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Abstract—Unsupervised bipartite graph learning has been a hot
topic in multi-view clustering, to tackle the restricted scalability
issue of traditional full graph clustering in large-scale applications.
However, the existing bipartite graph clustering paradigm pays
little attention to the adverse impact of noisy features on learning
process. To further facilitate this part of research, apart from sim-
ply reweighting features to depress the noisy ones, we take the first
step towards analyzing the induced adverse impact via theoretical
and experimental investigations. One crucial finding in this article
is that the existence of noisy features will incur “anchor shift”
phenomenon, which deviates from the potential representations of
anchors and then degrades performance. To this end, we propose a
coupled noisy feature filter mechanism with automatically finding
feature importance to remedy the anchor shift issue in this article.
Apart from leveraging features, we theoretically analyze the bounds
of proposed feature-adaptive bipartite graph’s fuzzy membership.
Specifically, distinguishing features’ discrimination will increase
the fuzzy membership to achieve soft partitions against the poten-
tial inaccurate absolute relationships. With the afore-mentioned
merits, our proposed multi-view bipartite graph clustering with
coupled noisy feature filter model (MVBGC-NFF) provides novel
and interesting insights on the feature level of anchor shift. The
effectiveness and efficiency of MVBGC-NFF are demonstrated on
synthetic and real-world datasets with improved clustering perfor-
mance, increasing fuzzy membership, and filtering noisy features.
The code is available on https://github.com/liliangnudt/MVBGC-
NFF.

Index Terms—Anchor shift, bipartite graph learning, multi-view
clustering, noisy features.
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I. INTRODUCTION

RAPH learning has been a hot topic in machine learn-
G ing, owing to promising capacity in discovering complex
structures [1], [2], [3], [4], [5]. Graph clustering has attracted
extensive attention and widely applied in handling unsupervised
tasks [6], [7], [8], [9], [10]. To cope with multiple sources or
multiple views real-world data, e.g., the features of an image can
be extracted and described by Generalized Search Trees (GIST),
Pyramid Histogram of Gradients (PHOG), and Local Binary Pat-
terns (LBP), multi-view graph clustering (MVGC) evolves into
an important branch of multi-view clustering (MVC), widely
used for data mining and knowledge discovery [11], [12], [13],
[14], [15], [16], [17].

Despite achieving great success, traditional MVGC [18],
[19], [20] relies on building full graphs, i.e., computing fully-
connected graph, requiring at least cubic computational com-
plexity O(n?®) and quadratic space complexity O(n?), which
greatly restricts the scalability in large-scale tasks [21], [22],
[23], [24], [25]. To avoid building pair-wise similarity of full
graph, multi-view bipartite graph clustering (MVBGC) is pro-
posed by constructing bipartite graph, i.e., merely building the
relationship between representative anchors and samples to re-
cover the full graph [26], [27], [28], [29], [30]. In this way,
the computational complexity is reduced to O(n) and space
complexity is reduced to O(nmuw), where n, m, and v denote the
number of samples, anchors, and views, respectively. The linear
complexities make it suitable for large-scale applications [31],
[32], [33], [34], [35]. Naturally, the MVBGC paradigm requires
a set of anchors to represent data distribution, which means
the anchor plays an important role in constructing high-quality
bipartite graphs. Currently, there are two anchor-selecting strate-
gies, one is to utilize k-means [28], [36], random sampling [26]
or heuristic methods [29], [37], [38] to select anchors, the other
is to learn anchors via optimization [39], [40], [41]. Considering
the randomness and inflexibility of sampling strategy, our model
adopts the learning strategy to generate anchors.

However, the conventional MVBGC paradigm coupled an-
chor learning still encounters two deficiencies: 1) most variants
focus on learning representative anchors in sample space while
neglecting features’ discrimination in feature space. 2) Current
MVBGC paradigm pays little attention to the adverse impact
of noisy features on bipartite graph clustering, making this part
deserves further exploration. Fig. 1 shows a synthetic example.
Fig. 1(a) shows the first two clean features, Fig. 1(b) shows
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Fig. 1.
an ineffective solution, while depressing the noisy ones can alleviate this issue.

the rest noisy features, and Fig. 1(c) depicts t-SNE visualiza-
tion (two anchors) [42] by equally treating features. Due to
noisy disturbance, the learned anchors deviate from the intuitive
centroid of clusters. Intuitively, enlarging anchor numbers can
remedy the poor performance. However, as depicted in Fig. 1(d),
simply enlarging anchor numbers (four anchors) on the sam-
ple level without depressing noisy features is not an effective
solution. We summarize such a phenomenon as the “feature-
induced anchor shift” phenomenon. Clearly, these anchors with
poor discrimination induce inaccurate bipartite graph represen-
tation, and consequently ruin clustering performance. Similar
results are further visualized on real-world datasets, illustrat-
ing the generality of “anchor shift” phenomenon in real-world
applications.

To alleviate the adverse “anchor shift” phenomenon incurred
by noisy features, an intuitive idea is to pay varing attention
to features, e.g., when we are watching an image, the obvious
parts will be gained more attention while the unimpressive
background will be omitted. However, quantitatively measuring
their discrimination is not easy, since acquiring prior knowledge
is challenging in unsupervised scenarios. Alternatively, learn-
ing their importance via optimization is a reasonable strategy.
Specifically, we propose a noisy feature filter to depress the noisy
ones in a reweighting manner, the noisy features are filtered
by imposing small or zero weights, while the discriminative
ones are preserved by imposing large weights. Naturally, from
Fig. 1(e), (f), and (g), one crucial empirical finding is that
depressing noisy features can alleviate the “anchor shift” issue.
Although similar feature reweighting or selection strategies have
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Visualization of the “anchor shift” phenomenon incurred by noisy features on a four-dimensional synthetic dataset. Simply enlarging anchor numbers is

been applied in MVC [43], [44], [45] or MVBGC [36], [46],
most works rarely dig deep into these adverse impacts.

Besides, another theoretical contribution is that we mathemat-

ically analyze the lower and upper bounds of the proposed bipar-
tite graph’s fuzzy membership. A corollary is that reweighting
features will increase the bipartite graph’s fuzzy membership.
Compared to equally treating features that commonly incur
sparse representation, increasing the fuzzy membership achieves
soft partitions rather than hard clustering, making it fully ex-
plores entire anchors’ representation. Similar to the rationale
of fuzzy k-means, such manner plays a role in remedying the
potential inaccurate absolute relationships. We provide rigorous
theoretical analysis and experimental validation to corroborate
our findings.

The contributions are summarized as follows:

1) We take the first step towards analyzing and experimen-
tally visualizing the adverse impact of noisy features on
bipartite graph clustering, i.e., the “anchor shift” phe-
nomenon, and propose a noisy feature filter mechanism
to depress the noisy ones, which can effectively alleviate
such issue.

