5840

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

A Fine-Grained End-to-End Latency Optimization
Framework for Wireless Collaborative Inference

Lei Mu™, Zhonghui Li, Wei Xiao, Ruilin Zhang, Peng Wang, Tao Liu,

Geyong Min"“', Member, IEEE, and Keqin Li

Abstract—Mobile devices are becoming increasingly capable of
delivering intelligent services by leveraging deep learning archi-
tectures such as deep neural networks (DNNs). However, due
to the compute-intensive nature of these tasks, mobile devices
often struggle to handle them independently, leading to the explo-
ration of collaborative inference as a promising solution for
achieving low-latency mobile intelligence. Despite its potential
benefits, many challenges need to be addressed in realizing the
full potential of inference acceleration. This article presents a
collaborative device-edge inference optimization framework as
a promising solution to inference acceleration. The framework
comprises fundamental modules, including the parameters gen-
erator (PG), accuracy predictor (AP), delay calculator (DC),
and optimizer (OP), which are specifically designed to iden-
tify the optimal set of parameters for model compression, DNN
partition, and feature compression. To illustrate its implementa-
tion, an example of a deep CNN network is introduced, and
the collaborative inference latency optimization is formulated
as a mixed-integer programming problem. The implementation
of a specific algorithm instance using a quantum-inspired OP
within the optimization framework is then presented. A multiple
regression-based inference accuracy prediction model is proposed
to maintain inference accuracy close to that of the original
network while significantly reducing the time consumption during
the offline phase. Through various simulation scenarios involving
inference tasks of AlexNet and RegNet on CIFAR-10, incorpo-
rating diverse hardware computation specifications and wireless
communication link conditions, the proposed framework demon-
strates superior performance in terms of inference acceleration
compared to the compared methods.

Index Terms—Collaborative inference,

latency optimization.

edge intelligence,

Manuscript received 28 April 2023; revised 8 July 2023 and 4 August 2023;
accepted 20 August 2023. Date of publication 23 August 2023; date of current
version 6 February 2024. This work was supported in part by the National
Natural Science Foundation of China under Grant 62171390, and in part by
the Sichuan Science and Technology Program under Grant 2023YFG0302.
The work of Lei Mu was supported by the China Scholarship Council
and was performed during Lei Mu’s visit in King’s College London.
(Corresponding author: Lei Mu.)

Lei Mu, Peng Wang, and Tao Liu are with the School of
Computer Science and Engineering, Southwest Minzu University, Chengdu
610225, China (e-mail: truemoller@outlook.com; wp002005@ 163.com;
tao_liu@swun.edu.cn).

Zhonghui Li is with the School of Intelligent Engineering, Hubei Enshi
College, Enshi 445000, China (e-mail: 111819349545 @ gmail.com).

Wei Xiao is with the Faculty of Informatics, E6tvos Lordnd University,
1053 Budapest, Hungary (e-mail: xw46604818@outlook.com).

Ruilin Zhang is with the School of Business, The University of Auckland,
Auckland 1142, New Zealand (e-mail: rzha377 @aucklanduni.ac.nz).

Geyong Min is with the Department of Computer Science, University of
Exeter, EX4 4SB Exeter, U.K. (e-mail: g.min@exeter.ac.uk).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/JI0T.2023.3307820

, Fellow, IEEE

I. INTRODUCTION

N RECENT years, deep-learning architectures, such as

deep neural networks (DNNs) [1], have been applied to
fields, including computer vision, speech recognition, and
natural language processing. These models have produced
results comparable to, and in some cases surpassing, human
expert performance [2], [3], [4], [5]. However, as mobile smart
devices gain popularity and Internet of Things (IoT) technol-
ogy continues to grow, providing intelligent services on mobile
devices faces both opportunities and challenges. DNN tasks
that are increasingly complex and compute-intensive consume
significant computing resources, beyond the capabilities of
today’s mobile devices, including device-only inference. To
tackle this issue, mobile edge computing (MEC) [6] offers new
possibilities for achieving low-latency mobile intelligence. By
deploying DNN models on edge servers with abundant com-
putational resources, mobile devices can offload raw data and
accelerate inference on the server. However, this paradigm can-
not support intelligent inference with low-latency requirements
due to significant communication overhead incurred in data
transmission.

Collaborative inference, which offers a compromise
between the device-only and server-only approaches, has
drawn a lot of attention, with significant research work being
investigated [7], [8], [9], [10], [11]. In real-world applications,
collaborative inference is widely utilized in scenarios involv-
ing resource-constrained devices. Two prominent scenarios are
as follows.

1) Privacy-Conscious Applications: In certain medical
contexts, ethical or regulatory concerns prohibit the
transmission of patient data for inference outside the
premises [12]. Likewise, in home security systems
using smart cameras, users are cautious about upload-
ing their raw images to servers due to privacy concerns.
Collaborative inference facilitates the transmission of
privacy-independent intermediate feature data instead of
the original data [13].

2) Latency-Sensitive Applications: Computation-intensive
and latency-sensitive tasks, such as autonomous driving,
cyber-physical control systems, and robotics, neces-
sitate swift processing of incoming data. Resource-
constrained devices rely on powerful server computing
resources, but the substantial throughput and limited
bandwidth present challenges in latency management.
Collaborative inference addresses these issues by reduc-
ing the volume of data transmitted to the cloud,

2327-4662 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8141-2135
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0001-5224-4048

MU et al.: FINE-GRAINED END-TO-END LATENCY OPTIMIZATION FRAMEWORK

o,
0—©
() o—©0
0@ Dog
o]
0—@
EE .
Inference
o 1 o
: ®
) Channel ® Dog

()
M o o 9 o

Collaborative Inference

Fig. 1. Basic idea of collaborative inference.

thereby alleviating network traffic load and reducing
latency [14].

In DNNs, it is common for the data size of certain
intermediate layers to be significantly smaller than the raw
input data. As demonstrated in the case of AlexNet [3], the
input size undergoes a substantial reduction of approximately
75% after passing through the intermediate layer pool5 [7].
This presents an opportunity to accelerate inference by lever-
aging the powerful computational capacity of cloud computing
and reducing communication latency, thereby optimizing both
computation and communication delays.

The basic idea of collaborative inference is to split a DNN
model at a cut layer, that is, a partition point, into a device-
side model running on the device and a server-side model
running on the edge server. The basic concept of collaborative
inference is shown in Fig. 1.

As illustrated in Fig. 1, the device executes the on-device
model with local data and sends the intermediate output asso-
ciated with the cut layer to the edge server. Then the edge
server received an intermediate feature vector as input of
the server DNN partition for further processing and feeds
back the inference result to the device. Selecting appropri-
ate partitioning points enables the transmission of smaller
intermediate feature data, leading to reduced communication
latency. Furthermore, offloading a portion of the inference task
to high-performance servers significantly decreases computa-
tional latency. Therefore, the partitioning strategy is essential
for optimizing the inference latency in collaborative infer-
ence [7].

The fault tolerance property of neural networks [15] can be
leveraged to reduce delay in collaborative inference. Model
compression and feature compression are two prominent tech-
niques for accelerating co-inference [16].

Various experiments are conducted with different model
compression and feature compression parameters. The L1
Norm Pruner [17] in the neural network intelligence
(NNI) [18] toolkit is employed to perform model pruning on

5841

the second convolutional layer of AlexNet. The results demon-
strate that the model’s accuracy decreases by only 2% with
a 74% parameter pruning and by 5% with an 89% parameter
pruning. The first fully connected layer of the AlexNet network
is subjected to intermediate feature compression using the lin-
ear encoder as shown in Fig. 3. It is also observed that feature
compression with a compression ratio of 6.5% results in an
accuracy loss of no greater than 2%, while a compression ratio
of 0.2% leads to an accuracy loss of approximately 7%.

These results indicate that model compression and feature
compression are highly competitive methods to accelerate col-
laborative inference without significantly compromising model
accuracy.

However, there are several challenges in the literature.

