
https://doi.org/10.1007/s10844-020-00601-0

Distributed matrix factorization based on fast
optimization for implicit feedback recommendation

Lian Chen1 ·Wangdong Yang1 ·Kenli Li1 ·Keqin Li1,2

Received: 9 August 2019 / Revised: 29 March 2020 / Accepted: 29 March 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In big data scenarios, matrix factorization (MF) is widely used in recommendation systems
as it can offer high accuracy and scalability. However, when using MF to process large-
scale implicit feedback data, the following two problems arise. One is that it is difficult
to effectively obtain negative feedback information, which causes relatively poor recom-
mendation accuracy. The other is that the limited resources of a single machine make the
model training inefficient, and in particular, the acquisition of negative feedback informa-
tion further increases the time complexity of model training. In order to solve the above
two problems, we first propose a user-activity and item-popularity weighted matrix factor-
ization (UIWMF) recommendation algorithm, which assigns every missing data different
weight based on user activity and item popularity, gets negative feedback information more
realistically, and leads to better recommendation accuracy. Meanwhile, in order to reduce
the additional computational overhead caused by the weight strategy, we develop a fast
optimization strategy to enhance the efficiency. In order to break the resource constraints
of a single machine, we propose a distributed UIWMF (DUIWMF) algorithm based on
Spark, which adopts an efficient parallel learning algorithm to train the model and utilizes
cached in-block and out-block information to effectively reduce the communication over-
head in a distributed environment. We conduct experiments on three public datasets, and
the experimental results demonstrate that, comparing with the baseline MF methods, DUI-
WMF model has comparable performance in terms of recommendation accuracy and model
training efficiency.
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1 Introduction

1.1 Motivation

The recommendation system usually provides users with customized recommendations
according to their interests. With the rapid development of information technology, the
scale of recommendation data has increased dramatically. Additionally, the data is getting
more and more sparse, which makes it harder to provide an accurate recommendation.
Meanwhile, such large-scale recommendation data also poses a critical challenge to the
construction of the model. Hence, based on such large-scale sparse data, effectively con-
structing models and making accurate recommendations becomes a very challenging issue
(Karydi and Margaritis 2016).

Matrix factorization (MF) is a dimensionality reduction technique, which is widely
used in recommendation systems and has been proven to be exceptionally accurate in pro-
cessing large-scale and high-dimensional sparse data (Karydi and Margaritis 2016; Koren
et al. 2009). However, Most of the previous studies on MF algorithms for recommendation
focused on the explicit feedback (Koren et al. 2009; Rendle and Schmidt-Thieme 2008),
where the ratings of users directly reflected their preference on each item. Collecting these
ratings requires users to evaluate items subjectively, which is not always easy to realize.
Thus, researchers paid attention to the implicit data (Kabbur et al. 2013), which is usually
produced incessantly and much easier to obtain. For example, referring to purchase his-
tories and web browsing histories, the implicit data of users can be easily acquired. This
kind of implicit data is usually a binary decision on some items, while it may be biased
since it inherently lacks negative feedbacks, which is known as the one-class problem (Pan
et al. 2008). Specifically, when a user is browsing for some products on the Internet, com-
modities that attract the user, i.e., with positive feedbacks, are more likely to be browsed.
In the meanwhile, the user may hardly click on the products with negative feedbacks. As a
result, the corresponding browsing history contains much more products with positive feed-
backs. Therefore, how to obtain the negative feedback from the missing data is essential to
improve the accuracy of recommendation derived from implicit feedbacks. To make up for
negative feedbacks, Hu et al. (2008) proposed to allocate uniform weights to all the miss-
ing data, while this weighting strategy is not consistent with the practical scenario. In the
above purchasing example, the missing browsing data contains both the negative feedbacks
that the user saw but not browsed, as well as the unlabeled data that the user did not see.
The weighting strategy was improved in He et al. (2016), where the authors considered the
item popularity. Particularly, since a popular item is more natural to be seen by the user, the
missing feedbacks of a popular item deserves a higher weight. A similar weighting strategy
based on the activity of the user was proposed in Li et al. (2018), where the authors believed
that active users were more likely to interact with more items, then the missing data from
active users should be designated higher weights. However, the above two methods assigned
uniform weights to the missing data of each user or each item, respectively. This assump-
tion only considers the differences among users or items, ignoring the unique characteristic
of each missing data. Besides, the use of weight strategy significantly increases the time
complexity of the implicit MF model, so it is necessary to develop more efficient learning
algorithms. He et al. (2016) designed a new learning algorithm based on the element-wise
Alternating Least Squares (eALS) technique. The main idea of eALS is to avoid the mas-
sive repeated computations by introducing a cache matrix. eALS algorithm provides a new
idea for dealing with implicit MF, on the basis of which Li et al. (2018) developed an effi-
cient learning algorithm to enhance the efficiency. Therefore, how to balance the accuracy
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and time complexity of the algorithm also needs to be considered in the design of weight
strategy.

Another critical issue is how to train models for large-scale recommendation efficiently.
Due to the limited memory and CPU resources of a single machine, model training locally
is very time-consuming. Hence, the design of parallel and distributed recommender algo-
rithm becomes necessary (Chen et al. 2018; Yu et al. 2014). Thanks to the development
of cloud computing, MapReduce-based distributed memory computing framework, e.g.,
Apache Spark (2019a) and Apache Flink (2019), could provide high computing power for
large-scale data processing. To effectively leverage the computing power of existing frame-
works, we need an efficient parallel learning algorithm based on MapReduce to train the
implicit MF model. Stochastic gradient descent (SGD) and alternating least squares (ALS)
are two major learning algorithms for training the MF model. However, both methods are
not suitable for MapReduce-based large-scale data processing. Specifically, SGD is chal-
lenging to be parallelized efficiently in the MapReduce-based framework. This is due to
the fact that the MapReduce platform usually executes synchronous distributed learning
algorithms in a data-parallel mode, while SGD is inherently serial. More importantly, SGD
usually suffers from slow convergence, and the convergence speed is sensitive to the param-
eters (Yu et al. 2014). Although ALS is straightforward to parallelize and suitable for the
MapReduce programming model, its computation complexity is cubic, which is not scalable
to large-scale datasets (Yu et al. 2014).

