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Abstract—Multi-cloud storage is recently a viable approach to
solve the vendor lock-in, reliability, and security issues in cloud
storage systems. As a key concern, data placement influences the
cost and performance of storage services. Yet, in practice it remains
challenging to address the huge solution space. Previous studies typ-
ically focus on constructing efficient data placement schemes based
on the predicted pattern of workloads or assuming fully a-priori
known network conditions. They cannot be easily applied in multi-
cloud storage scenarios, which typically involve dynamic network
conditions and time-varying workloads. To this end, we formulate
the data placement optimization in a combinatorial multi-arm
bandit (CMAB) perspective and solve it by learning placement
strategy online. In contrast to a stationary setting where reward
distributions are unknown but identical over time, we consider a
realistic multi-cloud environment with non-stationary conditions,
i.e., reward distributions change over time. To swiftly accommo-
date this, we propose an adaptive window combinatorial upper
confidence bound based data placement (AW-CUCB-DP) scheme
to reduce latency and cost. In AW-CUCB-DP, a simple and efficient
change detector, i.e., Page-Hinkley test with forgetting mechanism
(FM-PHT), is employed to enable variable-size sliding windows to
handle both gradual and abrupt variations in network conditions
or workloads. We establish that AW-CUCB-DP is asymptotically
optimal in the non-stationary multi-cloud environment. Trace-
driven experiments further verify that our scheme outperforms
alternatives, especially in highly dynamic environments.

Index Terms—Combinatorial multi-armed bandit, data place-
ment, erasure codes, multi-cloud storage, non-stationary.
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I. INTRODUCTION

A. Motivation and Challenges

C LOUD storage systems are widely adopted in current on-
line applications to provide reliable, scalable, and low-cost

services. However, storing data in a single cloud is susceptible
to vendor lock-in, reliability, and security issues [1], [2]. In
this regard, as a recent, promising paradigm to address these
issues, multi-cloud storage [3] splits user data with erasure
codes [4] and distributes data chunks to multiple clouds provided
by different vendors. It can reduce user-perceived latency and
storage cost. Moreover, it can provide higher data availability
and security. In recent years, more application providers have
tried to build their own multi-cloud storage by exploiting cloud
resource options both within and across vendors, yielding a
better cost-performance tradeoff [5].

The critical step in building efficient multi-cloud storage
is to determine the strategy for placing data across multiple
clouds [6], which can affect the system performance in both
system efficiency and user-experienced latency. In practice, we
should consider the variety of storage services among different
cloud storage providers in terms of performance, data-center
locations, and prices. Unfortunately, such variety brings huge
complexity to determining the best data placement strategy.

Recent studies generally focus on different aspects of geo-
distributed data placement. Some studies propose to predict fu-
ture user access dynamics with historical workloads, and accord-
ingly optimize the placement strategy [7], [8], [9]. However, such
approaches rely heavily on the stability of workloads in general.
They cannot work effectively for time-varying workloads due to
impacts of peak demand or major events, which is common in
practice [10].

Although, some efforts (e.g., [11], [12]) optimized data place-
ment by considering the trade-off between access latency, stor-
age cost, and fault tolerance. They either consider stable network
conditions, or make a priori assumptions about network dynam-
ics. For example, the latency between storage nodes is assumed
to be deterministic or constant [8], [9], [11]; The bandwidth
between nodes is assumed to be known and its real-time fluc-
tuations can be ignored [13]. However, in practice, the network
conditions fluctuate significantly due to various reasons (e.g.,
network congestion and load dynamics) [14].

Considering the above situation and the importance of la-
tency variance for geographically distributed data placement,
we conduct a measurement study on cloud storage services of

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6892-3683
https://orcid.org/0000-0002-6479-5063
https://orcid.org/0000-0002-3915-1987
https://orcid.org/0000-0002-9184-7383
https://orcid.org/0000-0002-9405-4485
https://orcid.org/0000-0001-5224-4048
mailto:lil18@fudan.edu.cn
mailto:jiajieshen@fudan.edu.cn
mailto:wubochun@fudan.edu.cn
mailto:zyf@fudan.edu.cn
mailto:xinw@fudan.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1109/TPDS.2023.3306150


2844 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

Amazon AWS and Microsoft Azure. The results show that the
latency variance exists and is significantly-large over time. It is
not merely a problem in specific cloud, but a general issue in
accessing cloud storage providers. In addition, the issue is also
noticed by extensive research work that focuses on optimizing
request mechanism to reduce tail latency or latency variance of
cloud services by issuing redundant requests [15], [16], [17] and
requests splitting [18].

We argue that data placement in multi-cloud environments
should consider not only dynamic network conditions and time-
varying workloads, which are hard to attain a priori in practical
scenarios, but consider the efficiency or convergence speed of
its solution. This poses a major challenge to the solution of this
problem.

B. Our Contributions

To overcome the above challenge, we propose to formulate the
problem from a combinatorial multi-armed bandit (CMAB) [19]
perspective. CMAB is a widely-adopted optimization approach
to deal with uncertainty, which in nature is a lightweight online
learning model with low complexity and fewer assumptions of
the environment [20]. CMAB can provide fast convergences and
online adaptation due to high sampling efficiency and has the
advantages of simple implementation and theoretical guaran-
tees [21], [22], [23]. We formulate our CMAB problem with non-
stationary reward so that the unknown dynamics can be learned
online while effectively incorporating such learned information
into the placement decision process. The bandit learning method
is utilized to solve our placement problem online to adapt to the
dynamic network conditions and workloads, which ensures the
solving efficiency while not introducing high overhead to I/O
operations.

We further tailor an adaptive window combinatorial upper
confidence bound based data placement algorithm (namely, AW-
CUCB-DP) specifically to deal with variations in network con-
ditions and workloads as well as non-stationarity, i.e., network
latency distribution changes over time. AW-CUCB-DP adopts
the passive sliding-window method to handle gradual changes
in workloads and network conditions. It can also actively detect
their abrupt changes and adjust the window size accordingly.
Finally, to guarantee performance and low overhead, we cus-
tomize our upper confidence bound-based (UCB) policy [24] to
solve the CMAB problem with guaranteed performance and low
complexity.

Our contributions are summarized as follows.
� We are the first to formulate the data placement optimiza-

tion in multi-cloud storage as a CMAB problem. This
learning-based framework can swiftly respond to dynamic
network conditions or workloads typically a-priori un-
known in practical scenarios.

� We propose a novel AW-CUCB-DP algorithm, which can
enable adaptive data placement with low latency and cost
under uncertain network and workload dynamics. An ef-
ficient change detector (FM-PHT) is adopted for variable-
size sliding windows to handle both gradual and abrupt
variations in network and workloads.

� We establish that AW-CUCB-DP can asymptotically ap-
proach the optimal performance by proving an upper-
bounded number of sub-optimal decisions.

� We conduct extensive data trace-driven experiments on
real-world clouds. The evaluation results indicate that
AW-CUCB-DP outperforms the existing methods in terms
of I/O performance and cost reduction, which can reduce
access latency by 40.22–62.92% under different work-
loads compared to existing methods. We also evaluate the
robustness and scalability of AW-CUCB-DP. The results
show that AW-CUCB-DP can adapt to highly dynamic
environments and data placements on a large storage
scale.

The rest of this paper is organized as follows. In Section II,
we survey related work, which contrasts with ours. We present a
measurement study in Section III. We model the data placement
problem in Section IV. In Section V, we solve this problem
considering the realistic multi-cloud environment. We provide
experimental results in Section VI. Finally, the paper is con-
cluded in Section VII.

II. RELATED WORK

A. Data Placement in Cloud Storage System

Data placement in cloud storage has been widely studied to
improve the quality of services. Existing literature shows that
diversity and geo-distributed features can be utilized to provide
better performance and cost efficiency.