1) Fine-grained pruning with layerwise sparsity ratio can
yield powerful model compression with allowable accu-
racy degradation [19], in contrast to coarsely character-
izing pruning operations across the entire DNN model
in previous studies. This highlights the potential for
improving collaborative inference.

2) Optimizing the latency of collaborative inference poses
challenges due to the expanded search space result-
ing from layer granularity sparsity selection and the
exploration of various hyperparameter combinations for
the encoder and decoder. Additionally, determining
these optimal hyperparameters further complicates the
optimization process.

3) Optimizing inference latency using these methods can
negatively impact inference accuracy, making it crucial
to evaluate whether the optimized DNN model meets
accuracy requirements. However, due to the extensive
search space and frequent parameter adjustments, the
verification process can be time consuming.

To address these issues, a fine-grained and flexible
optimization framework for collaborative inference is proposed
to explore potential improvements in inference acceleration.
The optimization problem is formulated and a heuristic algo-
rithm is proposed to solve it. To mitigate the extensive
verification work, an inference accuracy prediction model
using multiple regression is proposed. The effectiveness of
the framework is demonstrated by implementing it on the
inference tasks of different models.

Compared with the existing work, the novelty of our
framework is summarized in the following aspects.

1) A fine-grained end-to-end wireless collaborative infer-
ence framework is proposed to further reduce inference
latency via model compression, DNN partition, and fea-
ture compression. The proposed framework is applicable
to diverse end-to-end collaborative inference accelera-
tion scenarios. It acts as a guiding tool for designing
tailored collaborative inference acceleration algorithms.
It is not a single algorithm, but rather an algorithm
family, enabling users to select different techniques
within the framework to create algorithm instances and
automatically generate optimized strategies.

2) The optimization problem for collaborative inference
latency is formulated as a mixed integer programming
problem, where the decision variables correspond to

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

5842

the layerwise sparsity ratios, the partition point, and
encoder—decoder parameters. Subsequently, the imple-
mentation of a specific algorithm instance using a
quantum-inspired OP showcases the feasibility and ratio-
nality of the proposed framework.

3) A multiple regression-based inference accuracy
prediction model is proposed to predict inference
accuracy and quickly evaluate if the candidate hyperpa-
rameter set meets accuracy requirements. This approach
maintains inference accuracy while reducing time
consumption in the offline phase and can be applied to
other relevant scenarios.

4) Software simulations are conducted to evaluate the
proposed collaborative inference optimization frame-
work on the inference tasks involving AlexNet and
RegNet. The simulation results demonstrate that the
proposed optimization framework achieves significant
inference acceleration compared to other methods.

The remainder of this article is organized as follows.
In Section II, existing studies on collaborative inference
acceleration in recent years are analyzed. Section III
introduces the concept of collaborative inference between
device and edge. The collaborative inference latency
optimization framework is elaborated in Section IV, followed
by simulation results in Section VI. Section VII concludes this
article.

II. RELATED WORKS

This section provides an extensive survey of the literature
and research conducted in the domain of collaborative infer-
ence acceleration, with a specific focus on DNN partitioning
and model and feature compression.

A. DNN Partitioning

Given the potential for significantly smaller output from
intermediate layers in a DNN model compared to the raw
input data, different partitioning points have a direct impact
on the on-device computational cost and communication
overhead.

Neurosurgeon [7] is a lightweight scheduler that automat-
ically partitions DNN computations between mobile devices
and data centers at the granularity of neural network layers,
leveraging the processing power of both mobile and cloud
while minimizing data transfer overhead. Edgent [8] accel-
erates the DNN execution by optimizing partitioning and
right-sizing, which enables early exiting and improves infer-
ence speed. DeepThings [9] is designed for the distributed
execution of CNN-based inference applications on strictly
resource-constrained edge servers, which takes into consid-
eration the dynamic workload distribution and balancing at
inference run time. DNNOff [10] employs a specialized pro-
gram structure that facilitates on-demand offload, distributes
computation across multiple devices, and dynamically decides
on the offloading scheme. Liu et al. [11] proposed an adaptive
framework to partition DNN computing among end devices,
edge servers, and cloud servers based on layer prediction
results for minimizing DNN inference latency.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

B. Model and Feature Compression

DNNs have redundancy [20], which can be exploited
to reduce computation time on local devices using model
compression techniques, such as pruning, training quanti-
zation, and knowledge distillation [20]. Feature compres-
sion techniques like Huffman coding and neural network
encoders [21], [22], [23] can reduce transmission time by
encoding and compressing intermediate data. By reducing
the data size of wireless transmission, they can significantly
decrease inference latency.

JALAD [21] utilizes Huffman coding to compress and
quantize the transmitted data features, and it designs an
adaptive strategy for an edge-cloud structure that can dynam-
ically change decoupling for different network conditions.
BottleNet [24] introduces a bottleneck unit in a neural network,
which significantly reduces the communication costs of fea-
ture transfer between mobile and cloud. A two-step feature
coding approach [16] is proposed to reduce the transmis-
sion delay by data dimensional reduction and learning-driven
coding. It can further compress the features by mapping sym-
bols to code words using neural networks. Matsubara and
Levorato [25] introduced a bottleneck in the early stages
of DNNs for resource-constrained devices. The output is
quantized and transmitted to the edge server, reducing the
processing latency. Zhang et al. [26] endeavored to pro-
pose an automated machine learning (AutoML) framework
to optimize communication-computation efficiency in device-
edge co-inference by determining hyperparameters, such as
model sparsity and feature compression ratio.

III. COLLABORATIVE INFERENCE ACCELERATION
BETWEEN DEVICE AND EDGE

This section first presents the concept of collaborative
device-edge inference acceleration and then introduces one
instance for understanding its implementation.

A. Concept

To achieve collaborative inference acceleration, three pri-
mary steps are involved: 1) model compression; 2) DNN
partitioning; and 3) feature compression. First, model com-
pression reduces the computation latency of a pretrained DNN
model by pruning the model to decrease its parameter count
and inference cost. Next, DNN partitioning splits the modified
DNN model into two parts by selecting a partition point, with
one part deployed on the device and the other on the server.
Finally, feature compression further reduces communication
overhead.

These three steps effectively accelerate collaborative infer-
ence and have wide applicability to various inference accel-
eration scenarios for resource-constrained devices [7], [8],
[9], [10], [11], [21], [22], [23], [24], [25], [26]. The con-
cept is highly adaptable, with various techniques available
for each step, enhancing its versatility. Specific techniques
will be selected in the following paragraphs to provide clear
illustrations and facilitate a better understanding of each step.

To achieve fine granularity of compression, we employ a
layerwise pruning method that enables independent adjustment

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

MU et al.: FINE-GRAINED END-TO-END LATENCY OPTIMIZATION FRAMEWORK

Model Compression

Pre-trained DNN

DNN Partitioning

®

Layer-wise Sparcity

®

Partition Point

5843

Device-Side
Model

Device

[}
: ® °
Collaborative Optimal Models

Inference

L
A

Device ! Server

Feature Compression

Optimization
Framework

Server

o X
) o Server-Side
P Channel o ° Model
o
L 9 ® |
L o L |
[~} |
L] [|
L |
Device Server !
-] |
Models Corresponding to
Candidate Parameters

Offline Optimization

Fig. 2. Concept of the proposed collaborative inference process.

of sparsity ratios for each layer. Additionally, we implement
feature compression by incorporating a lightweight comple-
mentary encoder and decoder pair into the two models. These
techniques contribute to effective compression and reduction
of computational overhead.

The entire collaborative inference acceleration process con-
sists of two stages, namely, offline optimization and model
deployment, as depicted in Fig. 2.

During the offline optimization stage, the proposed collab-
orative inference optimization framework achieves inference
acceleration optimization through six steps.

1) Generating layerwise sparsity ratios

compression.

2) Selecting a suitable partition point to divide the pre-
trained DNN model into two parts.

3) Generating the parameters for a pair of complementary
encoder and decoder, which are added to the different
parts of the DNN model.