1.2 Our contributions

An efficient implicit MF recommendation system cannot ignore the influence of missing
negative feedbacks. In addition to this, it has to possess the ability to process large-scale
sparse data. This paper addresses the above two issues, and endeavors to design a dis-
tributed recommendation system for implicit feedback recommendation. Specifically, the
main contributions of this paper are summarized as follows:

– Comprehensive weighting strategy: Different from the weighting strategies mentioned
above, which did not address the negative feedbacks adequately, we give full consid-
eration to both user activity and item activity, and firstly propose a centralized matrix
factorization algorithm to improve the accuracy of recommendations. Compared with
the current uniform weight strategy (Hu et al. 2008; He et al. 2016; Li et al. 2018), the
proposed comprehensive weighting strategy, i.e., the user-activity and item-popularity
weighted matrix factorization (UIWMF) recommendation algorithm, can distinguish
negative feedbacks from missing data more accurately and make recommendations
more precisely. Meanwhile, in order to avoid the increase of the time complexity of the
algorithm caused by the weight strategy, we use eALS to learn the model, and skillfully
design four cache matrices to effectively avoid the massive repeated computations.

– Low-cost distributed implementation: To handle large-scale implicit recommendation
data, we further propose the distributed UIWMF (DUIWMF) algorithm such that the
model training can be carried out in a parallel and distributed fashion. As a parallel
extension of UIWMF, DUIWMF is based on eALS and can be implemented efficiently
on Spark. To reduce the cost of distributed implementation, we adopt a block matrix
partition strategy and utilize cached in-block and out-block information. In this way,
the communication overhead generated along with the computation task offloading can
be restricted.
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– Experiments on public datasets: Experimental results testify both the recommenda-
tion accuracy and the model training efficiency of DUIWMF on three public datasets.
Notably, in addition to the previously mentioned algorithms, we design practical train-
ing procedures and deploy them on a commercial cloud server. The results of real-world
experiments demonstrate that the DUIWMF model has comparable performance in
terms of recommendation accuracy and model training efficiency.

1.3 Paper organization

The rest of this paper is organized as follows. In Section 2, we review the related research on
weighting strategies of missing data and distributed optimization methods for implicit MF
recommendation. In Section 3, we give a detailed explanation to our implicit MF method,
including a novel missing data weighting strategy and a fast optimization algorithm. In
Section 4, we describe the parallel implementation of our method on Spark. In Section 5, we
demonstrate the performance comparison results in our extensive experiments. In Section 6,
we conclude the paper.

2 Related work

2.1 Weight strategy of missing data for implicit MF recommendation

Implicit feedbacks are inherently lacking in negative feedback information. Thus, how to
obtain negative feedback information effectively is critical to improving the accuracy of
recommendation. To this end, two different strategies were proposed, which were sample-
based learning (Marlin et al. 2012; Rendle et al. 2009) and whole-based learning (Hu et al.
2008; He et al. 2016). The former strategy randomly sampled negative instances from the
missing data, while the latter one treated all the missing values as negative instances. The
sample-based method is more efficient than the other one since it does not need to consider
all the missing data, while this inevitably leads to a risk of losing valuable information. As
a limit of the sample-based method, the whole-based method utilizes all the data, which
is potential with higher coverage. The corresponding efficiency, nevertheless, becomes a
problem. To retain model’s fidelity, we persist in the whole-data based learning, developing
an efficient learning algorithm to solve the problem of inefficiency.

Most existing whole-data based methods (Hu et al. 2008; Pilászy et al. 2010; Volkovs
and Yu 2015; Devooght et al. 2015; Steck 2010) assigned uniform weights to all the miss-
ing data, and assumed that the missing entries had the same probability of being negative
feedbacks. This kind of strategy makes the algorithm more efficient (He et al. 2016), but
overestimates the effect of the missing entries (Liang et al. 2016). In order to obtain negative
feedbacks more effectively, some studies have proposed non-uniform weighting strategies
for missing data. Pan et al. (2008) proposed two different non-uniform weighting strategies
for missing data, i.e., user-oriented and item-oriented, respectively. The former one assumed
that the user with more positive feedback instances could be more possibly to hide the neg-
ative feedbacks in the missing data. The latter one assumed that the item with fewer positive
examples would be more likely negatively commented in the missing data. However, the
time complexity of this method is cubic, which makes it not scalable to large-scale data
(Pilászy et al. 2010). Intuitively, the missing feedbacks of a popular item are more natural
to be seen by the user and thus should be assigned higher weights. In He et al. (2016), the
authors adopted this idea, proposed an item-oriented missing data weighting strategy, and
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further developed an efficient algorithm for model training. Liang et al. (2016) developed a
probabilistic model called Exposure MF to evaluate whether the user saw an item, and also
adopted a missing data weighting strategy based on the item popularity to separate nega-
tive feedback information from unlabeled information. Li et al. (2018) adopted a user-aware
weighting strategy which assigned missing values with different confidence according to
user popularity. However, all of these weighting strategies mentioned above only took into
account the differences between either different users or different items, ignoring the unique
characteristics of each missing data. Recently, a study is devoted to solving the above prob-
lems. He et al. (2019) perform truncated SVD on the weight matrix of missing data, using
a more compact low-rank model to represent the weights of missing entries. As a result,
how to initialize the weight matrix is the key to get the effective missing data weight. How-
ever, the initialization scheme based on user activity is still used in the paper. In addition,
the scheme based on SVD weight strategy will also increase the time complexity of the
algorithm.