2) Another theoretical contribution is that we mathematically
analyze the bounds of bipartite graph’s fuzzy membership.
A corollary is that distinguishing features’ discrimination
will increase the fuzzy membership, which achieves soft
partitions to remedy potential inaccurate absolute repre-
sentation.

3) Extensive experiments and rigorous theoretical explana-
tions demonstrate our theoretical findings on feature level,
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TABLE I
MAIN NOTATIONS
Notation | Explanation
n,,k Number of samples, views, and clusters
dp Feature dimension for the p-th view
m Number of anchors
D The minimal feature dimension
L The loss function
f The function for the bound of ||z||o
a € Rvx? View weights
Xp € R% X" | Data matrix for the p-th view
Q, € R¥%Xdp | Feature reweighting matrix for the p-th view
wp € R%W*1 | Feature reweighting vector for the p-th view
A, € R%>™ | Anchor matrix for the p-th view
Sp e R#X™ Full graph for the p-th view
S e Rmx7 Consensus full graph
Z, € R™>™ | Bipartite graph for the p-th view
Z € R™X" Consensus bipartite graph
z* € Rmx1 Z. ; learned by equally treating features
2* € Rmx1 Z.. j learned by proposed noisy feature filter

which further facilitates this part of research in bipartite
graph clustering.

II. RELATED WORK

This section briefly reviews several important research mostly
related to our work. Table I records the main notations through-
out this work.

A. Multi-View Graph Clustering

Given multiple view data {X,}5_, € R%*" drawn from
k clusters, a representative paradigm of multi-view subspace
clustering is formulated as

. 2
Isrlljl,lsl Z 1Xp = X3Syl + 2L(S,, 8)

=1
P Full Graph Learning

diag(S,) =0, S;1, =1,, S, > 0,
| diag(S) =0, S"1, =1,, S >0,

Full Graph Fusion

ey

where the first term denotes graph learning for the p-th view,
the second term denotes graph fusion across {S,},_; to learn
a consensus S, X is a balanced hyper-parameter, £ is the loss
function. The learned partition can be computed by conducting
spectral clustering on S [20], [21].

Many variants are developed along with this framework, aim-
ing to explore diversity and consistent representations [21], [31],
[47] or introduce various constraints [21], [23], [48]. However,
this paradigm cannot avoid building a full graph, requiring
at least cubic computational complexity O(n?) and quadratic
space complexity O(n?), which greatly limits scalability in
large-scale tasks.

B. Multi-View Bipartite Graph Clustering

To alleviate the high computational and space complexity,
multi-view bipartite graph clustering is proposed by merely
building the relationship between representative anchors and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

samples, i.e., bipartite graph Z,, instead of constructing fully-
connected graphs S,,. A typical paradigm is formulated as

. 2
2171% Z 1Xp — ApZplz  + MC(Zyp, Z) 5

=1
p Bipartite Graph Learning  Bipartite Graph Fusion

.t {Z;)r]-m = ]-nv Zp > 0,

ZT]—m = 1’!L7 Z > Oa (2)

where A, is the anchor matrix for the p-th view, Z, is the
corresponding bipartite graph, and Z is the consensus one. The
first term learns view-related bipartite graphs, and the second
term achieves fusion. The learned partition can be computed by
performing Singular Value Decomposition (SVD) on Z [28],
[41]. In this way, the time and space complexities are reduced
to O(n) and O(nmw), respectively.

Naturally, anchors play an essential role in learning high-
quality bipartite graphs. Huang et al. [49] utilized random sam-
pling to generate anchors. Kang et al. [28] and Yan et al. [36]
generated anchors from k-means. Li et al. [29] and Huang et
al. [38] utilized heuristic methods to select anchors. Note that
sampling induces randomness and these anchors remain fixed
during optimization. Liu et al. [41], Sun et al. [39], and Wang
et al. [40], incorporated anchor selection into optimization,
improving flexibility and scalability.

III. METHODOLOGY

To alleviate the adverse “anchor shift” phenomenon incurred
by noisy features, this section proposes an effective noisy feature
filter mechanism. Moreover, we elaborately analyze the bounds
of proposed bipartite graph’s fuzzy membership, and a corollary
is that distinguishing features’ discrimination induce increasing
of the fuzzy membership.

A. The Proposed Formula

Although the existing MVBGC paradigm coupled anchor
learning exhibits promising performance in real-world appli-
cations, it involves regularization that requires extra hyper-
parameter tuning. Following the principle that multiple views
share latent consensus clustering representation and keep view-
related diversity, the conventional MVBGC paradigm can be
compacted into the following,

min
A, Z

ATA, =1
p Ap my
" {ZTlm —1,,Z>0, @

Z ||Xp - APZHiW
p=1

where A, denotes view-related anchor matrix, Z denotes
the consensus bipartite graph. Compared to the conventional
MVBGC paradigm that separates bipartite graph learning and
fusion, (3) unifies them into a compact form, which avoids to
balance the regularization.

However, the conventional MVBGC paradigm and the above
formulation still suffer two deficiencies:
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1) Most variants focus on learning representative anchors
while neglecting features’ discrimination, i.e., equally
treating all the features, conflicting the intuition that infor-
mative or expressive features should be emphasized while
the irrelevant or noisy ones are filtered.

2) Existing paradigm pays little attention to the potential
adverse impact of noisy features. Since the quality of
bipartite graph is sensitive to anchors’ representation,
and equally treating features will bring the interference
from irrelevant or noisy features, the induced impact on
anchors’ representation deserves further exploration.

The above analysis motivates us to facilitate this line of
research, this article takes the first step toward investigating the
adverse impact of noisy features.

Remark 1. One crucial experimental finding is that noisy
features will incur the adverse “anchor shift” phenomenon, and
simply increasing anchor numbers is an ineffective solution. De-
pressing the noisy ones can effectively alleviate such undesired
issue.

For simplicity, the compact MVBGC with Equally Treating
Features manner in (3) is termed as MVBGC-ETF.

Fig. 1(c) depicts the t-SNE visualization of MVBGC-ETF.
Clearly, noisy features greatly affect anchor learning, the learned
anchors exhibit limited even inaccurate representation, which
directly induces mistaken partition with degraded clustering
accuracy (51.33%) on such a simple dataset. Furthermore, as
Fig. 1(d) shows, merely improving anchor numbers in sample
space is an ineffective solution.

We summarize the “anchor shift” phenomenon as

The existence of noisy features incurs the adverse “an-
chor shift” phenomenon, which deviates from the potential
representations of anchors, inducing inaccurate bipartite rep-
resentation and degraded performance.

