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Abstract—Bipartite graph clustering (BGC) has emerged as a
fast-growing research in the clustering community. Despite BGC
has achieved promising scalability, most variants still suffer from
the following concerns: a) Susceptibility to noisy features. They
construct bipartite graphs in the raw feature space, inducing
poor robustness to noisy features. b) Inflexible anchor selection
strategies. They usually select anchors through heuristic sampling
or constrained learning methods, degrading flexibility. c) Partial
structure mining. Existing methods are mainly built upon Lin-
ear Reconstruction Paradigm (LRP) from subspace clustering or
Locally Linear Paradigm (LLP) from manifold learning, which
partially exploit linear or locally linear structures, lacking a unified
perspective to integrate global complementary structures. To this
end, we propose a novel model, termed J oint Robust Emb e dding
and Struc t ural Fusion B ipartite G raph C lustering (JetBGC),
which focuses on three aspects, namely robustness, flexibility, and
complementarity. Concretely, we first introduce a robust embed-
ding learning module to extract latent representation that can
reduce the impact of noisy features. Then, we optimize anchors via a
constraint-free strategy that can flexibly capture data distribution.
Furthermore, we revisit the consistency and specificity of LRP
and LLP, and design a new unified structural fusion strategy to
integrate both linear and locally linear structures from a global per-
spective. Therefore, JetBGC unifies robust representation learning,
flexible anchor optimization, and structural bipartite graph fusion
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in a framework. Extensive experiments on synthetic and real-world
datasets validate our effectiveness against existing baselines.

Index Terms—Latent embedding learning, structural fusion,
bipartite graph learning, multi-view clustering.

I. INTRODUCTION

THE dramatic growth of data highlights the necessity to
develop unsupervised or self-supervised learning to reduce

reliance on costly human annotations [1]. As a fundamental
task in unsupervised learning, clustering plays a critical role in
uncovering the inherent grouping structures [2], [3], [4], [5], [6].
Owing to the flexibility of graph in representing complex rela-
tionships [7], [8], [9], graph clustering has become an active field
of research [10], [11], [12]. To further exploit complementary
information from diverse sources or perspectives, multi-view
graph clustering (MVGC) [13], [14], as a popular subfield of
multi-view clustering (MVC) [15], [16], has been widely ap-
plied in data mining [17], knowledge graph [18], and computer
vision [19].

However, existing MVGC methods require to compute pair-
wise similarities to build full graphs, which incurs quadratic
space and cubic time complexity w.r.t. instance number [20],
[21]. This limits their scalability when dealing with large-scale
data. In particular, computing and storing a similarity matrix
for over 100,000 nodes often results in out-of-memory errors or
unacceptable running time.

To improve scalability, multi-view bipartite graph cluster-
ing (MVBGC) [22], [23] instead to merely build the mem-
berships between a few representative anchors/landmarks and
all instances, achieving linear complexity. Fig. 1 plots two
popular paradigms for bipartite graph construction: subspace
clustering based Linear Reconstruction Paradigm (LRP) and
manifold learning based Locally Linear Paradigm (LLP). Built
upon LRP, Kang et al. [24] selected anchors via k-means and
concatenated view-specific bipartite graphs to fuse multi-view
structures. Sun et al. [25] incorporated anchor into optimization,
avoiding sampling anchors. Wang et al. [26] further extended
a parameter-free version. Li et al. [27] designed a feature
self-attention mechanism to reduce noisy features. Built upon
LLP, Wang et al. [28] designed a semi-unsupervised single-view
model with constrained Laplacian rank, anchors are selected via
k-means. Li et al. [29] further extended [28] into multi-view
clustering scenarios, and learned a neighbor bipartite graph. Nie
et al. [30] and Chen et al. [31] introduced feature re-weighting
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and selection methods to preserve useful features. Li et al. [32]
developed a multi-view bipartite graph fusion framework, which
introduced a heuristic anchor selection method and connectivity
constraint, enforcing the bipartite graph holds clear component
structures. Lu et al. [33] further designed a structure-diversity
fusion to refine the graph.

Despite achieving favorable performance, existing MVBGC
models still encounter the following limitations: a) Suscepti-
bility to noisy features: most methods estimate anchor-instance
correlations in the raw feature space, disregarding the impact
of noisy features. b) Inflexible anchor strategy: anchors are
typically pre-selected via k-means or random sampling and
remain fixed thereafter. Although a learnable anchor strategy
has recently been proposed, it requires additional constraints,
limiting flexibility. c) Partial structure mining: most variants are
derived from LRP or LLP paradigms, capturing only linear or
locally linear structures, lacking a unified perspective to explore
global complementarity.

To this end, we consider designing a novel MVBGC model
that aims to enhance bipartite graph clustering from three as-
pects: robustness, flexibility, and complementarity. Concretely,
a) To improve robustness, we introduce a robust feature ex-
traction module to learn robust embeddings from the input raw
feature space. b) To maintain flexibility, we propose to flexibly
acquire anchors through constraint-free optimization, unlike
the existing inflexible k-means, unstable random sampling, or
constrained learning methods. c) To achieve complementarity,
we generalize LRP and LLP into the latent space, and subtly
integrate them into a unified form to fuse linear and locally linear
structures.

We summarize our contributions as follows:
1) We develop a novel MVBGC model, named JetBGC,

which integrates robust embedding learning, constraint-
free anchor optimization, and structural bipartite graph
fusion into a unified framework.