2.2 Optimization strategy for distributed implicit MF

The Stochastic Gradient Descent (SGD) and Coordinate Descent (CD) are the two typical
learning methods of MF. In order to improve the model training efficiency of large-scale
implicit recommendation data, many researchers studied parallel implementation based on
the above two algorithms in a distributed environment.

The SGD learning methods are implemented in a parallel and distributed fashion in
works such as Gemulla et al. (2011), Yun et al. (2014), and Chen et al. (2018) to accelerate
MF. Although the SGD algorithm has low time complexity and is easy to process large-scale
data, it is unsuitable for whole-data based MF due to a large number of training instances
(Hu et al. 2008). More importantly, it is challenging to efficiently implement the typically
sequential SGD method in a distributed environment based on the MapReduce platform,
which is suitable for synchronous distributed learning algorithm in a data-parallel mode.
Another popular method is the Alternating Least Squares (ALS), which updates either the
entire user feature vector or the entire item feature vector at a time, and can be regarded as
a particular CD algorithm. Schelter et al. (2013) proposed a data-parallel low-rank matrix
factorization with ALS on Hadoop, which used a series of broadcast-joins to avoid expen-
sive shuffle operations. However, this method needs to store the user and item feature matrix
separately on each node, which will cause additional storage overhead, and more impor-
tantly, the corresponding feature matrix needs to be broadcast during each iteration, which
will lead to great communication overhead. Additionally, the Hadoop platform is not suit-
able for iterations because it needs to read data from disk repeatedly. Apache Spark Mllib
(Apache Spark 2019b) contained a parallel implementation of ALS, which used a block
matrix partition strategy and used block cache information to reduce communication over-
head between different nodes effectively. However, limited by the high time complexity of
ALS, the algorithm is not scalable to large-scale datasets (Yu et al. 2014). Another stan-
dard method of coordinate descent is Cyclic Coordinate Descent (CCD), which updates one
feature element at a time to avoid expensive matrix transpose operations. Yu et al. (2014)
proposed a scalable and efficient coordinate descent method named CCD++ and made a
distributed implementation based on MPI. The main idea of CCD++ is that the updated
sequence of feature elements will affect the final convergence result. However, in the pro-
cess of parallel implementation of CCD++, each node needs to broadcast its updated feature
elements to all other nodes, which will incur huge communication overhead, especially on
the MapReduce-based platform.
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3 Our implicit MFmethod

In this section, we first propose the definition of the implicit MF method. Next, in order to
improve the recommendation accuracy of the implicit MF method, we propose a missing
data weighting strategy that combines user activity and item popularity. Last, we develop an
efficient optimization strategy to optimize our objective function.

3.1 Implicit MFmethod

MF separately maps rows and columns of the original user-item interaction matrix R ∈
R

M×N into a low-dimension (K-dimensional) user latent factor space P ∈ R
M×K and an

item latent factor space Q ∈ R
N×K (Koren et al. 2009). The interaction Rui is the (u, i)-th

element in R. Intuitively, we have Rui = 1 if user u and item i exist interaction information,
otherwise Rui = 0. More specifically, the element Rui is modeled as the inner product
< pT

u , q i > in that space, where pu and q i are latent factor vectors of user u and item i. The
symbols and descriptions are shown in (Table 1). The objective function for model learning
is usually formed as an error-based regression, which can be mathematically written as

L =
M∑

u=1

N∑

i=1

Wui(Rui − R̂ui)
2 + λ

(
M∑

u=1

‖pu‖2 +
N∑

i=1

‖qi‖2
)

, (1)

where Wui denotes the weight of Rui and we use W = [Wui]M×N to represent the weight
matrix, R̂ui = pT

u qi is the predicted value of Rui , and λ is the regularization parameter to
prevent over-fitting.

3.2 Our weighting strategy onmissing data

In the user-item interaction matrix, the missing data contains both negative feedback data
and unlabeled data. The negative feedback data should be given a higher weight in the
objective function to distinguish from unlabeled data. How to filter out negative feedback
information from the missing data is the key to improve recommendation accuracy. Some
uniform weighting strategies of missing data have been proposed in previous works (Pan
et al. 2008; He et al. 2016; Li et al. 2018). Their weight strategies only take into account
the differences between different users or items, which is suboptimal for real application
scenarios.

There are two situations in the real recommendation system. On the one hand, popular
items have a higher probability to be exposed to users, which makes the missing of ratings
more probable to come from deliberate choices. In order to capture this feature, He et al.
(2016) proposed a popularity-aware weighting strategy which assigns each missing item a
unified weight according to its frequency in the implicit feedback data. It can be expressed
by the following formula

ci = f α
i

N∑
j=1

f α
j

, (2)

where fi = |RU
i |/|R| represents the proportion of interaction data of item i to the total

interaction data, α controls the significance level of popular items over unpopular ones.
On the other hand, active users have a higher chance to see unrated items. Thus, the

unobserved data for this user is negative with a higher probability. Li et al. (2018) adopted
a user-aware weighting strategy which assigned missing values with different confidence
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Table 1 Symbols and description

Symbols Description

u User id

i Item id

M Number of users

N Number of items

K Length of latent factor vector

P User latent factor matrix(P ∈ R
M×K )

pu Latent factor vector of user u

Q Item latent factor matrix(Q ∈ R
N×K )

q i Latent factor vector of item i

R User-item interaction matrix(R ∈ R
M×N )

W Weight matrix

R̂ Prediction rating matrix(R̂ ∈ R
M×N )

R I
u The set of items observed by user u

RU
i The set of users who have interaction information item i

R The set including observed interactive (u, i) pairs

|R| Number of observed interactive data

|RI
u | Number of items observed by user u

|RU
i | Number of users who have interaction information with item i

t0 Overall weight of the missing data

ci Popularity of item i

du Activity of user u

λ Regularization parameter

according to user frequency in the implicit feedback data. It can also be expressed by the
following formula

du = h
β
u

M∑
j=1

h
β
j

, (3)

where hu = |RI
u |/|R| represents the proportion of the interaction data of user u to the total

interaction data, β controls the significance level of active users over inactive ones. How-
ever, both cases exist in implicit feedback recommendation. In order to further improve the
accuracy of the recommendation, we combined the above two cases, and finally proposed a
weighting strategy combining user activity and product popularity. We assign each missing
data a different weight based on the cumulative results of user activity and item popularity.
To account for this effect, we set Tui as