4) Constructing a DNN model corresponding to these
parameters.

5) Fine-tuning and evaluating the candidate models based
on various metrics, including latency and inference
accuracy.

6) Outputting the optimal models after multiple rounds of
iterative optimization for use in the next stage.

In the model deployment stage, the optimal models are

deployed to the device and the edge server for collaborative
inference acceleration.

for model

B. Detailed Procedures

The L1 Norm Pruner [17] in the NNI [18] toolkit can be
used to achieve fine-grained model compression by removing

Model Deployment

redundant parameters in the convolutional and fully connected
layers of a deep CNN network like AlexNet. Each layer can
have a separate sparsity ratio to achieve optimal compression
results.

Feature compression reduces transmitted data, lowering
latency and enhancing inference efficiency. Additionally, it
bolsters privacy and security by limiting the information that
can be inferred from compressed features. Once a partition
point is chosen, the original DNN model splits into two parts,
where the device-side model is appended with a lightweight
encoder, and the server-side model is appended with a decoder,
maintaining symmetry.

The fault-tolerant characteristics of DNNs [15] enable
them to maintain low-accuracy loss through training even
when some information is lost during transmission. To
further minimize communication overhead and improve
performance, joint source-channel coding in a task-oriented
manner [16] is adopted in our approach. The goal is to
achieve acceptable accuracy of the DNN model while reduc-
ing latency for a specific task, rather than enhancing mes-
sage restoration at the receiver in a communication-oriented
manner.

The proposed framework incorporates two types of encoders
and decoders, designed to accommodate the varying output
tensor dimensions of intermediate features resulting from dif-
ferent partition points in the DNN model. These trainable
CNN structures are implemented using simple neural networks
and trained end-to-end to maintain inference accuracy,
compressing intermediate data through the convolutional and
fully connected layer.

Based on extensive experiments, two encoder structures for
different partition points of the neural network have been
determined, as depicted in Fig. 3.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

5844

Decoder

Conv ConvTranspose2d
BatchNorm

ELU

BatchNorm

Tanh

Decoder

Linear
RelLu

(b)

Fig. 3. Encoder and decoder structures for different partition points.
(a) Convolutional encoder and decoder. (b) Linear encoder and decoder.

The proposed framework employs a multistep tuning
training scheme to mitigate accuracy degradation caused by
model and feature compression. The scheme includes sev-
eral steps for fine-tuning the compressed model to improve
accuracy.

1) The pretrained DNN network undergoes pruning using
the NNI module, assigning sparsity ratios to different
layers.

2) The resulting pruned model is fine-tuned to maintain
model accuracy.

3) The modified DNN model is split into two parts by
selecting a partition point.

4) Finally, the encoder and decoder are added to the two
parts for joint source-channel coding by end-to-end
training.

Following these offline training procedures, the model can
maintain a relatively low level of accuracy degradation.

The selection of appropriate parameters to accelerate
inference is a crucial issue, considering the wide range
of parameter definitions and the numerous hyperparameter
combinations.

IV. PROPOSED COLLABORATIVE INFERENCE LATENCY
OPTIMIZATION PROBLEM

In this section, we introduce a communication model and
perform a layerwise delay analysis, laying the foundation for
optimizing latency in collaborative inference. Subsequently,
we conduct a detailed investigation into fine-grained end-to-
end latency optimization for wireless collaborative inference.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

TABLE I
CALCULATION OF FLOPs AND OUTPUT DATA S1ZE OF DNN LAYERS

Layer Type | I' (FLOPs) D

Conv 2H,Wo(C; K% +1)Co | HoWoCob
Relu HIW-LCZ .FI-LVVZC'Z
Maxpool K2H,W,C; H,W,C;
Avgpool H;W;C; H,W;C;
Dl‘OpOllt Hi Wi Ci Hi Wi Ci
Fe (2C; — 1)C, Co

A. Communication Model

The communication latency of the inference results in the
downlink is usually small compared to that of the uplink, so
it is neglected in problem formulation for simplicity [27].
The communication model only considers the uplink and
the device’s transmission rate R can be calculated using the
Shannon capacity formula [23]

R = Blog,(1 + SNR) (1

where SNR represents the signal-to-noise ratio (SNR) between
the device and the server.

B. Layerwise Delay Analysis

The DNN model is composed of various types of layers with
differing computational requirements and output data sizes,
which in turn impact the computation and communication
latencies.

The total latency of collaborative inference can be denoted
as 7, which is the sum of computation latencies of the
device and server, denoted by 79 and 7%, respectively, and
the communication latency, denoted by t™

=144+ 75+ ", 2)

The floating point operations (FLOPs) and output data size
of layers in a DNN model are shown in Table I, where I" and
D represent the computation and output data size of the layer,
respectively.

H;, W;, and C; correspond to the height, width, and num-
ber of channels of the input intermediate feature, while H,,
W,, and C, correspond to the height, width, and number of
channels of the output intermediate feature, respectively. The
variable K represents the size of the convolution kernel used
in the layer.

1) Computation Delay: The time delay of computation on
the device can be calculated by

c
1=y
T = ‘L']

j=1

c FM
_ _J 3)

- d
= ©

where rjl and FJM represent the time delay and the calculation
after model compression for the jth layer. © is a measure
of processor performance described by FLOPs per second

(FLOPS).

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

MU et al.: FINE-GRAINED END-TO-END LATENCY OPTIMIZATION FRAMEWORK

The time delay of computation on the server can be
calculated by

ﬁ(ﬂ

I
(=
<

~.
I
)

FM
J
—® “)

Il
Mz

J

where ®F is FLOPS on the server, and N is the number of
layers in DNN model.

2) Communication Delay: The time delay of intermediate
feature transmission is analyzed as follows:

=L 5)

where DY represents the output data size of the partition point
c after feature compression.

C. Problem Formulation

The partition point, model compression strategy, and fea-
ture compression strategy are denoted by ¢, S = {S(/) | | <
Ny, l € N4}, and P = {P(k) | k < N, k € N4 }. The collabo-
rative inference latency optimization can be established as

argmin v
c,S,P
=arg min(rd + 75+ t’x)
c,S.P
N FM
= arg min Z —1—2—4—— (6)
c,S,P j=1
1<c<N, ceNy @)
s.t. 0<8U) <1, <Nyq,leNy (8)
P(k) € Ny, k < Np, k € Ny €))

where S(/) and P(k) represent the Ith sparsity ratio for layers in
model compression and the kth parameter of encoder—decoder
in feature compression. Nys and N are the number of param-
eters in model compression and feature compression. S(/) and
P(k) have different expressions and value ranges if differ-
ent model compression and feature compression methods are
utilized.

Selecting appropriate parameters for DNN partition, model
compression, and feature compression is crucial to achieving
maximum inference acceleration. However, it is a complex
and nonlinear mixed-integer programming problem involving
numerous hyperparameters, such as layerwise sparsities and
feature compression parameters, which exist in vast domains.
To address this challenge, we deliver an offline collabora-
tive inference framework capable of determining the optimal
strategy.

V. COLLABORATIVE INFERENCE
OPTIMIZATION FRAMEWORK

This section illustrates the practical application of the frame-
work to specific problem domains and outlines its fundamental

5845

L1 Norm Pruner
2-step Pruning

Model compression
method selection

DNN partition
parameters analysis

Huffman coding
Learning-based
compression

Decision variable
design

Feature compression
method selection

GradientBoosting

Fundamental modules
RandomForest

configuration

Accuracy prediction
method selection

Quantum-inspired
Optimization
Genetic Algorithm

Accuracy prediction

Optimizer selection .
modeling

Framework
implementation

Model compression
parameters analysis

Feature compression
parameters analysis

Optimization problem
solving

Optimal strategy

Fig. 4. Application workflow for proposed framework.

modules. To enhance clarity and comprehension, specific tech-
niques are chosen for each module and thoroughly explained,
offering in-depth insights into the implementation details.