By analyzing the workload features, Agarwal et al. [9] solved
the data placement problem over globally distributed data cen-
ters, where data objects are iteratively migrated to storage nodes
close to user devices or storage locations of the associated
objects. Jiao et al. [7] proposed an iterative graph-cut based
multi-objective data placement policy to minimize inter-cloud
traffic, access cost, and replacement cost. Assuming that data
request traffic is stable over a period of time, Yu et al. [8]
designed a hypergraph-based scheme to place associated data
in geo-distributed clouds, which can reduce the routing latency
and traffic, and storage cost. Atrey et al. [25] used a random-
ized solution for the low-rank approximation of the hyper-
graph matrix, which improves the efficiency of data placement.
Cui et al. [13] formulated the data placement problem by con-
structing a tripartite graph and adopted a genetic algorithm
(GA) based strategy to reduce cloud traffic and access latency.
Based on analysis of historical workloads, Ren et al. [26]
modeled the data purchasing and placement as an integer lin-
ear programming problem and proposed a near-optimal algo-
rithm to jointly reduce cost and latency. These offline schemes
can iteratively approach the optimal solutions, but they are
rather computationally-complex and thereby time-consuming.
Moreover, these solutions cannot respond swiftly to workload
variations [27].

Some studies have optimized multi-objective data placement
under complex requirements. Su et al. [11] presented a sys-
tematic data-placement model (namely, Triones) in multi-cloud
storage, which was solved by calculating euclidean distance.
However, the network dynamics are not considered and handled.
Oh et al. [5] proposed an integrated solution, Wiera, to optimize
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TABLE I
COMPARISON OF DATA PLACEMENT SCHEMES

data placement across multiple storage tiers, data centers, and
providers, which can effectively reduce placement cost. How-
ever, it does not fully consider migration cost while handling
dynamics and managing data movement.

B. Combinatorial and Non-Stationary MABs

The multi-armed bandit (MAB) is a simple but powerful
framework to make decisions over time under information uncer-
tainty. Auer et al. [24] proposed the classical UCB1 algorithm,
which has been widely adopted for its effective trade-off be-
tween exploration and exploitation and fast convergence. Com-
binatorial MAB (CMAB) is an extension of MAB that allows
multiple arms to be selected simultaneously. Chen et al. [19] first
presented the framework of CMAB with a more general class
of reward functions, in which combinatorial upper confidence
bound (CUCB) is proposed as a general algorithm for CMAB.
Unlike most studies on CMAB frameworks focusing on linear
reward functions [28], our joint reward is a non-linear function
of individual rewards.

A class of CMAB problems with non-stationary settings has
received wide attention [29], wherein the reward distributions
change over time. This setting often occurs in practical scenarios.
Efficient strategies to balance remembering and forgetting, i.e.,
using more but maybe obsolete historical data or less but fresh
one, are more desirable to handle such changing environments.
To this end, Garivier and Moulines [30] presented discounted
UCB (D-UCB) and sliding-window UCB (SW-UCB), in which
they compute the UCB bound using discounted sampling history
and recent sampling history within a time window, respectively.
Different from the above passive methods ignoring the change
instants, active policies [31], [32], [33] reset the bandit algorithm
when detecting changes. In contrast, we combine passive SW-
CUCB algorithm and active Page-Hinkley test (PHT) [34] to
approach the optimal placement policies, in which the window
size can be adapted to changes in latency distributions.

In order to clearly position our investigation and highlight our
unique features, we compare the proposed schemes with existing
research work in Table I.
� The impacts of geo-distributed locations on access latency

have gained widespread attention in wide-area data storage
research [35], [36], [37], [38]. Previous studies focusing
on geo-distributed data placement generally assume the
network conditions stable or rely on a-priori known con-
ditions. For example, they consider the latency between
storage nodes deterministic or constant [8], [9], [11], or
assume that the bandwidth between nodes known and

ignore real-time fluctuations [13]. In [5], [25], real-time
measurements on bandwidth are conducted by a separate
component. However, such active measurements involve
significant overhead and monetary cost on clouds, and the
sampling rate affects the accuracy. Our study considers the
uncertainty of network latency, which originates from the
dynamically-evolving network conditions in the realistic
cloud environment. We handle such uncertainties with
CMAB and learn their dynamics in a fine-grained time
scale, enabling adaptive data placement.

� Considering the cases with abrupt change instants in access
latency distribution, we do not directly adopt the con-
ventional SW-UCB algorithm with a fixed window size.
The design intuition behind our proposed AW-CUCB-DP
is that under the non-stationary multi-cloud environment,
the obsolete latency observations are not as informative
for estimation, which crucially hinges on the size of time
window. Intuitively, the faster the access latency means
vary, the smaller the window size should be as the past
observations lapse faster. This motivates us to combine
the active change detection mechanism and the sliding
window-based bandit algorithm.

III. MEASUREMENT STUDY

To investigate the impact of network dynamics on storage per-
formance, we conduct a field measurement study. Specifically,
we aim to study i) the latency variances of data requests to the
same data center over different time of day; and ii) the latency
variances on different data centers for the same data object size.

We conduct our measurements on object storage (i.e., S3 and
Azure Blob Storage) of two popular cloud providers Amazon
AWs and Microsoft Azure. We deploy cloud storage services in
the Asia-Pacific DCs (regions), including Amazon-Hongkong,
Amazon-Singapore, Azure-East Asia, and Azure-Korea. Each
region creates one bucket to store data. Quantitatively, we define
the user-perceived access latency as the time for a client to
completely upload (download) a certain data object to (from)
the cloud. We measure the write (read) latency of data objects
in the size of 1 K, 10 K, 1 M, and 10 M. Deployed on a VM
instance in Google Cloud’s Asia-East-2 Region (Hongkong), the
client periodically sends requests (every 10 seconds) to write
(read) random data to (from) the storage service (via SDK from
S3 and Blob Storage), respectively, then measures the request
latency for uploading (downloading) data to (from) the cloud.
We conducted the measurements in Sept. 2022.
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Fig. 1. Latency of requesting 10 KB data chunk.

Fig. 2. Latency of requesting 10 MB data chunk.

Figs. 1 and 2 plot the measured request latency for 10 K and
10 M groups of data objects as requested from the client to the
cloud data center, respectively. Each time point in the X-axis
represents 1 h, and we plot the median (orange points) and
the 99th percentile (blue points) of the request latency within
each hour. It can be observed that the 99th percentile latency is
2–5 times the median latency. Such high variability and unpre-
dictability network conditions have a great impact on optimizing

Fig. 3. Data placement in a multi-cloud environment.

the data placement strategy. The high latency variance is due to
the network instability, as usually caused by network conges-
tion, load dynamics, disk I/O interference, update/maintenance
activities, and unpredictable failures. Therefore, cloud service
providers and clients can only take the network as a black box
when predicting latency. Then we have

Observation 1: The variance of the request latency for the
data objects with the same size level from the same data center
over time is very high.

Observation 2: The request latency variance exists in all data
centers and is greater for requests for data objects with larger
sizes. The request latency is not proportional to the client-data
center distance.

Discussions: Multi-cloud storage service, e.g., Pure Cloud
Block Store, utilizes the clouds located in different geographical
locations as the underlying building blocks for storage. But such
service typically provides only a virtual storage interface that
does not allow us to designate which individual cloud when we
want to save data. Hence, we can only measure such storage
service as a black box. We cannot measure the performance
differences of its underlying clouds. Therefore, to understand
QoS characteristics of the building blocks of multi-cloud storage
service, we measure the data I/O performance when accessing
different clouds. Our aim is to better understand real-world
multi-cloud storage services via measuring the performance of
their underlying clouds.