Tui = t0(ηci + (1 − η)du) (4)

where t0 represents the overall weight of the missing data, du represents the user activity, and
ci represents the item popularity. Parameter η controls the extent to which user activity and
item popularity affect the weight of a single missing value. If η is equal to 0, the problem is
transformed to finding a weighting strategy based on the user activity. Otherwise, if η = 1,
the strategy is based on the item popularity. If both α and β are set to 0, Wui = t0(η/N +
(1 − η)/M) indicates the uniform weighting strategy.
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Based on the above weighting strategy, we construct the following objective function:

L =
∑

(u,i)∈R
Wui(Rui − R̂ui)

2 +
M∑

u=1

∑

i /∈RI
u

Tui(R̂ui)
2

+λ

(
M∑

u=1

‖pu‖2 +
N∑

i=1

‖qi‖2
)
. (5)

3.3 Fast optimization using eALS

Since we adopt a full data-based missing data weighting strategy, the training efficiency of
the model is a crucial issue. Thus we use an element-wise ALS (eALS) (He et al. 2016) to
optimize the objective function, the basic idea of which is to update a single variable at a
time while keep others fixed. This approach reduces the time complexity by avoiding the
expensive computation of matrix inversion. In addition, we use an efficient optimization
strategy to avoid massive unnecessary computations. In particular, our missing data weight
strategy allocates nonuniform weights for each missing data, which requires a very high
space complexity to store. We use an ingenious way to calculate the weight of missing data
with less time complexity in the update process. For example, if only one variable Puf is
allowed to change while fixing the other variables, the original optimization problem turned
into a univariate quadratic problem, the corresponding solution can be obtained as follow:

Puf =

∑
i∈RI

u

Wui(Rui − R̂
f
ui)Qif − ∑

i /∈RI
u

TuiR̂
f
uiQif

∑
i∈RI

u

WuiQ
2
if + ∑

i /∈RI
u

TuiQ
2
if + λ

, (6)

where R̂
f
ui = pT

u qi − Puf Qif . Since the original interaction matrix is so sparse that the
amount of missing data is much larger than the known data, the main calculations are
concentrated on terms

∑
i /∈RI

u
TuiR̂

f
uiQif and

∑
i /∈RI

u
TuiQ

2
if . We perform the following

conversion:

∑

i /∈RI
u

TuiR̂
f
uiQif =

N∑

i=1

TuiQif

∑

k �=f

PukQik −
∑

i∈R I
u

TuiR̂
f
uiQif , (7)

which can be further converted as

N∑

i=1

TuiQif

∑

k �=f

PukQik =
∑

k �=f

puk

N∑

i=1

t0ηciQif Qik

+du

∑

k �=f

puk

N∑

i=1

t0(1 − η)Qif Qik . (8)

It can be found that the computational overhead mainly depends on
∑N

i=1 t0ηciQif Qik and∑N
i=1 t0(1 − η)Qif Qik , which need to iterate over all the items in Q. It is worth noting

that, both calculations are independent with u, thus we can accelerate the computation by
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maintaining cache matrices H q1 = ∑N
i=1 t0ηciqiq

T
i and H q2 = ∑N

i=1 t0(1 − η)qiq
T
i .

Equation (7) is further transformed to
∑

i /∈RI
u

TuiR̂
f
uiQif =

∑

k �=f

pukH
q1
kf + du

∑

k �=f

pukH
q2
kf −

∑

i∈RI
u

TuiR̂
f
uiQif , (9)

where R̂
f
ui = pT

u qi − Puf Qif , and H
q1
kf denotes the (k, f )-th element in H q1 cache.

Similarly, the denominator in (6) can be evaluated as:
∑

i /∈RI
u

TuiQ
2
if = H

q1
ff + duH

q2
ff −

∑

i∈RI
u

TuiQif . (10)

By bringing (9) and (10) into (6), we obtain

Puf =
⎛

⎝
∑

i∈RI
u

(WuiRui − (Wui − Tui)R̂
f
ui)Qif

−du

∑

k �=f

PukH
q2
kf −

∑

k �=f

PukH
q1
kf

⎞

⎠ /C, (11)

where C = ∑
i∈RI

u
(Wui −Tui)Q

2
if +duH

q2
ff +H

q1
ff +λ. Similarly, we can derive the update

rule for Qif :

Qif =
⎛

⎝
∑

u∈RU
i

(WuiRui − (Wui − Tui)R̂
f
ui)Puf (12)

−ci

∑

k �=f

QikH
p2
kf −

∑

k �=f

QikH
p1
kf

⎞

⎠ /Z, (13)

where Z = ∑
u∈RU

i
(Wui − Tui)P

2
uf + ciH

p2
ff + H

p1
ff + λ. The cache matrices are Hp1 =

∑M
u=1 t0(1−η)dupup

T
u andHp2 = ∑M

u=1 t0ηpup
T
u . Algorithm (1) summarizes the process

of UIWMF.

3.4 Discussions

3.4.1 Time complexity analysis

From (9), the time complexity of updating a user feature factor isO(|RI
u | + K). Therefore,

the time complexity of updating the user feature matrix P is O(|R|K + MK2). Similarly,
from (13), the time complexity of updating an item feature factor is O(|RU

i | + K). Thus,
the time complexity of updating the item feature matrix Q isO(|R|K + NK2). Hence, the
whole-time complexity of an iteration is O(|R|K + (M + N)K2), which has a significant
improvement of the time complexity compared with the ALS method (O(|R|K2 + (M +
N)K3)).

