus, proposed a network-
based random walk with restart on a heterogeneous network.
This approach integrates drug similarity networks, protein
similarity networks, and known DTI data into a heterogeneous
network and implement the random walk on the network.
However, when inferring possible target proteins for new drugs
without any known target information, network-based drug and
target similarity matrices are considered zero, thereby limiting

their applications [21], [35]. Using the framework of random
walk, Chen and Zhang [21] used a network-consistency-based
prediction scheme, namely, NetCBP, to efficiently mine new
DTIs by integrating labeled and unlabeled DTI data. This
scheme highly relies on similarity measures [21]. Generally,
improving prediction performance by using semi-supervised
learning may exhibit less significant because of the rarity
of positive samples, no experimentally validated negative
samples [21], [34], and the imbalance of DTI data. Given this
limitation, Xiao [36] balanced positive and negative samples
through neighbor cleaning theory and synthetic minority
oversampling.

B. Study Contributions

In this study, a semi-supervised based inference method was
developed and designated as NormMulInf. This method uses a
small quantity of available labeled data and abundant unlabeled
data and then integrates biological information related to drugs
and targets into a convex optimization model to determine un-
derlying DTIs. This approach is based on the assumption that
similar drugs interact with similar targets [21], [34], [37]. This
study has the following main contributions.

1) We propose a semi-supervised learning based DTI predic-
tion approach to address difficulties in obtaining negative
DTI samples in practical problems. We also discuss the
rationale and analyze the validity of the proposed method.

2) Biological information, which constitute similarities be-
tween samples and the local correlations between labels
of samples in the DTI network, is integrated into a unified
framework to capture new DTIs.

3) The prediction method can be applied to new drugs with-
out any known target information and new targets without
any known drugs targeting information.

The remaining sections of this paper are organized as fol-
lows. Section II briefly presents a review of related works. Sec-
tion III introduces the DTI prediction approach. Section IV
describes the method used for comparative experiments. Sec-
tion V presents the experimental results. Section VI indicates
the conclusions of the study and provides directions for further
research.

II. BRIEF REVIEW OF RELATED WORKS

A. DTI Prediction

Yu et al. [38] proposed a weak-label learning approach,
namely, protein function prediction with weak-label learning
(ProWL), through guilt-by-association rule by using correla-
tions among features; this approach relies heavily on corre-
lations among functions [39]. Wang et al. [40] assumed that
biological processes are highly inter-related and proposed a
network-based method, namely, function-function correlated
multilabel learning approach (FCML); this approach cannot pre-
dict functions on completely unannotated proteins [38]. Based
on Hilbert–Schmidt independence theory, Yu et al. [39] further
developed a protein function prediction method by using depen-
dency maximization (ProDM) to replenish missing data. ProDM
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relies on relationships among functions [41]. These three meth-
ods are classical multilabel learning methods and can be applied
to predict DTIs.

van Laarhoven et al. [28] introduced a Gaussian interaction
profile kernel and used a regularized least squares classifier
(RLS-Kron) to investigate DTIs by combing related features of
the DTI network. However, this method cannot be applied to in-
fer new interactions for drugs or targets without any known inter-
actions [28]. Chen and Zhang [21] presented a semi-supervised
based learning approach (NetCBP) based on random walk to
rank DTI scores according to their correlations with the labeled
data; this approach relies on similarity measures. Mei et al.
[12] integrated an interaction-profile inferring (NII) method by
using neighbor information through the existing BLM model
(BLM-NII) to determine new DTIs. These three approaches are
represent DTI prediction techniques; of which, BLM-NII is the
current state-of-the-art approach for predicting DTIs.

B. Multi-Information Fusion

Incorporating multiple available data sources related to drugs
and targets can improve DTI prediction performance [22], [23],
[42]. The challenge lies in mining and fusing these heteroge-
neous information [22], [23]. Wang et al. [22] integrated differ-
ent types of information, such as chemical structures, pharma-
cological information, and therapeutic effects of drugs, as well
as sequences of target proteins, and proposed kernel method
based on an SVM predictor to determine novel DTIs. The func-
tional annotation analysis showed that the DTIs predicted by this
approach are worthy of further experimental validation. Perl-
man et al. [42] integrated multiple methods of measuring drug
gene similarities into a similarity-based DTI inference frame-
work by using a logistic regression model to develop a DTI
prediction method named SITAR. Martı́nez-Jiménez and Marti-
Renom [43] assumed that structurally similar binding sites are
likely to bind similar ligands and developed a network-based
inference method, namely, nAnnoLyze, by integrating biologi-
cal knowledge into a bipartite network. The approach provides
examples of DTI prediction at proteome scale and enables an-
notation and analysis of the associations on a large scale. Wang
et al. [23] integrated DTIs, drug ATC codes, drug-disease in-
teractions, and SVM-based algorithm into a unified framework
to predict DTIs, infer associations between drug and its ATC
codes, and identify drug-disease connections. This approach
efficiently integrates various heterogeneous data sources and
promotes related research in drug discovery. Fakhraei et al. [29]
represented a DTI network through BLM augmented with drug
target similarities information to predict unknown interactions
by using probabilistic soft logic. These models yield improved
prediction performance and are considered representative in-
formation fusion methods in predicting DTIs. Based on these
methods, we propose a multi-information fusion approach.