A. Framework Application Workflow

The application workflow for the proposed framework is
shown in Fig. 4.

As shown in Fig. 4, the following steps should be fol-
lowed to construct an instance that adheres to the framework
when applying the framework to specific collaborative infer-
ence scenarios: technology architecture selection, framework
configuration, and implementation.

The blue processes in the diagram represent the steps of
technology architecture selection, where different techniques,
such as model compression, feature compression, accuracy
prediction, and OP methods, can be chosen to construct an
instance to implement the framework. Different techniques can
be selected and combined to create instances of algorithms
within this framework. This implies that the framework corre-
sponds to a family of algorithms formed by different algorithm
instances.

The green processes in the diagram represent the steps of
Framework Configuration. Once the technology architecture is
determined, the decision variables that need to be optimized
in each step, such as model compression, feature compres-
sion, and accuracy prediction, are analyzed systematically.
Additionally, the fundamental modules within the framework
are analyzed and configured accordingly.

The purple processes in the diagram represent the steps
of Implementation. Before implementing the specific instance

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

5846

Parameters Generator

Partition Point

Model Compression Settings

—+ Accuracy Predictor H Delay Calculator

Feature Compression Settings

r 3

A4

<

Optimizer <

Optimal Scheme

Fig. 5.
framework.

Modules of the proposed collaborative inference optimization

of the framework, the accuracy prediction model needs to
be constructed based on the sampled data set using the
selected method. Subsequently, the determined framework
instance is progressively implemented step by step. The
latency optimization problem for collaborative inference is
solved using the selected OP, and the optimal strategy is
obtained as the output.

B. Fundamental Modules

The fundamental modules of the collaborative inference
optimization framework are described in Fig. 5.

The framework comprises four modules: 1) PG; 2) AP;
3) DC; and 4) OP.

1) Parameters Generator: PG in the Co-inference
Architecture generates candidate strategies for decision
variables, such as the partition point, model compression, and
feature compression settings, based on specific requirements.
These strategies serve as possible inputs for the other mod-
ules. The decision variables in our article include layerwise
sparsity ratios, the partition point, and encoder—decoder set-
tings. For AlexNet, there are seven parameters for layerwise
sparsity ratios, one parameter for the partition point, and eight
parameters for encoder—decoder settings. PG must guarantee
that the generated parameters for the decision variables satisfy
all the system constraints.

To ensure the effective processing of the candidate solution,
it is crucial that each element operates within the same scale
required by the framework. To address this issue, a mapping
factor is introduced to calculate mapping values for the original
elements, enabling the formation of a candidate solution in the
same scale for iterative processing.

2) Accuracy Predictor: AP can significantly reduce the
time needed to obtain the optimal decision variable strategy.
It is no longer necessary to fully train and validate each DNN
model corresponding to the generated parameters in PG as
described in Section III-B. This greatly improves the efficiency
of the collaborative inference framework.

AP enables the corresponding prediction accuracy to be
obtained by inputting different decision variable strategies,
without the need for conducting numerous experiments. After
PG generates a set of candidate parameters that satisfy the
system requirements, AP can calculate the predicted model
accuracy for these parameters. If the accuracy requirements
are met, the delay calculation can proceed in DC. Otherwise,
the set of parameters will be discarded, and PG will generate

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

a new set of candidates. This iterative process continues until
a set of parameters that meets the accuracy requirements is
found.

3) Delay Calculator: The complementary encoder and
decoder pair used for feature compression is lightweight, and
the computation introduced by them is negligible when com-
pared to the entire network [23]. As a result, the total delay of
the DNN model corresponding to the decision variable strategy
can be calculated by DC using (2)—(5).

4) Optimizer: OP serves as the key component of the
framework and aims to continuously optimize the decision
variable strategy based on the results of the previous mod-
ules. To accomplish this, a quantum-inspired optimization
algorithm [28] is utilized as the basis for OP.

The underlying theoretical concept of this framework is cen-
tered around the similarity between particle motion in quantum
space and the search process in optimization space. This idea
was initially proposed in Quantum annealing [29] and has
been extensively recognized and investigated in various evolu-
tionary algorithms [28], [30], including the quantum-inspired
optimization algorithm in this framework. The optimal value
of the objective function can be obtained when the quan-
tum system converges to the ground state [31]. Therefore, the
optimization problem can be considered as the search for the
ground state in a quantum system with a constrained poten-
tial well. To solve this problem, the OP implemented in this
framework consists of three main components: 1) energy level
stabilization; 2) energy level transition; and 3) scale adjust-
ment. Through multiple iterations, the OP will shrink to the
optimal solution. The theory of the original quantum-inspired
optimization algorithm [28] is beyond the scope of this work,
and thus will not be discussed in detail.

The proposed optimization framework builds upon this OP,
and further details will be elaborated on in the next section.

C. Implementation

The pseudocode of the proposed collaborative inference
optimization framework is shown in Algorithm 1.

Algorithm 1 depicts the basic process of the collabora-
tive inference optimization framework, which starts with the
energy level stabilization process. Once the stabilization con-
dition is met, the energy level transition is triggered, and
this process is iteratively repeated until the ground state is
reached at the current scale. Subsequently, the scale is adjusted
and the aforementioned steps are executed again under the
new granularity until the termination condition is reached.
This mechanism converts the global optimization problem into
a multiscale ground-state convergence problem, allowing for
more efficient optimization.

The proposed optimization framework is highly flexible and
adaptable to different model and feature compression methods,
which can be replaced with other methods as necessary. The
core components, such as the PG, AP, DC, and OP, can be eas-
ily modified to accommodate different methods. Moreover, the
optimization indicators used in the framework can be changed
to suit different criteria. For instance, if energy cost is a crucial
criterion, the DC can be transformed into an energy calculator.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

MU et al.: FINE-GRAINED END-TO-END LATENCY OPTIMIZATION FRAMEWORK

Algorithm 1: Proposed Collaborative Inference

Optimization Framework

Input: k: number of populations; accy,: accuracy
threshold; ¢max: maximum iterations; A: scaling
factor.

Output: optimal delay 7, and corresponding

hyper-parameters Xpin.

1 uniformly generate k solutions of hyper-parameters;
2 for each solution X; do
3 calculate the total delay 7; related to Xj;
4 end
5 initial the optimal delay T, by the minimum tj;
6 while ¢ < 12x do
7 while o > o, do
8 while Ao > o, do
// Energy Level Stabilization

9 for each solution X; do
10 generate proper X; ~ N(X], osz);
11 calculate predicted accuracy acc};
12 if acc; < accy then '
13 go~ back to line 10;
14 end
15 calculate rj/ related to X};
16 if rj’ < Tmin then
17 Tmin < rj/ ;
18 X; < X]’
19 end
20 end
21 calculate standard deviation o’ of all Xj;
22 Ao < |0’ —0o];
23 update o < o’
24 end

// Energy Level Transition
25 replace the worst solution with the mean:

X" « X™:
26 update standard deviation o of all Xj;
27 end

// Scale Adjustment

28 o5 < O5/A;
29 L<— 1+ 1;
30 end

Such flexibility makes the framework widely applicable and
extendable to various applications.

D. Computational Complexity

The computational complexity of the algorithm instance
within the proposed framework is noteworthy. Algorithm 1
shows that the quantum-inspired OP is the main body of the
framework in this specific algorithm instance.

From Algorithm 1, we can see that the codes of energy level
stabilization is the main loop code that executes the most.
The time complexity of PG in line 10 is O(k * Ng), where Ny
represent the dimensions of the problems. When the number
of population £ is fixed, this time complexity increases linearly

5847

TABLE II
DEVICE AND SERVER SPECIFICATIONS

Type Name Performance(GFLOPS)
Device | Raspberry Pi 3B+ [34] 0.2

Device | Raspberry Pi 4B [35] 3

Device | NVIDIA Jetson TK1 [36] | 326.4

Server NVIDIA Tesla P100 [37] 10600

with the scale of the problem, that is, the time complexity of
this part is O(N;). The time complexities of AP in line 11 and
DC in line 15 are at most O(Ny). Besides, the time complexity
of scale adjustment does not change with the scale of the
problem, that is, the time complexity of this part is O(1).
After analyzing the whole algorithm like this, we can see that
the time complexities of other parts are at most O(N;). Based
on the above analysis, it can be concluded that the proposed
algorithm exhibits linear time complexity as a whole.