3.4.2 Space complexity analysis

For the implementation of UIWMF, first of all, we need to store the original sparse rating
matrix R, which needs the storage space of size |R|. Additionally, we need to store the user
feature matrix P (P ∈ R

M×K ) and the item feature matrix Q (Q ∈ R
N×K ). Besides, cache
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matrices Hp1, Hp2, H q1 and H q2 need to be stored to accelerate the calculation, which
require the storage space of size K2. In the whole, the space complexity is O(|R|).

3.4.3 Parallelism analysis

The training process for UIWMF is straightforward to parallelize. On the one hand, it can be
found from the update process of the Algorithm (1), the update of each user feature vector
pu is independent of each other, so as the item feature vector q i . Therefore, the update of
the user feature vector and the item feature vector can be updated in parallel. On the other
hand, the cache calculations of Hp1, Hp2, H q1 and H q2 are standard matrix multiplication
operations with efficient parallelism.

4 Parallelization of UIWMF on spark

In order to process large-scale recommendation data with MF, especially when the matrices
R, P , and Q exceed the memory capacity of a single machine, exploiting the advantages of
cloud computing or fog computing and training models in a distributed fashion are necessary
(Zhu et al. 2018).
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In order to solve the above problems, we propose a distributed UIWMF (DUIWMF)
algorithm on Spark, which utilizes the inherent model parallelism of the algorithm.We adapt
a blocked parallel approach and construct a cached information routing table to reduce the
communication overhead in distributed environments effectively.

4.1 Model partitioning strategy

To exploit the computational resources of multiple machines in a distributed environment,
model partitioning is inevitable. Matrices R, P , and Q need to be stored in the training
process of the algorithm. In the previous study (Schelter et al. 2013), R was simply divided
into different machines, and a separate copy of P , and Q was kept on each machine. How-
ever, in today’s commercial environment, the scale of users and items is usually at the level
of 10 million or even hundreds of millions, e.g., Suppose M,N = 50 million, K = 128,
which requires 5.12 Gbytes of additional storage space for each machine, which requires a
considerable amount of memory capacity. More importantly, in each iteration, we need to
broadcast P , and Q frequently to each machine, which will greatly increase the network
communication overhead. Therefore, we also divide P , and Q into different machines, and
in the subsequent update process, we design a special data structure to minimize the cost of
communication.

Assuming that the distributed system is composed of l machines, we consider to divide
the rows of P and Q into l parts, where {P1,P2, · · · ,Pl} stores the index partition of
the rows of P , and {Q1,Q2, · · · ,Ql} consists the index partition of the rows of Q. Each
machine is responsible for storing and calculating the assigned sub-matrices. Particularly,
when there is a multi-core CPU or multiple CPUs on each machine, we divide the matrices
P and Q according to the number of CPU cores. Moreover, the memory required to store
the rating matrix R is usually much larger than that for W and H when a relatively small K
value is set. Thus, we should avoid the transmission of R in the distributed implementation.
From the update rule of UIWMF, only the elementsRui,∀i ∈ RI

u are required for the update
of pu, which means Rui,∀u ∈ Pr should be stored in machine r . Similarly, Rui, ∀i ∈ Qr

should also be stored in machine r . Thus, we put two copies of Rui in the distributed system.
One is divided by the index of the user ID, and the other is divided by the index of the
item ID. From algorithm (1), we can find that maintaining a prediction rating matrix R̂

can accelerate the calculation process of UIWMF. Accordingly, additional space of size
|R| is needed to store R̂. However, if we follow the same partitioning strategy as R, one
iteration of P needs to update all the elements in R̂ according to the update rules. In order
to maintain the consistency of R̂, we need to broadcast the whole matrix to update the
related R̂ui held by theQr . We need to broadcast R̂ twice in each iteration, which will cause
huge communication overhead. To solve this problem, before the update of q i and pu, we
calculate R̂ in advance. The additional time complexity for each iteration isO(k|R|), which
is a relatively acceptable computational overhead compared to the total time complexity.
The complete partitioning strategy is shown in Fig. 1.

4.2 Data communication optimization

Since we divide the feature matrices P and Q into different machines, the communication
overhead of updating feature vector is inevitable. For example, during the update of the fea-
ture vector pu, we need to get q i , i ∈ Ru. A simple strategy used in Yu et al. (2014) and
Schelter et al. (2013) is to broadcast the matrix Q to all other nodes in the cluster. Hence,
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Fig. 1 Model and data partitioning strategies

(l − 1)(m + n) feature factor need to be sent over the network in each iteration. The short-
coming of this strategy is obvious, i.e., the network overhead will increase linearly as the
number of machines increases, which leads to poor scalability of the distributed algorithm.

To solve the above problem, according to the previous work (Apache Spark 2019b),
which cached the block information transmitted over the network to avoid repeated trans-
missions, we reduce the network overhead by building appropriate caches. Particularly, we

Fig. 2 Update process of user feature vectors
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construct the cached in-block and out-block information to cache user and item feature vec-
tors that each machine needs to fetch in each iteration. An example for updating the user
feature vector is shown in Fig. 2. The number of machines l is 2. The user feature vectors
p1, p2 and the item feature vectors q1, q2 are divided to machine 1. Accordingly, machine 2
holds the user feature vectors p3, p4 and the item feature vectors q3, q4. Updating the user
feature vector only needs to obtain the item feature vectors q2, q4 for node 1, and q1, q3, q4
for node 2. There is no need to transmit the whole item feature vectors (q3 and q4) from node
2 to node 1, and the item vectors (q4) that need to be reused in node 1 only need to be sent
once. Based on this principle, we construct an information routing table to record which item
feature vector should be sent to node 1 and node 2. After using the cache strategy, the num-
ber of user feature factors needed to be sent per iteration becomes .
Recalling that the rating matrix is extremely sparse, is much smaller than
N , which greatly reduces the data traffic. Besides, as the number of machines increases, the
values of will be further reduced. Therefore, this strategy can effectively
enhance the scalability of the distributed algorithm.

