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Deep learning tools, especially deep generative models (DGMs), provide opportunities to accelerate and sim-
plify the design of drugs. As drug candidates, peptides are superior to other biomolecules because they com-
bine potency, selectivity, and low toxicity. This review examines the fundamental aspects of current DGMs
for designing therapeutic peptide sequences. First, relevant databases in this field are introduced. Next, the
current situation of data representation and where it can be optimized are discussed. Then, after introducing
the basic principles and variants of diverse DGM algorithms, the applications of these methods to design and
optimize peptides are stated. Finally, we present several challenges to devising a powerful model that can
meet the requirements of learning the different biological properties of peptides, as well as future research
directions to address these challenges.
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1 Introduction

Peptides can be used as therapeutic and diagnostic agents in biotechnology applications [76] owing
to numerous characteristics, including high specificity, high selectivity, safety, accessibility, and
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less immunogenicity. Previous drug design research has focused on small molecules or proteins [52,
90, 98]. The Global Peptide Therapeutics Market & Clinical Trials Insight 2028 Report revealed that
more than 200 approved peptide drugs are currently used to treat patients with various diseases.
Furthermore, 800 peptide therapeutics are in clinical trials, and the market opportunity for peptide
drugs is predicted to exceed USD 75 billion by 2028 [1], indicating that the design of therapeutic
peptide is of high interest and promising. However, traditional experimental approaches to new
therapeutic peptide design are time-consuming and costly. On average, more than 10 years and two
to three billion dollars are needed before a newly designed drug enters the market, with a success
rate of less than 1% [32]. To overcome this, peptide therapeutic designs are usually conducted with
computation-aided methods [76]. The world’s leading pharmaceutical companies have begun to
improve their research using artificial intelligence, which has show great potential in many areas
of healthcare [100]. In 2020, the sudden outbreak of Covid-19 further accelerated the integration
of biology and artificial intelligence [101]. Improvements in computing power and algorithms,
as well as the accumulation of large amounts of data, have optimized the research conditions of
computational biology [70].

Machine learning is a data-driven approach that is increasingly applied in the field of bioinfor-
matics [78, 163]. It accelerates drug screening and reduces costs. Algorithms such as support vector
machines [78], random forests [89], and Bayesian networks [5, 132] have been applied to identify
and generate peptides and to predict their properties [6]. The effectiveness of machine learning
in peptide research demonstrates the potential of data-driven approaches. However, conventional
machine learning techniques are limited at processing data. A machine learning system requires
considerable domain expertise to design a feature extractor for suitable representation [75]. Among
the many types of machine learning models, deep learning with artificial neural networks can be
used to learn data representations automatically, which averts the strenuous task of feature selec-
tion. Deep learning models are apt for discovering intricate structures in high-dimensional data,
and they outperform machine learning models at many problems given a sufficient set of data [91].

Deep learning-based peptide drug discovery includes prediction, classification, and generation
tasks. Much of the focus of past works was on the prediction task [91], with relatively little atten-
tion on the efficiency of screening for therapeutic peptides. For example, Lei et al. [79] designed a
deep learning model for protein–peptide interaction prediction, successfully capturing the binary
interactions between peptides and proteins and identifying the binding residues of the peptides
involved. Nevertheless, prediction tasks, which learn a mapping from input to label, can only iden-
tify or predict some properties and cannot generate novel peptides. Unlike prediction tasks, gen-
erative tasks learn the underlying data distribution and develop de novo peptide design. Current
generative models are effective at learning and generating novel data of various sorts, such as the
generation of images [110], text [11], music [35], and molecules [119]. A generative model has
also shown preliminary effects on peptide design [13, 23] (see the section “Architecture Division
and Evaluation Techniques for Deep Generative Models in Peptide Design” for a detailed descrip-
tion of the generative model). Furthermore, improved variants and up-and-coming mechanisms or
models offer possible avenues for future research. Therefore, it is important to combine the basic
process of peptide generation with future developments.

In this review, peptides applied in generative models are classified into three groups [74]. Group
I includes peptides that interfere with a molecule or organism, generally cationic host defense

peptides (CHDPs) [95] that resolve harmful inflammation, such as antimicrobial peptides

(AMPs) and antiviral peptides (AVPs). AMPs act as non-specific antibacterial agents by directly
destroying bacterial membranes, which reduces the evolutionary probability of bacterial resistance
[85, 95, 133]. Group II consists of peptides that form functional polymers with proteins, such as sig-

nal peptides (SPs) and cell-penetrating peptides (CPPs). SPs are short peptide sequences that
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direct newly synthesized proteins to various export pathways and are designed for therapeutic pur-
poses, such as increasing the therapeutic levels of proteins secreted from hosts [166]. CPPs enhance
the intracellular delivery of biomolecules such as proteins [138]. Group III includes antigenic pep-
tides that can be candidates for vaccines, such as human leukocyte antigen (HLA)-binding pep-
tides. HLA is an antigen-presenting protein that binds to peptides with strong HLA-binding affinity
to form peptide–HLA complexes (pHLA), which trigger an immune response similar to vaccine
action. Compared with proteins, peptides speed up vaccine development and reduce costs [57].

Different extension tasks based on generative models have been attempted in an effort to design
the ideal peptide. These studies often integrate generative models with classifiers [150], impose
property constraints on the generated peptides by incorporating conditions to achieve more op-
timal outcomes [41, 83, 108], or utilize structural evaluation tools [12, 15]. Additionally, advance-
ments include efforts in all-atom generation [81] and multi-modality approaches [155]. In what
follows, we first introduce common databases of popular peptides around these tasks and some re-
lated requirements. Next, data representation methods for peptide sequences are outlined, and we
describe where they can be optimized. Then, we provide a comprehensive description of the basic
principles and application notes of generative models, and analyze the structures or algorithmic
mechanisms of variant models that enable the optimization of generative tasks. Finally, we dis-
cuss challenges and potential directions for future research on generative models for therapeutic
peptide design. Figure 1 illustrates a workflow of peptide design using a deep generative model

(DGM).

2 Peptide Databases: Critical Resources for Generative Modeling in Therapeutic

Peptide Design

Over the last few decades, a large number of databases containing specific functional peptides have
been developed [107, 140, 141, 146]. Table 1 summarizes and categorizes the common databases
of various therapeutic peptides that are currently of interest. Universal Protein (UniProt) [22]
is an extensive database that contains information on labeled and unlabeled protein/peptide se-
quences and their functions. These comprehensive data can be utilized in pretraining to enhance
the understanding of the general grammar of peptides. Another general database, THPdb, con-
tains complete information on US-FDA-approved protein and peptide therapeutics, such as their
half-life, chemical modifications, immunogenicity, solubility, and toxicity— properties that most
candidates should test [141]. The Database of Antimicrobial Activity and Structure of Peptides is a
large, comprehensive repository of experimental data from in vitro tests assessing the antimicro-
bial/cytotoxic activities of peptides, to facilitate the de novo design of AMPs with desired properties
[107]. The Immune Epitope Database is one of the largest repositories of immunological epitopes
and includes published experimental data on infectious diseases and allergens [145].

Data need to be accurate, meaningful, and representative to maximize the characteristics learned
in model construction, so the data collection step is crucial. This process in the design of thera-
peutic peptides commonly involves filtering for various attributes, including those that satisfy a
specific therapeutic function and those that meet the primary states required for therapeutic drugs
(Figure 1(a)), such as toxicity, hydrophobicity, secondary structures, and chemical modifications.
These are conducive to druggability [133], due to some disadvantages of peptide therapeutics, such
as low solubility and instability. Collecting or building different and more comprehensive databases
is vital because models with extensive and diverse training data can produce more attributes and
novelty than models trained with one data type. For example, the AMP generation frame CLaSS
[23], which can controllably generate AMPs with desired properties in ample peptide space, is
pre-trained with unlabeled data from UniProt and combined with a classifier that is trained with
labeled data of toxic/hemolytic and structural properties from several specific databases.
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Fig. 1. Workflow for the generation of a specific peptide using DGM. (a) Dataset input: considering appro-

priate therapeutic peptide properties and processing the data. (b) Data representation: including sequence-

based, structure-based, and 3D coordinate representations commonly used in deep learning. (c) Peptide gen-

eration: designed according to specific peptide goals and combined with optimization strategies. (d) Evalua-

tion: using property predictors, existing or custom metrics, or wet lab experiments.

