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Summary

Using imbalanced data in classification affect the accuracy. If the classification is based

on imbalanced data directly, the results will have large deviations. A common approach

to dealing with imbalanced data is to re-structure the raw dataset via undersampling

method. The undersampling method usually uses random or clustering approaches

to trimming the majority class in the dataset, since some data in the majority class

makes not contribute to classification model. In this paper a revised undersampling

approach is proposed. First, we perform space compression in the vertical direction of

the separating hyperplane. Then, a weighted random sampling hybrid ensemble learn-

ing method is carried out to make the sampled objects spread more widely near the

separating hyperplane. Experiments with 7 under-sampling methods on 21 imbalanced

datasets show that our method has achieved good results.
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1 INTRODUCTION

With the development of big data era, the data size for classification is increased rapidly. In some dataset, the expanded speed of data catagories

are not synchronized. Some catagories of data increase very rapidly, while others grows slowly. This will cause a data imbalance problem in these

datasets. For example, in the statistics of bank card credit,1,2 the number of users with good credit increases much faster than users with poor credit.

Traditional machine learning methods perform well with balanced dataset. But for imbalanced dataset, their performance is usually not as effective

as expected.3 The cause of this results is the trained classifier, such as Decision Tree, Bayes Networks, and SVM,4-6 will be biased towards the majority

class,7-9 and be easily misclassified minority class into the majority class. In practise, this biase maybe have serious consequence, such as mis-approve

credit card applications from people with low credit, classify tumor cells as normal cells, and misclassify faulty parts as normal parts5,10 which cause

heavy economic losses or personal safety problems.

In order to reduce the effect of data imbalance, researchers proposed resampling technology to balance data.11 The resampling technology

includes two important methods, namely oversampling and undersampling. The undersampling method balances dataset by partially selecting the

majority class dataset. Oversampling method is to artificially generate data to minority class to achieve a balance dataset.12 Both methods are

effective to imbalance classification.

In this paper, we focus mainly on undersampling method. The undersampling method is to reduce the size of majority class through resampling

technology to balance the data. One of the most popular undersampling method is random undersampling (RUS).13,14 RUS balances the data by ran-

domly selecting samples of the majority class. The advantage of RUS is that it can quickly train the classification model, but it may eliminate useful

data.15 Another widely used undersampling method is based on clustering.16,17 Cluster-based methods preserve the data distribution characteristics
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F I G U R E 1 Data and its classification hyperplane

while retaining the useful samples.16,18 The cluster-based method divides the majority class into multiple groups, and then selects representative

samples from every group.19 However, cluster-based method rely on experience to determine the number of group and to select representative

samples. In addition, undersampling technique are usually combined with ensemble learning method20 such as Adaboost and AsymBoost.21 In

the study of undersampling methods, noise filtering is needed in data preprocessing for imbalanced data learning. Noise filtering mainly include

threshold-adjusted filter,22 iterative-partitioning filter,23 and KNN filter.10

We notice that the undersampling method essentially discards part of the data in a majority class through re-sampling. The experiments of

Van22 and S á ez23 proved that not all data are useful for classification. Researchers24,25 have also found that sampling in border areas can improve

the classification effect in the oversampling study. Inspired by these, we studied that how to actively discard samples with small contributions. As

the shaded data shown in Figure 1, we have an intuitive that data far away from the separating hyperplane has little contributes to classification

learning. Through probability analysis we also found that the sampling space obtained by space compression, as long as it is closer to the classification

boundary, the higher the classification accuracy. In this way, the problem is transformed into how to find an undersampling method that makes the

sample set approach the classification boundary. Therefore, we propose an method which is used adaptive space compression, weighted sampling

and ensemble learning method to make the sampling approach the classification boundary.

The rest of our paper is structured as follows. Section 2 discusses related works. The detailed description of the model is given in Section 3.

Section 4 presents extensive experiments to justify the effectiveness of our proposed method. Finally, summary and future works are included in

Section 5.