VI. SIMULATIONS

In this section, we conduct some simulations to evaluate
the performance of the proposed framework and deliver a
discussion and analysis of the results.

A. Simulation Scenario

Software simulations are conducted to evaluate the
performance of the collaborative inference optimization frame-
work under different hardware computation specifications and
wireless communication link conditions.

1) DNN Model: RegNet [32], developed by the Facebook
Al team, represents the latest advancement in deep learning
architecture. It is a model family that employs a novel network
design paradigm to explore design spaces and create inno-
vative, effective architectures. For the proposed collaborative
inference optimization framework, we select RegNetX-400MF
from the RegNet model family along with AlexNet to assess
its effectiveness.

2) Data Set: The CIFAR-10 data set [33] is used to evalu-
ate the performance of the proposed framework. It is a widely
used benchmark for evaluating image classification models and
comprises 60000 color images with a resolution of 32 x 32
pixels, distributed across ten different categories with 6000
images per category. The data set is divided into five training
batches and one test batch, each containing 10000 images.

3) Hardware Specifications: Different parameters of
devices and the server are shown in Table II.

As presented in Table II, three devices with different per-
formances are considered to evaluate the impact of com-
putation capability on the inference latency. NVIDIA Tesla
P100 hardware platform with the capability of 10.6TFLOPS
is considered as the server in the simulations.

4) Wireless Link Conditions: The influence of communi-
cation conditions on the inference latency is evaluated using
four communication links with different average uplink rates
from the SPEEDTEST website [38], as shown in Table IIIL.

5) Other Parameters: The simulations were conducted
using Python 3.8 and PyTorch 1.12.0, evaluating the AlexNet
model (initial accuracy: 87.42%) and the RegNet model (initial

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

5848

TABLE III
DATA RATES OF WIRELESS COMMUNICATION LINKS

Name | Uplink Rate(Mbps)
3G 1.19

4G 11.22

5G 52.24

WiFi 54.19

accuracy: 91.71%). The goal is to achieve optimal latency
while maintaining a maximum model accuracy loss of 2%.
The other parameters used in the simulations are set as fol-
lows: £k = 5, tmax = 20, and A = 1.3. The compared
algorithm parameters are selected according to the recommen-
dations provided in their respective papers. The results are
analyzed to provide insight into the framework’s performance
and effectiveness.

B. Baseline

1) All_Local: The inference task is only performed by the
whole model on the device, and wireless data transmission is
not required. Thus, the inference delay is only related to the
device parameters.

2) All_Server: Since the inference tasks are only per-
formed by the whole model on the server, all input data
needs to be transmitted to the server for inference, making
the inference delay dependent on the wireless transmission
parameters.

3) Neurosurgeon [7]: This scheme involves partitioning
the model and deploying its different parts separately on the
device and server. The optimal partition point is determined
to minimize the delay in collaborative inference.

4) Prune_Partition: The model undergoes layerwise spar-
sity pruning before being split into two parts. An inference
optimization is employed to determine the optimal layerwise
sparsity ratios and the partition point for minimizing inference
delay.

5) 2_Step_Pruning [39]: This device-edge co-inference
scheme employs a two-step pruning approach: 1) pruning the
entire pretrained model and 2) pruning the layer preceding the
split point.

6) Filter Pruning via Geometric Median (FPGM) [40]:
FPGM is a novel filter pruning strategy using the geomet-
ric median. It differs from previous norm-based criteria by
explicitly considering the interrelations among filters. An auto-
selection scheme is incorporated into it to identify the optimal
model compression parameters and partition point.

7) BottleNet++ [23]: BottleNet++ splits the model into
two parts and uses an encoder—decoder pair to compress
features. An auto-selection scheme is incorporated into it
to identify the optimal feature compression parameters and
partition point, with the goal of minimizing inference delay.

8) Co-Inference via AutoML (CIA) [26]: This is an
AutoML framework to achieve communication-computation
efficient device-edge co-inference based on deep reinforce-
ment learning (DRL), which determines the sparsity level and
compression ratio of each DNN layer.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

TABLE IV
PERFORMANCE OF DIFFERENT REGRESSORS

Regressor MSE AR AIC BIC

GradientBoostingRegressor | 4.87E-05 | 8.32E-01 -3.90E+03 | -3.83E+03
BaggingRegressor 5.69E-05 7.23E-01 -3.75E+03 -3.69E+03
AdaBoostRegressor 4.89E-05 7.01E-01 -3.72E+03 -3.65E+03
RandomForestRegressor 4.81E-05 | 7.84E-01 -3.81E+03 | -3.75E+03
DecisionTreeRegressor 7.56E-05 5.43E-01 -3.66E+03 -3.60E+03
LinearRegression 5.14E-05 | 7.00E-01 -3.73E+03 | -3.67E+03

C. Accuracy Prediction Model

It is crucial to ensure that the generated model parameters
meet the desired inference accuracy requirements. Therefore,
after generating candidate parameters, the model needs to be
trained and tested to verify the accuracy of the generated
model. As this process is required for every iteration of the
optimization process, it can consume a significant amount of
time.

The objective of accuracy prediction is to construct a
predictive model capable of estimating the test accuracy of
a modified network model, thereby facilitating the identi-
fication of optimal parameters that preserve the accuracy
of the original network while minimizing computational
overhead.

To construct an accuracy prediction model, a data set of 300
test accuracy results is generated by training and evaluating
DNN models with different combinations of decision vari-
ables. Various regressors from the sklearn Python package [41]
are compared on the data sets, and several metrics [42], includ-
ing the mean squared error (MSE), adjusted R-squared (AR),
Akaike information criterion (AIC), and Bayesian information
criterion (BIC), are calculated. The results of this comparison
are presented in Table IV.

GradientBoostingRegressor is a machine learning technique
that employs the gradient boosting approach [43] for regres-
sion tasks and is favored for its ease of implementation.
After evaluating multiple regression models using various met-
rics, GradientBoostingRegressor has achieved the highest AR
of 8.32E-01, AIC of —3.90E+03, and BIC of —3.83E+03.
Although its MSE is comparable to the top-performing regres-
sor, GradientBoostingRegressor has exhibited the best compre-
hensive performance among the evaluated methods. Hence,
it has been selected as the accuracy prediction model for
inference accuracy estimation.

It is necessary to rebuild the accuracy prediction model if
the decision variables are modified or the noise is introduced to
ensure the accuracy of the prediction. Consequently, distinct
accuracy prediction models have been generated to account
for the different scenarios. The time required for accuracy
prediction modeling is dependent on the complexity of the
DNN model and the dimensionality of the decision variables.
In the modeling process, data collection is the most time-
consuming part. Simply adding noise increases the dimension
of the decision variables by one, without significantly affecting
the overall time cost of accuracy prediction modeling.

An important point to note is that both the modeling of
the accuracy prediction model and the optimization problem-
solving occur during the offline stage. The final inference
process operates independently of these two stages, and the

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

MU et al.: FINE-GRAINED END-TO-END LATENCY OPTIMIZATION FRAMEWORK

mAll_Local = AIll Server ® Partition

1 713

7.113

7.113 7.113

Latency(s)

Communication link

()

mAll_Local m All_Server m Partition
4 - 3.860
3 4
e
z
§ 2
<
= 1
0.474 0.568 0.474 0.410 0.474 0.474
0.174 .088 0.075 .085 0.074
0 e T W
3G 4G 5G WiFi
Communication link
(b)
mAll_Local m=All_Server mPartition
4 3.860
3
O
z
g
<
-
1
0.410
0.088 0.085
0 0.004 0.109 0.004-0.015 ‘ 0.004 0.007 ‘ 0.004 0.007
3G 4G 5G WiFi
Communication link
(c)

Fig. 6. Inference latency versus wireless communication link. (a) Raspberry
Pi 3B+. (b) Raspberry Pi 4B. (c) Jetson TKI.

inference time is not affected by the execution time of them.
By using accuracy prediction instead of conventional training
and testing methods, the entire framework’s running time is
significantly accelerated.