One limitation of these peptide databases is the lack of function-specific negative data crucial
for classifiers, especially data derived from experimental validation. This is partly due to the am-
biguous definition of negative data. Most studies retrieve random peptide segments from UniProt,
such as AMPEP [10], which filters negative AMP samples using UniProt’s “NOT” keyword
search function. Additionally, more advanced models can handle complex data beyond amino
acid sequences, such as binding pockets and 3D coordinate information. Therefore, to generate
therapeutic peptides with multiple attributes, the database needs to have rich data structures and
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Table 1. Comprehensive and Specific Databases Available for Peptide

Type Specific Database Data size Link Year

Comprehensive

All kinds of
peptide and
protein data

PepBank [123] 21, 691 http://pepbank.mgh.harvard.edu/ 2007

SatPDB [124] 37, 100 https://bit.ly/3W020dJ 2016

UniProt [7] >227M https://www.uniprot.org/ 2023

Peptide-protein
complexes PepBDB[154] 13, 299 https://bit.ly/4bywVDz 2019

Peptide drugs
THPdb [141] 852 http://crdd.osdd.net/raghava/thpdb 2017

THPdb2 [66] 894 https://bit.ly/3WdbO5s 2024

CHDP that are
inti-inflammatory

AMPs/
Non-AMPs

DADP [102] 2, 571 http://split4.pmfst.hr/dadp/ 2012

YADAMP [106] 2, 133 http://www.yadamp.unisa.it/ 2012

APD3 [149] 2, 619 https://aps.unmc.edu/AP/ 2016

AMPEP [10] 170, 059 http://crdd.osdd.net/raghava/AmPEP/ 2018

LAMP [159] 23, 253 https://bit.ly/3LhZr1G 2020

DBAASP [107] 35, 700 http://dbaasp.org/ 2021

dbAMP [67] 26, 447 https://awi.cuhk.edu.cn/dbAMP/ 2022

DRAMP [121] 20, 407 http://dramp.cpu-bioinfor.org/ 2022

CAMP [44] 24, 243 http://crdd.osdd.net/raghava/camp 2023

AVPs
AVPpred [136] 1, 245 http://crdd.osdd.net/servers/avppred 2012

AVPdb [109] 2, 683 http://crdd.osdd.net/servers/avpdb 2014

ACPs CancerPPD [140] 3, 491 http://crdd.osdd.net/raghava/cancerppd/ 2015

Cell penetrating CPPs CPPsite2.0 [2] 1, 850 http://crdd.osdd.net/raghava/cppsite/ 2016

immunogenic/
antigenic

HLA-binding
peptides

SYFPEITHI [113] 2, 000 http://www.syfpeithi.de/0-Home.htm 1999

EPIMHC [114] 4, 867 https://bit.ly/3WhJq29 2005

MHCBN [73] 25, 857 http://crdd.osdd.net/raghava/mhcbn/ 2009

IEDB [144] >1.6M http://www.iedb.org/ 2018

Abbreviations: ACPs, anti-cancer peptides. AMPs, antimicrobial peptides; AVPs, antiviral peptides; CHDP, cationic host
defense peptides; CPPs, cell-penetrating peptides; HLA, human leukocyte antigen; M, million.

attributes, efficient search capabilities, and regular updates. Finally, a benchmark dataset should be
established for specific peptides to evaluate generative models more universally and conveniently.

3 Peptide Data Representation for Generative Modeling

How the data are represented is essential to extracting useful information from them, whether in
conventional machine learning or deep learning [9, 29]. A representation is an extract of original
data into an abstract, high-level, and usually low-dimensional feature space. Most conventional
machine learning predictive models encode the features of peptides through descriptors [153] such
as the amino acid composition, which computes the occurrence frequency of each amino acid
type in a peptide sequence or composition–transition–distribution that can describe the global
composition of the amino acid property for each sequence [82]. These representations are often
unsuitable for generative models because of they lack complete sequence information. There are
three main types of data representation for DGMs in peptide design: sequence-based, structure-
based, and 3D coordinate representations (Figure 1(b)). Below, we introduce the commonly used
representations in each category.

Among sequence-based representations, the simplest, most commonly used representation is
one-hot encoding based on binary vectors, where 1 indicates the presence of a character, and 0
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indicates an empty slot. Another sequence-based coding method is the embedding layer. The em-
bedding layer is a learnable neural network layer, typically used as the first layer in a model. It
essentially performs a multiplication of a matrix with the original vector (one-hot or one-letter
encoding). The advantage of learnable embeddings is their adaptability to the model, as the em-
bedding layer is trained simultaneously with the entire model. In addition, the evolutionary-based
amino acid coding obtained through sequence alignment tools can capture evolutionarily con-
served features of a sequence, and this naturally serves as a matrix representation that provides a
richer biological meaning. One evolutionary-based coding method considered effective at improv-
ing the performance of deep learning models is the position-specific scoring matrix representation
[19, 79, 115, 152], a multiple sequence alignment generated by PSI-BLAST [3] that records the prob-
ability that each amino acid at a different position in the macromolecule sequence is transformed
into another amino acid.

However, a sequence-based representation limits the model to learning only sequence informa-
tion. By contrast, some biological functions are contained in the structure of peptides, such as the
α-helix, which has a high probability of occurring in AMPs. Structure-based representations pro-
vide richer information for models to learn. Regarding structure-based representations, the much
shorter sequences in peptides than in proteins make a molecular graph representation feasible,
where the atoms are the nodes and the bonds are the edges of a molecular graph. The RDKit tool
can convert an amino acid sequence into a molecular graph format. Molecular graph representa-
tions can be efficiently learned and used for downstream tasks by graph neural networks with
a range of strategies [158, 162, 167]. Another structure-based representation is the contact map,
which shows the interaction of residue pairs as a matrix, where the nodes are individual residues.
The edges can be determined by a physical distance threshold [63]. It is an efficient representa-
tion for describing the spatial structure of macromolecules [68, 94, 105]. In the last category, 3D
coordinate representations of peptides supplement the 2D connectivity and topology with spa-
tial geometric information, such as bond lengths and bond angles at the molecular level [64], or
relative spatial positions at the amino acid level [64], which more closely reproduces real-world
scenarios. Table 2 summarizes different categories of generative models and their corresponding
databases and data representation methods used in peptide design, aiding in understanding and
selecting appropriate representation techniques.

Typically, CHDPs like AMPs are generated using one-hot encoding or other sequence-based
representations. However, linear representations of amino acid sequences are often superficial and
limited, though they can be supplemented by structure-based representations. Recently, when gen-
erating protein-binding peptides, structure-based representations are increasingly used to capture
evolutionary information and binding key atoms or coordinate structures, such as the BLOSUM
matrix or 3D coordinates. In the future, more encoding methods will be integrated to better rep-
resent data. Due to the significant computational resources required for 3D coordinate represen-
tations and the large amount of information to be processed, a comprehensive encoding method
similar to SMILES or SELFIES, or a molecular graph, can be constructed to create so-called peptide
fingerprints. To accelerate the encoding process, this method can be compiled into packages for
easy and rapid invocation.

4 Architecture Division and Evaluation Techniques for Deep Generative Models in

Peptide Design

The choice of model is the key to the quality of the generated sequence. In this section, to help read-
ers better understand DGM-assisted drug discovery, the basic principles and optimization strategy
of the DGM are briefly outlined. The generative models introduced here are divided into two cat-
egories. One category comprises those oriented to language modeling, usually accompanied by
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Table 2. Databases and Data Representation Methods for Different Categories of Generative Models in

Peptide Design

Category Model Database Representation Ref.