To alleviate the undesired “anchor shift” issue, an intuition
idea is to filter these noisy or weak expressive features and
preserve the discriminative or expressive ones. Since directly
measuring the discrimination is still a difficult issue in unsu-
pervised scenarios, we introduce an effective noisy feature filter
mechanism to adaptively re-weight their importance. In this way,
the noisy features are depressed, and the discriminative ones are
well preserved. Consequently, our MVGBC with coupled noisy
feature filter model (termed MVBGC-NFF) is formulated as

. 2 2
o oAy Z I; @[ Xy — ApZ[p,
a'l=1, a, >0,

— i T1 —
Q?r_ diag(wyp), w,1 =1, w, >0, @)
ATEAP =1,,
Z1,=1, 7Z>0,

where €, € R%*4» denotes the diagonal feature reweighting
matrix for the p-th view, w, denotes the feature reweighting
vector, and « denotes view weight.
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Fig. 1(e), (), (g), and (h) presents the results by noisy fea-
ture filter mechanism. Obviously, depressing noisy features is
a feasible solution to prevent anchor learning from suffering
the “anchor shift” issue, the learned anchors exhibit stronger
representation, which effectively guides the clustering process
with 100% accuracy. Our noisy feature filter mechanism effec-
tively detects the discriminative feature (x;) and imposes a large
weight (0.86) while filters useless (x2) or noisy features (x3
and x4) by imposing small weights (0.043, 0.044, and 0.053),
respectively. This is sufficient evidence to verify the importance
of depressing noisy features.

B. Theoretical Contribution on Proposed Bipartite Graph’s
Fuzzy Membership

Remark 2. One novel theoretical contribution is that we math-
ematically analyze the bounds of proposed bipartite graph’s
fuzzy membership. A corollary is that distinguishing features’
discrimination will increase the fuzzy membership.

Proposition 1. Distinguishing features’ discrimination will
increase the bipartite graph’s fuzzy membership. Specifically,
the bounds of ||z*||o (i.e., | Z. ;o) from equally treating manner
(MVBGC-ETF) is f(Mz) < ||z*]|o < f(M;), and the bounds
of ||2* || from reweighting manner (MVBGC-NFF) is f(32) <
[2*]Jo < f(XLL), where ||z[|o is the O-norm of vector z, D =
miny, d,, is the minimal feature dimension, M; = min; Ab;,
My = max; Ab;, Ab; := b; 11 — b;, and b is a dataset-related
vector defined in (6). The bound can be quantified by a unified
[F] =% +3)mh

Proposition 1 illustrates that reweighting features will in-
crease the bipartite graph’s fuzzy membership compared to the
equally treating manner. Recall the “anchor shift” phenomenon
incurred by noisy features shown in Fig. 1, the poor represen-
tation of anchors incurs much inaccurate relationship, making
it insufficient to recover the latent clustering structures. Similar
to the rationale of fuzzy k-means, inducing fuzzy membership
plays arole in fully exploring the entire anchors’ representation,
which contributes to remedying the inaccurate membership dur-
ing optimization.

The following part mathematically derives the bounds of the
proposed feature-adaptive bipartite graph’s fuzzy membership.
As a reference, we firstly give the bounds of conventional
equally-treating feature manner.

Considering the non-convexity, we employ alternative opti-
mization strategy to solve one variable with others being fixed.
According to Z optimization in Section III-C2, each column
(Z. ;) is an independent Quadratic Programming (QP) problem
with analytical solution in (22), we focus on Z. ; to represent
the fuzzy membership of bipartite graph Z. Updating Z. ; can
be simplified by

and elegant function f(¢) = min{|

2
z—bH ,
2

min
z
st.z2'1,, =1,z >0, 5)

where z denotes Z.; and b denotes a dataset-related vector
computed by other variables, i.e., Z. ; in (22).
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Without loss of generality, we utilize O-norm of z to represent
the fuzzy membership, which means that adjusting the element
order of Z and b will not change their sparsity. For simplicity, z
and b denotes the sorted Z and b in ascending order, respectively.
(5) is converted to

min ||z — b||§,
z
st.z'1,=1,2>0. (6)

We define Abz = bi+1 — bi, M1 = mini Abi, and Mg =
max; Ab;, where b; denotes the i-th smallest element of b.

Replacing the original b by a specific arithmetic progression
b with a common difference M;, Lemma 1 gives a bound of
Izllo.

Lemma 1. Supposing an arithmetic progression b(1) : bl(-1
b, — (m — )My, 1 < i < m, (6) is converted to

) =

min [z — b3,

st.z'1,,=1,z>0. (7)

The 0-norm of z is as follows,

120l = min{ { hﬂ -2y ;J ,m} C®

where z(!) is the optimal solution of (7), [« | and [x] donate
“floor” and “ceil” operations imposed on x, respectively.

Similarly, replacing the original b by another arithmetic pro-
gression b(?) with a common difference My, Lemma 2 gives
another bound of ||zl|o.

Lemma 2. Supposing an arithmetic progression b(?) : b§2) =
by — (m —i)Ma, 1 < i <'m, (6) is converted to
min |z — b3,
st.z'1,=1,z>0. ©)]

The 0-norm of z is as follows

2o = mi“{ { Eit ;J vm} o1

where z(? denotes the optimal solution of (9).

Lemma 1 and Lemma 2 provide the solution of |z]|o
with specific arithmetic progression b(*) and b, respec-
tively. The detailed proof is available in supplementary ma-
terial, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TKDE.
2023.3268215. Note that both (8) and (10) can be unified in
a unified and elegant formulation f, i.e.,

-4}

an
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Clearly, we have f(M;) = ||z™"||o and f(Ms) = [|z?|o.
Theorem 1 further gives the relationship of f(M;), f(Mz), and
lz*|lo, where z* is the optimal solution of (6).

Theorem 1. f(M;j) and f(My) is the upper and lower bounds
of ||z*||o learned by equally treating features, i.e.,

f(Mg) <270 < f (M) (12)

The detailed proof is available in the supplementary material,
available online.

Following a similar technology route, Theorem 2 gives the
bound of ||z*||o learned by proposed reweighting features.

Theorem 2. f(ML)and f(%2) is the upper and lower bounds
of ||z*||o learned by reweighting features, i.e.,

() <t#<s ().

where D = min,, d,, denotes the minimal feature dimension.

Proof. Compared to equally treating manner, the analysis of
reweighting manner becomes complex due to multiple feature
dimensions in the MVC scenario. For simplicity, we firstly
consider single-view setting, supposing {2 = éI, where d is the
feature dimension. (6) is transformed to

13)

min ||z — BH%,
z

st.z'1,,=1,z>0, (14)

where b = éb, M; = éMl, M,y = éMg, and z* is the optimal
solution.
According to Theorem 1, we have

(%) <tees s (5.