2 RELATED WORK

In present, researchers are gradually paying more attention to the imbalanced classification problem,26-28 and propose a large number of solu-

tions.29,30 The most direct method is to adjust the bias of the classifier to majority classes during classification. However, the degree of bias is difficult

to define and describe which makes this method hard to implement.26,31 Currently, data processing and classification are separated in a large num-

ber of studies. That is, they perform balance processing on imbalanced data firstly, and then start the subsequent classification tasks. From the

current research outputs, we can see that the research of undersampling methods have achieved remarkable results. The undersampling methods

are mainly based on RUS to discard some majority class data according to the distribution of data to re-balance data.32,33 There is also quite a lot of

research on clustering methods which dig out the data distribution and retain the useful samples through clustering.16,18 However, the clustering

methods need to define the cluster number first. Generally, the data distribution description will change with the number of clusters. Obviously, an

inaprociate number of cluster would amplify this difference and affect the predictive performance of the classifier, and the new dataset obtained in

this way may be very different from the raw dataset.

In recent studies, in order to determine the k value of cluster in undersampling, Tsai16 designed CBIS to solve the problem by using AP

algorithm.34 The AP algorithm measures the Euclidean distance among all data points to calculate their similarity. Then, the value of k is deter-

mined according to responsibility and availability to divide the clusters. This improvement has achieved good results. However, the clustering of AP
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algorithm still requires certain experience, and the determination of the number of clusters is still limited. Ng35 developed a method similar to clus-

tering named Hashing-Based Undersampling (HBUS). HBUS performs hash calculation on the majority class dataset, divide the majority class into

multiple subclass via hash value. The re-sampling majority dataset is determined by the mapping relationship between majority class data and the

minority class data. However, the way of dividing the space still has an impact on the final sampling selection.

Some researchers recently have introduced big data methods for sample selection which achieved good results. Koziarski36 used the concept of

mutual potential which is proposed by Krawczyk37 in oversampling to guide the selection of majority class data in undersampling. It ranks according

to the classification potential of most observers, and then determines the order of undersampling of majority class data based on this ranking. This

method brings a lot of computational overhead. Since most of the existing undersampling methods usually separate data processing from classifiers,

Peng38 suggested to parametrize the data sampler and integrated the optimization of evaluation metrics into the data sampling process. Then the

data sampling procedure is formulated as a Markov decision process (MDP), and uses reinforcement learning to train the data sampler.

It can be seen that the latest undersampling methods mentioned above are all biased sampling. The method they chose is either to preserve the

structure of the dataset through clustering, or to use some approach to increase the probability of some samples being sampled, such as hash value

and mutual potential. In other words, there is no unified theory and method on how to determine high-value samples. At present, this issue is still

open, and it is also a promising field.

3 PROPOSED METHOD

In this section, we propose an undersampling method as shown in Figure 2. First, we preprocess the raw data to remove the noise in the dataset and

obtain a preliminary separation hyperplane H as classification boundary. Then, we apply an adaptive space compression technique to make sampling

space of undersampling closed to H. Finally, a combination of weighted sampling and ensemble learning is used to approach the H.

F I G U R E 2 The steps of the proposed method
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F I G U R E 3 The noise of minority class in majority class

3.1 Preprocessing

Before the re-sampling method, we refer to the work of Kang10 to preprocess the data. That is, as shown in Figure 3, we use KNN approach to filter

the circle samples surrounded by triangle samples as noise. The new dataset thus obtained will be used to construct a classification model.

The proposed method is to extract data from both the vertical and parallel directions on separating hyperplane. Obviously, the separating hyper-

plane is the foundation. Therefore, we roughly divide all samples by using linear SVM to obtain the hyperplane. Herein, the linear kernel function is

used in SVM and its formula is shown in Equation (1):

K(x, xi) = x ⋅ xi (1)

Then, the hyperplane ̂H formula is as follows:

̂H ∶ wx + b = 0 (2)

3.2 Adaptive space compression technique based on separation hyperplane

3.2.1 Theoretical analysis of space compression based on separating hyperplane

In this part, we will first conduct probabilistic analysis to prove that it is feasible to find high-contribution samples through space compression. Then

the algorithm will be designed.

There is an imbalanced dataset D with two classes, one is Du, the other is Db, and |Du|∕|Db| > 1.5. We denote the class label of D by Ci ∈ {u, b}
and the sample as xi, i ∈ {1, · · · , n}.

Consider a set Dus whose elements are sampled from the majority class Du with a probability measure 𝜇 in a Hilbert space. Herein, 𝜇 has a

bounded supportu.