RNN
LSTM-RNN ADAM, APD, DADP One-hot [97]
LSTM_Pep PeptideAtlas/APD3 One-hot [164]

PepPPO IEDB
One-hot, BLOSUM matrix,
Embedding layer

[17]

VAE
CLaSS UniProt/satPDB, DBAASP, AMPEP Embedding layer [23]

PepVAE APD, DADP, DBAASP, DRAMP, YADAMP One-hot [26]
HydrAMP dbAMP, AMP Scanner8, DRAMP6 One-hot [131]

GAN

GANDALF THPdb Text, 4D tensor [116]
PepGAN APD, CAMP, LAMP, DBAASP None [139]

DeepImmuno IEDB AAindex PCA [80]

AMPGAN v2
DBAASP, AVPdb, UniProt

One-hot [142]

Pandoragan
AVPDb, AVPpred, CAMP, Dramp, APD3,
dbAMP Embedding layer [129]

SA-based
Transformer Swiss-Prot One-hot [156]

TransMut IEDB, EPIMHC, MHCBN, SYFPEITHI Embedding layer [20]

Diffusion model

HelixDiff PDB One-hot, 3D coordinate [157]

AMP-Diffusion
dbAMP, AMP Scanner, DRAMP

Embedding layer [16]
MMCD

APD3, CAMP, DBAMP, DRAMP, SATPdb,
YADAMP, LAMP, CancerPPD

One-hot, 3D coordinate [151]

HYDRA PepBDB One-hot, 3D coordinate [112]

specific generative tasks. These models are RNN-, attention-, or self-attention-based [143]. The
other category consists of models oriented toward fitting the real data distribution, including gen-

erative adversarial networks (GANs) [46] and the variational autoencoder (VAE) [71], which
usually use an RNN [117] as the generator. Figure 2 depicts the basic architecture of generative
models.

4.1 Data Representation Learning Architecture

4.1.1 Recurrent Neural Network. An RNN has a core recurrent layer that allows information
to flow across time steps. This recurrent layer shares parameters at each time step, storing and
calculating previous states to process sequential input. During training, the network predicts the
next token in a sequence and computes loss by comparing predictions with actual data. RNNs excel
at capturing sequential patterns, but face challenges like vanishing or exploding gradients [60]
and difficulty learning long-term dependencies [72]. To mitigate these issues, various recurrent
unit variants have been proposed. The long short-term memory (LSTM) [60] unit efficiently
retains information over extended periods through specialized gating mechanisms. Additionally,
bidirectional architectures leverage past and future information to enhance context understanding
[47]. Another variant, the gated recurrent unit (GRU) [18], offers a simpler alternative with
fewer parameters than LSTM [21]. Despite advancements, training RNNs typically relies on labeled
data, which may be sparse and expensive to obtain at scale, although RNNs can also be applied
to unsupervised and self-supervised learning tasks. Additionally, simple RNNs tend to capture
only rudimentary patterns within the data, resulting in a lack of diversity in generated sequences.
Figure 2(a) illustrates the process of generating peptide sequences with an RNN and a simplified
diagram of the variants of the recurrent unit.

4.1.2 Transfomer-based Models. RNNs process inputs sequentially, limiting the use of parallel
computing hardware. To address this, Vaswani et al. introduced the transformer model [143],
based entirely on the self-attention mechanism. Compared to RNNs, transformers allow for
better parallelization and facilitate the modeling of long-term texts. The core of the transformer,

ACM Comput. Surv., Vol. 57, No. 6, Article 155. Publication date: February 2025.



155:8 L. Lai et al.

Fig. 2. Basic architecture of generative models. (a) RNN unfolded in time for sequence-based peptide gener-

ation and the core of three recurrent unit variants. (b) Schematic diagram of the basic architecture of GAN.

GAN based on RL can generate sequences and utilize the Wasserstein distance to improve loss calculation.

(c) Diagram of VAE, which trains the encoder and the decoder on the distributions that generate latent space

z and reconstruct input. (d) Sketch of self-attention layer. (e) The diffusion model, gradually adds Gaussian

noise from X0 and then reverses.

self-attention, captures interdependencies among sequence elements to compute sequence
representations. It computes query (Q), key (K ), and value (V ) vectors for each word, calculates
attention scores αi, j , and outputs a weighted sum using SoftMax (Figure 2(d)). The architecture
consists of self-attention and position-wise fully connected feed-forward network layers for the
encoder and decoder. The decoder’s first multi-head self-attention employs a mask operation
to prevent data leakage. Additionally, the decoder performs multi-head self-attention over each
output word of the encoder, providing a different perspective on the input sequence. Position
encoding is added to word embedding to maintain word order.

Two essential variants of the transformer are generative pretraining (GPT) [111] and bidi-

rectional encoder representations from transformers (BERT) [30]. GPT is an autoregressive
language model that uses the transformer’s decoder structure to predict the next token based on
the previous one. BERT is an autoencoder language model that predicts masked tokens based on
unmasked tokens (bidirectional context).

4.2 Real Data Distribution Learning Architecture

4.2.1 Variational Autoencoder. The variational autoencoder (VAE) is a probabilistic graphical
model commonly used for unsupervised learning [71]. They learn a latent representation z of input

ACM Comput. Surv., Vol. 57, No. 6, Article 155. Publication date: February 2025.
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data x to generate new data points by sampling from this latent space (Figure 2(c)). VAEs approx-
imate the true posterior distribution of latent variables via variational inference, optimizing the
evidence lower bound (ELBO). The ELBO comprises a reconstruction loss, measuring disparity
between input and reconstructed data, and a KL divergence term, regularizing the latent space
towards a prior distribution. The reparameterization trick enables efficient training by decoupling
stochasticity from model parameters. By learning meaningful latent features, VAEs can generate
data that resembles but are not identical to the input distribution. Consequently, VAEs exploit un-
labeled data more efficiently and generate more diverse outputs than RNNs. The encoder in a VAE
can be an RNN, CNN, or any model learning latent representations, while the decoder is typically
an RNN for data generation. However, VAEs suffer from entangled latent attributes, limiting inde-
pendent attribute generation. To address this, Hu et al. [62] proposed a semi-supervised approach
that combines a VAE with the wake–sleep procedure [58], disentangling latent codes, enabling
controlled generation, and achieving semi-supervised learning using labeled data. The properties
of latent vectors facilitate the addition of conditional variables. Sohn et al. [126] proposed the con-

ditional variational autoencoder (CVAE), which concatenates the encoded latent vector with
data labels before inputting them into the decoder. This approach enables the generation of desired
data by specifying the corresponding labels during the generation process.

4.2.2 Generative Adversarial Networks. A generative adversarial network (GAN) [46] consists
of two networks: a generator G and a discriminator D (Figure 2(b)). The training process involves
a minimax game where the generator aims to create realistic data to fool the discriminator, and the
discriminator aims to distinguish real from generated data accurately. Through iterative training,
the generator improves its ability to generate data that the discriminator cannot distinguish from
real data. The generator learns to generate data indistinguishable from real samples through
iterative training. A GAN learns the data distribution without prior knowledge, which makes it a
powerful tool for various generative tasks, including sequence generation, despite the challenges
posed by the non-differentiability of discrete data. Variants of GANs have been proposed as
researchers tackle the challenges of sequence generation. One of the biggest challenges is the
non-differentiability of discrete data. SeqGAN [161] addresses this by leveraging reinforcement

learning (RL) techniques to frame sequence generation as a sequential decision-making problem.
The generator learns a stochastic policy through policy gradient [130], using the discriminator’s
evaluations of complete sequences as rewards. SeqGAN uses a Monte Carlo search with a rollout
strategy to assess intermediate steps. In addition to SeqGAN, notable variants include LeakGAN
[51], CGAN [93], WGAN [4], and BiGAN [33]. LeakGAN utilizes hierarchical RL to enhance
feedback in the discriminator for sequential data. CGAN adds conditional information to control
sequence generation, while WGAN addresses issues like mode collapse using the Wasserstein
distance. BiGAN incorporates an encoder for inverse mapping from data to latent representation.