Algorithm 2 describes the creation process of in-block and out-block caches on Spark. To
create an in-block cache for user feature vectors, first of all, we need to divide the rating data
RDD0 according to the user ID by a hash method and generate the corresponding user block
ratings RDDUB . Then by converting item id to local block index, RDDUBL is obtained.
Lastly, the in-block information RDDUI is derived by applying the groupByKey opera-
tion, where we use two strategies to effectively reduce the memory overhead. 1) we encode
the item block id and local index to a single integer; 2) we convert the data from coordi-
nate list (COO) format into compressed sparse column (CSC) format. After that, RDDUO

is generated by performing the map operation on RDDUI . It contains for every item block
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a two-dimensional array outBlock indicating which item blocks should each user vector be
sent to. The in-block and out-block caches of item feature vectors can be generated in the
same way.

4.3 Parallel training process of DUIWMF

Algorithm 3 presents the parallel training process of DUIWMF on Spark. At the beginning
of the algorithm, we need to initialize variables corresponding to the item popularity and the
user activity. Then both the user feature matrix and the item feature matrix need to be initial-
ized by themap operation. It is worth noting that using the out-block information to perform
the initialization operation of the feature matrix can unify the partition of the feature matrix
and the out-of-block information, such that the additional shuffle overhead during iterations
can be avoided. Next, we update the user and item feature matrices iteratively. To update the
user feature vector, we first calculate the caches Hq1 and Hq2. Particularly, the correspond-
ing matrix inner product calculation is performed by the aggregate operation. After that, to
aggregate the user feature vectors and the corresponding ratings, the user’s in-block infor-
mation RDDUI needs to be combined with the user feature vector matrix RDDUF by join

operator, and the corresponding result is stored in RDDUIF . Next, joining the item feature
vector RDDIF with the item out-block information RDDIO , we can get the transmis-
sion relationship between the user block and the item feature vectors, and the transmission
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of item feature vector information takes place in operation groupByKey. Finally, the user
feature matrixRDDUF is updated by conducting the join operation to groupRDDUIF and
RDDIOF . After that, we need to persist RDDUF to reuse in later calculations. It is worth
noting that we need to perform checkpoint operation periodically to truncate RDD lineage
to prevent spark stack overflow exceptions. Similarly, we can update the item feature matrix
in the same way. We illustrate the parallel training process of DUIWMF in Fig. 3.

5 Experiments

In this section, we compare the performance of the proposed DUIWMF with several base-
line models, including the recommendation accuracy and the model training efficiency. All
the experiments are performed on the Alibaba Cloud platform where we employ a clus-
ter consisting of eight “ecs.r5.xlarge” (4 cores, 32GB RAM) instances. Each node executes
in CentOS 7.4 and is configured with Hadoop 2.8.5 and Spark 2.4.3. The algorithm is
implemented on Scala 2.11.12.

5.1 Setting

Datasets: We use three public recommendation datasets that are widely used in previous
works (He et al. 2016, 2018): Amazon Movies, Yelp and Ciao. We transfer the dataset into
the implicit data following the common practice in Rendle et al. (2009) and He et al. (2018).
Specifically, each entry in the original rating data is marked as 0/1, indicating whether
the user has interacted with the item. In order to make the recommendation results more

Fig. 3 Parallel training process of the DUIWMF model

49– 27Journal of Intelligent Information Systems (2021) 56: 63



meaningful and easier to be explained intuitively, we remove the users with less than 10
interactions. The statistics of the selected datasets are shown in Table 2.

Metrics: We adopt the leave-one-out (He et al. 2016, 2018; Rendle et al. 2009) protocol to
evaluate the recommendation accuracies. Two evaluation metrics are used to evaluate the
performance of our model, i.e., hit ratio (HR) and normalized discounted cumulative gain
(NDCG). Both metrics are widely used to evaluate the recommendation performance with
implicit feedbacks (He et al. 2016, 2018; Li et al. 2018). Since there is only one test item
for each user, we set the threshold of the ranking list to 100 to ensure a relatively large HR
and NDCG. Particularly, HR is computed by

HR =
∑

i∈utest

I{rank(i) ≤ 100}
|utest| , (14)

where I(·) is the indicator function which returns 1 only when the test item are included in
the recommendation list, and 0 otherwise. The metric NDCG emphasizes the importance of
the top ranks by logarithmically discounting ranks, which is computed by

NDCG = 1

|utest|
∑

i∈utest

log (r̂ + 1)

log (rank(i) + 1)
, (15)

where r̂ denotes the perfect ranking of the test item which is always set to 1 in the
experiments.

Comparison methods: We compared our proposed DUIWMF models with the following
methods:

– ALS (Hu et al. 2008): This is the conventional ALS method that optimizes the whole-
data based MF model. The negative feedback information is obtained by assigning
uniform weights to the missing data.

– FastALS (He et al. 2016): It is an implicit feedback recommendation algorithm based
on MF, which assigns nonuniform weights to the missing data according to the item
popularity, and uses the element-wise alternating least-squares (eALS) technique to
update the model.

– (Li et al. 2018): WRMF-U is a whole-data based implicit MF model, which assigns
nonuniform weights to the missing data based on the user activity. It also uses the eALS
technique to update the model.

– BPR (Rendle et al. 2009):BPR is the first work that introduces the pairwise preference
assumption into the task of recommendation with implicit feedback.

– SLIM (Ning and Karypis 2011): SLIM is a sparse linear method for top-K recommender
systems which improves upon the traditional item-based nearest neighbor collaborative

filtering approaches by learning item-item similarity matrix directly from the rating
data.