2) We revisit the consistency and specificity of two popular
BGC paradigms, and design a new structural bipartite
graph fusion strategy that integrates linear and locally lin-
ear structures from a global perspective. Furthermore, we
establish a theoretical connection between our model and
the existing LLP paradigm by showing that the proposed
structural fusion strategy is a generalization of LLP under
a newly defined η-norm.

3) We design an ADMM solver with linear algorithm com-
plexity w.r.t. instance number. Extensive experiments on
synthetic and real-world datasets verify the superiority.
Detailed ablation analysis validate the effectiveness of
the robust embedding learning, flexible anchor selection,
structural fusion modules.

II. RELATED RESEARCH

Table I lists the notations used throughout this work.

A. Non-Negative Matrix Factorization (NMF)

NMF [34] is a popular matrix decomposition method, widely
used in bioinformatics, image annotation, and social networks.
Given the raw data X ∈ Rd̃×n, NMF factorizes it into two

TABLE I
NOTATIONS

non-negative parts. Typically, the standard Frobenius-norm (F-
norm) form is as follows:

min
U,V

‖X−UV‖2F , s.t. U ≥ 0,V ≥ 0, (1)

where U is base matrix and V is coefficient matrix.
Following this idea, many variants are proposed. Ding et

al. [35] built the relationship between NMF and k-means
clustering. Cai et al. [36] introduced spectral embedding and de-
signed a graph regularization NMF. Kuang et al. [37] proposed
symmetric NMF that builds connection of NMF and spectral
clustering. Ding et al. [38] developed V-orthogonal NMF to
improve diversity as follows

min
U,V

‖X−UV‖2F , s.t. U ≥ 0,V ≥ 0,VV� = I. (2)

Instead of standardF-norm, Kong et al. [39] proposed a robust
version [40] in which residuals are measured by �2,1-norm, i.e.,

min
U,V

‖X−UV‖2,1 , s.t. U ≥ 0,V ≥ 0. (3)

Based on �2,1-norm, Huang et al. [41] further designed a
robust graph regularization NMF. Li et al. [42] incorporated
linear discriminant analysis into NMF. For more details, please
refer to [43].

B. Bipartite Graph Construction

According to the construction manner, there are two repre-
sentative strategies.

Linear Reconstruction Paradigm (LRP): LRP originates from
subspace clustering [44], which assumes that data can be linearly
reconstructed by anchors in the same subspace. Formally, LRP
is defined as:

min
Z

∥∥X−AZ�∥∥2
F
+ λ ‖Z‖2F ,

s.t. Z1 = 1, Z ≥ 0, (4)

where A is the anchor matrix, Z is the bipartite graph matrix,
and λ is a hyper-parameter to balance the contribution of the
regularizer that avoids the trivial solution.
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Fig. 1. Sketches of existing LRP and LLP paradigms.

Since LRP paradigm models each instance as a combination
of all anchors linearly through probability/similarity, the result-
ing bipartite graph often shows a fuzzy representation, as shown
in Fig. 1 (left).

Locally Linear Paradigm (LLP): LLP builds upon the
manifold learning [45] that supposes that the original high-
dimensional data actually reside on the low-dimensional mani-
fold. This setting enables it to preserve locally linear structures.
Formally, LLP is expressed by

min
Z

n∑
i=1

m∑
j=1

(
‖xi − aj‖22 zij + λz2ij

)
,

s.t. Z1 = 1, Z ≥ 0. (5)

Typically, LLP measures similarity for anchor-instance pairs
through Euclidean distance, where longer distances correspond
to lower probabilities of being neighbors. As a result, the con-
structed bipartite graph is often sparse, as shown in Fig. 1 (right).

By reviewing existing BGC research, we find that most vari-
ants are built upon either LRP [24], [25], [26] or LLP [29], [30],
[32], which focus on modeling linear or locally linear structures
while failing to exploit global complementary structures, result-
ing in degraded discrimination of bipartite graphs.

III. METHODOLOGY

A. Probability Perspective for Bipartite Graph

To naturally motivate the subsequent model design, we
begin by introducing a probabilistic perspective of bipartite
graph [46] that how to recover instance-instance membership
wij = p(xi �→ xj) with instance-anchor membership zri =
p(xi �→ ar) and zrj = p(ar �→ xj).

Specifically, the one-step transition probability from the i-th
instance (xi) to the r-th anchor (ar) is as follows

p(1) (xi �→ ar) =
zri∑m
r=1 zri

,

p(1) (ar �→ xj) =
zrj∑n
j=1 zrj

, (6)

where �→ denotes the transitioning.
The relationship between two instances can be viewed as

a double-step transition process, and the transition probability

from xi to xj is

p(2) (xi �→ xj) =

m∑
r=1

p(1) (xi �→ ar) p
(1) (ar �→ xj)

=
m∑
r=1

zrizrj∑n
j=1 zrj

. (7)

Therefore, the instance-instance affinity matrix S ∈ Rn×n in
conventional graph clustering can be approximated via the con-
struction of bipartite graph Z ∈ Rn×m, where n	 m, which
significantly reduces computational and memory costs. Anchors
thus serve as representative points that capture the underlying
structural relationships among instances.