IV. SYSTEM MODELLING AND PROBLEM FORMULATION

A. Multi-Cloud System Overview

We consider a multi-cloud scenario with N clouds, denoted
by a set [N ] = {1, 2, . . . , N}, which are built by enterprises
or application providers through purchasing services (e.g., VM
instance or storage) on multiple clouds across vendors. Applica-
tion providers build services and save metadata in the local data
center (DC), and transfer erasure-coded data to cloud nodes of
different vendors, as shown in Fig. 3.

Specifically, when writing data with a (n, k) Reed-Solomon
(RS) code (n > k), the encoding/decoding module divides each
object into k data chunks of equal sizes, which are then encoded
into n chunks and uploaded to n different cloud nodes to
guarantee reliability [39]. As all chunks are successfully written,
metadata files are accordingly updated. While performing data
retrieval, the data placement module first looks up its storage
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TABLE II
PARAMETERS OF SYSTEM MODEL

location and then selects k nodes to access and reconstruct the
original object.

B. Data Placement Modelling

We consider a multi-cloud storage system designed and im-
plemented based on object-based storage,1 where data place-
ment decisions are made in a time horizon with T slots. At
each time slot, when a write or read request is issued, chunks
(i.e., data chunks and parity chunks) are uploaded to different
n cloud nodes or downloaded from k ones. We define a binary
vector Dt = [x1,t, . . ., xN,t] to collect dynamic data placement
decisions at time slot t ∈ T . Here, each xi,t (i ∈ [N ]) equals 1
if chunks are uploaded to, or downloaded from, cloud node i at
time slot t and 0 otherwise. To ensure the data reliability and
access efficiency of multi-cloud storage, we have the following
decision-making constraint

N∑
i=1

xi,t =

{
n, data write
k, data read

(1)

Based on the above definition, we model access latency, stor-
age cost, fault-tolerance level, and data availability for storage
service, which are associated with data placement decisions. The
key notations are summarized in Table II.

Access Latency: The round-trip time to complete the write
or read operation based on the current placement policy Dt is

1We refer to each logical data as a data object, which can be a unit of data
allocation and access in storage systems. It can refer to a traditional file fragment,
a data block group, or an object in object-based storage.

defined as the access latency,2

LDt
(t) =

⎧⎪⎨
⎪⎩
max
i∈[N ]
{xi,tlWd,i(t)},

∑
i∈[N ]

xi,t = n

max
i∈[N ]
{xi,tlRd,i(t)},

∑
i∈[N ]

xi,t = k
(2)

where lWd,i(t) and lRd,i(t) denote the write and read latency be-
tween DC d that issues requests and cloud node i, respectively.
Note that the definition of LDt

is based on the assumption that
accessing operations are executed in parallel [3], [11], [15].

Storage Cost: The monetary cost for storing (retrieving) data
chunks of objects to (from) cloud node i under placement policy
Dt is defined as storage cost,

CDt
(t) =

⎧⎪⎨
⎪⎩
∑

i∈[N ]

xi,t
( vobj

k cs,i + cw,iqw(t)
)
,

∑
i∈[N ]

xi,t = n∑
i∈[N ]

xi,t
( vobj

k co,ir(t) + cr,iqr(t)
)
,
∑

i∈[N ]

xi,t = k

(3)
where cs,i, co,i, and cw,i (cr,i) denote the unit price of storage
space, outbound traffic, and write/read operations for cloud i,
respectively; qw(t) (qr(t)) represents the number of times to
write (read) objects at time slot t and vobj denotes the size of
objects.

Fault-Tolerance Level: The ability of a data placement policy
to tolerate failures is defined as fault-tolerance level. We adopt
Reed Solomon (RS) code to ensure data reliability. Each data
object is divided into k ≥ 2 chunks in the equal size, and a
linear combination of these chunks is picked to generate n− k
parity chunks in the same size. Then these chunks are stored on
different cloud nodes. The original data object can reconstruct
by accessing any k cloud nodes. Therefore, in case of n storage
nodes, at most n− k cloud failures can be tolerated. That is, the
data placement policy provides an n− k fault-tolerance level.

Data Availability: We define F as all subsets of m ∈ [k, n]
unavailable clouds, and there are |F| = (nm) cases ofm unavail-
able clouds at the same time. Data availability under placement
policyDt can be defined as the probability that no more than m
cloud nodes fail at the same time [11]

ADt
(t) = 1−

⎛
⎝n−k∑

m=1

|F|∑
j=1

∏
i∈Fj,t

(1− ai)
∏

i∈St\Fj,t

ai

⎞
⎠ , (4)

whereFj,t is the jth element of the setF at time slot t; St \ Fj,t

is a difference set that denotes n−m nodes still working; St =
argmax Dt,ai is the availability that cloud i guarantees through
its service-level agreement (SLA).

C. Problem Formulation

Our objective is to determine the best data placement policy
Dt at each time slot while achieving the optimal latency-cost

2The access latency contains the network latency from remote storage nodes
to the front-end server, the encoding/decoding latency, and the network latency
from the front-end server to end users. Compared to high network latency over
WAN (in hundreds of milliseconds), the encoding/decoding latency (in hundreds
of nanoseconds) and the network latency from the front-end server to end users
are negligible.
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tradeoff. To this end, by allocating two weight parameters ψ1

and ψ2, we define a utility function under Dt as

uDt
(t) = ψ1LDt

(t) + ψ2CDt
(t). (5)

Here, symbol (t) in uDt
(t) identifies the different observation

of the utility variable u. Since the observed utility values vary
over time slots even under the same placement policy. Given a
time horizon T , the data placement problem can be formulated
as

P1 : min
{Dt}T

1

T

T∑
t=1

uDt
(t). (6)

s.t. (1)

n− k ≥ F req (7)

ADt
≥ Areq. (8)

Here, constraint (1) ensures the data reliability and access
efficiency of erasure coding based multi-cloud storage, con-
straint (7) ensures that the fault-tolerance level of a placement
policy has a lower bound F req, and constraint (8) is to guarantee
the promised availability. For different application scenarios,
e.g., read-intensive workloads or write-intensive workloads, rich
solutions of performance-cost tradeoffs can be achieved by
adjusting the factor ψ1/ψ2.

There are two difficulties in solving problem P1. First, it is a
stochastic programming problem [29]. The exact information
about the utility uDt

(t) is not available before the tth data
placement is completed. Additionally, even if uDt

(t) is known a
priori, this problem is still a combinatorial optimization problem.
Then we consider converting this challenging problem into one
low-complexity sequential decision problem in each time slot.
To avoid a high computing burden, we select MAB rather than
other reinforcement learning algorithms (e.g., Q-learning) to
solve this sequential decision problem. The consideration is in
that i) MAB is a lightweight online learning model with lower
computation complexity and performance guarantee (as shown
in Theorems 1 and 2); ii) MAB is efficient in sampling and con-
verges quickly through strategic exploration; iii) MAB has more
robust adaptive capabilities for faster online decision-making.

D. CMAB Reformulation

In problem P1, it is difficult to obtain a-priori known in-
formation about dynamic network conditions and time-varying
workloads. To deal with such uncertainty, we reformulate the
intended data placement problem as a CMAB model with non-
stationary rewards.

The combinatorial bandit setting involves repeatedly selecting
multiple actions from N possible actions, aiming to find the
optimal decision to achieve the maximum cumulative reward
over time. At each time slot t ∈ T , the CMAB i) selects a
set of arms (referred to as super arm S), where A = {S ∈
[N ]n | S(i) �= S(j) for ∀i �= j} is the set of all such possible
super arms, and ii) observes the random reward of super arm
played at time slot t (denoted by St).