Table 2 Statistics of the evaluation datasets

DataSet #Review #Item #User Sparsity

Amazon 5260450 171074 121725 97.47%

Yelp 731671 25815 25677 99.89%

Ciao 40189 13226 1141 99.73%
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Parameter settings: The parameter settings in the experiment can be obtained from the
experimental results or proposed by the literature work. Specifically, for all the matrix
factorization-based approaches, we employ grid search in {2, 0.5, 0.1, 0.05, 0.01, 0.005,
0.001} to find out the optimal setting for regularization parameter. The number of latent
factors is set to 64, 128, respectively to study the influence of different feature length on
recommendation accuracy. The weight of observed interactions, we set it uniformly as 1,
a default setting by previous works (He et al. 2016; Li et al. 2018). For all models learned
through SGD, the learning rate is tuned on { 0.1, 0.01, 0.001, 0.0001}.

5.2 Effects of parameters

In this section, we analyze the influence of parameters on the recommendation accuracy.
There are four major parameters determining the weighting scheme in our DUIWMFmodel,
i.e. t0, α, β, and η. Specifically, t0 determines the overall weight of the missing data, α con-
trols the significance level of popular items over unpopular ones, β controls the significance
level of active users over inactive ones, η controls the impact of the user activity and the
item popularity on the weight of a single missing value. Since NDCG and HR have similar
variation tendencies, we do not distinguish both metrics in the following analysis.

First, we set a uniform weight distribution, i.e. α = 0, β = 0 , η = 1, and vary t0 to study
how the weight of missing data effect the performance. For the Amazon dataset, Fig. 4a1
shows that, the best performance locates t0 = 64, corresponding to the uniform weight that
each missing data is 0.000374 (t0/N ). Then, we fixed t0 to 64 and study the impact of item
popularity α on recommendation accuracy. As can be seen from Fig. 4a2, the recommenda-
tion accuracy reaches the optimum when α = 0.5, which means that the weighting strategy
based on the user activity is effective for improving the recommendation performance. Note
that in order to keep the overall weight of the missing data unchanged, when η is changed,

Fig. 4 Effect of parameters on different datasets
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the corresponding t0 should also be changed by t0 = tbest (η/N + (1 − η)/M). Next, we
set t0 to the best value, i.e., t0 = 64, and check the performance change through varying β.
The result is revealed in Fig. 4a3, where the recommendation accuracy is enhancing as the
increase of β and reaches the maximum when β = 0.8. This result also shows the weighting
strategy based on user activity can effectively improve recommendation accuracy. More-
over, by fixing t0, α, and β to the optimal value, i.e., t0 = 64, α = 0.5, and β = 0.8, and
changing η, we study the influence of different weights of user popularity and item popu-
larity strategies on the final recommendation accuracy. Figure 4a4 shows that the best value
is obtained when η = 0.3, which reach the performance not only better than the weighting
strategy of using the user activity alone (η = 1), but also better than the weighting strat-
egy of using the item popularity alone (η = 0). It also illustrates that the weighting strategy
based on user activity contributes more to the improvement of the overall recommendation
accuracy than the weighting strategy of item popularity.

We conduct experiments on the Yelp dataset and the ciao dataset, while different results
are obtained. Particularly, as shown in Fig. 4b4, the final recommendation accuracy of the
Yelp dataset increases with the increase of η and reaches the optimal value when η = 1,
which means it is reduced to a weighting strategy only based on the item popularity, and
assigning weights to the user activity cannot contribute to the improvement of the recom-
mended accuracy. As for the ciao dataset, Fig. 4c2 reveals some differences. Different from
the other two datasets, the increase of α will lead to a reduction of the recommendation per-
formance in the ciao dataset, which means that the weighting strategy of item popularity
will cause damage to the final recommendation accuracy.

5.3 Recommendation accuracy

To verify the performance of our model, we compare DUIWMFwith three baselines models
on Amazon, Yelp, and Ciao datasets. The experimental results are shown in Fig. 5, where the
length of the feature vector K is set to 64 and 128, respectively. Since the similarity matrix
of SLIM model is fixed, we put the result of SLIM model at the end. From Fig. 5, we have
the following results:

– We find that different lengths of K have different effects on the recommendation accu-
racy in different datasets. For all datasets, when the length of the K changes from 64 to
128, the recommendation accuracies of all models are improved to a certain extent.

– Both FastALS and WRMF-U put forward different weight strategy on the basis of ALS
to improve the accuracy of recommendation. However, Both FastALS and WRMF-U
do not work for all datasets, which is consistent with the conclusions drawn in He et al.
(2018). For the Yelp dataset, WRMF-U has little improvement compared to ALS in
terms of the recommendation accuracy. However, FastALS has a significant improve-
ment over ALS, which means only the weighting strategy based on the item popularity
is helpful to improve recommendation accuracy. On the contrary, only the weighting
strategy based on the user activity contributes to the improvement of recommendation
accuracies on the Ciao dataset.

– For Amazon datasets, the NDCG value of the BPR model is better than all other models.
We think BPR’s strength in ranking top items is due to its optimization objective, which
is a pairwise ranking function tailored for ranking correct item high. Similar results
appear in He et al. (2016).

– DUIWMF achieves the best result over all the methods on each dataset. We believe that
our proposed weighting strategy based on user activity and item popularity does a favor
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Fig. 5 Recommendation accuracy comparisons with different datasets (K = 64, K = 128)

to the improvement of recommendation accuracies. Specially, we find that DUIWMF
and FastALS have the same recommendation accuracy on the Yelp dataset. This is due
to the fact that DUIWMF can be adaptively transformed into one particular weighting
strategy based on either the user activity or the item popularity if only one weighting
strategy is more effective.

5.4 Recommendation efficiency

In this section, we first compare the offline model training efficiency of ALS, FastALS
and DUIWMF on Spark. We use ALS learning algorithm implemented in spark machine
learning library MLlib and name it Spark-ALS. In order to verify the correctness of our
proposed communication strategy, we use the method in Yu et al. (2014) to implement the
distributed FastALS on spark, which updates the model by broadcasting the feature matrix,
and we name it Broadcast-FastALS. SinceWRMF-U performs model training using a learn-
ing algorithm similar to FastALS and shares almost the same training speed, we just show
the results of Broadcast-FastALS. Additionally, we analyze the effect of a different number
of blocks on the execution efficiency. Besides, we analyze the scalability of DUIWMF on
Spark.