B. Robust Latent Embedding Learning

From the probabilistic perspective of bipartite graph, the
reliability of the double-step transition probability p(2)(xi �→
xj) depends on the quality of one-step transition probabilities
p(1)(xi �→ ar). However, the high-dimensional raw features
X ∈ Rd′×n may contain redundant or noisy features, which in-
duce unreliable one-step transition, and further degrades double-
step transition. To enhance robustness against noisy and re-
dundant features, we propose mapping the raw features into
a latent embedding space, built upon robust NMF [40] in (3).
For the multi-view setting, we jointly optimize all views {Xp ∈
Rdp×n}vp=1 and fuse them into a unified embedding V ∈ Rd×n.
Our Robust Latent Embedding Learning (RLEL) is formulated
as

min
{Up}vp=1,V,γ

υ∑
p=1

γ2p‖Xp −UpV‖2,1,

s.t.

{
VV� = I;
γ�1 = 1, γp ≥ 0, ∀p ∈ {1, 2, . . . , v}, (8)

where {Up ∈ Rdp×d}vp=1 are the view-related base matrices, γ
measures the view importance.

Note that we introduce V-orthogonal constraint to enhance
the discrimination of the latent embedding. Moreover, we re-
move the non-negative constraints on U and V, enabling it
to handle input data with mixed signs, rather than being lim-
ited to non-negative data [47]. Empirical evidence supporting
this relaxation is provided in the supplementary material (Sec-
tion 4.1). Theorem 1 further bridges the connection between
our RLEL and the relaxed multiple kernel k-means (MKKM)
clustering. More details can be found in supplementary material
(Section 1).

Theorem 1: A reformulation of our RLEL model under the
Frobenius norm, i.e.,

min
{Up}vp=1,V,γ

υ∑
p=1

γ2p‖Xp −UpV‖2F,

s.t. VV� = I; γ�1 = 1, γp ≥ 0, ∀p ∈ {1, 2, . . . , v}, (9)

is equivalent to MKKM clustering with a linear kernel, under
the condition that the latent feature dimension equals the cluster
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Fig. 2. Robustness of the proposed latent embedding module to noisy features, evaluated on a synthetic 4D single-view dataset (SData-1) with two clusters (100
instances each). The input X = (X�

clean,X
�
noisy)

� ∈ R4×200 contains clean features in the first two dimensions and noisy features in the last two. (a) and (b)

visualize the clean and noisy features, respectively. (c) shows the results of SFRF, a JetBGC variant without latent embedding module, where anchors A′ ∈ R4×8

are learned in the raw space. See Section III-H1 for details of SFRF. (d) shows the result of JetBGC, where features are projected into a 2D latent spaceV ∈ R2×200,
yielding anchors A ∈ R2×8 that better capture the cluster structure.

number, i.e., d = k. Formally, this corresponds to:

max
H,γ

Tr
(
H�KγH

)
,

s.t. H�H = I; γ�1 = 1, γp ≥ 0, ∀p ∈ {1, 2, . . . , v}, (10)

where H denotes the consensus kernel partition, Kγ =∑υ
p=1 γ

2
pKp represents a linear combination of multiple base

kernels via kernel function κγ(xi,xj) = ψγ(xi)
�ψγ(xj) =∑υ

p=1 γ
2
pκp(xp(i),xp(j)), with ψ(·): x ∈ X �→ H denoting the

mapping that transforms x into a kernel Hilbert space.
To demonstrate the robustness of RLEL module, we de-

sign a synthetic dataset (SData-1), shown in Fig. 2. For a fair
comparison, all experimental settings for the compared SFRF
(which excludes the RLEL module) and JetBGC are the same.
For SFRF, the presence of noisy features lead to inaccurate
decision boundaries and degrade the performance, resulting in
a Normalized Mutual Information (NMI) of only 21.51%. In
contrast, our strategy demonstrates robustness to noisy features
and achieves competitive performance (NMI: 100%).

C. Flexible Anchor Learning

From the probabilistic perspective of bipartite graph, anchors
act as intermediate “bridges” that connect the one-step transition
probabilities p(1)(vi �→ ar) to the double-step transition prob-
ability p(2)(vi �→ vj). Therefore, anchor selection is critical.

Conventional anchor selection strategies, such as random
sampling [48] and k-means clustering [49], typically pre-select
anchors before optimization, which lacks of flexibility and re-
duces the reliability of p(1)(vi �→ ar), and consequently under-
mines p(2)(vi �→ vj). Similar issues arise in constrained anchor
learning [26], where predefined constraints limit the adaptability
of anchors.

To address these limitations, we adopt a constraint-free anchor
learning strategy that removes the reliance on heuristic methods
or manual constraints. This enables the anchors to better adapt
to the underlying data distribution and more reliable estimation
of transition probabilities.

D. Structural Bipartite Graph Fusion

Given that LRP and LLP capture only linear or locally linear
structures, this section analyzes their consistency and specificity.

By generalizing LRP into the embedding space (termed
LRPE), and further expanding it mathematically, we have:

∥∥V −AZ�∥∥2
F
+ λ ‖Z‖2F

=

n∑
i=1

∥∥∥∥∥∥vi −
m∑
j=1

ajzij

∥∥∥∥∥∥
2

2

+ λ

n∑
i=1

m∑
j=1

z2ij ,

= Tr

⎛
⎝VV� − 2VZA�︸ ︷︷ ︸

Common Part

+ AZ�ZA�︸ ︷︷ ︸
Linear Specific

⎞
⎠+ λ‖Z‖2F︸ ︷︷ ︸

Regularizer

.