C. Robust Principal component analysis (PCA)

PCA is a prevalent tool for discovering and exploiting low-
dimensional structures in high-dimensional data [44]. However,
gross errors often occur in bioinformatics applications. The lack

of robustness to gross corruption or outliers limits the perfor-
mance and applicability of PCA; even a small portion of large
errors can corrupt the estimation of low-rank structures for bi-
ological data [45]. Robust PCA, a modified PCA method, was
developed to efficiently and accurately recover the low-rank
matrix A from highly corrupted measurements.

D = A + E. (1)

The corrupted entries can be described as the additive error
matrix E, which are unknown and arbitrary in magnitude. Errors
E are sparse and affect only a small portion of the entries of
the observations D in robust PCA [45], [46] compared with
that in classical setting in PCA, where low-rank matrix A is
affected by small but dense noise. Robust PCA can be solved
within polynomial-time via convex optimization by minimizing
a nuclear norm for low-rank recovery and minimizing �1-norm
for error correction [47]:

min
A,E

||A||∗ + λ||E||1 subject to D = A + E. (2)

Wright et al. [45] applied iterative thresholding to precisely
recover the corrupted low-rank matrix; however, the technique
converges extremely slowly [47]. As such, Lin et al. [48] pro-
posed an accelerated proximal gradient method (APG), which
can be applied to the primality and duality of the convex opti-
mization model. The APG algorithm often leaves many small
nonzero terms in the error matrix E and only obtains a close
approximate solution [48]. In this regard, Lin et al. [47] used
the augmented Lagrange multipliers (ALM) and proposed ex-
act ALM and inexact ALM, which are two algorithms with high
accuracy and converge Q-linearly to the optimal solution.

D. Collaborative Filtering (CF)

As a widely used technique in building recommendation sys-
tems, CF can effectively solve problems of data sparsity and
scalability and produce high-quality preferences for other users
by using the preferred information of users [49]. Memory-based
CF techniques [50]–[52] can be simply implemented and incre-
mentally add new data. However, these methods exhibit reduced
performance when data are sparse, limited scalability for large
datasets, and inability to predict new interactions for new drugs
and targets [49]. By contrast, model-based CF methods [53] can
efficiently solve issues with regard to data sparsity and scala-
bility, achieve improved prediction performance, and provide
intuitive reasoning for prediction; nevertheless, these models
are expensive [49], [53]. To address the limitations of these CF
models and improve the prediction performance, researchers
developed hybrid CF [54]. To optimize these methods, we in-
tegrated different types of information and measured drug and
target similarities by vector cosine-based similarity [50], which
is a representative similarity computation method in memory-
based CF models. We then infer novel DTIs by using a robust
PCA model based on CF [49], [53].
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TABLE I
DATASET DESCRIPTIONS INVOLVING HUMAN ENZYMES (ENZ), ION CHANNELS

(ION), GPCRS, AND NUCLEAR RECEPTORS (NUC) [24]

Dataset Enz Ion GPCRs Nuc

drugs (n ) 445 210 223 54
targets (m ) 664 204 95 26
interactions 2926 1476 635 90
the ratio (n/m ) 0.67 1.03 2.35 2.08
Nav e t a r 6.58 7.03 2.85 1.67
Nav e d ru g 4.41 7.24 6.68 3.46

III. MATERIALS AND METHODS

A. Data Preparation

1) Chemical Data: Yamanishi et al. [24] achieved chemical
structures of compounds from the DRUG and COMPOUND
sections in the KEGG LIGAND database [15]. The chemical
structure similarity among drugs was obtained with SIMCOMP
[55], which denotes compounds as graphs and calculates the
similarity score according to the number of the common sub-
structures between two compounds. The chemical structure sim-
ilarity between two compounds di and dj can be calculated
based on the Tanimoto coefficient as

SimStruDrug(di, dj ) =
|di ∩ dj |
|di ∪ dj |

. (3)

The chemical structure similarity matrix of drug compounds is
described as SimStruDrug .

2) Genomic Data: Yamanishi et al. [24] extracted sequence
information of target proteins from the KEGG GENES database
[15], and calculated sequence similarity of target proteins by
using a normalized version of the Smith–Waterman score [56].
The sequence similarity can be calculated as

SimSeqTar(tc , td) = SW(tc , td)/
√

SW (tc , tc)SW (td , td)
(4)

where SW (tc , td) denotes the canonical Smith–Waterman score
between the target proteins tc and td . The sequence similarity
matrix of the target proteins is denoted as SimSeqTar .

3) DTI Data: Yamanishi et al. [24] determined that 445,
210, 223, and 54 drugs interact with 664, 204, 95, and 26 pro-
teins from human enzymes, ion channels, GPCRs, and nuclear
receptors, respectively, with known interactions of 2926, 1476,
635, and 90, respectively. Table I presents the details and the
number of drugs (n), number of targets (m), number of inter-
actions, average number of targets interacting with each drug
(Navetar), average number of drugs interacting with each tar-
get (Navedrug ). We use four datasets as the “gold standard” to
evaluate and compared the proposed method with previously
reported methods [21], [24], [25], [27], [30], [31], [35].