To recast our problem, we regard each placement option (i.e.,
a combination of n out of N cloud nodes) as a super arm S,
|S| = n, with (Nn ) super arms in total. We let St denote the
super arm played at time slot t. Then the the utility (i.e., observed
reward) under St can be expressed accordingly as

uSt
(t) = ψ1LSt

(t) + ψ2CSt
(t). (9)

Based on historical reward observations, St is selected to mini-
mize utility uSt

(t) at each time slot.
We define the sequential data placement decisions as D (i.e.,

a series of played super arms over T time slots). Let uS∗t(t)
denote the minimal expected utility achieved by the optimal
policy at time slot t. Then we can define the expected cumulative
difference between uSt

(t) and uS∗t(t) over time T as regret

RD(T ) = E

[
T∑

t=1

(uSt
(t)− uS∗t(t))

]
. (10)

Here, the expectation E[·] is taken with respect to the selection
of St depending on obtained rewards through D and the ran-
domness of reward given by the environment.

The objective of problem P1 is to minimize the accumulative
utility over time T by optimizing the data placement policy at
each time slot t. By the definition of regret, minimizing the
accumulated utility is equivalent to minimizing the regret in
(10). Therefore, solving P1 is equivalent to finding an optimal
solution to the problem

P2 : argmin
D

RD(T ).

s.t. (1), (7), (8). (11)

The goal of P2 is to minimize the accumulative regret over
time based on the cumulative knowledge about unknown dynam-
ics in network and workloads. There exists a trade-off between
exploration (i.e., placing chunks to all nodes enough times to
estimate rewards more accurately) and exploitation (i.e., placing
chunks to empirically best nodes for instantaneous rewards)
during data placement.

Therefore, we aim to find an asymptotically optimal strategy
that achieves a sublinear regret, which implies that the per-round
average cumulative regret approaches zero after sufficient time
slots, i.e.,

lim
T→∞

RD(T )

T
= 0. (12)

V. PLACEMENT STRATEGY UNDER NON-STATIONARY

MULTI-CLOUD ENVIRONMENT

A. Non-Stationary Multi-Cloud Environment

In contrast to a stationary setting where reward distributions
are unknown and stay the same through time, we consider a real-
istic multi-cloud environment with non-stationary reward [40],
where the access latency is dynamically-evolving due to the
arbitrarily time-varying network conditions, as shown in Fig. 4.
That is, the mean of access latency (E[lW/R

i (t)]) will change at
unknown time slots, referred as change-points (break-points).
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Fig. 4. History of means of request latency.

We use this quantity to measure the speed of distribution
changing, and assume the total number of change-points over
T time slots is γT = O(T ν), ν ∈ [0, 1), between consecutive
breakpoints, network latency distributions remain constant. γT
can be defined as

γT =
T−1∑
t=1

1{∃i ∈ [N ] : μi(t) �= μi(t+ 1)}, (13)

where μi(t) denotes the expectation of access delay lW/R
i (t) at

time slot t. Note that such changes may occur asynchronously on
cloud nodes. To limit the complexity of environment dynamics,
we make the following mild assumptions for tractability.

Assumption 1 (Detectability [31]): Let μi(t) and μi(t+ 1)
denote the pre- and post-change expectations of access latency
of cloud node i at the change-point t+ 1. There exists a known
parameter ε > 0, such that for ∀i ∈ [N ] and ∀t ≤ T − 1, if
μi(t) �= μi(t+ 1), then |μi(t)− μi(t+ 1)| ≥ 2ε.

We are only concerned with abrupt changes above some
threshold. Assumption 1 excludes infinitesimal mean shift,
which is reasonable in practice when detecting abrupt changes
bounded by a certain threshold.

B. Change Detection

We adopt an active detection method to detect changes in
access latency distribution and remove old observations to make
more accurate estimates. Specially, we choose Page-Hinkley test
(PHT) [34] to make detection because it is simple, computation-
ally efficient, and requires the fewest distribution parameters
compared with other detection methods.

In particular, we design a tailored PHT algorithm with forget-
ting mechanism (FM-PHT) to work in the bandit setting, which

Algorithm 1: FM-PHT.
Input: Observations y1, . . . , yt, threshold b ≥ 0.
Output: Change-point tch.
1: Initialize: U0 = 0, L0 = 0;
2: Ut =

t−1
t Ut−1 + (yt − yt − δ);

3: Umin
t = min{Us|s ∈ {1, . . . , t}};

4: if Ut − Umin
t ≥ b then � Increase

cases
5: tch = argmin{Us|s ∈ {1, . . . , t}};
6: end if
7: Lt =

t−1
t Lt−1 + (yt − yt + δ);

8: Lmax
t = max{Ls|s ∈ {1, . . . , t}};

9: if Lmax
t − Lt ≥ b then � Decrease

cases
10: tch = argmax{Ls|s ∈ {1, . . . , t}};
11: end if

can detect both abrupt and gradual changes early, as described
in Algorithm 1.

To be specific, we run two tests in parallel (i.e., two-sided) to
monitor the possible positive/negative mean shift. Test variables
Ut and Lt are defined as the cumulative difference between the
observed access latency and the corresponding current average.
That is {

Ut =
t−1
t Ut−1 + (yt − yt − δ)

Lt =
t−1
t Lt−1 + (yt − yt + δ)

, (14)

where yt = 1/t
∑t

τ=1 yτ and δ specifies the tolerable magni-
tude of changes. The ratio t−1

t makes the most recent samples
get more weight during the update process. The test also updates
the minimumUt (maximumLt), denoted asUmin

t (Lmax
t ), using{

Umin
t = min{Uτ |τ ∈ 1, . . . , t}

Lmax
t = max{Lτ |τ ∈ 1, . . . , t}

. (15)

The two statistics (Ut − Umin
t and Lmax

t − Lt) are monitored
and a change is reported when either of them is above the given
threshold b. The parameter b can be tuned to balance false alarm
and miss detection. When a change is detected, all variables are
reset and the test is reinitialized.

C. Online Data Placement

Under a non-stationary environment, handling two main
trade-offs, exploration-exploitation and remembering-
forgetting, are key to decision-making. The former can be
handled by utilizing the idea of UCB. For the latter, SW-CUCB
[30] policy uses recent observations during a fixed size time
window to compute the upper confidence bound. However,
SW-CUCB may ignore sudden changes within the window,
while observations after changes are more effective for accurate
estimation. This motivates us to leverage FM-PHT to enhance
the robustness of sliding-window policy against both gradually
and abruptly changing environments.

1) AW-CUCB-DP Learning Algorithm: We first outline the
main ideas of proposed AW-CUCB-DP.
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Algorithm 2: AW-CUCB Based Data Placement.
Input: w0, δ, b, λ.
Output: Placement policy St.
1: Initialize τi = 1 and wi = w0 for each i ∈ [N ];
2: for t = 1 : T do
3: if t ≤ N then
4: It = t;
5: Randomly choose a super arm St with It ∈ St;
6: else
7: Estimate the utility bound for each i ∈ [N ]

ûi(t) = ψ1l
W/R
i (t) + ψ2Ci(t)− ei(t);

8: Rank ûi(t) in ascending order;
9: Select the top n arms to added into St;

10: end if
11: Play super arm St and observe {lW/R

i (t)}i∈St
;

12: Update statistics in time-window Wi(t) according to
(18);

13: if FM-PHT(i, lW/R
i (t)) == 1 then

14: τi = tch;
15: Reset FM-PHT (i, ·);
16: if λ == 1 then
17: LDM (S ′t, St);
18: end if
19: end if
20: wi = min(w0, (t− τi + 1));
21: end for

1) Unlike the general CUCB algorithm, AW-CUCB-DP
probes possible base arms instead of super arms, i.e., each
cloud node is learned and stored separately. Additionally, each
node’s access latency and storage cost are learned separately,
which significantly reduces uncertainty and speeds up learning.
Therefore, we decomposed the total reward function in (9), into
a non-linear combination of individual reward functions

uSt
(t) = ψ1 max

i∈St

l
W/R
i (t) + ψ2

∑
i∈St

Ci(t), (16)

where the joint access latency is the maximum of individual
ones, i is a base arm (i.e., a cloud node).

2) Adopting a simple and efficient change detector FM-PHT
to monitor changes in access latency distribution and trigger the
adjustment of window size.