(11)

By generalizing LLP into the embedding space (termed
LLPE), and further expanding it mathematically, we have:

n∑
i=1

m∑
j=1

(
‖vi − aj‖22 zij + λz2ij

)
=

Tr

⎛
⎜⎝VV� − 2VZA�︸ ︷︷ ︸

Common Part

+ ADmA�︸ ︷︷ ︸
Locally Linear Specific

⎞
⎟⎠+ λ‖Z‖2F︸ ︷︷ ︸

Regularizer

,

(12)

where Dm = diag(Z�1) ∈ Rm×m.
By reviewing (11) and (12), we find that they share a common

part and a regularization term, while each retains a specific part.
This motivates us to integrate them into a unified framework that
captures global complementary structures. For simplicity, we
combine their specific terms with equal weighting, along with
the shared components, a unified Structural Fusion on Latent
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Fig. 3. Comparison of two BGC paradigms on a synthetic 2D single-view dataset (SData-2). The input X ∈ R2×200 contains two clusters, each with 100
instances. (a) Visualizes the input features. (b)-(d) show the clustering results of LRP, LLP, and SFRF in the raw space. Section III-H1 for details of SFRF.
(e) Displays the learnt latent embedding, and (f)-(g) present the results of LRPE, LLPE, and the proposed JetBGC in the latent space.

Embedding (SFLE) can be formulated as,

min
A,Z

Tr

⎛
⎜⎝ −2VZA�︸ ︷︷ ︸

Common Part

+ AZ�ZA�︸ ︷︷ ︸
Linear Specific

+ ADmA�︸ ︷︷ ︸
Locally Linear Specific

⎞
⎟⎠

+ λ‖Z‖2F︸ ︷︷ ︸
Regularizer

, s.t. Z1 = 1, Z ≥ 0. (13)

Note that the constraint VV� = I, thereby Tr(VV�) is a
constant term and can be omitted from the optimization. Besides,
we treat LRPE and LLPE as equally important, and add their
specific parts with equal contribution.

Furthermore, we derive an alternative form of SFLE that
aligns closely with LLPE, demonstrating that SFLE is a gen-
eralization of LLPE and establishing a connection between the
proposed module and the prior methods.

Concretely, by introducing the constant term Tr(VV�), (13)
can be reformulated as

min
Z,A

n∑
i=1

m∑
j=1

‖vi − aj‖22 zij + λ

n∑
i=1

‖zi‖2η,

s.t. Z1 = 1,Z ≥ 0, (14)

where ‖ · ‖η denotes a newly defined vector norm in Theorem 2,
termd η-norm, which is induced by a positive definite (PD)
matrix I+ ηA�A with η > 0, namely

‖zi‖2η = 〈zi, zi〉η = zi
(
I+ ηA�A

)
z�i . (15)

Theorem 2: η-norm is a valid vector norm induced by a
positive definite matrix I+ ηA�A with η > 0.

Detailed proof is provided in supplementary material (Sec-
tion 2). In experiments, we set η = 1

λ
to ensure that LRPE and

LLPE contribute equally to the overall objective.
Remark 1: The introduced η-norm is a generalization of

F-norm. In (15), we enforce η > 0 to hold the positive def-
initeness of I+ ηA�A. Specifically, when η = 0, η-norm
is simplified to F-norm. For LLP or LLPE variants, a F-
norm based regularizer is typically incorporated to avoid triv-
ial solutions. Beyond this functionality, η-norm also con-
tributes to capturing linear structures by combining a LRPE-
specific term. Moreover, η-norm is compatible with existing
LLP or LLPE variants. Incorporating it as a regularizer en-
ables these variants to extract both linear and locally linear
structures.

To demonstrate the flexibility and complementarity of the
proposed SFLE module, we design another synthetic dataset
(SData-2), as shown in Fig. 3. In all cases, the anchors are
learned via constraint-free optimization. The results show that:
(a) For LRP, anchors are scattered separately, reflecting its linear
reconstruction property. (b) For LLP, anchors are primarily
located within clusters, capturing locally linear structures. (c)
Fusing LRP and LLP combines their complementarity, resulting
in improved performance. (d) LRPE and LLPE inherit the struc-
tural properties of their respective backbones, while benefiting
from the robust latent embedding module. (e) JetBGC achieves
the highest performance, indicating the importance of learning
latent embedding and modeling both linear and locally linear
structures.
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E. The Proposed JetBGC Model

By integrating the above RLEL and SFLE modules, the pro-
posed JetBGC model is as follows,

min
{Up}vp=1,V,

A,Z,γ

υ∑
p=1

γ2p‖Xp −UpV‖2,1︸ ︷︷ ︸
Robust Embedding Learning

+Tr
(−2VZA� + ηAZ�ZA� +ADmA�)+ λ‖Z‖2F︸ ︷︷ ︸

Structural Bipartite Graph Fusion

,

s.t.

{
Z1 = 1, Z ≥ 0; VV� = I;
γ�1 = 1, γp ≥ 0, ∀p ∈ {1, 2, . . . , v}. (16)

In summary, JetBGC integrates robust latent representation
learning, flexible anchor optimization, and structural bipartite
graph fusion, providing a unified solution for robustness, flexi-
bility, and complementarity.