4.2.3 Denoising Diffusion Probabilistic Models. Denoising diffusion probabilistic models

(DDPMs) [59] are based on a process that iteratively refines samples by adding and then remov-
ing noise (Figure 2(e)), ultimately generating data that resembles the target distribution. A diffusion
model is typically composed of two key components: the forward diffusion process and the reverse
denoising process. The forward process is defined as a Markov chain that adds small amounts of
noise at each step. Mathematically, given data X0, the forward process produces Xt by adding
noise according to a predefined schedule. The reverse process is parameterized by a neural net-
work that predicts the original data from the noisy observations and is trained to minimize the
difference between the predicted and actual noise. Recent advancements in diffusion models have
demonstrated their potential to generate high-quality images. One of the notable benefits of these
models is their ability to produce diverse and realistic samples, which has been evidenced by their
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performance at image synthesis tasks. Unlike other generative models, such as GANs, diffusion
models do not suffer from mode collapse, where the model generates a limited variety of outputs.
This makes diffusion models particularly advantageous in applications that require high diversity
in generated samples.

However, DDPMs require a large number of diffusion steps to perform well, and this slows
down the sample generation process. To address this issue, denoising diffusion implicit models

(DDIMs) [127] were introduced. Although DDIMs share the same training objectives as DDPMs,
they do not require the diffusion process to be a Markov chain. By setting the variance to zero at
all time steps, the randomness of Gaussian noise is eliminated, resulting in deterministic sampling.
This reduction in sampling steps accelerates the generation process.

The noise addition process in DDPMs is executed through discrete time steps, with both the
forward and reverse diffusion processes divided into T steps. By contrast, score-based genera-

tive modeling (SBGM) [128] interprets these steps as a continuous transformation that can be
described by a stochastic differential equation (SDE), thereby simplifying the solution process.
SBGM provides a robust theoretical foundation for training diffusion models, ensuring that they
can effectively learn the underlying data distribution.

4.3 Comprehensive Evaluation Methods for Peptide Generative Models

4.3.1 Data Partitioning. Data partitioning is crucial to evaluate generative models accurately.
Proper partitioning helps prevent overfitting and underfitting. A common approach is the holdout
method, which divides the dataset into training, validation, and test sets. The training set is for
learning parameters, the validation set for tuning hyperparameters, and the test set for the final
evaluation of the model’s generalization ability [45]. For low-data scenarios,k-fold cross-validation
is effective at preventing overfitting. This involves splitting the data into k subsets, using each
subset as a test set, and then averaging the results. The approach ensures that every data point
is used for training and testing, providing a more reliable performance estimate. This method is
prevalent in peptide studies.

4.3.2 Evaluating Peptide Generation Models.

Functional Validation. Functional validation directly reflects the effectiveness of peptide
generation models. Although wet lab experiments are the gold standard for testing peptide
performance due to their accuracy, they are resource-intensive and time-consuming. Fortunately,
computational models have advanced such that they can evaluate generated peptides effectively.
Prediction tools estimate peptide function likelihood or provide experimentally confirmed data
values. For example, CAMPR3 [146], CAMP [42], SignalP 6.0 [135], and TransPHLA [20] demon-
strate excellent performance in predicting peptide attributes. Molecular dynamics simulations
reveal peptide–biomolecule interactions [20, 23, 37], aiding in understanding stability, flexibility,
and binding affinity.

After preliminary computational assessments, promising peptides can be selected for further
experimental validation. Various functional assays are employed depending on the specific appli-
cation of the peptide. For example, evaluating the efficacy of AMPs involves determining the min-

imum inhibitory concentration (MIC) against particular bacteria (e.g., Escherichia coli), where
the MIC is defined as the minimum concentration of an antimicrobial agent that inhibits microbial
growth. The lower the MIC value, the higher the activity of the peptide, indicating greater potency
against the target microorganism.

Quantitative Evaluation.

— Statistical analysis for sequences: Methods such as the Pearson correlation coefficient,
cosine similarity, and Euclidean distance are used to compare the representation of the
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generated sequences with the ground truth. BLEU and perplexity (PPL) scores reflect the
reconstruction quality of the generative model. Novelty is assessed by calculating the pro-
portion of generated peptides not present in the training set, indicating whether overfitting
has occurred. Diversity among the generated peptides is also crucial for evaluating the
potential of drug candidates and determining whether the model suffers from mode collapse.

— Physicochemical properties: Tools like the “Peptides” R package [103] and the Python
library “modlAMP” [96] estimate properties such as length, molar weight, amino acid
frequency, net charge, aromaticity, hydrophobicity, and hydrophobic moment. These
properties are statistically compared with the training data to assess model learning.

— Secondary structure analysis: Specific functions often relate to specific structures.
Secondary structure analysis (e.g., α-helix, β-sheet, and random coil) can be performed
using methods like GOR IV to evaluate the helicity for designed AMPs [27].

4.3.3 Classification Metrics for Evaluating Generated Peptides. Effective evaluation of gener-
ated peptide sequences is paramount in peptide design. Classification models are indispensable
for screening effective peptides or reducing the proportion of unexpected ones [97, 148]. Several
methods have been developed to improve classification models, including the confusion matrix and
receiver operating characteristic (ROC) curve. The confusion matrix, which delineates true
positives, true negatives, false positives, and false negatives, provides insights into classification
accuracy. Derived metrics like sensitivity (recall), specificity, precision, and accuracy standardize
model efficacy measures. Metrics such as the F1 score balance precision and recall, while the ROC
curve plots the true positive rate against the false positive rate, with the area under the curve
(AUC) as a benchmark, quantifying the discriminative power of the classification model. Addition-
ally, the Matthews correlation coefficient and perplexity offer nuanced insights, particularly useful
in diverse contexts. In summary, these metrics underscore the importance of classification models
in peptide design and their efficacy in evaluating generative model performance, contributing to
the advancement of peptide design strategies.

4.4 Summary of DGM

Table 3 shows the comparison of various generative models and their variants that have adopted
different optimization strategies. Recently, diffusion models have become prevalent in generat-
ing peptide sequences and structures, due to their superior capability of fitting distributions com-
pared to earlier models. Therefore, the integration of diffusion with diverse techniques for pep-
tide design is a field with significant potential. Additionally, establishing benchmarking metrics
is necessary to enable unbiased and objective comparisons of different models across various
domains.

5 Applications and Optimization Strategies of Generative Models in Therapeutic

Peptide Design

Novel algorithm-assisted de novo peptide design and evaluation are increasingly considered an
effective means of searching the desired part of the vast chemical space, as starting points for hit-
to-lead optimization, to expand compound libraries, and as a tool for encoding before performing
other deep learning tasks. There have been several applications for peptide generation based on
generative models. This section underlines the achievements and optimization of deep generative
models on peptide design. We categorize the applications into six types. According to these six
categories, Table 4 summarizes the architecture, data sets, data size, and target peptides used in
the applications mentioned below.
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Table 3. Comparison of Different Generative Models and Variants that Adopted Different

Optimization Strategies

Techniques Optimization Model Year Summary

Data
Representation
Learning
Architecture

Small-scale
architecture

RNN [34] 1990 RNNs are suitable for processing and predicting time
series data but struggle with long-timescale
dependencies. LSTMs address gradient vanishing and
explosion issues, with four times more parameters than
RNNs. GRUs have a simpler structure than LSTMs,
improving training effectiveness. All three can handle
inputs of arbitrary length and consider historical
information, but their Markov chain nature makes
them work serially and ignore future information.