B. Problem Description

Given n drugs and m targets, suppose that the original DTI
network B = [b1 , b2 , . . . , bn ] represents n drugs, where bij = 1
if the ith target interacts with the jth drug; otherwise, bij = 0.
To recover the low-rank DTI matrix and identify new DTIs, we

assume that the current DTI data are complete and mask part of
interactions for each sample according to its masked DTI ratio
(MDTIR). Given that MDTIR is 0.2, if a drug interacts with
six targets and INT( 6*0.2 )=1, we can change one interaction
from 1 to 0 and keep only five interactions for the drug. The
masked DTI matrix X = [x1 ,x2 , . . . ,xn ], in which only part
of interactions are kept, is obtained from the original DTI net-
work B. The interactions labeled 0 are unknown pairs that will
be predicted. We represent matrices and vectors by boldface
uppercase and boldface lowercase letters, respectively.

Robust PCA efficiently and precisely recovers the low-rank
matrix A from highly corrupted measurements. DTI data are
sparse, low-rank, and imbalanced. Only few labeled data (true-
positive interactions) but abundant unlabeled data are available,
and negative DTIs are difficult or even impossible to obtain
because experimentally validated negative samples are not re-
ported [8], [21], [34]. Furthermore, a certain degree of simi-
larity exists among row (column) vectors in the DTI matrix.
This similarity causes DTI matrix to become a low-rank matrix.
Therefore, the characteristics of DTI data satisfy the condition
of robust PCA. In this regard, we aim to recover the DTI matrix
based on the robust PCA model.

We intend to identify novel DTIs based on the robust PCA
model by using (5), which minimizes the discrepancy between
the known DTI matrix X and the predicted associated matrix
Pre

min
P re,E

‖Pre‖∗ + λ‖E‖1

s.t. X = Pre + E (5)

where ‖Pre‖∗ represents the nuclear norm of the predicted
DTI matrix Pre, ‖E‖1 denotes the �1-norm of the discrepancy
matrix E, the weight parameter λ represents the weight sparse
error term in the cost function, and 0 ≤ λ ≤ 1. The optimization
model can be solved using the Exact ALM method from a
previous study [47] and expressed as

Pre = RPCA(XLaplacian , λ). (6)

C. Methods for DTI Prediction

Nigam [57] reported that integrating unlabeled data into ma-
chine learning can effectively reduce errors of classifiers and
obtain improved classification performance when using sparse
labeled data. Therefore, we propose a semi-supervised learning
framework by using labeled and unlabeled interaction infor-
mation. Previous studies [12], [22], [23], [42] indicated that
integrating multiple types of data can improve the prediction
performance compared with techniques using unlabeled data.
Therefore, we incorporate multiple types of biological informa-
tion into a semi-supervised learning framework.

Ding et al. [8] performed systematic analysis and compari-
son to comprehensively review state-of-the-art similarity-based
machine learning methods for predicting DTIs. The majority of
the methods disregard the similarities between samples and the
local correlations between the labels of samples in the DTI net-
work. Information regarding a label may contribute to learning
another related label, particularly when the training samples of



IE
EE

Pr
oo

f

PENG et al.: PREDICTING DRUG–TARGET INTERACTIONS WITH MULTI-INFORMATION FUSION 5

some labels are inadequate [58]. In contrast to similarity-based
machine learning methods [8], the proposed technique measures
drug and target similarities based on various biological informa-
tion, particularly similarities among samples and local correla-
tions among labels of samples. We integrate different informa-
tion fusion methods and robust PCA solved by the augmented
Lagrange approach [47] into a unified framework. Finally, we
conduct extensive experiments to evaluate the performance of
the proposed method compared with that of six state-of-the-art
techniques in the “gold standard” datasets from human enzymes,
ion channels, GPCRs, and nuclear receptors. The results demon-
strate that the proposed approach exhibits superior performance.
In addition, we observed that several strongly predicted DTIs
are reported by public databases.

1) NormDrug for DTI Prediction: In this section, we con-
sider drugs as samples and each target as a label. The proposed
method assumes that drugs shared by many targets may be sim-
ilar in the DTI network [21], [38], [39]. The prediction model
based on drugs is presented by integrating biological informa-
tion related to drugs (NormDrug) into robust PCA method,
which minimizes the combination of nuclear norm for low-
rank recovery and �1-norm for error correction. The method is
categorized into three parts: the first part masks part of inter-
actions for each sample according to MDTIR; the second part
computes the Laplacian matrix [59] by combining the chemi-
cal structure similarities between samples (drugs) and the local
correlations between the labels of samples in the DTI network;
and the third part achieves the predicted DTI matrix.

In contrast to similarity measures in a previous study [8], drug
similarity is measured in the present study by considering each
drug as a vector of the frequency of interaction with the targets;
we then calculate the cosine value of the angle formed by two
drug vectors [49], [50].