F. Optimization

This section designs an ADMM solver. To separate constraints
and simplify our model, we introduce υ auxiliary variables
{Ep = Xp −UpV}υp=1. The Augmented Lagrange Multiplier
(ALM) function of (16) is expressed by

min
{Up,Ep,Λp}vp=1

V,Z,A,γ

υ∑
p=1

γ2p ‖Ep‖2,1 +

Tr
(−2VZA� +AZ�ZA� +ADmA�)+ λ‖Z‖2F

+

υ∑
p=1

(
〈Λp,Xp −UpV −Ep〉+ μ

2
‖Xp −UpV −Ep‖2F

)

s.t.

{
Z1 = 1, Z ≥ 0; VV� = I;
γ�1 = 1, γp ≥ 0, ∀p ∈ {1, 2, . . . , v}, (17)

where Λp denotes the ALM multiplier to penalize the gap
between the original target and the auxiliary variables, and μ
is the ALM parameter. Equation (17) can be solved by block-
coordinate descent method.

1) Update Up: Each Up is independently updated by

min
Up

∥∥∥∥Xp −UpV −Ep +
1

μ
Λp

∥∥∥∥2
F

. (18)

Since VV� = I, the solution of Up is

Up =

(
Xp −Ep +

1

μ
Λp

)
V�. (19)

2) Update V: V is updated by

max
V

Tr (VΔ) , s.t. VV� = I, (20)

where Δ = 2ZA� + μ
∑υ

p=1 Π
�
pUp and Πp = Xp −Ep +

1
μΛp. The problem can be solved by singular value decomposi-
tion (SVD) [27].

3) Update A: A is updated by

min
A

Tr
(
A
(
Z�Z+Dm

)
A� − 2VZA�) . (21)

By enforcing the partial derivative ∂(·)
∂A = 0, we have

A = VZ(Z�Z+Dm)−1. (22)

Remark 2: Let Ω = Z�Z+Dm, the inverse Ω−1 exists if
and only ifΩ is positive definite (PD) matrix, i.e., all eigenvalues
{ωι > 0}mι=1. It is easy to verify that Z�Z is a positive semi-
definite (PSD) matrix and thus its eigenvalues are greater than
0. For the diagonal matrix Dm = diag(Z�1), its eigenvalues
correspond to its diagonal elements {δι}mι=1. Ideally, if every
anchor connects to at least one instance, then Z�1 > 0, and
Dm = diag(Z�1) is PD matrix. In this case, Ω is the sum of a
PSD and a PD matrix, ensuring Ω is PD and thus invertible.

An undesirable case may arise when an anchor is not con-
nected to any instance, i.e., aj is an isolated anchor without
building correlations with all samples. In this case, the corre-
sponding diagonal entry δj of Dm = diag(Z�1) becomes zero,
inducing Dm is not a diagonal matrix. However, such cases are
not observed in experiments. Therefore, we empirically assume
that Ω−1 exists.

4) Update Z: Each Z[i,:] can be independently updated by
quadratic programming (QP) problem,

min
Z[i,:]

1

2
Z[i,:]GZ�

[i,:] + r�Z�
[i,:],

s.t. Z[i,:]1 = 1, Z[i,:] ≥ 0, (23)

where G = 2(A�A+ λI) and r� = diag(A�A)� −
(2V�A)[i,:].

5) Update Ep: Each Ep is independently updated by

max
Ep

γ2p
μ

‖Ep‖2,1 +
1

2
‖Ep −Qp‖2F, (24)

where Qp = Xp −UpV + 1
μΛp. According to [50], the solu-

tion is

eip =

{(
1− γp

μ‖qi
p‖2

)
qi
p, if

γp

μ <
∥∥qi

p

∥∥
2
,

0, otherwise.
(25)

6) Update γ: Each γp is independently updated by

min
γp

υ∑
p=1

γ2pξp, s.t. γ�1 = 1, γp ≥ 0, (26)

where ξp = ‖Xp −UpV‖2,1. According to Cauchy-Schwarz

inequality, we have γp =
1/ξp∑υ

p=1 1/ξp
.

7) Update Λ and μ: ALM multiplier Λp and μ are updated
by

Λp = Λp + μ (Xp −UpV −Ep) ,

μ = σμ, (27)

where μ is the ALM penalty parameter used to update the
Lagrange multipliers, while σ is a scaling factor.

G. Initiation of Parameters

Initiation of Z and λ: Following a widely used strategy in
previous MVBGC works [28], [51], [52] that initializes Z by
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Algorithm 1: JetBGC.

1: Input: {Xp}υp=1, k, m, d, maximal iteration Γ.
2: Initialize {Up}υp=1, A, Z, V, γ, {Λp}υp=1.
3: while not converged and iteration less than Γ do
4: Update {Ep}υp=1 by solving (24).
5: Update {Up}υp=1 by solving (18).
6: Update A by solving (21).
7: Update Z by solving (23).
8: Update V by solving (20).
9: Update γ by solving (26).

10: Update {Λp}υp=1 by solving (27).
11: end while
12: Perform spectral decomposition on Z to get partition.
13: Output: The predicted labels.

retaining the top-ε nearest anchors for each instance (measured
by Euclidean distance), while setting all other connections to
zero. This method has been shown to (i) preserve sparsity of Z
and (ii) avoid the need for manually tuning the parameter λ [51],
[52], [53].