LSTM [60] 1997

GRU [18] 2014

Self-attention-
based large-scale
architecture

Transformer
[143]

2017 The Transformer excels in processing long sequences using
self-attention, which allows for better interpretability,
parallelization, and modeling of long-term texts compared
to RNNs. GPT, the Transformer’s decoder, is a
unidirectional autoregressive model. BERT, the
Transformer’s encoder, learns bidirectionally to capture
context information but trains more slowly. These models
have many parameters, making them suitable for
pretraining to obtain a universal data representation,
requiring only a small amount of data for fine-tuning.
However, their training is slow and compute-intensive.

GPT [111] 2018

BERT [30] 2018

Real Data
Distribution
Learning
Architecture

Directed probability
graphical

VAE [71] 2013 VAEs can learn a smooth hidden state but may result in a
biased representation of the input data.

Adversarial training GAN [46] 2014 GANs can learn the unbiased distribution of real data,
generating samples closer to the source data. However,
they are not well-suited for generating discrete data. Their
alternate optimization makes training challenging, and
they also suffer from poor interpretability.

Conditional
generation

CGAN [93] 2014 Constrains the model with additional information to
guide data generation.CVAE [126] 2015

Latent space
encoder

BiGAN [33] 2016 Achieves inverse mapping from data to latent
representation.

Improvement of
loss function

WGAN [4] 2017 Solves the pattern collapse problem by adopting the
Wasserstein distance to measure the sample distribution
distance.WAE [137] 2017

Improvement of
regularization

WGAN-GP
[50]

2017 Replaces WGAN’s weight clipping with a gradient penalty
strategy allows for more stable training.

Improvement in
sequence
generation

SeqGAN
[161]

2017 Solves the problem of backpropagation of discrete data and
the evaluation of intermediate sequences with the aid of
reinforcement learning.

Long sequence
generation

LeakGAN
[51]

2018 Introduces the ideas of hierarchical RL to solve the
problems of insufficient feedback information and sparse
feedback in discriminator.

The forward
diffusion process
and the reverse
denoising
process

DDPM [59] 2020 Generates diverse and realistic samples, but the generation
speed is slow.

DDIM [127] 2020 Deterministic sampling, more efficient and faster.

SBGM [128] 2020 The generated results are diverse, and the solving process
is simplified.
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Table 4. Six Types of Applications in Generative Models for Peptide Design with Corresponding Dataset

Sizes and Target Peptides

Application type Architecture Dataset size Target Year Ref.

Solely deep generative
models

LSTM 1, 554 AMP 2018 [97]
LSTM 1, 011 AMP 2018 [99]
GRU 4, 774/797a AMP 2021 [13]
VAE 5, 942 AMP 2020 [27]
VAE 1, 554 AMP, 299 ACP AMP, ACP 2019 [14]
LSTM 600 CPP 2021 [118]
LeakGAN 553 AVP 2023 [129]

With pretraining
CVAE 1.7M/7, 960a AMP 2018 [24]
LSTM 3, 274, 675/-a Bioactive peptides 2023 [164]
DDIM, ESM 8M/195, 121a AMP 2023 [16]

With attribute-controlled

LeakGAN 16, 648 AMP 2020 [139]
BiCGAN 496, 891 AMP 2021 [142]
CVAE 247, 506 AMP 2023 [131]
DDPM 3, 118 Helix-peptide 2024 [157]

Forward-only strategy WAE > 1.7 M/8, 683a AMP 2021 [23]

With multi-modal
method

DM,
Transformer,
EGNN

20, 129 AMP, 4, 381 ACP AMP, ACP 2024 [151]

With protein-dependent
method

Transformer 25, 000 SP-protein pairs SP 2020 [156]
GAN 380 peptides, 25, 239 proteins Protein-binding peptides 2020 [116]
SA 7, 320 peptide–HLA complexes HLA-binding peptides 2022 [20]

LSTM
31, 3652 peptides, 10, 551
proteins

MHC-binding peptides 2023 [17]

DM,
SE(3)-EGNN

9, 225 protein-peptide
complexes

Protein-binding peptides 2024 [112]

a The models in these applications are pre-trained, and the dataset size is the number of pretraining/fine-tuning.

5.1 Designing Functional or Optimized Peptides Solely using Deep Generative Models

One of the fundamental approaches to generating therapeutic peptides with desired properties
is to design therapeutic peptides solely using DGMs. Initially, functional peptide data are repre-
sented as simple one-dimensional sequences. Subsequently, a vanilla DGM is trained on these
data. Finally, an independent predictor or other evaluative method is employed for screening or
evaluation. For example, amphipathicity is a crucial property of AMPs. Müller et al. [97] trained
an LSTM generative model using one-hot encoded sequences. The generated peptides were evalu-
ated using the AMP classifier CAMP [147] and compared for helix structure similarity with AMP
templates [38] to demonstrate the presence of amphipathicity. Nagarajan et al. [99] employed a
model and training method similar to Müller et al. However, they conducted a more comprehen-
sive evaluation by constructing a Bi-LSTM-based MIC prediction model. Peptides were scored
using this model, and those with low MIC scores were subsequently tested in experiments. The re-
sults demonstrated that the generated peptides exhibited broad-spectrum activity and well-folded
structures [148].

Considering that the design of amphipathic peptides can sometimes lead to cytotoxicity, that
is, hemolytic activity, which greatly limits their use as drugs—researchers have sought ways to
balance amphipathicity and toxicity. To address this challenge, Capecchi et al. [13] developed an
RNN-based AMP generative model. This model was trained with both AMP and non-hemolytic
peptides and screened using predictors for both properties. AMP design tends to favor short se-
quences [13, 99, 148], as shorter peptides are less likely to form complex three-dimensional struc-
tures that sequence models cannot accurately interpret. This simplicity in structure not only makes
short peptides easier and cheaper to manufacture but also ensures that their predicted sequences
are more likely to match their actual structures.
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Fig. 3. A diagram illustrating the optimization strategy for designing peptides based on deep generative

model (DGM). The sequence generated by individual DGM is far from satisfying the required properties

as a drug; thus, a tedious series of screenings has to be performed. Optimization strategy can improve the

efficiency of peptide generation in terms of (a) generic model learning, (b) controlled generation, (c) semi-

supervised learning, and (d) forward-controlled sampling strategies.

In applying CPPs, to enhance the delivery of specific biomolecules within cells, Schissel et al.
[118] designed an LSTM-based CPP generative model. By combining this model with a prediction
model and directed evolution, they discovered “Mach” nuclear-targeting miniproteins, which are
highly effective delivery structures for a specific type of therapeutic drug, the PMO.

One drawback to de novo generation of AVPs is the limited data available. To address this, Surana
et al. [129] were the first to use a GAN to generate AVPs. They trained the model on a very limited
dataset of 553 high-quality AVPs. Utilizing LeakGAN to leak learned features from the discrimina-
tor to the generator, they successfully generated an optimal set of antiviral peptides.

VAEs offer an alternative approach by sampling distributions, facilitating diversity while main-
taining semantic continuity. For example, Dean and Walper [27] performed interpolation between
the vectors of AMPs and scrambled peptides in the latent space of a VAE. They validated the VAE’s
ability to capture functional differences in sequences within the latent space using the activity pre-
dictor CAMPR3 [146] and the secondary structure evaluation method GOR [43]. Chen and Kim
[14] used a temperature factor ranging from 0 to 1 during the decoding stage of the VAE, making
the generated peptide sequences more deterministic.