D. Discussion

1) Performance of Partitioning: This section investigates
the partitioning performance of various hardware specifica-
tions and wireless links using different methods. The simula-
tion results are presented in Fig. 6.

Fig. 6(a) illustrates that Partition achieves a maximum infer-
ence acceleration of up to 3.7x and a minimum of 2x
compared to All_Local and All_Server under slow network

5849

speeds (3G). As the data rate increases, Partition shows
lower inference latency due to reduced communication latency.
Nevertheless, Partition achieves a maximum inference latency
reduction of 9.7x and a minimum of 8.5x compared to
All_Local under various wireless link conditions, except
for 3G.

As shown in Fig. 6(b), All_Server exhibits the slowest
performance at low-data rates due to the substantial impact
of communication latency on inference latency, while the
increased computing performance of Raspberry Pi 4B reduces
computation latency. Partition consistently achieves inference
acceleration compared to the other methods, with a maxi-
mum of 6.4x and a minimum of 1.2x. It effectively balances
computation and communication latencies to achieve inference
acceleration.

As shown in Fig. 6(c), the inference latency of All_Local
exhibits a significant reduction, thus emerging as the fastest
method. Partition brings significant inference acceleration by
optimizing the partition point to minimize inference latency. It
achieves this by reducing inference latency by up to 35x and
a minimum of 13x compared to All_Server under different
wireless link conditions.

The aforementioned simulation highlights that partitioning
can achieve substantial inference acceleration.

2) Communication Rate: This section investigates the
impact of communication rates on inference latency for dif-
ferent hardware specifications. We utilize Raspberry Pi 3B+
and Jetson TK1 as devices and Tesla P100 as the server. The
communication rate is varied from 0.01 to 100 Mb/s, and the
proposed framework is employed to minimize the inference
latency. The simulation results for AlexNet and RegNet are
presented in Figs. 7 and 8.

The results in Fig. 7(a) demonstrate that as the communi-
cation rate increases, the inference latency decreases for all
methods except All_Local, which does not require wireless
communication for data transmission. At communication rates
slower than 0.01 Mb/s, the scheme incorporating feature com-
pression demonstrates superior acceleration performance. Our
method outperforms all other methods in terms of accelera-
tion. The results indicate that when attempting to accelerate
inference through the reduction of transmission data size, rely-
ing solely on partitioning and model compression may not be
sufficient, particularly when the communication rate is low.

As the communication rate increases, All_Server outper-
forms other algorithms at very high-communication rates. In
other scenarios, our method achieves substantial inference
acceleration in most scenarios, making it the most effective
approach. Notably, it achieves a substantial acceleration effect
with improvements of up to 2.2x (minimum of 1.1x) com-
pared to suboptimal methods and up to 198.0x (minimum of
14.5x) compared to the worst-performing method.

As shown in Fig. 7(b), all methods except for All_Local
which does not require wireless communication, exhibit
decreasing inference latencies with increasing communication
rates. The superior computing performance of Jetson TK1 sig-
nificantly reduces computation latency. The proposed method
demonstrates superior performance and can greatly expe-
dite inference, particularly at low-data transmission speeds.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

5850
1000
4 All_Local —+—All_Server
N —&—Our Method BottleNet++
100 N ~&—Prune_Partition ~>Neurosurgeon
\»\u —@-2_Step_Prune -o-CIA

2
=
<
=
<
=
=

0.01 T T T 1
0.01 0.1 1 10 100
Communication Rate(Mbps)
(a)
1000 |
T~ All_Local —+—All_Server
S~ —&—Our Method BottleNet++
100 h “~\+ —&—Prune_Partition —>&Neurosurgeon
T~ —®-2_Step_Prune ——CIA

E4
=
=
Iy
=
=

0.01 0.1 1 10 100
Communication Rate(Mbps)
(b)
Fig. 7. Inference latency versus communication rate (AlexNet).

(a) RaspberryPi 3B+. (b) Jetson TKI.

Compared to suboptimal methods, our approach achieves
inference acceleration ranging from 1.1x to 3.1x. In com-
parison to the worst-performing method, the acceleration
ranges from 51.2x to over 10°x, demonstrating significant
performance improvement.

As shown in Fig. 8(a), the overall trend of all curves
is consistent with the simulation results of AlexNet. When
the device has limited computing power, the impact of
communication latency on inference is reduced as the com-
munication rate increases. Due to the significant discrep-
ancy in computing performance between Raspberry Pi 3B+
and Tesla P100, All_Server outperforms other algorithms
at high-communication rates. Furthermore, FPGM incorpo-
rates an efficient model compression scheme that significantly
reduces computation latency, thus accelerating inference in
scenarios where the impact of communication latency is
slight.

In other scenarios, our method achieves substantial infer-
ence acceleration. It demonstrates improvements ranging from
1.1x to 2.7x compared to suboptimal methods, and from
46.4x to 141.0x compared to the worst-performing method.

As shown in Fig. 8(b), our method consistently outperforms
in all scenarios, delivering superior performance. It achieves
acceleration with improvements ranging from 1.1x to 3.2x
compared to suboptimal methods, and from 47.4x to more
than 10 x compared to the worst-performing method.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

1000

All_Local —+—All_Server
—&—Our Method BottleNet++
100 ~&—Prune_Partition —>&Neurosurgeon
-o-FPGM -o-CIA
=2 10
5
=
]
31
0.1
0.01 + T T T
0.01 0.1 1 10 100
Communication Rate(Mbps)
(a)
1000 '
- All_Local —+—All_Server
—&—Our Method BottleNet++
100 | ~&—Prune_Partition —»Neurosurgeon
\ -8-FPG -o-CIA
10 ~
\1 .
& 1
z
=
e
= 0.1
0.01
‘l—f\‘_\“‘h |
-t
0.001 "\-—.—T
0.0001 T T T i
0.01 0.1 1 10 100
Communication Rate(Mbps)
(b)
Fig. 8. Inference latency versus communication rate (RegNet).

(a) RaspberryPi 3B+. (b) Jetson TK1.

These results highlight the effectiveness of our approach
across various DNN models and emphasize the importance
of carefully selecting the appropriate optimization strategy for
achieving optimal acceleration performance.

3) Communication-Computation Trade-Off: In this section,
the communication overhead and local computation of com-
pared methods at different partition points are investigated.
The device parameters remain consistent with Raspberry
Pi 3B+, while the server parameters are consistent with
Tesla P100. The communication rate is set to 11.22 Mb/s
(4G). The results for AlexNet and RegNet are presented in
Figs. 9 and 10.

As depicted in Figs. 9 and 10, The methods utilizing model
compression substantially decrease local computation, causing
a greater concentration of data points toward the left compared
to other methods, indicating reduced computational load. The
data points corresponding to the methods employing feature
compression are predominantly situated at the bottom of the
figure, indicating lower communication overhead compared to
the other methods.