Furthermore, (15) is extended to MVC scenario,

(32 <teto<s (%)

; (1;42) <Jalo < (1;47:)

which can be unified into

M M
max f (2) < |Iz*|lo < min f (1>
2 dp P dy

Considering the monotony of function f in (11), the lower
bound of z* will be gained by d = min,, d,, and the upper bound
will be gained by d = max,, dj. Since the ceiling of ||z*||, and
lz*||o is the anchor number m, we pay more attention to the
lower bound, (17) is simplified by

(%) <lelo=s ()

where D = min,, d,, denotes the minimal feature dimension.
This completes the proof. O
Consequently, based on Theorems 1 and 2, a corollary is that
introducing noisy feature filter mechanism increases the bounds
of bipartite graph’s fuzzy membership.

5)

16)

A7)

(18)
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In summary, this section gives the bounds of bipartite
graph’s fuzzy membership (]|z||o), and theoretically analyzes the
relationship of MVGBC-ETF (||z*|o) and MVBGC-NFF
(|z*]|o). A corollary is that introducing noisy feature filter
mechanism will increase their bounds. We emphasize that the
proposed bound function f is a general method, suitable for both
single-view and multi-view models that utilize a similar manner
in optimizing bipartite graph Z.

C. Optimization

Directly solving (4) is difficult due to non-convexity. Instead,
we utilize alternative optimization manner.

1) Update A,: With o, £2,,, and Z being fixed, each A,, can
be solved by

max Tr(A E,), st. AJA, =1, (19)
where E, = ©,X,Z". Theorem 3 gives the optimal solution
of (19).

Theorem 3. Supposing the rank-k SVD of E, is UAV',
where U € R™* A € RF** and V € R¥**_ The optimal
solution of (19) is as follows,

A,=UV', (20)

The details are available in the supplementary material, avail-
able online.

2) Update Z: With o, £2,,, and A, being fixed, updating Z
can be rewritten as n column independent QP problems, i.e.,

1
min 5Z.;0Z.; +h'Z,,

st. Z,1=1,2.; >0, (21)

where O =237 2L h" = -237)  a?X] QA
Furthermore, each QP problem is transformed to

2

)

1 ~
gtz

3

stZ,1=1,2.;>0, (22)

where Z;, j=— 22;%1&% Mathematically, Theorem 4 gives the

analytical solution of (22).
Theorem 4. The analytical solution of (22) is as follows,

Z., :max{z,j +5j1n,0}, (23)

where 3; can be efficiently computed by Newton’s method.
The details are available in the supplementary material, avail-
able online.
3) Update 2,: With A, Z, and o being fixed, each 2, can
be solved by

. 2
min 192,X, — A,Z| %,
P

s.t. Q, = diag(wp),wgl =1l,w,>0. (24)
Furthermore, we have

rgipn Tr (92, X,X,Q, —2X,Z'A Q,),
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Algorithm 1: MVBGC-NFFE.

:Input: {X,}0_;, k, and m.

: Initialize Z, {Q,} and o

: repeat

Optimize {A,},_; by computing (19).

Optimize Z by computing (22).

Optimize {€2,},_; by computing (26).

Optimize o by computing (29).

:until convergence

: Compute partition matrix H by performing SVD on Z.

: Output: Get the predicted clustering labels by
performing k-means on H.

—_—

v
p:] )

[a——

st 2, = diag(w,),w, 1 =1,w, > 0. (25)

Recalling 2, is diagonal matrix, (25) is equivalent to

dp
- T TAT
min E : (wp(q)Xp[q,:]Xp[q,:]‘*’p(q) -2(X,Z Ap)qq wp(tz)) ;
P a=1

st. wyl=1w,>0. (26)

Denoting X, 1 X, 1 and 2(X,ZTA[) as aq and e,
respectively. The above formulation can be converted to

dp

min E w2 a, — eqw

wp p(q)“a a%p(q) ) »
q=1

St wp(g) = 0,w 1 =1, (27)
which can be rewritten as
min [jw, — “:’pHg )
Wp
St wp(g) = 0,w 1 =1, (28)

where d)p(q) = 267“ According to Theorem 4, w,, can be effi-
ciently solved with an analytical solution.

4) Update o, With Q,,, A, and Z being fixed, updating o,
can be simplified by

minZang, st.a'l=1,a>0, 29)
ap p—l
where 7, = ||Q2,X,, — A,Z||%. The optimal «,, can be directly
solved by Cauchy-Schwarz inequality, i.e.,
L/mp
0 = T (30)

Z;=1 17y

D. Complexity and Convergence Analysis

Time Complexity: The computational complexity during op-
timization includes four parts. For simplicity, we set g; =
>p—1dp and go =37 d2. Updating {A,}y_; requires
O(nmg; +m?gy) time. Updating Z requires O(nmg;) time.
Updating {€2,,},_; requires O(n(mgz + g1)) time. Updating o
requires O(n (g2 + mgi)) time. Therefore, the time complexity
of optimization process is O(nm(g; + g2) + m2g1) time.
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TABLE II
REAL-WORLD DATASETS
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TABLE III
COMPLEXITY ANALYSIS COMPARISON

Datasets ‘ Samples ‘ Views ‘ Clusters ‘ Features

MSRCV1 210 6 7 1,302/48/512/100/256/210
ORL 400 4 40 256/256/256/256
Flower17 1,360 7 17 5,376/512/5,376/5,376/1,239/5,376 /5,376
VGGFace2_50 16,936 4 50 944/576/512/640
Caltech256 30,607 4 257 944/576/512/640
VGGFace2_100 36,287 4 100 944/576/512/640
CIFAR100_Train | 50,000 4 100 944/576/512/640
CIFAR100_All 60,000 4 100 944/576/512/640
VGGFace2_200 72,283 4 200 944/576/512/640
TinyImageNet 100,000 4 200 944/576/512/640
YoutubeFace sel | 101,499 5 31 512/64/647/838
YouTubeFace50 126,054 4 50 944/576/512/640

In post-processing, we conduct SVD on Z to compute the
partition and utilize k-means to output the discrete clustering
labels, which requires O(nm?) computational complexity. Con-
sequently, the total computational complexity of MVBGC-NFF
is O(nm(m + g1 + g2) + m?g1). The complexity is linear with
sample number n, making it suitable for large-scale tasks.

Note that comparing with equally treating features, introduc-
ing noisy feature filter will induce extra complexity O (n(mgs +
g1)), which means the computational burden will be obvious
in high-dimensional feature scenarios, especially when feature
dimension exceeds sample number. Generally, the increased
computational burden is affordable in most applications.

Space Complexity: The space complexity is mainly caused by
storing matrices, i.e., X, € Répxn A, e Rdrxm 7 ¢ RM*"
and Q, € R *d» Since Q, is a diagonal matrix, we just
need to store w,,, which saves memory consumption. The total
space complexity is O(n(m + g1) + mgi ). Therefore, the space
complexity is linear with n, making it applicable on large-scale
datasets.