5.2 Generation of Peptides with Pretraining

More specific data feeding is required to train deep model parameters adequately and prevent
overfitting, which is usually a limited resource. Pre-training leads to remarkable performance im-
provements for many NLP tasks [86]. Pre-training on massive unlabeled data can obtain more
general language representations and benefit downstream tasks. Training of the pretraining model
consists of two stages (Figure 3(a)). First, massive unlabeled data are incorporated into general rep-
resentations via a self-supervised learning strategy. Second, the model is fine-tuned via supervised
learning, which can be adapted to different kinds of tasks with only slight modifications. In the case
of peptides, this global approach allows for meaningful density modeling across multiple families
and better learning of the “grammar” of peptides. For example, Das et al. [24] designed a VAE-
based AMP controllable generation model PepCVAE, which controls the properties of generated
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AMPs by combining VAE with a CNN to learn a space of disentangled antimicrobial properties.
Pre-trained models with all known short peptide sequences in UniProt explored domains beyond
the known antimicrobial templates, and the results demonstrated that these pre-trained models
produced sequences with high reconstruction accuracy and diversity. Zhang et al. [164] used the
general database PeptideAtlas [28] to pre-train an LSTM model, enabling it to learn the general
syntax of peptides. They then fine-tuned the model with specific peptides and employed structure-
based screening to discover bioactive peptides capable of binding to a particular target.

Instead of pretraining a model by arduously collecting vast amounts of data, Chen et al. [16]
leveraged the state-of-the-art pre-trained protein language model ESM-2 [84] to enhance the dif-
fusion model’s ability to capture the essence of AMPs in the latent space. They used the ESM-2
encoder to map peptide sequences into a continuous latent space and designed a latent-space
diffusion protein language model based on DDIMs. The denoising process employed pre-trained
ESM-2-8M attention blocks. Utilizing the prior knowledge acquired by the ESM model enables the
generation of biologically plausible peptides.

5.3 Generation of Peptides with Attribute Control

A generative model may not always go in the right direction individually, and a separate predictor
screening tool does not improve the generative model at the source. To improve the generation
efficiency and allow the generative model to autonomously guide the generation of the desired
data, an advanced strategy is to optimize the generative model by using constraints on important
properties-related information. One of the strategies is RL (Figure 3(a)). For example, the LeakGAN-
based PepGAN [139] sets a mixing constant λ as the weight of the discriminator output and (1−λ)
as the weight of the activity predictor output, with the weighted sum as the reward score. PepGAN
is hence more perceptive of activity than LeakGAN and avoids generating sequences in the distri-
bution of negative examples. The statistical results of the match between the generated sequences
and the positive samples in terms of physicochemical properties prove the favorable impact of the
activity predictor in statistical fidelity. One of the generated peptides was shown to have vigorous
antimicrobial activity, with a minimum inhibitory concentration of 3.1 μдmL, which is twice as
strong as the widely used antibiotic ampicillin.

The design of peptides can be seen as a problem of approximating the conversion of energy func-
tions into generative distributions. Bengio et al. [8] suggested that the goal of scoring generated
drug candidates high in a virtual screen is modality-singular, and so diversity should be a key con-
sideration in sequence design. Thus, they proposed GFlowNet, a flow network-based generative
model that treats the generative process as a flow network and takes the flow consistency equation
as a learning objective. So that the exploration of RL is not limited to a single mode, GFlowNet
proportionalizes the probability of a sampled object to the given reward of that object P(T ) ∝ R(T ).
When combined with active learning, diverse peptides are generated that are more promising for
meeting multiple drug properties [65].

In addition to RL, another constraint strategy is to perform controlled generation by adding con-
ditional variables (Figure 3(c)). For example, Van Oort et al. [142] designed AMPGAN v2, which is a
BiCGAN that associates conditional variables with features learned by the discriminator to encour-
age the generator to consider the same associations and then controls the output of the generator.
In addition, latent vectors of data are generated by applying the architecture of BiGAN. AMPGAN
v2 generates diverse, novel sequences while maintaining key AMP features. Szymczak et al. [131]
developed a framework based on CVAE, treating antimicrobial and anti-E. coli activities as two con-
ditions. They employed various regularization techniques and specific classifiers to enhance the
stability of controllable effects. They used Jacobian decoupling regularization to disentangle the la-
tent representations of peptides and conditions. Additionally, they introduced analogue generation,
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which enhanced the diversity of generated peptides by initiating generation from negative samples
and employing Gumbel softmax approximation to regularize the reconstruction of latent vector.

In bioactive peptide design, structural stability is crucial, often achieved through well-designed
α-helices. Therefore, one method of controlling generation involves identifying α-helical struc-
tures as hotspots and encoding them as conditional constraints. Xie et al. [157] developed a hotspot-
specific generation algorithm using data selected from the PDB database. The data are represented
by a combination of one-hot encoding of amino acid sequences and 3D coordinate structural en-
coding, forming an image-like representation. The framework employs a score-based generative
diffusion model [128] and a conditional mask constraint for the full-atom design of α-helix pep-
tides. The energy minimization of the generated data is optimized using the advanced protein
prediction software, Rosetta.

5.4 Accelerating Controlled Generation with a Forward-only Strategy

The methods mentioned above suffer from additional (computational) complexity, where RL re-
quires policy learning and conditional vectors require collecting different conditional data and
making conditional labels. A simple and efficient alternative to achieve controlled generation is
to combine forward-only mathematical strategies that can subtly incorporate information from
the classifier into the generative model (Figure 3(d)). One such strategy is rejection sampling, a
Monte Carlo random sampling method for complex problems with hard-to-find cumulative dis-
tribution functions. The basic idea is to sample the data with a proposed distribution that can be
directly sampled and then use the target distribution ratio of the proposed distribution as the ac-
ceptance probability of samples. The sample is accepted when a random number from the uniform
distribution is larger than the acceptance probability. Specifically, the CLaSS [23] method takes an
unknown and complex conditional data distribution as the objective function and the VAE explicit
density model (i.e., posterior distribution) as the proposed distribution. The functional attribute
prediction of the classifier on samples from the proposed distribution will naturally appear as
the rejection rate. This method is simple and highly parallelized, implementing a joint generative
model and classifier to approximate the controllable generation.

5.5 Generation of Peptides with Multi-modal Method

The proposal of multi-modal generative methods arises from two key points. First, using sequences
alone or simply concatenating sequences with structures impedes generation performance. Second,
most models rely on positive samples of therapeutic peptides, where the learning of negative sam-
ples proves valuable to meet the demands for more data and diversity. For example, Wang et al.
[151] introduced a multi-modal contrastive diffusion model (MMCD). Their model integrates
both sequence and structural modalities within a diffusion framework and employs multi-modal
contrastive learning (CL) strategies at each diffusion time step. MMCD co-generates the se-
quence and structure of peptides. Sequence information is encoded using one-hot encoding, while
structural information involves adding noise directly to atomic coordinates, due to their contin-
uous nature in three-dimensional space. The denoising process utilizes a transformer and EDGG.
Multi-modal CL in MMCD comprises inter-CL and intra-CL. Inter-CL maximizes the mutual in-

formation (MI) between sequence and structure pairs of the same peptide while minimizing the
MI between the sequence of one peptide and the structure of another, aiming to align sequence
and structure embeddings. Intra-CL maximizes/minimizes MI for positive/negative therapeutic
peptides, aiming to distinguish embeddings of therapeutic from non-therapeutic peptides. This
method captures consistency between the two modalities, enhancing model performance and re-
inforcing the diffusion model’s ability to generate high-quality therapeutic peptides.
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Table 5. Peptide Generation Models Evaluated using the Same AMP Database

Model Type of model Database Ant. Score ↑ Similarity ↓ Perplexity ↓

LSTM-RNN [97] LSTM ADAM, APD, DADP 0.855 39.6164 20.26
CLaSS [23] WAE DBAASP, APD3, LAMP, CAMP 0.8757 \ 12.87
AMPGAN v2 [142] BiCGAN DBAASP, AVPdb 0.8617 38.308 17.7
HydrAMP [131] VAE dbAMP, APD3, DRAMP 0.8145 31.0662 17.27
AMP-Diffusion [16] DDIM, ESM dbAMP, APD3, DRAMP 0.81 \ 12.84

MMCD [151]
Diffusion,
Transformer,
EGNN

APD3 0.881 24.4107 \

All metrics are self-reported and evaluated with the APD database.