Our method shows a better tradeoff between communica-
tion overhead and local computation according to the results
for AlexNet and RegNet, as the majority of its data points
are located to the left and bottom of the other methods. This
suggests that our method achieves more balanced compression

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

MU et al.: FINE-GRAINED END-TO-END LATENCY OPTIMIZATION FRAMEWORK

Prune_Partition Neurosurgeon + BottleNet++

® Our Method + CIA ¢ 2_Step_Prune
------ Input Image Size
1.00E+00
B R T AR IR R TR R R (R TR R
2 *
§ .
S L00E-01 | o .,
] *
=3
E + +
Q *
z L 24
S 100602 | ° .+ +.;'+ -
=
£ . s, Tt -y
g ° - (14 ok o o
£ °n ¢
£ 1.00E-03 [® e ° o
£
S L

1.00E-04
5.00E+07

5.00E+08
Local Computation(FLOPs)

Fig. 9. Communication overhead versus local computation (AlexNet).
Prune_Partition

Neurosurgeon + BottleNet++
CIA 5

® Our Method + ¢ FPGM
»»»»»» Input Image Size

1.00E+01
] L
g LO0ER0 B 55555555553 55555 554 833 TF 4345455 TIH 04406 ETS IR TS S5HRIIRETS S BSURIIRRES 354
@ ++
z * *
z + + $
= 1.00E-01
E + + *
g
£ °*
2 o *
S 1.00E-02 | ™Y * ° *
£ ¢ .
-] []
‘2 LOOE-03 ® .
5
£ [J
£
O 1.00E-04 ®

1.00E-05
1.00E+06 1.00E+07 1.00E+08

Local Computation(FLOPs)

1.00E+09 1.00E+10

Fig. 10. Communication overhead versus local computation (RegNet).

®-All_Local ~—+—All_Server —&—Our Method
Prune_Partition —o—BottleNet++ —»-~Neurosurgeon
10
[4 L 2 L 4 L L 4 @ L L 4 L 4 L @
e
>
<@ 1 ¢
g SR A S—" — —
< ‘q : : : : : f : j r
:
0.1 T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50
SNR(dB)
Fig. 11. Inference latency versus SNR.

in both communication and local computation than the other
methods.

4) Effect of Noise: To investigate the impact of wireless
channel noise on communication performance and infer-
ence latency, we consider the additive white Gaussian noise
(AWGN) channel [23] and use SNR to indicate the channel
condition. Specifically, we maintain the device parameters con-
sistent with Raspberry Pi 3B+, while the server parameters
are set to those of Tesla P100. Our method is compared with
selected methods across a wide range of SNR levels spanning
from O to 50 dB for the inference task involving AlexNet. The
results of the evaluation are presented in Fig. 11.

Fig. 11 demonstrates that the inference acceleration
methods influenced by communication latency exhibit

5851

improved performance as the SNR increases. However,
All_Local remains unaffected by SNR since it does not require
wireless links for data transmission, as mentioned earlier. The
increase in SNR leads to a rise in the data transmission rate,
resulting in a substantial reduction of latency for the methods
which utilize model compression. Methods that utilize feature
compression to reduce output data size for reducing communi-
cation latency exhibit relative stability across different channel
conditions. However, our method outperforms all other meth-
ods in terms of maintaining the minimum inference latency
even under extremely low-SNR conditions.

Specifically, our method achieves the inference acceleration
by up to 1.5x and at least 1.02x compared to the suboptimal
method, and by up to 25.5x and at least 11.0x compared to
the worst method, respectively.

VII. CONCLUSION

This article proposes a novel approach to address the infer-
ence acceleration problem, specifically by introducing the con-
cept of collaborative device-edge inference with three primary
steps involved: 1) model compression; 2) DNN partition-
ing; and 3) feature compression. The collaborative inference
latency optimization problem is formulated as a mixed inte-
ger programming problem, which involves defining numerous
hyperparameters to identify the optimal decision variable set.
The challenge of optimizing collaborative inference latency
is tackled by proposing a framework comprising four fun-
damental modules: 1) PG; 2) AP; 3) DC; and 4) OP. An
inference accuracy prediction model using multiple regression
is built to evaluate the candidate hyperparameter set’s accu-
racy. This study evaluates the proposed collaborative inference
optimization framework through software simulations, using
the inference tasks of AlexNet and RegNet on CIFAR-10
as an instance, under different hardware computation spec-
ifications and wireless communication link conditions. The
simulation results demonstrate the effectiveness and superior
performance of the proposed framework in achieving signif-
icant inference acceleration compared to alternative methods
in various scenarios.

The proposed framework corresponds to a family of algo-
rithms when choosing different technology architecture and it
offers a flexible architecture for optimizing collaborative infer-
ence latency. For instance, analyzing the sparsity pattern of
a particular DNN model can improve pruning performance,
while quantization and other model compression techniques
can reduce computation latency. More advanced encoding
and decoding techniques can also be implemented to reduce
transmission latency. By adjusting the hyperparameters and
corresponding modules in the framework, it is expected that a
more effective optimization strategy can be easily achieved.

This article suggests several promising directions for future
research. One is to further optimize model compression and
transmission encoding by neural architecture search (NAS)
technology. Another is to implement the proposed framework
on real-world hardware platforms with dynamic collaborative
inference environments, utilizing reinforcement learning and
other intelligent technologies.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

5852

[1]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11

[12]

[13]

[14]

[15]

[16]

[17

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295-2329, Dec. 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84-90, 2017.

A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio source
separation with deep neural networks,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 24, no. 9, pp. 1652-1664, Sep. 2016.

H.-C. Shin et al., “Deep convolutional neural networks for computer-
aided detection: CNN architectures, dataset characteristics and transfer
learning,” [EEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298,
May 2016.

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A sur-
vey on mobile edge computing: The communication perspective,” [EEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th Quart., 2017.
Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615-629, 2017.

E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand acceler-
ating deep neural network inference via edge computing,” IEEE Trans.
Wireless Commun., vol. 19, no. 1, pp. 447-457, Jan. 2020.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Distributed
adaptive deep learning inference on resource-constrained IoT edge clus-
ters,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 11, pp. 2348-2359, Nov. 2018.

X. Chen, M. Li, H. Zhong, Y. Ma, and C.-H. Hsu, “DNNOff: Offloading
DNN-based intelligent IoT applications in mobile edge computing,”
IEEE Trans. Ind. Informat., vol. 18, no. 4, pp. 2820-2829, Apr. 2022.
G. Liu et al., “An adaptive DNN inference acceleration framework with
end—edge—cloud collaborative computing,” Future Gener. Comput. Syst.,
vol. 140, pp. 422-435, Mar. 2023.

M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta,
and R. Raskar, “Split learning for collaborative deep learning in
healthcare,” 2019, arXiv:1912.12115.

N. Shlezinger and 1. V. Baji¢, “Collaborative inference for Al-
empowered IoT devices,” IEEE Internet Things Mag., vol. 5, no. 4,
pp. 92-98, Dec. 2022.

Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge Al: Algorithms and systems,” IEEE Commun. Surveys
Tuts., vol. 22, no. 4, pp. 2167-2191, 4th Quart., 2020.

M. D. Emmerson and R. 1. Damper, “Determining and improving
the fault tolerance of multilayer perceptrons in a pattern-recognition
application,” IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 788-793,
Sep. 1993.

J. Shao and J. Zhang, “Communication-computation trade-off in
resource-constrained edge inference,” IEEE Commun. Mag., vol. 58,
no. 12, pp. 20-26, Dec. 2020.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” 2016, arXiv:1608.08710.

S. Raschka, J. Patterson, and C. Nolet, “Machine learning in Python:
Main developments and technology trends in data science, machine
learning, and artificial intelligence,” Information, vol. 11, no. 4, p. 193,
2020.

J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin, “Layer-adaptive sparsity for
the magnitude-based pruning,” 2020, arXiv:2010.07611.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2015, arXiv:1510.00149.

H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD:
Joint accuracy-and latency-aware deep structure decoupling for edge-
cloud execution,” in Proc. IEEE 24th Int. Conf. Parallel Distrib. Syst.
(ICPADS), 2018, pp. 671-678.

E. Bourtsoulatze, D. B. Kurka, and D. Giindiiz, “Deep joint source-
channel coding for wireless image transmission,” IEEE Trans. Cogn.
Commun. Netw., vol. 5, no. 3, pp. 567-579, Sep. 2019.

J. Shao and J. Zhang, “Bottlenet++: An end-to-end approach for feature
compression in device-edge co-inference systems,” in Proc. IEEE Int.
Conf. Commun. Workshops (ICC Workshops), 2020, pp. 1-6.