Convergence: Since our MVBGC-NFF is non-convex, jointly
solving all the variables is difficult, we adopt alternative op-
timization in this article. Note that each sub-optimization can
achieve the optimum, as pointed in [50], the objective of
Algorithm 1 decreases monotonically during optimization and
converges to a local minimum bounded by O.

IV. EXPERIMENT

A. Synthetic Dataset

To visualize the adverse impact of noisy features, we first con-
duct experiments on a synthetic single-view four-dimensional
dataset with 300 samples drawn from two clusters, generated
from Gaussian function, as shown in Fig. 1. The first dimension
with z; is discriminative for distinguishing clustering structure,
the second dimension with x5 is useless, and the rest two
dimensions are noisy features.

B. Real-World Datasets

Table II lists twelve real-world MV C datasets. MSRCV1 [51]
includes 210 images drawn from 7 clusters, i.e., airplane,
bicycle, building, car, caw, face, and tree. ORL! is a face dataset
containing 400 images from 40 distinct categories. Flower17? is

1https ://cam-orl.co.UK/facedatabase.html
thtps ://www.robots.ox.ac.UK/ vgg/data/flowers/17/

Method | Time Complexity | Space Complexity
RMKM O(n) O(n(g1 + k) + g1k)
AMGL O(n?) O(n?v +n(g1 +k))
FMR O(n?) O(3n? + n(g1 + 3k))
PMSC O(n?) On2(v+1)+n(g1 + kv +k))
MCLES O(n?) O(2n? +n(g1 + 2k) + g1k)
BMVC O(n) O(nl + dl)
LMVSC O(n) O(n(g1 + mv) + gimuo)
SMVSC O(n) O(nm + (g1 + m)k)
SFMC O(n) O(n(g1 + mv))
FMCNOF O(n) O(n(g1 + mv + k) + mk)
FPMVS-CAG O(n) O(nk + (g1 + k)k)
UoMVSC O(n?) O(2n%v +ng1)
SDAFG O(n) O(n(g1 + 2mv))
Proposed O(n) O(n(g1 +m) + gim)

an image dataset with each class includes 80 flower images. Cal-
tech256° contains 30607 images spanning 257 object categories.
VGGFace2 50, VGGFace2 100, and VGGFace2 200 are de-
rived from VGGFace.* CIFAR100_Train and CIFAR100_All°
are image datasets drawn from 100 classes. TinylmageNet®
contains 100000 images drawn from 200 classes. YoutubeFace
sel and YouTubeFace50 are face video datasets extracted from
YouTube [38].

C. Compared Algorithms

Thirteen existing MVGC or MVBGC algorithms are
compared as baselines, including 1) Multi-view k-means Clus-
tering on Big Data (RMKM) [18]. 2) Parameter-free Auto-
weighted Multiple Graph Learning (AMGL) [52]. 3) Flexible
Multi-View Representation Learning for Subspace Clustering
(FMR) [19]. 4) Partition Level Multi-view Subspace Cluster-
ing (PMSC) [20]. 5) Multi-view Clustering in Latent Embed-
ding Space (MCLES) [21]. 6) Binary Multi-View Clustering
(BMVC) [33]. 7) Large-scale Multi-view Subspace Clustering
in Linear Time (LMVSC) [28]. 8) Scalable Multi-view Subspace
Clustering with Unified Anchors (SMVSC) [39]. 9) Multi-view
clustering: a Scalable and Parameter-free Bipartite Graph Fu-
sion Method (SFMC) [29]. 10) Fast Multiview Clustering via
Nonnegative and Orthogonal Factorization (FMCNOF) [53].
11) Fast Parameter-free Multi-view Subspace Clustering with
Consensus Anchor Guidance (FPMVS-CAG) [40]. 12) Unified
One-step Multi-view Spectral Clustering (UoMVSC) [54]. 13)
Structure Diversity-Induced Anchor Graph Fusion for Multi-
View Clustering (SDAFG) [37]. Table III compares the time
and space complexities of baselines and ours. Due to space
limitations, the experimental results of UoMVSC and SDAFG
are provided in supplementary material, available online.

D. Experimental Settings

The source codes of the compared baselines are directly
downloaded from public websites without extra corrections,
and the utilized hyper-parameters are directly tuned following

Shttps://authors.library.caltech.edu/7694/
4https ://www.robots.ox.ac.UK/ vgg/data/vgg_~face/
5https ://www.cs.toronto.edu/ kriz/cifar.html
Shttps://www.kaggle.com/c/tiny-imagenet
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TABLE IV
CLUSTERING METRICS COMPARISON (ACC, NMI, PURITY, AND F-SCORE). THE BEST ONES ARE MARKED IN BOLD, THE SECOND-BEST ONES ARE IN ITALIC AND
UNDERLINED, “N/A” MEANS TIME-OUT OR MEMORY-OVERFLOW ERRORS

Datasets | RMKM | AMGL | FMR | PMSC | MCLES | BMVC | LIMVSC | SMVSC | SFMC | FMCNOF | FPMVS-CAG | Proposed

| ACC (%)
MSRCV1 71.43+0.00 | 76.44+6.30 | 77.48+6.40 | 47.45+4.23 | 60.86+3.45 | 26.67+0.00 | 83.73+7.20 | 70.51+4.98 | 60.48+0.00 | 47.14+0.00 | 71.95+536 | 86.19+7.59
ORL 47.0040.00 | 59.73+2.78 | 25.21+1.10 | 21.48+1.02 | 29.18+£1.99 | 43.25+0.00 | 61.50+2.96 | 47.76+2.36 | 37.00+0.00 | 21.50+0.00 | 54.63+1.49 | 64.53+3.55
Flower17 23.24+0.00 | 9.70+1.53 | 33.43+1.75 | 20.8240.74 N/A 26.99+0.00 | 34.47+1.86 | 27.13+0.84 | 7.574+0.00 | 17.43+0.00 | 25.99+1.83 | 36.61+1.96
VGGFace2_50 8.2340.00 2.9540.35 N/A N/A N/A 10.304+0.00 | 10.56+0.26 | 13.36+0.60 | 3.64+0.00 | 5.51+0.00 12.06+0.36 | 14.5540.56
Caltech256 9.87+0.00 N/A N/A N/A N/A 8.63+0.00 9.574+0.17 | 10.54+0.15 | 4.50+0.00 | 2.70+0.00 8.78+0.07 11.36+0.36
VGGFace2_100 | 5.3940.00 N/A N/A N/A N/A 6.1740.00 6.09+0.09 7.90£0.20 | 1.98+0.00 | 3.47+0.00 6.02+0.18 10.24+0.32
CIFAR100_Train | 9.79+0.00 N/A N/A N/A N/A 8.38+0.00 8.92+0.17 8.48+0.18 | 1.33+0.00 | 4.40+0.00 7.461+0.12 10.74+0.27
CIFAR100_All N/A N/A N/A N/A N/A 8.324+0.00 9.53+0.15 | 834+0.17 | 1.18+0.00 | 3.66+0.00 7.2940.11 10.76+0.27
VGGFace2_200 N/A N/A N/A N/A N/A 3.994+0.00 4.31+0.06 | 4.2540.06 N/A 0.90+0.00 3.4140.05 6.44+0.18
TinyImageNet N/A N/A N/A N/A N/A 4.09+0.00 4.2840.05 | 0.0440.04 N/A 0.504-0.00 2.834+0.02 5.08+0.10
YoutubeFace sel N/A N/A N/A N/A N/A 17.884+0.00 | 16.34+0.54 | 10.09+0.33 N/A 23.2740.00 | 12.38+0.16 | 27.15+0.67
YouTubeFace50 N/A N/A N/A N/A N/A 66.00+£0.00 | 68.3242.45 | 2.46+2.46 N/A 21.66+0.00 | 64.24+2.97 | 68.48+3.12

| NMI (%)