Suppose that SimNetDrug denotes the drug similarity matrix
according to the local correlations between the labels of samples
in the DTI network, we calculate drug similarity by (7) through
a vector cosine-based similarity method [49], [50]

SimNetDrug(i, j) =
xix

T
j

‖xi‖ ‖xj‖
. (7)

We can conclude that the value of SimNetDrug(i, j) is higher
than that of SimNetDrug(i, k) if the ith and jth drugs are si-
multaneously associated with abundant targets; however, the ith
and kth drugs act only on few targets or no targets, as shown
in (7). We obtain the likelihood that a drug interacts with a tar-
get, considering that this drug interacts with another target by
normalizing SimNetDrug(i, j)

SimNetDrugNorm(i, j) =
SimNetDrug(i, j)∑n

k=1 SimNetDrug(i, k)
. (8)

By combining the similarity in the chemical structure of drugs
and the local associations between the labels of drugs in the DTI
network, we obtain the final drug similarity matrix by

SimDrug = SimNetDrugNorm + αSimStruDrug (9)

where the weighted parameter α balances the importance be-
tween the similarities in the chemical structures of drugs and

the local associations of their labels

α =

∑n
i=1

∑n
j=1 SimNetDrugNorm(i, j)

∑n
i=1

∑n
j=1 SimStruDrug(i, j)

. (10)

We define the Laplacian matrix LDrug with (11) by using the
final drug similarity matrix

LDrug = IDrug − D
− 1

2
DrugSimDrugD

− 1
2

Drug (11)

where IDrug is an n × n identity matrix, DDrug is a diagonal
matrix which entries

DDrug(i, i) =
n∑

j=1

SimDrug(i, j). (12)

Suppose that (13) represents the association matrix by label
propagation [60] after masking parts of the interactions for each
sample

XDrugLap = XLDrug . (13)

We view DTI prediction as a special case of the model by
(5) to identify potential interactions by using limited number of
known interactions through robust PCA with

PreDrug = RPCA(XDrugLap , λ). (14)

The model can be solved using the Exact ALM method from a
previous study [47]. We summarize DTI prediction approaches
based on drug information and develop Algorithm 1 to determine
novel DTIs from the original DTI network B.

Algorithm 1: NormDrug for DTI prediction

Input:SimStruDrug , B = {b1 , b2 , . . . , bn} ∈ �m×n , λ;
Output:PreDrug ;

Obtain the masked DTI matrix X;
Compute SimDrug using (9);
Compute LDrug using (11);
Compute XDrugLap using (13);
Obtain PreDrug through robust PCA model with (14)
solved by using the Exact ALM method [47];
Sort DTIs in PreDrug in descending order;
Return obtained DTI ranking list;

2) NormTarget for DTI Prediction: Similar to that in Norm-
Drug, we consider targets as samples and each drug as a label.
We predict novel DTIs by using biological information related
to Targets (NormTarget) through robust PCA, which minimizes
the combination of nuclear norm for low-rank recovery and �1-
norm for error correction. The method is categorized into three
parts: The first and the third parts are similar to those in Nor-
mDrug. We compute the Laplacian matrix based on the target
similarity by combining the similarities between the samples
(targets) and the local correlations between the labels(drugs) of
the samples in the second part.

Suppose that X = [x1 ,x2 , . . . ,xn ] represents the masked
DTI matrix. SimNetTar denotes the similar matrix between tar-
gets according to the local correlations between the labels of
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samples in the DTI network. We calculate the matrix by (15)
based on the vector cosine-based similarity measure method

SimNetTar(i, j) =
X i.X

T
j.

‖X i.‖ ‖Xj.‖
(15)

where X i. represents the ith row of X . We then normalize
SimNetTar(i, j) with (16) as follows:

SimNetTarNorm(i, j) =
SimNetTar(i, j)∑m

k=1 SimNetTar(i, k)
. (16)

By combining the sequence similarities of target proteins and
the local correlations of labels between samples in the DTI
network, we obtain the final target similarity matrix by

SimTar = SimNetTarNorm + βSimSeqTar (17)

where weighted parameter

β =

∑m
i=1

∑m
j=1 SimNetTarNorm(i, j)

∑m
i=1

∑m
j=1 SimSeqTar(i, j)

. (18)

We determine the association matrix by label propagation
[60] after masking parts of the interactions for each sample

XTarLap = LTarX (19)

where the Laplacian matrix

LTar = ITar − D
− 1

2
TarSimTarD

− 1
2

Tar (20)

and the calculations of ITar and DTar are similar to those in
NormDrug.

3) NormMulInf for DTI Prediction: In the preceding two
sections, NormDrug considers drugs as samples and targets as
labels, whereas NormTarget uses targets as samples and drugs
as labels. In this section, we consider all factors and propose
NormMulInf based on NormDrug and NormTarget as follows:

Pre = PreDrug + γPreTar (21)

where PreTar denotes the DTI score matrix by NormTarget,
γ represents the balance between the score matrix PreDrug by
NormDrug and that of PreTar by NormTarget

γ =

∑m
i=1

∑n
j=1 PreDrug(i, j)∑m

i=1
∑n

j=1 PreTar(i, j)
. (22)

IV. EXPERIMENTS

In this study, we conduct extensive experiments to compare
the performance of the proposed method with those of the six
state-of-the-art methods for determining possible DTIs. We con-
firm the predicted DTIs via retrieving public databases which
are not applied in the learning stage. We conduct two cases,
which predict targets of new drugs and drugs targeting new pro-
teins, respectively, to elucidate the prediction performance of
the proposed method on new drugs and targets.