A. E. Eshratifar, A. Esmaili, and M. Pedram, “BottleNet: A deep learning
architecture for intelligent mobile cloud computing services,” in Proc.
IEEE/ACM Int. Symp. Low Power Electron. Design (ISLPED), 2019,
pp. 1-6.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

(371

(38]

(39]

[40]

[41]

[42]

[43]

Y. Matsubara and M. Levorato, “Neural compression and fil-
tering for edge-assisted real-time object detection in challenged
networks,” in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), 2021,
pp. 2272-2279.

X. Zhang, J. Shao, Y. Mao, and J. Zhang, “Communication-computation
efficient device-edge co-inference via AutoML,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), 2021, pp. 1-6.

Y. K. Tun, Y. M. Park, N. H. Tran, W. Saad, S. R. Pandey,
and C. S. Hong, “Energy-efficient resource management in UAV-
assisted mobile edge computing,” I[EEE Commun. Lett., vol. 25, no. 1,
pp. 249-253, Jan. 2021.

P. Wang, X. Ye, B. Li, and K. Cheng, “Multi-scale quantum har-
monic oscillator algorithm for global numerical optimization,” Appl. Soft
Comput., vol. 69, pp. 655-670, Aug. 2018.

A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll,
“Quantum annealing: A new method for minimizing multidimensional
functions,” Chem. Phys. Lett., vol. 219, nos. 5-6, pp. 343-348,
1994.

J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu, “Quantum-behaved
particle swarm optimization: Analysis of individual particle behavior
and parameter selection,” Evol. Comput., vol. 20, no. 3, pp. 349-393,
Sep. 2012.

J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, “Quantum anneal-
ing of a disordered magnet,” Science, vol. 284, no. 5415, pp. 779-781,
1999.

I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dolldr,
“Designing network design spaces,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 10428-10436.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Rep. TR-2009,
2009. [Online]. Available: https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf

R. PI. “Raspberry Pi 3 model B+.” 2022. [Online]. Available: https://
www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/

R. PI. “Raspberry Pi 4. 2022. [Online]. Available: https://www.
raspberrypi.com/products/raspberry-pi-4-model-b/

NVIDIA. “NVIDIA Jetson TK1 module.” 2022. [Online]. Available:
https://www.nvidia.com/content/dam/en-zz/Solutions/industries/
automotive/documents/jetson-tk 1-module-datasheet.pdf

NVIDIA. “Tesla P100data center accelerator.” 2022. [Online]. Available:
https://www.nvidia.com/en-us/data-center/tesla-p100/

Ookla. “Speedtest by Ookla - the global broadband speed test.” 2022.
[Online]. Available: https://www.speedtest.net/global-index/united-
states-mobile-data/2020/q2

W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, “Improving
device-edge cooperative inference of deep learning via 2-step prun-
ing,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), 2019, pp. 1-6.

Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via
geometric median for deep convolutional neural networks accelera-
tion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 4340-4349.

F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, no. 85, pp. 2825-2830, 2011.

C. A. Escobar and R. Morales-Menendez, ‘Process-monitoring-for-
quality—A model selection criterion for /{-regularized logistic regres-
sion,” Procedia Manuf., vol. 34, pp. 832-839, Jan. 2019.

C. Bentéjac, A. Csorgd, and G. Martinez-Muiioz, “A comparative anal-
ysis of gradient boosting algorithms,” Artif. Intell. Rev., vol. 54, no. 3,
pp. 1937-1967, 2021.

Lei Mu received the Ph.D. degree from Beijing
Institute of Technology, Beijing, China, in 2011.

From 2022 to 2023, he was a Visiting Research
Fellow with the Department of Engineering, King’s
College London, London, U.K. He is currently
a Lecturer with the School of Computer Science
and Engineering, Southwest Minzu University,
Chengdu, China. His current research interests
include edge intelligence, distributed learning, and
swarm intelligence.

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

MU et al.: FINE-GRAINED END-TO-END LATENCY OPTIMIZATION FRAMEWORK

Zhonghui Li received the M.S. degree from
Southwest Minzu University, Chengdu, China, in
2023.

He is currently working as a Teacher with Hubei
Enshi College, Enshi, China. His main research
interests include deep neural networks, mobile edge
computing, and computing offloading.

Wei Xiao is currently pursuing the M.S. degree with
Eotvos Lordand University, Budapest, Hungary.

His major research interests include artificial intel-
ligence and Internet of Things.

Ruilin Zhang is currently pursuing the M.S. degree
with the University of Auckland, Auckland, New
Zealand.

Her research interests mainly include quantita-
tive research methods in information systems and
Internet of Things in industrial digitization.

Peng Wang received the B.Eng. and M.S. degrees
from Sichuan University, Chengdu, China, in 1998
and 2001, respectively, and the Ph.D. degree from
the Institute of Computer Application, Chinese
Academy of Sciences, Chengdu, in 2004.

He is a Full Professor with Southwest Minzu
University, Chengdu, and the Ph.D. Advisor with
the Institute of Computer Application, Chinese
Academy of Sciences. His research interests include
computational intelligence, high-performance com-
puting, and quantum-inspired algorithms.

5853

Tao Liu received the B.S. degree in computer
science from Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2000, the
M.S. degree in computer science from the University
of Electronic and Technology of China, Chengdu,
China, in 2004, and the Ph.D. degree in computer
science from Sichuan University, Chengdu, in 2012.

He is currently a Professor with the School
of Computer Science and Engineering, Southwest
Minzu University, Chengdu. He was a Visiting
Scholar with Columbia University, New York, NY,
USA, from August 2015 to August 2016. His research interests include ad
hoc networks, wireless sensor networks, and Internet of Things.

Geyong Min (Member, IEEE) received the B.Sc.
degree in computer science from Huazhong
University of Science and Technology, Wuhan,
China, in 1995, and the Ph.D. degree in computing
science from the University of Glasgow, Glasgow,
U.K., in 2003.
He is a Professor of High-Performance
{ Computing and Networking with the Department
\ of Computer Science, University of Exeter, Exeter,
A U.K. His research interests include computer
networks, wireless communications, parallel and
distributed computing, ubiquitous computing, multimedia systems, and
modeling and performance engineering.

Keqin Li (Fellow, IEEE) received the B.S. degree in
computer science from Tsinghua University, Beijing,
China, in 1985, and the Ph.D. degree in computer
science from the University of Houston, Houston,
TX, USA, in 1990.

He is currently a SUNY Distinguished Professor
with the State University of New York, New Paltz,
NY, USA, and a National Distinguished Professor
with Hunan University, Changsha, China. He has
authored or coauthored more than 940 journal arti-
cles, book chapters, and refereed conference papers.
He holds nearly 70 patents announced or authorized by the Chinese National
Intellectual Property Administration.

Prof. Li received several best paper awards from international confer-
ences, including PDPTA-1996, NAECON-1997, IPDPS-2000, ISPA-2016,
NPC-2019, ISPA-2019, and CPSCom-2022. He is among the world’s top five
most influential scientists in parallel and distributed computing in terms of
both single-year impact and career-long impact based on a composite indica-
tor of Scopus Citation Database. He was a 2017 recipient of the Albert Nelson
Marquis Lifetime Achievement Award for being listed in Marquis Who’s Who
in Science and Engineering, Who’s Who in America, Who’s Who in the World,
and Who’s Who in American Education for more than 20 consecutive years.
He received the Distinguished Alumnus Award of the Computer Science
Department at the University of Houston in 2018. He received the IEEE
TCCLD Research Impact Award from the IEEE CS Technical Committee on
Cloud Computing in 2022, and the IEEE TCSVC Research Innovation Award
from the IEEE CS Technical Community on Services Computing in 2023. He
is a member of SUNY Distinguished Academy. He is an AAAS Fellow and
an AAIA Fellow. He is a member of Academia Europaea (Academician of
the Academy of Europe).

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on February 07,2024 at 14:59:12 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