We present our AW-CUCB-DP algorithm in Algorithm 2.
The inputs of AW-CUCB-DP include the initial window size
w0 = LB

√
T ln(T )/γT and two tuning factors, δ, b for FM-

PHT detector (line 13), and λ. Here,LB is the utmost amplitudes
of access latency, λ indicates whether this is a read request. Let
τi denote the last detection time of node i, initialized to 1. wi is
the adaptive window size on node i.

We note that AW-CUCB-DP selects the best data placement
options in five steps as follows.

i) Make Placement Decisions (Lines 3-9): In the exploration
phase (Lines 3-5), AW-CUCB-DP makes decisions according

to the exploration policy,3 i.e., selecting a placement option
containing at least one newly explored node. In the exploitation
phase (Lines 6-9), based on the returned latency observations,
AW-CUCB-DP first estimates the optimistic utility bound ûi(t)
for each cloud node i ∈ [N ] by

ûi(t) = ψ1l
W/R
i (t) + ψ2Ci(t)− ei(t). (17)

Here, ei(t) is a bonus, also called confidence radius, to fur-
ther encourage exploration, and the corresponding exploration
is controlled by Ti,wi

. ξ is a tuning parameter to adjust the
preference towards exploration, i.e., a larger ξ inclines more
exploration. Then AW-CUCB-DP sorts ûi(t) for i ∈ [N ] in as-
cending order, selects the top n/k nodes to make data placement.

ii) Perform Data Write (Read) According to Placement Deci-
sion St and Observe Access Latency for Node i ∈ St: Specially,
the data placement module uploads (downloads) data chunks
on (from) the selected cloud nodes and collects access latency
l
W/R
i (t) for each node i ∈ St. Note that this step belongs to

storage system operations, as performed by a separate thread in
implementation.

iii) Update Statistics Based on the Current Window Sizewi for
Each Cloud Node i ∈ [N ]: To estimate the utility bound for each
cloud node by (17), AW-CUCB-DP calculates associated statis-
tics within time-window Wi(t) = {max(1, t− wi), . . . , t− 1}
based on the returned latency observations. That is⎧⎪⎪⎨

⎪⎪⎩
l̄
W/R
i,wi

= 1
Ti,wi

∑
t∈Wi(t)

l
W/R
i (t)1{i ∈ St}

Ti,wi
=
∑

t∈Wi(t)
1{i ∈ St}

ei(t) = LB
√
ξ ln(wi)/Ti,wi

, (18)

where l̄W/R
i,wi

andTi,wi
are the empirical average of access latency

within window wi and the number of times cloud node i has
been selected, respectively.LB is the utmost amplitude of access
latency lW/R

i (t), i.e., for ∀i ∈ St [41],

LB = sup
∀t,i

l
W/R
i (t)− inf

∀t,i
l
W/R
i (t). (19)

iv) Detect Changes by FM-PHT: FM-PHT (Algorithm 1)
runs on each node with the updated statistics. When changes in
distribution are detected for any node (Line 13), AW-CUCB-DP
sets τi to be the change time slot tch (Line 14) and reset the
detector (Line 15). For a read request (i.e., λ = 1), re-evaluations
of storage locations for requested objects are triggered at this
moment (Line 17), i.e., calling Algorithm 3.

v) Update the Window Size (Line 20): The window size
wi = min(w0, (t− τi + 1)) is adjusted accordingly to adapt to
changes on node i, enabling AW-CUCB-DP to estimate the util-
ity bound ûi(t) based on valid observations (i.e., those obtained
since the last detection time τi by the current time).

Remark 1: The combinatorial bandit model requires explor-
ing the optimal set of base arms (i.e., super arm) among (Nn )
options at each time step, making the action space large. Due to
the independence among the base arms, we can judiciously learn

3The initial exploration policy is not unique and can be any method that selects
each cloud node at least once.
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Fig. 5. An example of placement decision by AW-CUCB-DP.

and store the individual reward of each cloud node separately
to avoid combinatorial explosion. This allows AW-CUCB-DP
to select the top n out of N nodes greedily according to the
current estimate {ûi(t)}Ni=1 to form the super arm. Finally, the
action space of AW-CUCB-DP is reduced from (Nn ) to N , i.e.,
only O(N) storage and O(N) computation are required for the
sampling per time step, reducing the storage and computational
complexity.

Remark 2: By actively detecting changes in the access latency
distribution to adjust window sizes, AW-CUCB-DP can handle
both abrupt and gradual changes. Specifically, after completing
the write (read) operation, the observed access delay is used
to learn the policy by AW-CUCB-DP and fed to the change
detector (FM-PHT) to make detection simultaneously. Each
time a change in distribution is detected on a cloud node i,
its window size wi will shrink to wi = min(w0, (t− τi + 1)),
thereby disregarding stale observations. Here, τi is the latest
time slot of change-point detection. After that, window size wi

gradually increases to w0 to obtain higher estimating accuracy
of access latency. wi is upper-bounded by the initial window
size w0, a best-tuned parameter, ensuring the performance of
SW-UCB policies in the absence of abrupt changes.

Notably, a separate adaptive window (in sizewi) is maintained
for each node to achieve better empirical performance. This is
reasonable since τi are usually not equal for all nodes in practice.

2) An Illustrative Example: Considering a multi-cloud stor-
age scenario with six nodes, adopting RS (4, 2) codes to provide
fault-tolerance, the initial window size w0 = 100, as shown in
Fig. 5(a).

We start with the example in a middle decision time slot t2.
For a write request for objectA at t2, the chunks of objectA, i.e.,

Algorithm 3: Proactive Local Data Migration.

Input:: S ′t, St

Output:: Migrated placement of requested objects
1: Compare the current placement with the previous one:
Ms = S ′t \ St, Md = St \ S ′t;

2: while |Ms| > 0 do
3: Calculate migration gains according (20);
4: end while
5: while GM (t) ≥ 0 do
6: Move chunks from Ms(j) to Md(j) sequentially for

each j ∈ |Ms|;
7: end while

A1, A2, A1 +A2, and A1 + 2A2, are uploaded to cloud node
c1, c3, c4, and c6 based on the placement decision [1, 0, 1, 1, 0,
1] made at t1. The returned latency observations, i.e., l1(t2),
l3(t2), l4(t2), and l6(t2), are used to update node associate
statistics according to (18) and are also sent to FM-PHT for
change detection. The updated results for ei(t2), l̄i,wi

are stored
in the t2 row of matrices ei(t) and l̄i,wi

, respectively, in Fig. 5(b).
Then AW-CUCB-DP updates estimations for the utility bound
ûi(t2) of node c1, c3, c4, and c6 based on (17), the results are
stored in the t2 row of matrix ûi(t), in Fig. 5(b). AW-CUCB-DP
sorts ûi(t2) of among 6 nodes in ascending order, selecting the
top 4 nodes to obtain the placement decision ([1, 1, 0, 1, 0, 1])
for time slot t3. At this moment, FM-PHT detects a distribution
change in node c3 at time slot t2. Then AW-CUCB-DP adjusts
the window size of node c3 (w3) to 1, which means only one
validated historical observation is used to update statistics of
node c3 at time slot t3. Note that the resized window size at
t2 will be used when updating statistics at t3. It will gradually
increase until w0 = 100 in the following decision time slots.
Next, for another write request arrived at t3, chunks of objectB,
B1, B2, B1 +B2, and B1 + 2B2, are uploaded to the cloud
node c1, c2, c4, and c6 according to the placement decision ([1,
1, 0, 1, 0, 1]), as shown in Fig. 5(a).