A. Experimental Setup and Evaluation Metrics

We compare the performance of NormMulInf with those of
the six state-of-the-art methods, namely, FCML [40], ProWL

TABLE II
PREDICTION PERFORMANCE COMPARISON ON ENZYME DATASET

Metric MDTIR FCML NetCBP ProWL ProDM RLS-Kron BLM-NII NormMulInf

AUC 0.2 .8827 .8102 .8739 .9293 .9589 .9643 .9583
0.4 .8563 .7694 .8475 .8912 .9246 .9295 .9251
0.6 .8126 .7214 .8093 .8523 .8687 .8859 .8862
0.8 .7459 .6607 .7438 .7815 .8030 .8284 .8316

AUPR 0.2 .8676 .7342 .8627 .9063 .8975 .9217 .9324
0.4 .8164 .6901 .8252 .8715 .8649 .8939 .9058
0.6 .7581 .6454 .7740 .8273 .8161 .8506 .8635
0.8 .6952 .5726 .7218 .7628 .7512 .8023 .8149

[38], ProDM [39], RLS-Kron [28], NetCBP [21], and BLM-
NII [12]. The parameters of these methods are set as proposed
by the corresponding authors in their codes or in the papers.
For NormDrug, NormTarget, and NormMulInf, we search the
optimal λ values within the range of [0.1, 1] with an interval
of 0.05 and then set λ as 0.6. The performances of these three
methods does not obviously change when we vary λ around
the fixed value. We mask part of interactions for each sample
according to MDTIR in the experiments, except for predicting
targets of new drugs and drugs targeting new proteins.

DTI prediction can easily result in overfitting problem, and
the prediction results are not accurate when the samples size
is relatively small. Based on the method proposed by Yu et al.
[38], we consider all samples within the dataset as training and
testing data to decrease bias caused by small samples in the
experiments.

Various evaluation metrics have been proposed to evaluate
DTI prediction approaches; of which, AUC and AUPR are exten-
sively used. AUC is the average area under the receiver operating
characteristic curve and can be calculated using true positives
as a function of false positives; this parameter is also a quality
measure [61]. High AUC values result in improved performance.
AUPR is the area under the precision-recall curve and calculated
by the plot of the ratio of true interactions among all predicted
DTIs for each given recall rate. AUPR is a quantitative measure
that determines how well, on average, the predicted scores of
true interactions are separated from the predicted scores of true
noninteractions. Higher AUPR value results in improved per-
formance. For DTI prediction, known interactions are relatively
rare. As such, AUPR is a more effective quality assessment tool
than AUC because the former adopts several measures to reduce
the influence of predicted false DTI data among highest ranked
scores [62]. In particular, the AUPR score is a more reasonable
evaluation metric than the AUC score in certain instances [63].
We used these two metrics to evaluate the performance of the
proposed method.

B. Performance on Predicting Interactions Data

In this section, we performed experiments to evaluate and
compare the performance of NormMulInf with FCML [40],
NetCBP [21], ProWL [38], ProDM [39], RLS-Kron [28], and
BLM-NII [12]. We varied the MDTIR from 0.2 to 0.8 for each
sample, with an interval of 0.2. We performed the experiments
20 times and calculated the average performance. Tables II–V
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TABLE III
PREDICTION PERFORMANCE COMPARISON ON ION CHANNEL DATASET

Metric MDTIR FCML NetCBP ProWL ProDM RLS-Kron BLM-NII NormMulInf

AUC 0.2 .7508 .7936 .8828 .9402 .9097 .9683 .9389
0.4 .7116 .7418 .8401 .9087 .8674 .9254 .9112
0.6 .6673 .6925 .8014 .8535 .8256 .8819 .8721
0.8 .5837 .6053 .7495 .7818 .7569 .8241 .8234

AUPR 0.2 .7190 .7501 .8451 .8833 .8662 .9248 .9125
0.4 .6826 .7237 .8094 .8618 .8450 .8917 .8869
0.6 .6432 .6754 .7645 .8182 .8031 .8491 .8487
0.8 .5647 .5780 .6979 .7296 .7154 .7839 .7862

TABLE IV
PREDICTION PERFORMANCE COMPARISON ON GPCRS DATASET

Metric MDTIR FCML NetCBP ProWL ProDM RLS-Kron BLM-NII NormMulInf

AUC 0.2 .7852 .8083 . 8496 .9247 .8980 .9624 .9481
0.4 .7474 .7604 .8113 .8906 .8568 .9287 .9215
0.6 .7035 .7156 .7517 .8419 .8073 .8812 .8824
0.8 .6296 .6445 .6764 .7721 .7397 .8194 .8253

AUPR 0.2 .7025 .7551 .7439 .8784 .7752 .8586 .8789
0.4 .6643 .7130 .7037 .8340 .7396 .8235 .8467
0.6 .6130 .6649 .6445 .7718 .6881 .7802 .8071
0.8 .5336 .5962 .5853 .7052 .6119 .7164 .7458

TABLE V
PREDICTION PERFORMANCE COMPARISON ON NUCLEAR RECEPTOR DATASET

Metric MDTIR FCML NetCBP ProWL ProDM RLS-Kron BLM-NII NormMulInf

AUC 0.2 .7689 .8313 .8616 .9439 .8725 .9529 .9412
0.4 .7230 .7992 .8263 .9122 .8367 .9134 .9125
0.6 .6695 .7494 .7782 .8563 .7829 .8663 .8698
0.8 .5616 .6514 .6835 .7685 .7042 .7962 .8051

AUPR 0.2 .7175 .7681 .7958 .8583 .6612 .8532 .8569
0.4 .6602 .7174 .7469 .8175 .6201 .8114 .8193
0.6 .6034 .6616 .6917 .7725 .5738 .7638 .7745
0.8 .5326 .5842 .6335 .6859 .5123 .7005 .7136

summarize the performance of all methods in terms of AUC and
AUPR. The highest and comparable performances are presented
in boldface. As shown in Tables II–V, NormMulInf generates
promising performance under the majority of conditions or re-
mains the same in the few remaining conditions.