As shown in Table 5, we compared the performance of peptide DGMs that use similar databases
and did not involve wet lab experiments (except CLaSS). All models achieved antimicrobial scores
above 0.8. Among these, the diffusion model MMCD stands out: by incorporating structural in-
formation and leveraging multimodal contrastive learning, it achieved state-of-the-art (SOTA)

performance and distinguished itself by its capability to generate more novel peptides.

5.6 Discovery of Peptides that Depended on Proteins

Promoting certain functions of proteins is another goal of designing therapeutic peptides. Pep-
tides influence many cellular processes and metabolic systems, such as signal transduction and
regulatory networks [31], by directing the secretion of proteins. Peptide–protein interactions are
closely associated with the pathogenesis of human diseases such as cancer and neurodegenerative
diseases [92]. In immunology, the binding of peptides to HLAs is essential for antigen presentation
and recognition by T cells that trigger an immune response [160]. In protein engineering, SPs can
improve the efficiency of the biotechnological production of target proteins [40]. Such peptides are
good starting points for the design of novel therapeutics. However, an exhaustive understanding
of the experimental details of peptide–protein interactions remains a substantial task [160], thus
providing an opportunity for the development of deep learning computational methods.

The transformer has advantages in designing peptides that depend on proteins because the self-
attention mechanism is not limited to the length of the input sequence. For example, since the com-
putational prediction of interactions between HLA and peptides can accelerate antigenic epitope
screening and vaccine design, Chu et al. [20] constructed TransMut. TransMut is a transformer-
based framework for predicting peptide and HLA binding affinities and automatically optimizing
mutant peptides. It is trained by uniting the extracted peptides and HLA attention scores, which
are then used to discover some of the most important amino acid sites for the most critical peptides
and HLAs. Essential sites on these weak affinity peptides are replaced with amino acids that might
contribute more to the binding affinity, resulting in mutant peptides with more vital binding ability.

In addition to probing the interaction between peptides and proteins by taking them as inputs,
another strategy is to consider peptide generation as machine translation. This involves taking
a protein as the input and a peptide with a strong dependence on the protein as the output. For
example, Wu et al. [156] approximated the transformer model to generate SPs specific to the de-
sired secretion protein as machine translation, which uses self-attention to explore the underlying
semantics in the language of proteins and SPs. Their results showed that the generated SPs are
functional and lead to secreted protein activity that is competitive with that of industrially used
SPs. The application of transformer-based mini-proteins that bind with protein design research
remains to be explored. With effectiveness across a range of domains, transformer-based models
have garnered considerable interest lately. Many variants have been proposed that improve com-
putational and memory efficiency, and others are still in progress [61, 134]. Thus, peptide research
will further benefit from these prospective approaches.
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Table 6. An Overview of Protein-binding Peptide Generation Models

Model Type of model Database Target Representation Imm. Score ↑ Affi. Score ↓

PepPPO [17] LSTM IEDB MHC
One-hot, BLOSUM matrix,
Embedding layer

91.48 \

DeepImmuno [80] WGAN IEDB MHC AAindex PCA 67 \
GANDALF [116] GAN THPdb PD-1 Text, 4D tensor \ -9.191
HYDRA [112] DM, SE(3)-EGNN PepBDB PfEMP1 One-hot, 3D coordinate \ -4.112

All metrics are self-reported.

Susceptibility to enzymatic degradation restricts the effectiveness of targeted therapeutic pep-
tides. This limitation can be mitigated by enhancing the peptides’ binding affinity to proteins. Uti-
lizing 3D information representation enables the generation of biomolecules with more realistic
3D structures and improved binding energies at protein binding sites. For example, Ramasubrama-
nian et al. [112] developed a stable, target-aware peptide design model by integrating 3D structural
information into a hybrid diffusion model. They used an SE(3)-equivariant graph neural network
to ensure spatial consistency between generated peptides and protein binding pockets throughout
the generation process. The binding affinity of these peptides was subsequently optimized using
energy minimization techniques and heuristic algorithms for binding affinity maximization.

The generation of binding peptides can be approached as an RL problem. For example, Chen
et al. [17] proposed PepPPO, a framework designed to generate qualified peptides for binding mo-
tif characterization. PepPPO employs the proximal policy optimization algorithm and uses rewards
from a peptide-MHC binding predictor to learn a mutation strategy. This strategy optimizes ran-
dom initial peptides by gradually mutating their amino acids until the peptides are predicted to be
positive binders. Additionally, the model uses a hybrid encoding method for peptides and proteins,
combining one-hot encoding, the BLOSUM matrix, and an embedding layer.

Table 6 summarizes the performance of some protein-binding peptide generation models. Since
these models utilize protein or structural information, they integrate multiple representations to
more accurately represent the data. The evaluation assesses the efficacy of peptides against their
targets. Table 6 shows MHC-binding peptide generation models evaluated based on the immuno-
genicity of the generated peptides. For example, PepPPO [17] employs MHCflurry2.0 [104] to as-
sess the immunogenic score, which is a composite score of antigen processing and the binding
affinity. Models considering structural factors typically use docking software to assess the binding
affinity to specific proteins. GANDALF [116] uses 25, 000 human protein structures as augmented
data to train a structural generation model and evaluates binding affinity using PyDockWEB. Simi-
larly, HYDRA [112], which incorporates 3D coordinates of binding pockets, evaluates affinity using
Autodock Vina.

6 Challenges and Prospects

Deep learning in peptide design is still in its infancy, and there are not as many research reports
as those of proteins. Owing to the homogeneity of peptides and proteins, the increase of peptide
data, and the enthusiasm for exploring deep learning models, deep learning will certainly develop
rapidly in peptide design. Still, problems remain despite the tremendous effort put into peptide
design. It is unclear which methods or models have general advantages in peptide design because
many of them are rooted in abiotic fields. Consequently, selecting an appropriate model for de-
signing target peptides from among the various models is challenging. The model should address
the interdisciplinary differences and its inherent shortcomings, such as the difficulty in generating
discrete data with GANs and the possibility that the generated examples may be of low diversity
(mode collapse). Numerous variants of DGMs have been developed as architectures [48, 165]. With
different architectures, specific designs must be made on the underlying layer to achieve good task
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performance. Three key perspectives— structural, algorithmic, and hyperparametric—should be
fully considered to leverage generative models for performing peptide generation tasks better.

6.1 Fuller Utilization of Low Data

The nature of requirements for specific functions in de novo peptide design increases the need
for abundant target data. Data scarcity directly leads to data imbalances and model overfitting.
However, sequence data with associated experimental data is more limited for peptides with spe-
cific functions, especially for some niche peptides targeting particular receptors, and such data are
much more costly to come by than small molecule data. For this purpose, unsupervised represen-
tation learning on extensive data through pretraining offers a potential solution through which
peptide “grammar” can be better learned globally across multiple families. Thus, sequences with
high reconstruction accuracy and diversity are more likely to be generated. The WAE-based AMP
generation model from ClaSS [23] is pre-trained on UniProt with many peptides. The similarity
of the potential space generated by the model was investigated by linear interpolation, and se-
quence similarity in the potential space was found to be negatively correlated with the Euclidean
distance, indicating that WAE essentially captures the sequence relationships within the peptide
space. A pre-trained generic generative model can perform transfer learning on peptides with dif-
ferent functions [13, 49]. Studies regarding pretraining on peptide generation models are still rare,
albeit promising.

Similar to generic generative models that can better exploit low data on different therapeu-
tic peptides, classification models that make controlled generation more generic can also speed
up peptide discovery. One approach to better explore the relationships between data is metric-
based meta-learning [125], which makes use of prior knowledge of artificial measures, such as
metrics that measure the distance between categories (the Euclidean distance or cosine distance).
Although the goal of both meta-learning and pretraining is to obtain a better set of model initial-
ization parameters, pretraining focuses on the model’s performance of the current task, whereas
meta-learning focuses more on the model’s potential to go beyond the local optimum and find
the optimal solution for multiple tasks. A recent example is a generic peptide bioactivity predictor
[55] that calculates the mean value of each category based on the support sets as prototypes and
the loss function of the data in the query sets of each category, together with mutual information
that can exploit the unsupervised information of peptides. This first generic predictor predicted 16
different peptide functions. Incorporating more general prediction models into generative models
to accelerate the discovery of various kinds of peptides for exploration is one direction for future
work.