MSRCV1 63.03+0.00 | 77.65+3.23 | 69.48+3.31 | 34.294+2.81 | 51.72+2.37 | 8.29+0.00 | 78.9344.60 | 62.01£2.61 | 60.23+0.00 | 38.42+0.00 | 65.69+3.27 | 82.79+5.01
ORL 71.83+0.00 | 80.28+1.37 | 48.33+0.81 | 43.87+0.84 | 54.03+£1.67 | 65.32+0.00 | 79.39+1.15 | 72.73+1.13 | 76.30+0.00 | 43.32+0.00 | 77.414+0.54 | 81.56+1.88
Flower17 22.0740.00 | 10.2544.01 | 30.65+£0.91 | 19.1340.48 N/A 25.62+0.00 | 33.82+1.10 | 25.7840.76 | 7.87+0.00 | 14.6840.00 25.81+1.59 34.45+1.51
VGGFace2_50 9.66+0.00 2.04+0.50 N/A N/A N/A 13.48+0.00 | 12.64+0.28 16.2140.49 | 1.63%0.00 4.74+0.00 14.7440.55 17.974+0.44
Caltech256 31.0140.00 N/A N/A N/A N/A 31.83+0.00 | 31.96+0.11 | 28.2740.24 | 5.67+0.00 N/A 22.9740.21 33.60+0.18
VGGFace2 100 | 11.1440.00 N/A N/A N/A N/A 14.26+0.00 | 11.92+0.11 14.8040.23 | 0.9140.00 5.81+0.00 12.33+0.29 18.4740.28
CIFAR100_Train | 17.8040.00 N/A N/A N/A N/A 15.1240.00 | 15.49+0.15 | 14.83+0.22 | 3.78+0.00 8.494+0.00 13.87+0.21 17.1440.19
CIFAR100_All N/A N/A N/A N/A N/A 15.05+0.00 15.40£0.18 | 14.40+0.20 | 0.53+0.00 7.0440.00 13.62+0.16 16.90+0.22
VGGFace2_200 N/A N/A N/A N/A N/A 15.0440.00 | 13.94:£0.09 | 13.94+0.13 N/A N/A 11.18+0.18 18.46+0.18
TinyImageNet N/A N/A N/A N/A N/A 13.7540.00 | 13.23+0.06 0.12+0.12 N/A N/A 10.04+0.12 14.56+0.11
YoutubeFace sel N/A N/A N/A N/A N/A 3.58+0.00 15.33+£0.33 | 7.66+0.17 N/A 4.41+0.00 7.60£0.09 24.01+0.40
YouTubeFace50 N/A N/A N/A N/A N/A 81.90+0.00 | 82.43+0.78 | 0.85+0.85 N/A 43.03+0.00 82.08+1.07 83.80+0.96

‘ Purity (%)
MSRCV1 74.76+0.00 | 80.454+4.29 | 79.01+£4.16 | 49.914+3.78 | 61.574£2.91 | 27.144+0.00 | 85.2545.56 | 71.5144.02 | 62.860.00 | 50.48+0.00 72.3345.01 87.3046.09
ORL 53.004+0.00 | 66.924+2.07 | 26.48+1.14 | 23.90+£1.08 | 31.96+1.78 | 47.50+£0.00 | 65.68+2.53 | 51.914+2.16 | 78.00+0.00 | 21.754+0.00 58.97+1.39 68.41+3.03
Flowerl7 24.4940.00 | 10.76+1.53 | 34.74+1.38 | 22.20+0.62 N/A 29.414+0.00 | 35.89+1.54 | 27.8840.78 | 10.29+0.00 | 17.5740.00 26.38+1.85 38.15+1.93
VGGFace2_50 9.28+0.00 3.17+0.37 N/A N/A N/A 11.4440.00 | 11.41£0.25 13.9040.58 | 3.8640.00 5.67+0.00 12.27+0.36 15.6510.54
Caltech256 15.65+0.00 N/A N/A N/A N/A 14.94+0.00 16.2540.14 | 14.00+0.12 | 5.27+0.00 2.70£0.00 11.88+0.11 17.7840.26
VGGFace2_100 6.26+0.00 N/A N/A N/A N/A 7.15+0.00 7.02+0.09 8.55+0.22 2.09+0.00 3.50£0.00 6.33+0.21 11.3140.33
CIFAR100_Train | 11.124-0.00 N/A N/A N/A N/A 9.27+0.00 10.41+0.15 9.09+0.21 2.97+0.00 4.49+0.00 7.84+0.18 11.9610.24
CIFAR100_All N/A N/A N/A N/A N/A 9.33+0.00 10.90£0.20 | 8.93+0.17 1.264-0.00 3.68+0.00 7.64+0.13 12.0240.23
VGGFace2_200 N/A N/A N/A N/A N/A 4.66+0.00 4.9840.07 4.62+0.08 N/A 0.90£0.00 3.56+0.06 7.20+0.18
TinylmageNet N/A N/A N/A N/A N/A 4.69+0.00 4.9340.04 0.04+0.04 N/A 0.50£0.00 2.95+0.02 5.71+0.11
YoutubeFace sel N/A N/A N/A N/A N/A 26.62+0.00 | 29.55+0.40 | 26.62+0.00 N/A 26.6240.00 26.81+0.06 35.8510.46
YouTubeFace50 N/A N/A N/A N/A N/A 73.6440.00 | 73.21+£2.18 2.61£2.61 N/A 22.8340.00 66.84+3.02 75.044+2.33