For brevity, we only present the solution, the detailed deriva-
tions can refer to [52], [53]. In LLPE setting, (23) can be
reformulated as

min
Z[i,:]

1

2

∥∥∥∥Z[i,:] +
1

2λ
r�
∥∥∥∥2
2

, s.t. Z[i,:]1 = 1, Z[i,:] ≥ 0. (28)

According to [27], the closed-form solution to (28) is Z[i,:] =

max{− 1
2λ
r� + τi1n, 0}, where τi can be solved by Newton’s

method.
Furthermore, by using the Lagrange multiplier technique

in [53], λ can be pre-determined by

λ =
ε

2
r�i,ε+1 −

1

2

ε∑
j=1

r�i,j , (29)

where ε denotes the number of neighbors assigned to each
instance in initialization, we empirically set ε = 3 in exper-
iments, which demonstrates favorable performance in most
cases. Further analysis on the sensitivity of ε is available in the
supplementary material (Section 4.2).

Initiation of other variables: Up is initialized to zero due
to unconstrained property; A is initialized as the centroids
obtained by applying k-means to the left singular vectors of
the concatenated multi-view data; V is initialized with the left
singular vectors of the concatenated multi-view data to satisfy
orthogonality constraint; Λp is initialized to zero; the penalty
parameter μ and the scaling parameter σ are initialized to 10
and 2, respectively. Further analysis on the sensitivity of μ and
σ are in supplementary material (Section 4.2–4.3).

H. Analysis and Discussion

1) Structural Bipartite Graph Construction in Raw Feature
Space: If the bipartite graph is constructed in the input space,

JetBGC is reduced to the following form:

min
{Ap}vp=1,Z,γ

v∑
p=1

γ2pTr
(− 2XpZA

�
p + ηApZ

�ZA�
p

+ApDmA�
p

)
+ λ‖Z‖2F,

s.t.

{
Z1 = 1, Z ≥ 0;
γ�1 = 1, γp ≥ 0, ∀p ∈ {1, . . . , v}. (30)

We refer to the above model as Structural Fusion on Raw Fea-
tures (SFRF). The detailed optimization procedure is provided
in the supplementary material (Section 3). Since it excludes the
RLEL module, SFRF shows less robustness to noisy features.

2) Convergence: To solve the proposed optimization model
in (16), we develop an ADMM-based solver that adopts block
coordinate descent strategy [54]. The original objective is de-
composed into six subproblems, each of which has a closed-form
solution. As discussed in [55], [56], the scaling parameter σ
controls the update of ALM penalty μ. A larger σ typically cor-
responds to fewer iterations to reach the convergence criterion,
but may also induces precision loss of the final objective value.
Moreover, with increasing μ, the last term in (17) approaches
zero, thereby the ALM objective asymptotically converges to
the original function, which is bounded by 0. According to
previous convergence analyses of ALM [39], [41], [57] and
block coordinate descent [58], the original function decreases
monotonically during iteration and converges to a local opti-
mum. In experiments, the stopping criterion is as follow,

if (iter > 9) and

(
|obj(iter − 1)− obj(iter)|

obj(iter − 1)
< 10−3

or iter > 30 or obj(iter) < 10−10

)
, (31)

where iter is the iteration index, and obj(iter) denotes the
corresponding objective value.

3) Complexity Analysis: This section analyses the complex-
ities. For simplicity, we set ζ =

∑υ
p=1 dp.

Time Complexity: The time complexity consists of nine parts.
Updating {Ep}υp=1 requires O(nζd) time. Updating {Up}υp=1

requires O(nζd) time. Updating A requires O(nm(d+m))
time. Updating V requires O(n(ζ + dm+ d2 + d+m)) time.
Updating Z requires O(nm(dm+ d)) time. Updating γ re-
quires O(nζd) time. Updating {Λp}υp=1 requires O(nζd) time.
The total time complexity is O(n(m2 d+ d2 + ζd)).

Space Complexity: Space complexity is mainly caused by
storing matrices, i.e., {Xp,Ep,Λp}υp=1 ∈ Rdp×n, {Up}υp=1 ∈
Rdp×d, V ∈ Rd×n, A ∈ Rd×m, Z ∈ Rn×m. The total space
complexity is O(n(ζ + d+m) + ζd+ dm).

Therefore, the complexities are linear with n, making it can
scale to large-scale datasets with n ≥ 100, 000.
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TABLE II
MVC DATASETS

IV. EXPERIMENT

A. Synthetic Datasets

To visualize the effectiveness of JetBGC intuitively, we design
two single-view synthetic datasets.

SData-1: a 4D dataset shown in Fig. 2, consisting of two
clusters, each containing 100 samples, i.e., X ∈ R4×200. The
first two dimensionnal features (1st and 2nd dimensions) exhibit
a two-moons shape, while the last two dimensions (the 3rd and
4th dimensions) are noisy features that follow Gaussian distri-
butions. Specifically, the pink and green clusters are distributed
as C1 ∼ N (μ1,Σ) and C2 ∼ C(μ2,Σ), respectively, where
μ1 = (0, 0)�, μ2 = (0, 0)�, Σ = diag(0.5, 0.5), μ1 and μ2 are
the mean vectors, and Σ represents the variance.

SData-2: a 2D dataset consist of two clusters, with each cluster
containing 100 samples, i.e., X ∈ R2×200. Both clusters follow
Gaussian distributions. Specifically, the 1st cluster (green) is
distributed as C1 ∼ N (μ1,Σ), while the 2nd cluster (pink)
follows C2 ∼ N (μ2,Σ). The mean vectors for the two clus-
ters are μ1 = (0, 1)�, μ2 = (0,−1)�. The covariance matrix
Σ = diag(s21, s

2
2), where s1 = 3.5 and s2 = 0.4.