Another way to address data scarcity is data augmentation, which performs well in image stud-
ies [122] because its semantics remain the same with slight changes. By contrast, the augmentation
of discrete sequence data is much more difficult [36]. Lee et al. [77] augmented data via random
substitutions and insertions of amino acids of experimentally confirmed neurotoxic peptides and
helped the model progress in target recognition. When designing protein-binding peptides (HLA–
peptides complexes) or protein transportation guides such as SPs, the protein data can be increased
by truncating to a different sequence length [156], which also avoids the effect of using one same-
length truncation. Generative models themselves can also serve as tools for data augmentation [88].
The challenge of biological sequence data augmentation lies in the randomness of augmentation
and the conservation of biological data. Much room remains for further exploration.

6.2 Utilization of Peptide Structure Information

Several well-evidenced findings indicate that exploring information at the biomoleculear atomic
and structural levels is as essential as sequence information. One study illustrates that amino acid

ACM Comput. Surv., Vol. 57, No. 6, Article 155. Publication date: February 2025.



155:20 L. Lai et al.

Fig. 4. A hypothetical framework for the structure-assisted multiattribute-controlled generation of thera-

peutic peptide, including (i) Pretraining phase: pre-train universal DGM and pre-train structure-based mul-

tiattribute controller through different graph representation learning methods and tasks; (ii) Optimization

phase: Optimize the DGM using feedback from the sampled data through the output of the multiattribute

predictor.

sequences that are structurally homologous and have similar biological functions may have low
sequential similarity [56]. Some suggest that long-range dependence in a sequence is generally
short-range in 3D space [64]. In deep learning, the amino acid linear sequence representation is
one-sided and limited. For example, the sequence representation of short peptides lacks rich con-
textual information, making it difficult to capture discriminative features [152]. The molecular
graph representation can solve this deficiency. A graph is a data structure consisting of a set of
vertices and a set of edges, where nodes can have multiple adjacent nodes, and edges are connec-
tions between two nodes (Figure 4(a)). Molecules are essentially compositions of atoms and bonds
between interconnected atoms, which can naturally be described by a graph with rich structural
and spatial information. Graph neural networks (GNNs) are good at capturing connections be-
tween nodes and representation learning of graph data, and they can integrate features obtained
from graph embedding. GNNs can process graphs, and have been widely used on small molecules
for molecular property prediction [54, 87] and molecular generation [69, 120]. With proteins, for
example, Fout et al. [39] predicted protein interfaces with effective graph latent representations
that represent the 3D structure of a protein by graph convolutional neural networks. Such graph
representations use the sequence information of residues and the degree of residue exposure as
node features, and the relative and distance angular description between residues as edge features.

A feasible peptide graph representation is a graph with atoms as nodes when the peptide chain
length is not too long. For example, Wei et al. [152] proposed a peptide toxicity predictor ATSE
based on a GNN and attention mechanism. The structural features of peptide molecular graphs
are extracted using the GNN. In terms of generation, molecules generated node by node are hardly
compatible with chemical validity. A more desirable approach takes a valid chemical substructure
(subgraph) as the generating unit [69]. However, unlike small molecules with relatively simple
structures, peptides are more complex with 3D folds and thus face more significant challenges
in graph generation. Recently, the transformer-based model ProteinMPNN [25], which solves
the long-standing problem of inverse protein folding, can determine the amino acids sequence
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of a protein based on its 3D structure. ProteinMPNN incorporates the distance, direction, and
orientation in the side features in the protein. Thus, the 3D structure of the protein is modeled by
capturing the dependencies in its amino acid sequence to produce protein embedding. Thus, the
use of graph information can potentially help speed up the design of therapeutic peptides.

6.3 Automatic Multi-attribute Optimization

Although the de novo generation of peptides allows the development of novel and valid sequences
with a desired function or with few optimized properties, DGMs consider only the target potency
in most cases. Experiments are still needed to screen for sequences that better match the necessary
properties required for a drug, such as physicochemical properties, selectivity, specificity, novelty,
druggability, synthetic feasibility, and so on. If multi-attribute optimization (or multi-objective op-
timization) is set up in a computational framework, the drug discovery process will be greatly
accelerated. A major challenge is that some specific properties for output sequences are difficult
to formulate or optimize. It is difficult to automate the generation for multi-attribute optimization.
Classifiers for models trained on domain-specific datasets increase the probability that candidates
have the desired feature [23]. Therefore, one way to incorporate multiple attributes into generative
models is to combine predictive or classification models whose output can be used as a reward for
RL. There is already precedent for this in molecular generation, such as the new small molecule
design method GENTRL [168], which is used to generate effective inhibitors of the discoid protein
structural discoidin domain receptor 1 (a promising target for tumor therapy). GENTRL constrains
the generated data of VAE by RL reward from assessing the self-organizing maps of the attributes,
including their novelty compared to already existing drugs, general kinase inhibitors, and dis-
coidin domain receptor one inhibitor. It also utilizes tensor decompositions to tie latent codes and
properties (parameterization). GENTRL identified and tested potent inhibitors of discoidin domain
receptor 1 for only 46 days by controlling the synthetic feasibility, novelty, and biological activity.
Similarly, in the case of therapeutic peptides, blocking specific receptors or enzymes of the host is
a therapeutic category of the recent worldwide outbreak of the SARS-CoV-2 coronavirus. The S-
protein and 3C-like protease of the SARS-CoV-2 virion are potential drug targets [53], so exploring
sequences with similar characteristics similar to existing S-protein and 3C-like protease inhibitors
could provide essential clues for optimizing therapeutic peptides [53]. In short, more rapid and
effective multi-attribute automatic machine generation is a significant trend in peptide design.

Combining the perspectives mentioned above, the formation of a structure-assisted
multiattribute-controlled peptide generation framework is promising. Specifically, as shown in
Figure 4, training the framework includes the following. (i) Pretraining phase: To maximize the
utilization of graph structure-based multiattribute controllers (predictors), a large amount of non-
specific peptide sequence data are applied to pre-train a universal DGM that guarantees the legit-
imacy of the generated sequences and, at the same time, pre-train the multiattribute controllers
with a variety of graph structure representations of specific peptides and extract structural infor-
mation through different graph representation learning methods and tasks. (ii) Optimization phase:
The sequences sampled by a DGM are converted into molecular graphs using the RDKit tool and
sent to the multiattribute controllers. The prediction results are used as feedback to optimize the
DGM using suitable algorithms.

7 Conclusion

Carefully designing biological peptides is essential for discovering and developing efficient drugs,
but traditional experimental methods are time-consuming and labor-intensive. Compared with
machine learning, which requires an expert to extract features manually and has weak learnabil-
ity at shallow layers, deep learning has powerful nonlinear modeling capabilities and excellent
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performance for complex real-world tasks. In this review, we first provided an overview of data
processing and representation learning. DGMs and (pre-trained) language models based on self-
attention mechanisms were introduced, and various evaluation methods were reviewed to help
researchers evaluate, select, and use deep learning models for peptide generation. Then, some
peptide design scenarios and related research results were illustrated. Finally, we discussed some
challenges and future directions related to data scarcity and model optimization. Deep learning
models have a variety of strengths and weaknesses that can be exploited based on design and ex-
perimental constraints to improve the stability, affinity, and specificity of the generated peptides.
In addition, the number of deep learning model variants is thriving, so cross-domain applicability
should be considered before selecting a model.

Finally, while current practice is still plagued by the issues above, the field is rapidly evolving,
and more emerging technologies can address these issues. This review can serve as a practical
reference for better understanding the research progress of peptide design and to develop more
effective models.
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