5.4.1 Average execution time on different datasets

Experiments are performed to compare the average model training time of DUIWMF,
Broadcast-FastALS and Spark-ALS on relatively large datasets, i.e., Amazon and Yelp. In
these experiments, the length of K is set to 32, 64, and 128, respectively. The number of
iterations is set to 50, and the number of Spark worker node is set to 4. The experimental
results are presented in Fig. 6.
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Fig. 6 Average execution time comparisons with different K

We can find that, as K increases, DUIWMF shows more and more performance advan-
tages over Spark-ALS. For example, when K is 128, DUIWMF is 2.01 times faster than
Spark-ALS on the Amazon dataset and is 1.72 times faster than Spark-ALS on the Yelp
dataset. The reason is that DUIWMF has lower time complexity (O(|R|k + (M + N)k2))
compared to Spark-ALS (O(|R|k2 + (M + N)k3)). However, it is worth noting that, when
the length of the feature vector is K = 32, DUIWMF cannot benefit from low time com-
plexity, i.e., DUIWMF has a longer execution time than Spark-ALS. The main reasons are
as follows: 1) we need to calculate prediction rating matrix R̂ = pT

u qi in each iteration to
avoid expensive shuffle overhead. However, this computational overhead cannot be ignored,
especially when the number of blocks increases; 2) Our weighting strategy allocates dif-
ferent weights to each missing data and needs a space of size M × N to store the weight
information, which is a pretty large space. In order to solve this problem, we calculate the
weight information in the iterative process, which adds additional computational overheads
to the algorithm. Another important finding is that the average execution time of Broadcast-
FastALS is even longer than Spark-ALS for Yelp dataset which is a relatively small dataset.
After analysis, we find that this is because user feature matrix and item feature matrix need
to be broadcast in each iteration, which involves two major operations in spark: collect and
broadcast, and these two operations involve a lot of communication overhead. For Ama-
zon data, due to the low time complexity of Broadcast-FastALS, the execution time is less
than that Spark-ALS. However, on the whole, the execution time of Broadcast-FastALS is
much longer than DUIWMF, which is benefited from our optimization in communication
to greatly improve the performance of the algorithm.

5.4.2 Average execution time for different number of blocks

To verify the impact of a different number of blocks used in DUIWMF, we configure 4 slave
nodes (16 cores) and evaluate the case with N ∈ {16, 32, 48, 64} blocks. The experimental
results are presented in Fig. 7. It can be found when the number of blocks is larger than
the number of cluster CPU cores, the training time for DUIWMF increases. Although our
proposed in-block and out-block strategy can effectively reduce the feature vectors that are
repeatedly sent in the same block, with the increase of the number of blocks, the advantage
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Fig. 7 Average execution time for different number of blocks

of this strategy is weakened. There are more and more repetitive feature vectors sent by
each node, resulting in an increase of communication overhead, which further degrades the
execution performance.

5.4.3 Average execution time for different cluster scales

To verify the scalability of DUIWMF, experiments are performed on the Spark cloud plat-
form with a different number of nodes. Particularly, we evaluate the speedup of DUIWMF.
Let T (i, sa) be the execution time for carrying out DUIWMF in dataset i employing one
work node. The speedup of using p machines is defined as Ti,p/Ti,sa , where Ti,p is the time
taken on p machines. The number of slave nodes is gradually increased from 1 to 8. The
experiment results are presented in Fig. 8.

It can be found that the average execution time for the Yelp dataset does not always
decrease as the number of nodes increases. Specifically, in the beginning, as the number
of nodes increases, the execution time for DUIWMF decreases obviously. However, when
the number of nodes is greater than 4, the training time begins to increase. This is because
the execution time of the algorithm is determined by the number of users M , the number
of items N , the number of ratings |R|, and the number of feature vector blocks l. Recall
that the best number of blocks is equal to the number of CPU cores in the cluster. When M ,
N , and |R| are fixed, with the increase of the number of nodes in the cluster, the number
of matrix blocks needs to increase, which accordingly leads to a decrease in the number of
calculation tasks allocated to each node and an increase in the communication overhead of
the cluster. Particularly, when the number of nodes exceeds the equilibrium point (the point
where the average execution time starts to increase), the communication overhead caused by
the parallelism grows faster than the performance improvement. Thus, the average execution
time will increase. In addition, larger M , N , and |R| will augment the threshold, which is
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Fig. 8 Average execution time for different cluster scales

consistent with the results in the Amazon dataset. Besides, we can infer that the equilibrium
point of Amazon will appear if we further increase the cluster scales.

The corresponding results of speedup ratios are shown in Fig. 9. It can be inferred that,
for large-scale recommended datasets, the increase of parallelism will greatly improve the
speedup.

Fig. 9 Speedup for different cluster scales
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6 Conclusion

In this paper, we first propose a weighted MF recommendation algorithm UIWMF, which
assigns different weights to every missing data based on user activity and item popular-
ity. The proposed approach can get negative feedback information more realistically and
lead to a higher recommendation accuracy. Then we further modify UIWMF and propose a
distributed UIWMF (DUIWMF) algorithm based on Spark, which adopts efficient parallel
learning algorithm for model training and utilize cached in-block and out-block information
to effectively reduce the communication overhead in a distributed environment. Experi-
ments have been conducted on three public datasets, which demonstrate that compared with
the baseline MF methods, the proposed DUIWMF model has comparable performance in
terms of the recommendation accuracy and the model training efficiency. Our future work
will focus on how to update the model in real-time scenarios where the implicit feedback
data is generated continuously, and further combine the flow processing capability of Spark
to deal with large-scale real-time data.
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