B. Real-World Datasets

Table II summarizes 11 real-world MVC datasets, with the
number of instances ranging from 195 to 286,000, the number of
clusters ranging from 5 to 50, and the feature dimensions varying
from 48 to 5,376. WebKB_cor is a sub-network of WebKB1

dataset which consists of web pages and hyperlinks, including
course, faculty, student, project, and staff categories. MSRCV12

is a scene dataset which comprises 210 images from 7 categories,
including CENTRIST, CMT, GIST, HOG, LBP, and DoG-SIFT.
ORLRnSp and ORL_4views3 are face datasets containing 400
images from 40 categories but with different views. Movies4

involves 617 movies drawn from 17 categories, characterized
by 2 views (actors and keywords). Flower175 is a flower dataset
with 17 categories and each one contains 80 images. BDGP6

contains 2,500 images of drosophila embryos from 5 classes.

1https://starling.utdallas.edu/datasets/webkb/
2https://www.microsoft.com/en-us/research/project/image-understanding/

downloads/
3https://cam-orl.co.uk/facedatabase.html
4https://lig-membres.imag.fr/grimal/data.html
5https://www.robots.ox.ac.uk/vgg/data/flowers/17/
6https://www.fruitfly.org/

Each image is described by a 1000D-lateral visual vector, a 500D
dorsal visual vector, and a 250D texture vector. VGGFace2_50 is
extracted from large-scale face recognition dataset VGGFace2.7

YouTubeFace10 [59] is a face video datasets collected from
YouTube. EMNIST Digits8 is a subset of handwritten character
digits extracted from the NIST Special Database-19,9 containing
280,000 characters with 10 balanced categories.

C. Compared Baselines

Thirteen state-of-the-art models are compared as baselines,
where MCLES [60], PMSC [61], FMR [62], AMGL [63], and
RMKM [64] are MVC methods withO(n3) computational com-
plexity andO(n2) space complexity. BMVC [65], LMVSC [24],
SMVSC [25], FPMVS-CAG [26], SFMC [32], FMCNOF [66],
SDAFG [33], and MGSL [67] are BGC models with O(n) time
and space complexities. Source codes are collected from public
websites or authors’ homepage. The hyper-parameters are tuned
according to authors’ recommendations and we report the best
metrics.

D. Experimental Setup

Following common experimental settings in clustering, the
cluster number k is known in advance [68], [69], [70], [71]. For
baselines requiringk-means as a post-processing to generate dis-
crete clustering labels, we execute k-means 50 times repeatedly
to reduce randomness caused by stochastic centroid initializa-
tion, and then report mean± std. For JetBGC, the anchor number
m varies in [k, 2k, 3k], the latent feature dimension d varies in
[k, 2k, 3k, 4k], and d ≤ min{dp}υp=1 should be satisfied.

Five widely used metrics, namely Accuracy (ACC), Nor-
malized Mutual Information (NMI), F-score, Adjusted Rand
Index (ARI), and Purity, are used to measure clustering perfor-
mance [72], [73], [74]. Experiments are obtained from a server
with 12 Core Intel(R) i9 10900 K CPUs @3.6 GHZ, 64 GB
RAM, and Matlab 2020b.

E. Effectiveness

Table III reports clustering metrics, due to the space limitation,
the results of MSGL are available in supplementary material
(Section 4.7). From the results, we find that:

1) JetBGC achieves competitive clustering performance,
whose ACC outperforms the second best with large mar-
gins of 12.32%, 10.10%, 10.65%, 0.79%, 4.05%, 2.86%,
15.38%, 8.96%, 2.99%, 4.91%, and 10.42% on eleven
datasets, respectively. On average, our model outper-
forms competitors with 7.59%, 7.95%, 5.22%, 7.69%, and
9.55% improvements of ACC, NMI, F-score, ARI, and
Purity, respectively, fully validating our effectiveness.

2) MCLES, PMSC, FMR, AMGL, and RMKM are MVGC
models with O(n3) time complexity and O(n2) space
complexity, these baselines cannot scale to large-scale

7https://www.robots.ox.ac.uk/vgg/data/vgg_face2/
8https://www.nist.gov/itl/products-and-services/emnist-dataset
9https://www.nist.gov/srd/nist-special-database-19

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on August 20,2025 at 15:12:24 UTC from IEEE Xplore.  Restrictions apply. 

https://starling.utdallas.edu/datasets/webkb/
https://www.microsoft.com/en-us/research/project/image-understanding/downloads/
https://www.microsoft.com/en-us/research/project/image-understanding/downloads/
https://cam-orl.co.uk/facedatabase.html
https://lig-membres.imag.fr/grimal/data.html
https://www.robots.ox.ac.uk/vgg/data/flowers/17/
https://www.fruitfly.org/
https://www.robots.ox.ac.uk/vgg/data/vgg_face2/
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://www.nist.gov/srd/nist-special-database-19


5354 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 9, SEPTEMBER 2025

TABLE III
COMPARISON OF CLUSTERING METRICS

datasets (n ≥ 100, 000) and easily incur “OOM” error,
greatly limiting their applications. Two MVBGC base-
lines, SFMC and SMVSC, also suffer unavailable results
“-” on EMNIST Digits, due to unacceptable extremely
long running time caused by complex optimization.