D. Data Migration

Applications may re-evaluate data placement when sustained
changes in workloads or network conditions occur and compro-
mise application goals. However, it is impractical to globally
shuffle all the previous placement (i.e., migrating all chunks
stored based on the previous placement decision) for real sys-
tems, which typically incurs huge migration overhead [12]. To
avoid huge move for infrequently accessed data, we consider
local chunk migrations to reduce migration cost, i.e., the re-
evaluation of placement is taken only for the frequently accessed
data. Specifically, whether to migrate is evaluated when the
access latency distribution changes and the previous placement
is not the best for the requested object. Migrations occur only
when the migration condition is met, i.e., migration gains are
non-negative.

Algorithm 3 describes our proactive local data migration
(PLDM) algorithm, which improves the existing placement for
requested objects. At each time slot t for data read, PLDM first
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compares the current placement (St) with the placement of the
requested object (S ′t) to obtain Ms = S ′t \ St (Md = St \ S ′t),
which is a difference set containing cloud nodes that need to
move out (move into) chunks of the requested object (Line 1).
If St and St′ are different (i.e., |Ms| > 0), PLDM calculates
migration gains GM (t) for chunks stored in node i′ ∈Ms by

GM (t) =
∑
i′∈Ms

(vobj
k

(cs,i′ − co,i′)− cr,i′
)

−
∑
i∈Md

(vobj
k
cs,i + cw,i

)
, (20)

where St = argmax Dt, S ′t = argmax D′t can be obtained
by looking up metadata files. When the migration gains
GM (t) ≥ 0, PLDM sequentially moves chunks of requested
object to target nodes due to the same chunk size, i.e., moving
chunks stored in node Ms(j) to Md(j) for each j ∈ |Ms|, and
then updates metadata files accordingly.

Remark 3: PLDM can locally improve the existing placement
of requested objects, thereby avoiding huge migration overhead
for infrequently accessed data. Moreover, migrations are per-
formed in the background after read operations are completed,
not affecting data availability.

E. Regret Analysis

We adopt the learning regret of utility as the performance crite-
ria widely used in the MAB work. We analyze the regret bound
of AW-CUCB-DP and thereby guarantee that AW-CUCB-DP
achieves an asymptotically optimal regret bound.

We define Ñi(t) as a counter of sub-optimal decisions for
each base arm i ∈ [N ] at time slot t and update the counters
as follows: i) After the initial exploration (i.e., t ≤ N ), we set
Ñi(t) = 1, i ∈ [N ]. ii) For a time slot t > N , when super arm
St is chosen and St is a sub-optimal decision (i.e., St �= S∗t ), we
update the counter Ñi(t) in each time slot by

i = argmin
j∈St

Ñj(t− 1), Ñi(t) = Ñi(t) + 1. (21)

That is, we find the base arm i with the smallest counter in St

and increase its counter Ñi(t) by one. If multiple base arms inSt

meet the condition, we arbitrarily pick one. On the other hand,
when the played super arm St is the optimal one, Ñi(t) will not
be updated.

By definition, the total number of sub-optimal decisions at
time slot T is no more than

∑
i∈[N ] Ñi(T ). Note that when a

sub-optimal super arm is played, it incurs loss at most Δmax
St

(t),
Thus,

RD(T ) ≤ Δmax
St

(T )E

[∑
i∈[N ]

Ñi(T )

]
, (22)

where

Δmax
St

(T ) = max
t∈{1,...,T },St �=S∗t

(uSt
− uS∗t). (23)

Therefore, it suffices to establish the regret bound by accumu-
lating the upper bound of E[

∑
i∈[N ] Ñi(T )].

Theorem 1: Assuming ξ > 1
2 for each arm i ∈ [N ], we have

the following upper bound on sub-optimal decisions counter
Ñi(t).

E

⎡
⎣∑
i∈[N ]

Ñi(T )

⎤
⎦ ≤ ϕ1nT

ln(w0)

w0
+ ϕ2γT ln(w0), (24)

where

⎧⎪⎪⎨
⎪⎪⎩
ϕ1 = ϕ2

�T/w0

T/w0

+ 2
ln(w0)

⌈
ln(w0)

ln(1+4
√

1−(2ξ)−1)

⌉
ϕ2 = 4(LB)2ξ/(Δmin

St
(T ))2

Δmin
St

(T ) = mint∈{1,...,T },St �=S∗t
(uSt

− uS∗t).

Clearly, the upper bound depends on the total number of place-
ment tasks, change-points number γT , and the initial window
size w0. From (24), we see that the first term decreases as the
w0 increases, while the last term is the opposite. However, con-
tinuously larger windows may result in slow reaction to abrupt
changes, while smaller windows may miss changes. Therefore,
it is beneficial to adjust the window size according to detected
changes dynamically.

Theorem 2: Under Assumption 1, if the number of change-
points γT is known in advance, then we can choose

w0 = LB
√
T ln(T )/γT , (25)

so that

E[RD(T )] ≤ O
(
n
√
TγT lnT

)
. (26)

Furthermore, whenγT = O(T ν), ν ∈ [0, 1), andT →∞, we
achieve a vanishing average regret

lim
T→∞

1

T
E[RD(T )] ≤ lim

T→∞
O
(
n
√
T ν−1 lnT

)
= 0. (27)

Remark 4: This regret bound quantifies the impacts of change
extent in latency distribution on the best achievable performance
of data placement. The sublinear dependence on γT indicates
AW-CUCB-DP is suitable for non-stationary environments with
γT ∈ (0, T ). However, learning effects cannot be guaranteed in
adversarial environments (γT = T ) where latency distributions
change all the time. The regret-bound polynomial depends on
the number of cloud nodesn (upper-bounded by orderO(n)), in-
dicating that AW-CUCB-DP can adapt to large-scale placement
scenarios. The vanishing average regret implies AW-CUCB-DP
is asymptotically optimal as T increases. Moreover, if γT is
independent of T (i.e., ν = 0), the regret bound in (26) is
sublinear with T , which theoretically guarantees a significantly
improved performance over any learning-free policy.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our proposed algorithms
on commercial clouds and conduct trace-driven experiments to
evaluate their effectiveness under time-varying workloads. In
addition, we also evaluate their robustness and performance at
scale.
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TABLE III
PRICING POLICIES OF CLOUD PROVIDERS

A. Experimental Settings

1) Real-World Clouds: We conducted trace-driven experi-
ments on real-world cloud providers including Amazon S3,
Windows Azure Blob Storage, Google Cloud Storage, Al-
ibaba Cloud OSS, and Tencent Cloud COS. We assumed cus-
tomer’s local datacenter is located in Google Cloud’s Asia-east2
(Hongkong) Region. For each provider, storage services are
deployed over two regions, each region creates one bucket to
store data.

2) Simulated Clouds: Cloud Parameters
i) The storage cost depends on the pricing policies of cloud

providers (i.e., the unit prices of Storage, Put, Get, and outbound
traffic), as shown in Table III.

ii) The dynamic link state in our simulations is set according
to actual measurements.

We develop a measurement tool that contains a client and a
server counterpart running on the cloud data center, to measure
read/write latency of data objects in the size of 10 K, 100 K, 1 M,
10 M, and 100 M, which should cover the most common data
sizes [4]. The client periodically sends requests to the server,
every two minutes, to write random data to the storage service,
and then reads the data. We measure the write (read) latency as
the time of completely uploading (downloading) the data from
the storage service. Particularly, we deploy the client on a node
of Plantlab (Asia-East), and run the server on VM instances
in 6 commercial cloud data centers, i.e., Google (Asia: East),
Rackspace (HongKong, China), Amazon (Asia Pacific: East),
Azure (Asia: East), Aliyun (East China), and Tencent (East
China). This procedure is conducted in different weekdays in
July 2021, and averaged to achieve the results in Table IV.