‘ F-score (%)
MSRCV1 59.984+0.00 | 70.284+4.42 | 66.76+4.50 | 34.05+2.34 | 48.534+2.10 | 16.01£0.00 77.43+£6.43 | 59.314+2.82 | 52.43+0.00 | 33.854+0.00 61.55+3.54 80.4617.02
ORL 33.664+0.00 | 35.12+4.54 | 9.274+0.83 6.48+0.54 | 17.63+1.35 | 24.84+0.00 | 50.10£2.86 | 32.37+1.71 | 23.74+0.00 | 12.0940.00 42.87+1.47 54.0413.96
Flowerl7 14.35£0.00 | 11.49+£0.55 | 20.09+0.81 | 12.33+0.36 N/A 16.61£0.00 | 22.5740.95 | 17.53+£0.21 | 10.9440.00 | 13.93+0.00 17.29+0.39 24.514+1.30
VGGFace2_50 3.69+0.00 3.914+0.02 N/A N/A N/A 5.1040.00 5.09+0.15 6.35£0.18 | 4.16+0.00 | 4.36+0.00 6.1040.07 7.46+0.25
Caltech256 7.2840.00 N/A N/A N/A N/A 6.25+0.00 6.00+0.28 5.37+0.20 1.1740.00 1.1740.00 3.22+0.02 9.24+0.86
VGGFace2_100 2.114+0.00 N/A N/A N/A N/A 2.77+0.00 2.47+0.04 3.45£0.06 2.12+0.00 2.39+0.00 3.14+0.01 4.33+£0.11
CIFAR100_Train | 3.99+0.00 N/A N/A N/A N/A 4.17£0.00 3.52+0.06 4.46+0.07 1.9840.00 2.74+0.00 3.74+0.01 4.62+0.12
CIFAR100_All N/A N/A N/A N/A N/A 4.37+0.00 3.69+0.05 4.47£0.06 1.9840.00 2.56+0.00 3.78+0.01 4.64+0.11
VGGFace2_200 N/A N/A N/A N/A N/A 1.46+0.00 1.4040.03 1.61£0.02 N/A 1.06+0.00 1.5940.01 2.29+0.06
TinyImageNet N/A N/A N/A N/A N/A 1.5540.00 | 1.36+0.01 0.0140.01 N/A 0.99+0.00 1.50+0.00 1.66+0.03
YoutubeFace sel N/A N/A N/A N/A N/A 15.78+0.00 | 7.54+0.13 6.65+0.16 N/A 16.25+0.00 | 10.56+0.19 10.9240.18
YouTubeFace50 N/A N/A N/A N/A N/A 57.09+0.00 | 62.49+2.45 | 2.56+2.56 N/A 15.6740.00 | 56.89+3.18 61.8343.35

the authors’ suggestion. For our proposed MVBGC-NFF, the
anchor number m varies in [k, 2k, 3k, 4k]. Since we impose
the orthogonal constraint on anchor matrix A, min, d, < m
should be satisfied. To alleviate the randomness from k-means,
we report mean =+ std by repetitively running 50 times. Four
metrics, including accuracy (ACC), normalized mutual infor-
mation (NMI), purity, and F-score are to quantify performance.
Experiments are performed on a computer with Intel Core i9
10900X CPU (3.5GHZ), 64 GB RAM, and Matlab 2020b (64 b)

version.

E. Clustering Performance

Table IV reports four metrics comparisons. The best results
are marked in bold, the second-best ones are in italic and
underlined, and “N/A” denotes unavailable results due to time-
out or memory-overflow errors. Based on the results, we observe
that:

1) The proposed MVBGC-NFF achieves the best or second-
best performance. Compared to the second-best ones, our
MVBGC-NFF achieves 2.46%, 3.03%, 2.14%, 1.19%,
2.34%,1.24%,2.13%, and 3.89% improvement of ACC on

eight datasets, respectively. Other metrics can demonstrate
its superiority as well.

2) The traditional MVGC methods, i.e., RMKM, AMGL,
FMR, PMSC, and MCLES, encounter scalability issues
on large-scale datasets due to massive matrices compu-
tation and memory incurred by building the full graph.
Our MVBGC-NFF outperforms them by 8.71%, 4.80%,
3.18%,6.32%,1.49%,4.83%, and 0.95% of ACC on seven
datasets, illustrating our effectiveness.

3) Compared to existing MVBGC methods, i.e., BMVC,
LMVSC, SMVSC, SFMC, FMCNOF, and FPMVS-CAG,
our MVBGC-NFF still achieves comparable or better
performance. Especially, LMVSC can be regarded as the
strongest competitor, our MVBGC-NFF exceeds it by
large margins of 2.46%, 3.03%, 2.14%, 3.99%, 4.14%,
2.13%, and 10.81% on seven datasets, respectively, veri-
fying our superiority.

F. Feature Weight Distribution

Fig. 2 depicts the learned feature weight distribution £2 on
MSRCV1 and YoutubeFace sel datasets. We observe that:
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Fig. 2. Feature weights distribution of our MVBGC-NFF on MSRCV1 and YoutubeFace sel datasets.
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Fig.3. Comparing the t-SNE visualization of compared MVBGC-ETF (Compared) and our model on MSRCV 1 dataset.
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Fig. 4. Logarithm bipartite graph’s fuzzy membership (||z|o) from equally-treating manner (Compared) and our noisy feature filter manner (Proposed). The
upper and dot line denotes the predicted upper and lower bound, respectively.
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Fig.5. Visualization of bipartite graph from compared MVBGC-ETF and our
MVBGC-NFF on MSRCV1 datasets.

1) The weight distributions vary across multiple views, with
several views sparse while others smooth, illustrating the
difference of features’ representation.

2) The sparse weight distribution illustrates that inexpressive
or noisy features indeed exist in real-world datasets, espe-
cially for the views with high-dimensional features. Con-
versely, low-dimensional features exhibit more smooth
distribution relatively. A reasonable explanation is that
there is a higher probability of validly extracting low-
dimensional features while higher-dimensional features
are likely to contain more noise.

3) Similar to Fig. 1(e) and (f) on synthetic dataset, our
noisy feature filter mechanism achieves distinguishing
features’ discrimination on real-world datasets, i.e., the
discriminative features are well preserved while the noisy
or inexpressive ones are filtered, which contributes to
effectively depressing the noisy ones.

G. Visualization of “Anchor Shift” Phenomenon

To verify the generality of “anchor shift” phenomenon in-
curred by noisy features in real case, Fig. 3 plots the evolution
of t-SNE visualization during optimization on MSRCV 1 dataset,
which shows the separation of clusters and anchors’ distribution.
Similarly, conventional equally-treating manner also incurs “an-
chor shift” issue: the learned anchors flock together, making
it insufficient to represent the latent data distribution, which
directly degrades the quality of bipartite graph and consequently
ruins the clustering performance (ACC: 71.95%). In contrast,
our MVBGC-NFF automatically measures their discrimination
(refer to feature weight distribution shown in Fig. 2). Therefore,
the undesired “anchor shift” issue is alleviated, and the learned
anchors exhibit stronger representation, which improves clus-
tering performance (ACC: 86.19%).

H. Validating the Theoretical Finding About Proposed
Bipartite Graph’s Fuzzy Membership

This section validates our theoretical finding that distinguish-
ing features’ discrimination will increase the proposed bipartite
graph’s fuzzy membership.