As a state-of-the-art approach in predicting DTIs, Norm-
MulInf performs more efficiently than the other methods and
exhibits a significant advantage. The results explain that Norm-
MulInf can efficiently mine underlying DTIs when known DTI
data decrease. For example, AUPR values are used in the en-
zyme dataset. The AUPR values in NormMulInf increase by
6.95%, 21.26%, 7.48%, 2.80%, 3.74%, and 1.15% compared
with those in FCML, NetCBP, ProWL, ProDM, RLS-Kron, and
BLM-NII when MDTIR is 0.2; the values also increase by 9.9%,
23.81%, 8.90%, 3.79%, 4.52%, and 1.31%, respectively, when
MDTIR is 0.4. The values also increase by 12.21%, 25.26%,
10.34%, 4.20%, 5.49%, and 1.49%, respectively, when MDTIR
is 0.6 and further increase by 14.69%, 29.73%, 11.42%, 6.39%,
7.82% and 1.55%, respectively, when MDTIR is 0.8.

The efficiencies of these methods decrease gradually when the
MDTIR increases from 0.2 to 0.8. However, the robust of Nor-
mMulInf performs more efficiently than the other comparative

approaches when masked DTI increases. For example, AUPR
values are used in the enzyme dataset. When the MDTIR in-
creases from 0.2 to 0.8, the AUPR scores of FCML decreases by
6.27%, 7.69%, and 9.05%. NetCBP is reduced by 6.39%, 6.93%,
and 12.71%. ProWL decreases at ratios of 4.54%, 6.59%, and
7.26%. ProDM decreases from 4.0% to 5.34% and then 8.46%.
RLS-Kron declines by 3.77%, 5.98%, and 8.64%. BLM-NII
declines by 3.11%, 5.1%, and 6.02%. The decreased ratios in
NormMulInf are considerably lower than those of the other six
methods, which are 2.94%, 4.90%, and 5.97%.

NormMulInf remains more efficient than BLM-NII, which
is the current state-of-the-art DTI prediction approach, but is
found to be inferior in the ion channel dataset. NormMulInf is
distinctly superior to BLM-NII in GPCR and nuclear receptor
datasets. Meanwhile, BLM-NII outperforms the other five com-
petitors over the two evaluation metrics. ProDM significantly
outperforms ProWL, which agrees with the conclusion in a
previous study [38] and confirms the advantage of considering
dependences between drugs and targets.

The performance of NormMulInf is improved at different
levels among the different datasets. For instance, NormMulInf
generally obtains higher significant improvement in the enzyme
dataset and less distinct improvement in the nuclear recep-
tor dataset than ProDM. In contrast to NetCBP, NormMulInf
obtains a more remarkable improvement in the ion channel
dataset and a less prominent improvement in the nuclear re-
ceptor dataset. These differences in the rate of improvement can
be attributed to variation in data structures in the four datasets.
Based on the comprehensive evaluation of the experimental re-
sults, NormMulInf performs the optimal performance, followed
by BLM-NII, ProDM, RLS-Kron, ProWL, NetCBP, and FCML.

In the enzyme dataset, we predict that drug D00437 interacts
with target hsa:1559; this pair obtains the highest score. D00437
is annotated as nifedipine(JP16/USP/INN), which acts mainly
on vascular smooth muscle cells and is used for treatment of
hypertension and chronic stable angina [14]. Hsa:1559 is anno-
tated as cytochrome P450, family 2, subfamily C, polypeptide 9.
Cytochrome P450, which consists of heme-thiolate monooxy-
genases, oxidizes various structurally unrelated compounds and
contributes to the wide pharmacokinetics variability of drug
metabolism [64]. This interaction was also predicted by Gönen
[31], Xia [26], and Laarhoven [28], which is ranked 1, 3 and
5, respectively, and validated in the DrugBank, Metador, and
ChEMBL databases. D00437 interacts with hsa:1555, hsa:1558,
hsa:1562, hsa:1565, hsa:1571, hsa:1572, and hsa:1573 in the
“gold standard” datasets. The target proteins are all annotated
as cytochrome P450, family 2. Their functions are very similar
to hsa:1559. Therefore, we conclude that D00437 may interact
with hsa:1559.

In the ion channel dataset, we determine that the DTI pair
with the highest score is D00538-hsa:6331. D00538 is anno-
tated as zonisamide (JAN/USAN/INN), which is the approved
adjunctive therapy in adults with partial onset seizures [14].
Hsa:6331 is annotated as sodium channel, voltage-gated, type
V, alpha subunit. The protein mediates the voltage-dependent
permeability of the sodium ions of the excitable membranes
[64]. This interaction was also predicted by van Laarhoven and
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Marchiori [65] and Gönen [31], which are both ranked 2, and
reported in the ChEMBL and DrugBank databases. D00538 in-
teracts with hsa:6323, hsa:6328, hsa:6329, and hsa:6336 in the
“gold standard” datasets. The target proteins are all annotated
as sodium channel protein and their functions are very similar
to hsa:6331. Therefore, we conclude that D00538 may interact
with hsa:6331.