3) Traces: We employ different I/O traces from the MSRC
benchmark suite [42] collected from 13 real enterprise server
workloads to better simulate the real storage environment. We
select different traces of eight storage servers to ensure that
workloads with different access characteristics are covered. In
addition, these traces are also representative and widely used in
previous studies for experiments [43], [44]. Table V summarizes
the characteristics of selected traces, including the types of traces
and the statistics of write/read operations. There are three types
of workloads, write-intensive, read-intensive, and balanced. A
trace is considered write-intensive (read-intensive) if its write

TABLE IV
AVERAGE UPLOAD (DOWNLOAD) TIME OF DIFFERENT CLOUD PROVIDERS

TABLE V
DESCRIPTION OF TRACES [42]

Fig. 6. Request arrival rates of traces.

(read) ratio exceeds 0.75. Otherwise, a trace is considered bal-
anced. Each trace consists of records of I/O requests, including
timestamp, file name, file size, request type, etc. We replay the
traces to schedule write/read requests according to each record’s
timestamp, request type and block sizes. The arrival rates of
write/read requests for data objects are shown in Fig. 6.

To balance the storage overhead and access cost, we choose
the (4, 2)-RS codes (i.e., n = 4, k = 2) encoding scheme for
data dispersal. Here k = 2 is a popular option for applications to
reduce access costs [45]. In general, larger values of k reduce the
storage overhead while potentially incurring higher access costs
due to accessing more nodes in parallel. This is often caused by a
slow chunk access delaying the completion of an entire write or
read request. To simplify the utility function to a dimensionless
quantity while better weighing the impact of access latency
and storage cost on the optimization objective, the latency- and
cost-weights are set as ψ1 = 1 s−1 and ψ2 = 200 dollar−1. The
required availability of applications Areq = 99.9%.
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TABLE VI
BEST-TUNED PARAMETERS FOR DIFFERENT ENVIRONMENTS

B. State-of-the-Art Alternatives

1) Real Clouds Alternatives: We compared our proposed
AW-CUCB-DP algorithm with the following alternative
methods.

i) A simple scheme: It updates the utility of each cloud
node according to the last write/read operation without
considering the time-varying latency features.

ii) Wiera’s scheme: It measures network latency periodically
as inputs, and makes data placement policy by a mixed
integer programming solver (Gurobi) [5].

iii) Random scheme: It places data chunks randomly to the
cloud nodes regardless of the network conditions and
storage cost of each cloud node.

2) Simulated Clouds Alternatives: We compare our pro-
posed AW-CUCB-DP algorithm against the following state-of-
the-art non-stationary bandit algorithms. The offline optimal
policy with a-priori known information is also presented as a
benchmark.

i) Discounted CUCB (D-CUCB) [30]: It averages the past
observations with a discount factor γ, giving more weight
to recent observations.

ii) Sliding window CUCB (SW-CUCB) [30]: It relies on a
local empirical average of the observations within a fixed
size time window.

iii) Reset-CUCB (RS-CUCB) [33]: It employs the same
change detector (FM-PHT) to detect changes and restarts
the bandit algorithm when there is an alarm.

C. Parameters Tuning

The performance of bandit algorithms also depends on tuned
parameters. To this end, we performed parameter tuning in
different changing environments (i.e., the respective numbers of
change-points γT = 10, 60 and 150) to better adapt to the non-
stationarity. Specifically, γ in D-CUCB is numerically searched
over (0, 1) to find the target value that achieves the minimum
average utility in each changing setting. The window size ws

of SW-CUCB and the initial window size w0 of AW-CUCB-DP
are tuned similarly. Specifically, we first calculated ws and w0

according to our theoretical analysis (Theorem 2, (26)) to obtain
guide values, then tunedws andw0 by data-driven approaches to
obtain the target values.Two tuning parameters for exploration
bonus are set as ξ = 1 and LB = 6. For FM-PHT detector,
we mainly care about large distribution changes since small
changes do not incur much regret. We set b = 1 and δ = 0.5. The
RS-CUCB policy uses the same change detector (FM-PHT) and
detection parameters as AW-CUCB-DP. The detailed parameter
values are shown in Table VI.

Fig. 7. Average utility under different schemes.

Fig. 8. CDF of access latency under different schemes.

D. Experimental Results

1) Results in Real-World Clouds.
Utility Compare: We compare our AW-CUCB-DP with three

alternatives using the same data trace (i.e., Prxy1). The expected
average utility is shown in Fig. 7. Our AW-CUCB-DP policy
and Wiera’s policy have achieved a much lower average utility,
whereas the simple policy performs poorly. This is because
the simple policy selects cloud nodes only based on the last
observed access latency and does not estimate and learn latency
performance of each node. Wiera’s policy performs slightly
worse than AW-CUCB-DP due to the need to use the measured
bandwidth knowledge as input, which may miss changes in
latency distribution. Interestingly, the expected average utility
of the AW-CUCB-DP at the beginning is not necessarily better
than Wiera’s policy. This is because at the beginning of learning,
AW-CUCB-DP is exploration-based, and all possible placement
options will be explored at least once. The expected average
utility peaks in the short term due to the smaller number of
explorations per placement option. However, as exploration and
exploitation continue, the expected average utility decreases as
the number of data placement tasks increases.

Ability to Reduce Access Latency: We first evaluate AW-
CUCB-DP’s ability to reduce access latency based on real-world
I/O traces, and Fig. 8 plots the access latency under different
placement schemes using the same data trace (i.e., Prxy1). AW-
CUCB-DP can effectively decrease access latency and reduce
the latency variance compared to other alternatives. AW-CUCP-
DP policy and Wiera’s policy can significantly reduce the 100th
percentile access latency compared to simple policy and random
policy. Simple policy gets the worst latency performance except
for the random scheme. This is because the simple scheme does
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Fig. 9. Access latency under different policies.

not learn the latency performance of cloud nodes, thus being
affected significantly by network latency fluctuations.

We further validate the performance of each placement
scheme by evaluating the access latency under different dynamic
workloads. Fig. 9 shows the results of average and tail access
latency. Specifically, under different workloads, our AW-CUCB-
DP reduces average latency by 18.88%–37.90% and 41.76%–
56.15% compared to simple schemes and random policy, respec-
tively. For the 90th (99th) percentile latency, our AW-CUCB-
DP outperforms simple schemes by 20.55%–35.05% (14.08%–
36.52%) among different workloads and outperforms random
policy by 37.38%–57.42% (40.22%–62.92%). Our scheme re-
duces the inflation in the 99th percentile access latency to
1.6×–3× the median latency among different workloads. The
latency reduction is mainly attributed to the AW-CUCB-DP’s
well capabilities for learning and handling changes.

Impact of Adopting CDNs: We also validate the performance
variation achieved by integrating CDN services. We integrated
storage services with the respective CDN service of each
provider, e.g., combing Amazon CloudFront with S3 standard,
Microsoft Blob Storage with Azure CDN, Aliyun OSS storage
with their CDN, and Tencent COS storage with their CDN. We
performed the comparison by replaying the “Mds1” trace, which
is a read-intensive trace.

Fig. 10 shows the distributions of access latency obtained
by AW-CUCB-DP and AW-CUCB-DP with CDNs. The former
accesses objects from storage buckets, and the latter accesses
objects from the CDN nodes. When the edge node does not cache
the requested objects, a back-to-origin request to the storage
bucket will be issued. As shown in Fig. 10, the beneficial impact
of CDNs in terms of access performance is not particularly obvi-
ous, as it deliver better performance on average 23%. However,
adopting CDNs makes significant improvement in tail access

Fig. 10. Impact of CDNs on access latency.

Fig. 11. Cost reduction against random policy.

latency, AW-CUCB-DP (with CDNs) reduces the 90th (99th)
percentile access latencies by 28% (43%). This may be related
to some complex factors, for example, the locations of edge
nodes (level-1, level-2) of each cloud provider. In addition, CDN
caching cannot reduce access latency of PUT requests.

Notably, CDNs are associated to roughly the same storage
and data transfer costs as object storage, but to markedly higher
cost for download requests (e.g., Amazon CloudFront is around
2×).