3) Most compared baselines construct graphs directly from
the input data rather than latent embedding, making them
sensitive to noisy or redundant features, thereby degrading
the quality of graph. In addition, they are typically built
upon either the LRP or LLP paradigm. These limitations
can explain their degraded performance.

F. Comparison With Inflexible Anchor Selection

This section validates the “flexibility” of constrained-free an-
chor optimization. We denote constrained-free anchor selection
strategy as “Flexible”, while the baseline that select anchors via
k-means is denoted as “Inflexible”. For a fair comparison, all
experimental settings are kept consistent.

Fig. 4 visualizes the evolution of the normalized affinity graph
(ZD−1

m Z�) on MSRCV1. It is worth noting that the “Inflexible”
method achieves its best performance withm = 1k and d = 2k,
while the “Flexible” method performs best with m = 2k and
d = 3k, thereby their initialized graphs are different. Moreover,
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Fig. 4. Evolution of the normalized affinity matrix over iterations on MSRCV1.

Fig. 5. Clustering performance: flexible versus inflexible anchor selection.

the “Inflexible” method achieves a 14.57% improvement in
ACC through optimization, with most of the gains occurring
in the first iteration. However, in subsequent iterations, the
reinforcement of the graph is inconspicuous. Differently, the
“Flexible” method progressively improves the performance over
iterations. It gradually reduces inter-cluster noisy similarities,
refines block-diagonal structures, and achieves a 35.12% im-
provement in ACC. The visualization results demonstrate the
effectiveness of our unconstrained anchor optimization strategy.

Fig. 5 further quantifies clustering metrics. The “Flexible”
method consistently outperforms the “Inflexible” manner by

large margins with an average of 4.79%, 5.29%, 5.41%, 6.47%,
and 5.22% improvements respecting ACC, NMI, F-score, ARI,
and Purity, respectively. The improvements demonstrate the
superiority of the flexible learnable anchor strategy.

G. Ablation Study

This section validates the “complementarity” by comparing
JetBGC with LRPE, and LLPE backbones. For comparison,
we also report the results of SFRF and “Inflexible” baseline.
Table IV gives the experimental settings.
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Fig. 6. Visualization of normalized affinity graph of SFRF, LRPE, LLPE, and our SFLE methods.

Fig. 7. Performance comparison of LRPE, LLPE, SFRF, and the proposed model.

TABLE IV
EXPERIMENTAL SETTINGS OF ABLATION ANALYSIS

Fig. 6 visualizes the normalized affinity graph on MSRCV1
and Flower17, and Fig. 7 presents a comparison of clustering
metrics. We observe that:

1) LRPE, derived from self-expressive subspace clustering,
constructs correlations between each instance and all an-
chors. As a result, the graph shows a fuzzy representation,
with many noisy inter-cluster similarities, which degrade
the block-diagonal structure and the quality of clustering.

2) LLPE, grounded in manifold learning, emphasizes locality
by connecting each instance to a few neighbor anchors.
Therefore, the graphs is more sparser and contains fewer

noisy connections. However, several dominant noisy sim-
ilarities may mislead clustering partition.

3) SFLE integrates the properties of LRPE and LLPE,
achieving a more discriminative graph with promising
metrics. Compared to LRPE, JetBGC exploits clearer
block-diagonal structures, while compared to LLPE, Jet-
BGC reduces the noisy similarities.

4) Compared to SFRF, which constructs graphs from raw
features, JetBGC introduces a robust embedding module
for feature extraction, which reduces the negative impact
of the noisy features.

5) JetBGC outperforms the compared baselines with com-
petitive performance on almost all datasets.

These results are convincing evidence to verify the overall
superiority of JetBGC.

H. Convergence

Fig. 8 empirically validates the “convergence” of JetBGC. As
discussed in our theoretical analysis, with the increase of ALM
parameter μ, the ALM objective function gradually converges
to the original function, which is bounded by 0. In experiments,
we find that the objective decreases and stabilizes within ten
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Fig. 8. Experimental validation of the convergence.

iterations, verifying convergence. More convergence results are
available in supplementary material (Section 10).

V. CONCLUSION

This paper proposes a novel bipartite graph clustering model,
JetBGC, which focuses on three aspects: robustness, flexibility,
and complementarity. To improve robustness, we derive a new
feature extractor that learns robust latent embedding, which re-
duces the adverse impact of noisy features. To achieve flexibility,
we design a constraint-free anchor optimization strategy instead
of following the existing fixed anchor or constrained learnable
methods. To enhance complementarity, we bride the connection
of two popular BGC paradigms, and design a novel structural
bipartite graph fusion strategy from a unified perspective, to
integrate global complementary structures. Overall, JetBGC
integrates robust embedding learning, constraint-free anchor
optimization, and structural bipartite graph fusion into a unified
framework. This paper provides new insights into enhancing
bipartite graph clustering that will inspire more variants in
the BGC community. One limitation of JetBGC is its reliance
on post-processing to generate the discrete clustering labels,
which may introduce variance in the performance. Alternative
strategies, such as Laplacian rank constraint [53] or one-pass
clustering method [75], provide potential solutions for directly
generating labels, which will be our future research. Another
limitation is its assumption of complete multi-view data. How-
ever, in many scenarios, missing data is common due to sensor
failures or data corruption. Tackling incomplete multi-view data
remains a challenging yet practical problem, and we leave this
in subsequent research.
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