In the GPCR dataset, we predict that the pair with the highest
interaction score is D00283 and hsa:1814. D00283 is annotated
as clozapine (JAN/USP/INN), which is an atypical antipsychotic
agent that binds to several types of central nervous system recep-
tors and exhibits a unique pharmacological profile. Hsa:1814 is
annotated as dopamine receptor D3 [14], [17], whose activity
is mediated by G proteins, and inhibits adenylyl cyclase. The
protein promotes cell proliferation [64]. This interaction was
also predicted by Gönen [31], Xia [26], Laarhoven [28], and
Laarhoven [65], which is ranked 3, 5, 1, and 1, respectively,
and can be retrieved from the ChEMBL, Metador, and Drug-
Bank databases. D00283 interacts with hsa:1812, hsa:1813, and
hsa:1815 in the “gold standard” datasets. The target proteins are
all annotated as dopamine receptor and their functions are very
similar to hsa:1814. Therefore, we conclude that D00283 may
interact with hsa:1814.

In the nuclear receptor dataset, we predict that the interaction
of D00348 with hsa:5915 obtains the highest score. D00348 is
annotated as isotretinoin (USP), which is a compound used to
treat severe acne and prevent certain skin cancers types [14].
The target protein hsa:5915 is annotated as the retinoic acid
receptor. In the absence or presence of a hormone ligand, the
protein acts mainly as gene expression activator because of weak
binding to corepressors. Combined with RARG, it is required
for skeletal growth, matrix homeostasis and growth plate func-
tion [64]. This interaction was also predicted by Xia et al.[26],
van Laarhoven and Marchiori[65], and Gönen [31], which is
ranked 1, 3, and 2, respectively, and reported in the ChEMBL
and KEGG databases. Very similar to the function of hsa:5915,
hsa:5914 is also annotated as the retinoic acid receptor. D00348
interacts with hsa:5914 in the “gold standard” datasets. There-
fore, we conclude that D00348 may interact with hsa:5915.

C. Other Performance Evaluations

In this section, we further analyze the performance of the
proposed approach.

1) Performance Comparison Considering Local Correla-
tions Among Labels of Samples or Not: In this section, we
compare the method considering local correlations among the
labels of samples in the DTI network (NormLocal) with the
method that does not consider local correlations (NormNoLo-
cal). NormNoLocal measures drug and target similarities by
using the chemical structures of drugs and the sequences of tar-
get proteins. By contrast, NormLocal measures drug and target
similarities by combining the chemical structures of drugs, the
sequences of target proteins, and the local correlations among
the labels of samples in the DTI network. We present the com-
parative results in the four datasets in terms of AUC and AUPR
scores (see Figs. 1 and 2). The results confirm the feasibility of

Fig. 1. Performance comparison of prediction considering local correlation
of labels between samples or not in terms of AUC on four datasets.

Fig. 2. Performance comparison of prediction considering local correlation
of labels between samples or not in terms of AUPR on four datasets.

integrating local correlation information of the labels between
the samples. As the number of masked interactions increases, the
reliability of prediction efficiency decreases, and replenishment
of the missing data becomes difficult.

2) Performance Comparison Incorporating Various Infor-
mation: We investigate the performances of the proposed ap-
proaches, namely, NormDrug, NormTarget, and NormMulInf.
Figs. 3–4 indicate that the performance of the three approaches
gradually declines with decreasing MDTIR for each sample.
NormMulInf is superior to NormDrug and NormTarget proba-
bly because it incorporates more information compared with the
latter two. The experimental results confirm that the known bio-
logical information can improve prediction efficiency. Further-
more, NormTarget outperforms NormDrug in the ion channel,
GPCRs, and nuclear receptor dataset, in which the average num-
ber of drugs for each target is higher than the average number
of targets for each drug.
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Fig. 3. Performance comparison of prediction in terms of AUC on four
datasets based on multi-information fusion.

Fig. 4. Performance comparison of prediction in terms of AUPR on four
datasets based on multi-information fusion.

3) Case Predicting Targets of New Drugs: To investigate the
prediction performance of NormMulInf for new drugs, we con-
ducted a case study on atropine, an antimuscarinic agent that
binds and inhibits muscarinic acetylcholine receptors, thereby
producing various anticholinergic effects. Adequate doses of at-
ropine can eliminate various types of reflex vagal cardiac slow-
ing or asystole [14]. Therefore, mining the potential targets of
this drug is important.

Masking performed in this part differs from that in Norm-
MulInf. We consider atropine as a new drug and keep all DTIs,
except that the labels associated with the drug are set as 0 in
the original DTI network. Thus, we do not know its targets and
intend to identify them. The 95 potential targets from human
GPCRs are scored according to NormMulInf. The five biochem-
ical experimentally validated targets, namely, hsa:1128 (cholin-
ergic receptor, muscarinic 1), hsa:1129 (cholinergic receptor,
muscarinic 2), hsa:1131 (cholinergic receptor, muscarinic 3),

hsa:1132 (cholinergic receptor, muscarinic 4), and hsa:1133
(cholinergic receptor, muscarinic 5), are ranked 1, 3, 15, 23,
and 26, respectively. This observation indicates that two of the
five targets are included in the top 4% of the 95 potential targets.
All known targets are also included in the top 28% of the tar-
gets. Meanwhile, we predict that atropine interacts with hsa:147
(Alpha-1B adrenergic receptor) and hsa:153 (Beta-1 adrenergic
receptor), which are ranked 2 and 4, respectively.