Cost Comparison: Besides the latency performance, which
significantly affects user experience, the cost is also a critical
metric for application providers. We compare the cost overhead
of different placement schemes in different workloads. The
storage cost reduced by different policies over random policy is
shown in Fig. 11. Clearly, AW-CUCB-DP performs best and ex-
hibits well adaptability to dynamic workloads. The cost savings
are different for each trace with different load characteristics,
ranging from 23.39%–43.35%.

Data Migration Impacts: To verify the impact of data mi-
gration on the expected average utility and future access per-
formance, we compare the proposed AW-CUCB-DP with the
version that does not contain the proactive local data migration
policy (PLDM), referred to as AW-CUCB-DP (no migration).
We performed the comparison by replaying the read-intensive
”Usr1” trace.

As the number of placement tasks increases, the average
utility of AW-CUCB-DP shows a decreasing trend (Fig. 12). The
average utility gap between AW-CUCB-DP and AW-CUCB-DP
(no migration) is gradually increasing. This is because as the
network latency distribution changes, some chunks of objects
are migrated, benefiting subsequent access requests. The com-
parison verifies that active local chunk migration assists well in
achieving our optimization goals.



2856 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2023

Fig. 12. Impact of migration on average utility.

Fig. 13. Impact of migration on access latency.

Fig. 14. CDF of access latency under different erasure codes.

From Fig. 13, with the increase in the number of placement
tasks, the average access latency of AW-CUCB-DP tends to be
more stable, whereas AW-CUCB-DP (no migration) shows a
gradual upward trend. With proactive local chunk migrations,
the average access latency is effectively reduced and the access
performance is further improved.

Erasure Coding Parameters Impacts: To evaluate the impact
of different erasure coding parameters on access performance,
we respectively replay the ”Mds1” trace to run AW-CUCB-DP
utilizing widely used erasure coding parameters, i.e., (n, k) =
(4, 2), (5, 3), (8, 4), (10, 6), (10, 7). The access latency distri-
butions are shown in Fig. 14. We note that AW-CUCB-DP
under erasure codes (4, 2), (8, 4), and (10, 6) outperforms (5,
3) and (10, 7) codes in access latency due to a higher level of
redundancy, where 90% of requests with erasure code (4, 2)
complete within 0.62 s, while (10, 7) code complete within
2.15 s. In addition, erasure codes (4, 2) and (8,4) outperforms
(10, 6) slightly in access latency due to accessing fewer-but-
larger chunks is much faster than multiple smaller one in general.

Fig. 15. Comparison of average utility and learning regret.

2) Results in Simulated Clouds: We run the simulation ex-
periments 100 times for all algorithms and show the average
results.

Utility and Regret: We compare our AW-CUCB-DP with three
alternatives when the environment does not change frequently
(γT = 10). The expected average utility and cumulative regrets
are shown in Fig. 15. When the access latency distribution
changes slowly, each policy achieves a much lower average
utility, as shown in Fig. 15(a).

In Fig. 15(b), we compare the regrets under different schemes.
In particular, we tune the D-CUCB policy under an appropriate
discount factor γ to better handle changes in the environment.
It can be observed that except SW-CUCB algorithm, other
algorithms perform well in slowly changing environment. Due
to the variable sliding window can better adapt to changes of
the environment, the regret growth of our AW-CUCB-DP is
smaller and smoother. The saw-tooth behavior of RS-CUCB
is attributed to frequent restarts, and regrets accumulate quickly
around these restart points. The SW-CUCB policy with fixed
window size does not consider distribution changes, resulting in
a larger regret.

Adaptation to Highly Dynamic Environments: To compare
the robustness, we simulate two non-stationary environments.
Notably, the two settings, with change points γT = 60 and
150, represent cases where the environment changes moderately
and frequently. Change points under two settings are intro-
duced at time slots where the next element of the sequence
{�tν�}t∈{1,...,T } is different from the current element, and ν =
0.45, 0.55, respectively.

From the cumulative regrets of different policies, shown in
Figs. 16 and 17, we can see the effectiveness and robustness
of our AW-CUCB-DP algorithm, which can handle frequent
changes and exhibits better learning capability. In addition, it
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Fig. 16. Regret comparison under γT = 60.

Fig. 17. Regret comparison under γT = 150.

Fig. 18. Migration ratio of PLDM algorithm under highly dynamic environ-
ments.

can be observed that D-CUCB and SW-CUCB policies out-
perform RS-CUCB under a frequently-varying environment.
The frequent restart behavior makes the cumulative regret of
RS-CUCB frequently fluctuate (sawtooth behavior) and leads to
a larger regret growth. A much wider variance on the RS-CUCB
plot demonstrates how the performance of RS-CUCB can vary
significantly compared to the narrow one on the AW-CUCB-DP,
demonstrating the stability and adaptability to a highly dynamic
environment.

Impacts of Nonstationarity on Data Migration: To evaluate
the impacts of environment’s nonstationarity on data migration,
we run AW-CUCB-DP under different changing environment
settings of ν = 0.45 and 0.55 by replaying the “Web0” trace,
respectively, then observe the number of object moves triggered
by changes in latency distribution. We plot the percentage of
total moves to object retrievals, referred to as migration ra-
tio. As shown in Fig. 18, our PLDM algorithm can improve
performance-cost balance with only small movements in highly
dynamic environments. Specifically, migration ratios are quite
low, typically 5%–6% and 9%–11% under ν = 0.45 and 0.55,
respectively.

Performance-Cost Balance: By tuning ψ1/ψ2, the proposed
AW-CUCB-DP algorithm can achieve rich trade-offs between

Fig. 19. Trade-off between access latency and storage cost.

Fig. 20. Impact of N on total utility.

Fig. 21. Impact of N on learning regret of AW-CUCB-DP.

access latency and storage cost for different application scenar-
ios, as shown in Fig. 19. It can be observed that as the ratioψ1/ψ2

increases, our scheme focuses on optimizing performance, and
vice versa on optimizing storage cost.

Parameter Impacts: To evaluate how AW-CUCB-DP scales
with the size of arms, we use the bootstrap method [46] to
resample the available measurement data ofN = 6 commercial
clouds and generate cloud parameter datasets with larger N .
Specifically, set the number of base arms N (i.e., the number of
cloud nodes) among {50, 60, 70, 80, 90, 100}, and let n = 20
by default.

We analyze the impact of N on the performance under a
moderately changing environment (i.e., γT = 60), as shown
in Figs. 20 and 21. In any setting, AW-CUCB-DP converges
quickly, and achieves the smallest total utility, i.e., 12.26%,
12.34%, and 28.11% smaller than SW-CUCB, D-CUCB, and
RS-CUCB, respectively. Moreover, even as N increases, the
gap between AW-CUCB-DP and optimal (i.e., ”regret”) almost
remains constant.

VII. CONCLUSION

In this paper, we have studied the data placement optimiza-
tion problem of multi-cloud storage. To handle dynamics in
workloads and network conditions, we have leveraged a CMAB
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framework to formulate and solve this placement problem by
learning data placement strategy online. To adapt to both gradual
and abrupt variations in the environment, we have proposed
AW-CUCB-DP by combining the active change detection and
the passive sliding-window method, enabling adaptive data
placement with low latency and cost. We have provided a strong
performance guarantee by proving that its regret is bounded
by O(n

√
TγT lnT ). Trace-driven experimental results show

that AW-CUCB-DP can improve the access performance of
multi-cloud storage and reduce storage cost.

In future work, we consider optimizing the unknown param-
eters (e.g., the sliding window size) with the idea of bandit
over bandit. Specifically, formulating the selection of unknown
parameters as another multi-armed bandit problem. Under this
formulation, a separate algorithm (e.g., adversarial bandit al-
gorithms) is maintained to learn unknown parameters, and the
returned parameter is provided to run SW-CUCB to better adapt
to non-stationary environments.
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