Fig. 5 depicts the visualization of bipartite graph on
MSRCVI1. Clearly, compared to the sparse bipartite graph
learned by MVBGC-ETF, introducing noisy feature filter mech-
anism can increase fuzzy membership. Recall the “anchor shift”
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phenomenon shown in Fig. 3, the potential absolute membership
(hard clustering) preserves much inaccurate relationship (high-
lighted by red box), which directly degrades bipartite graph’s
quality (ACC: 71.95%). By contrast, introducing fuzzy proba-
bility membership (soft partition) can fully explore the entire
anchors’ representation, which contributes to remedying the
inaccurate memberships (ACC: 86.19%).

Furthermore, Fig. 4 quantifies the logarithm experimental
fuzzy membership (||z|o) and the predicted lower and upper
bounds. We observe that:

1) The predicted bounds exhibit datasets-related results. The
experimental ||z||o lies between the predicted lower and
upper bounds, verifying our theoretical bounds.

2) Comparing to equally treating manner, introducing the
reweighting manner increases the bounds of fuzzy mem-
bership on all datasets, especially for the lower bound,
which accounts for the increasing fuzzy membership in
experiments.

3) Generally, the experimental [|z||o from the compared
MVBGC-ETF approaches the predicted lower bound,
while the ||z||o from the proposed MVBGC-NFF nearly
reaches the predicted upper bound.

1. Comparison With Equally-Treating Feature Manner

Table V reports the comparison of clustering metrics and
execution time. From the results, we observe that the noisy
feature filter mechanism consistently exceeds equally-treating
manner, with large margins of 14.24%, 9.90%, 9.42%, 2.13%,
2.58%, 4.07%, 3.28%, 3.48%, 3.04%, 14.77%, and 2.24%
of ACC on eleven datasets, which is convincing evidence
supporting the significance of filtering noisy features. The ex-
ecution time comparison indicates that the extra computational
burden is affordable in most applications.

J. Running Time Comparison

Fig. 6 plots time consumption, we observe that:

1) Compared to full graph clustering, MVBGC methods
significantly reduce the running time, owing to linear
computational complexity.

2) Comparing to MVBGC coupled anchor learning, i.e.,
SMVSC and FPMVS-CAG, our MVBGC-NFF requires
more running time, mainly due to our noisy feature filter
mechanism. As pointed in Section III-D, the extra compu-
tational complexity increases with the feature dimension,
which is evident on Flower17 (maximal dimension: 5376)
over others (maximal dimension: 1302). Generally, we
believe that extra computational burden is a worthwhile
sacrifice in depressing noisy features.

K. Convergence and Sensitivity

Fig. 7 shows the evolution of objective. Clearly, it decreases
monotonically and converges to a local minimum, verifying the
convergence.

Fig. 8 plots the sensitivity of anchor number varying
in [k,2k,3k,4k]. Since the constraint min, d, < m should
be satisfied according to (4), both the maximum anchor
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TABLE V
PERFORMANCE COMPARISON WITH THE CONVENTIONAL EQUALLY-TREATING FEATURES MANNER (COMPARED)

Model | MSRCVI | ORL | Flowerl7 | VGGFace2 50 | Caltech256 | VGGFace2 100 | CIFAR100_Train | CIFAR100_All | VGGFace2 200 | TinylmageNet | YoutubeFace sel | YouTubeFace50

| ACC (%)

Compared | 71954536 | 54.63£149 | 27.18+1.57 | 12424061 | 8.78:0.07 617020 7.46:£0.12 7.29£011 3.41+005 2.84:£0.02 12.38+0.16 68.894:2.72

Proposed | 86.19+7.59 | 64.5343.55 | 36.61+1.96 14.554+0.56 11.36+0.36 10.2440.32 10.74+0.27 10.76+0.27 6.4440.18 5.08+0.10 27.1540.67 68.484+3.12
| NMI (%)

Compared | 65.6943.27 | 77412054 | 25.16+1.65 | 15204065 | 22974021 | 12494028 13.87+0.21 13.62+0.16 11.18+0.18 10.2040.11 7.60-£0.09 83554122

Proposed 82.79+5.01 | 81.56+1.88 | 34.45+1.51 17.97+0.44 33.60+0.18 18.47+0.28 17.14+0.19 16.90+0.22 18.46+0.18 14.560.11 24.01+0.40 83.80+0.96
| Purity (%)

Compared | 72.334+5.01 | 58.97+1.39 | 28.07+1.56 12.78+0.61 11.88+0.11 6.45+0.21 7.84+0.18 7.64+0.13 3.56+0.06 2.91+0.02 26.81+0.06 71.40+2.81

Proposed | 87.304:6.09 | 68.41+3.03 | 38.15+1.93 | 15.65+0.54 | 17.7840.26 | 11314033 11.96+0.24 12.0240.23 7.20+0.18 5.71£0.11 35.85+:0.46 75.0442.33
| F-score (%)

Compared | 6155354 | 42874147 | 16414044 | 6132009 | 3.22:0.02 312002 3.74:£0.01 378001 1.59:£0.01 1.550.00 10564491 59.264:4.91

Proposed | 80.46+7.02 | 54.0443.96 | 24.51+1.30 7.46+0.25 9.24+0.86 4.3340.11 4.62+0.12 4.64+0.11 2.2940.06 1.66+0.03 10.92+0.18 61.83+3.35
| Time (s)

Compared 033 068 2572 8141 74158 369.72 632.77 859.37 1822.58 2908.20 1104.67 1407.88

Proposed 058 071 56.83 104.81 876.77 493.56 807.75 103022 2187.04 3433.71 114122 1488.66

number available for TinylmageNet and YoutubeFace sel is
m = 2 k. Generally, our MVBGC-NFF exceeds most existing
competitors.

V. CONCLUSION

This article investigates the adverse impact of noisy fea-
tures on bipartite graph clustering and proposes an effective
alleviating solution. One crucial experimental insight is that
noisy features incur “anchor shift” phenomenon, degrading the

bipartite graph’s quality and ruining the clustering performance.
To remedy the deficiency of conventional MVBGC models
that equally treat features, we propose a noisy feature filter to
depress the noisy ones, which can alleviate the “anchor shift”
issue. Another theoretical contribution is that we mathemati-
cally analyze the bounds of proposed feature-adaptive bipartite
graph’s fuzzy membership. A corollary is that distinguishing
features’ discrimination will increase the fuzzy membership.
Such manner achieves soft partition to remedy the poten-
tial inaccurate absolute representation. The effectiveness and
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efficiency of our model are demonstrated on both synthetic and
real-world datasets. This article provides novel and interest-

ing

feature-level findings, corroborated by rigorous theoretical

analysis and extensive experiments, which facilitate this part of
multi-view bipartite graph clustering research.
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