4) Case Predicting Drugs Targeting New Proteins: We
also evaluated the prediction performance of NormMulInf
for new targets. A case study about the target hsa:3357
(5-hydroxytryptamine receptor 2B, 5HT2B) was conducted.
5HT2B functions as a receptor for various ergot alkaloid deriva-
tives and psychoactive substances and affects neural activity.
5HT2B regulates behavior, including impulsive behavior, and
is involved in the adaptation of pulmonary arteries to chronic
hypoxia. 5HT2B is also required for normal proliferation of
embryonic cardiac myocytes and normal heart development to
ensure normal osteoblast function and proliferation, as well as
for maintaining normal bone density [64]. Therefore, identify-
ing potential drugs targeting 5HT2B exhibits great significance.

We consider 5HT2B as a new target protein and keep all DTIs,
except that the labels associated with the target are set as 0 in
the original DTI network. Thus, we do not know its targeting
drugs and intend to identify them. All 223 potential targeting
drugs from human GPCRs are scored according to NormMulInf.
The six biochemical experimentally validated targeting drugs,
namely, D00283 (Clozapine (JAN/USP/INN)), D00451 (Suma-
triptan (JAN/USP/INN)), D00513 (Pindolol (JP16/USP/INN)),
D00726 (Metoclopramide (JP16/INN)), D01164 (Aripipra-
zole (JAN/USAN/INN)), D01973 (Eletriptan hydrobromide
(JAN/USAN)), are ranked 1, 6, 3, 4, 15, and 19, respectively.
This result indicates that four of the six targeting drugs are in-
cluded in the top 3% of the 223 potential drugs. All known
targeting drugs are also included in the top 9% of the drugs.
We also predict that 5HT2B is targeted by drug olanzapine
(JAN/USAN/INN) and propiomazine (USAN/INN), which are
ranked 2 and 5, respectively.

V. DISCUSSION

In this section, we discuss the experimental results described
in the preceding section.

In the “gold standard” datasets, the DTI data are sparse, low-
rank, and imbalanced. The number of known interactions are
lower than that of unknown ones. Therefore, various compu-
tational methods can be used to determine potential DTIs. We
compare the performance of the proposed approach with those of
other comparative methods on four benchmark datasets, which
include human enzymes, ion channels, GPCRs, and nuclear re-
ceptors. The originality of the proposed approach remains, that
is, making full use of unlabeled data, integrating various bio-
logical information, and applying robust PCA method, which
minimizes the combination of nuclear norm and �1-norm, to
DTI prediction. The experimental results reveal the merits of
the model. High increases in AUC and AUPR indicate that the
DTIs predicted using the proposed approach are likely to be
more accurate than those predicted by other methods.
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NormMulInf can achieve superior results regardless of the
AUC or AUPR results. This observation may be attributed to
the following features of the algorithm. 1) The algorithm incor-
porates various biological information, particularly similarities
among the samples and the local correlations among the labels
of samples in the DTI network. 2) The method makes full use
of unlabeled data in the DTI network. 3) Robust PCA solved by
ALMs exhibits good convergence and can converge to the opti-
mal solution [47]. 4) To decrease bias caused by small sample,
the algorithm considers all samples in the dataset as training and
testing data.

The proposed approach is also beneficial in the design and
interpretation of pharmacological experiments, particularly in
identifying novel DTIs and addressing problems related to deter-
mining multitarget drugs and multidrug targets. The technique
can be further used to investigate other biological associations
similar to DTI, such as microRNA-disease, gene-disease, and
drug-complex associations.

VI. CONCLUSION AND FURTHER RESEARCH

In this study, we developed a novel approach for DTI pre-
diction, which integrates robust PCA with various biological
information into a unified framework. We conducted a compar-
ative evaluation of the proposed approach using four benchmark
datasets. The experimental results suggest that the proposed ap-
proach can achieve superior classification results and can com-
petitively predict DTIs. Further analysis showed that the DTIs
predicted by the proposed method are worthy of further experi-
mental validation.

Using large amount of biological information related to drugs
and targets can improve the efficiency of the technique. Integrat-
ing various biological information can help identify new DTIs;
however, in this study, we do not fully use this additional biolog-
ical information. Therefore, with additional information related
to drug and target validated by biochemical experiments, we will
integrate a large amount of information in subsequent investi-
gations, for example, drug–drug interactions, protein–protein
interactions, and side effects of drugs. Furthermore, we will ex-
tend similarity measures as a regression to make model be more
general.

There are a small quantity of available labeled data validated
by biomedical experiments and abundant unlabeled data. We
make a correct point about the unlabeled interactions, which are
not truly negative DTIs and should be identified with an unsu-
pervised model. However, Negative DTI data are not reported
and are unavailable. When using AUPR and AUC for evalua-
tion, part of unlabeled interactions are being assumed negative
samples, which may affect the accuracy of the method. There-
fore, another way to improve the performance is by building
a negative dataset; investigation of this technique is currently
underway.
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