Definition 1. Let B
𝜖
(x) ⊂  denote an open ball of a radius 𝜖 around sample x:

B
𝜖
(x) = {u ∈  ∶ ||x − u|| < 𝜖} (3)

Then, the covering number ofu, (𝜖,u) is defined as the smallest number of a series of B
𝜖

whose union containsu:

 (𝜖,u) = inf{k ∶ ∃u1, · · · , uk ∈ Hs.t.u⊂

k⋃

i=1

B
𝜖
(ui)} (4)
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Definition 2. The support of the probability measure 𝜇 defined on Du is defined as:

u = {x ∈ Du ∶ ∀𝜖 > 0, 𝜇(B
𝜖
(x)) > 0}

Lemma 1. Let H be a separating hyperplane for the D. Its training set  is consisted of Db and Dus. Dus contain at least Nu samples which are drawn i.i.d.

according to a probability measure 𝜇 fromu. Herein, Nu ≥  (𝜖∕2,u). Then the probability of classification accuracy from thewith the linear classifier

is lower bounded as:

Pr( ̂C(x) = u) ≥ 1 −
 (𝜖∕2,u)

2Nu
(5)

Proof. Let Nu = n. For any xi ∈u, we have

Pr(||x − xi|| > 𝜖|xi) = (1 − 𝜇(B𝜖(xi)))n−1

Following Kulkarni and Posner,39 we take an 𝜖∕2-covering ofu and get a series of balls,1,2, · · · , (𝜖∕2,u). For xk ∈u, ∃j ⊂ B
𝜖
(xk). Let N =

 (𝜖,u). We can define an 𝜖∕2 -partition as follows.

∀i = 1,2, · · · ,N, let

Pi = i −
⋃

k≠i

k.

Then Pi ⊂ i, and

N⋃

i=1

Pi=
N⋃

i=1

i

Furthermore, Pi ∩ Pj = 0, and

𝜎

N
i=1𝜇(Pi) = 1.

Then, for xk ∈u, ∃Pi ⊂ i ⊂ B
𝜖
(xk) is established. Namely, pi = 𝜇(Pi) ≤ 𝜇(B𝜖(xk)). Hence

Pr(||x − xi|| > 𝜖|xi) = (1 − pi)n−1

and

Pr(||x − xi|| > 𝜖) = ΣN
i=1pi(1 − pi)n−1

.

We use the result in the proof of Theorem 1 in Reference 39, that is

Pr(||x − xi|| > 𝜖) ≤
N

2n

And following Vural,40 we get the lower bound of probability of classification accuracy:

Pr(||x − xi|| < 𝜖) ≥ 1 −
 (𝜖∕2,u)

2Nu

namely,

Pr( ̂C(x) = u) ≥ 1 −
 (𝜖∕2,u)

2Nu

▪

Theorem 1. There is an ideal separation hyperplane H on the dataset D, which can classify Db and Du perfectly. Let the hyperplane called H′ which is parallel

to H and their distance is L. Then BL is the space enveloped by H and H′. Set Dus is sampled i.i.d from BL. Then the accuracy of the classification model f obtained

by training on Dus and Db increases as L decreases.
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Proof. In order to balance with the minority class, we sample a total of Nu = 1.5 × |Db| objects to form Dus in every undersampling. Then, according

to Equation (3), when the value of Nu does not change, (𝜖∕2,u)will become smaller as the value of L becomes smaller. Namely,

1 −
 (𝜖∕2,u)

2Nu

will become larger accordingly. ▪

3.2.2 Adaptive space compression technique

According to the above theoretical analysis, we argue that the closer to the separation hyperplane to sample, the better the classification model

obtained. Therefore, as shown in the Figure 4, we first obtain Lmax which is the maximum distance between sample of majority class Du to ̂H. Then,

let L = Lmax × 𝛼, where 𝛼 is the space compression factor and 𝛼 < 1. In this way, the compressed space BL is obtained. Finally, random samples are

drawn from BL to form Dus. Herein, the compression factor 𝛼 needs to be determined. Obviously, the compression factor of datasets with different

imbalance rates are different. Therefore, we adopt an adaptive method to set 𝛼. Since the number of decimation is set to be 1.5 × |Db|, we keep

reducing 𝛼 until the number of samples in the compressed space is between 1.5 × |Db| and 2 × |Db|. The detailed process is shown in Algorithm 1.

3.3 Weighted sampling based on separating hyperplane

3.3.1 Theoretical analysis of sampling in the directions of parallel separating hyperplanes

As shown in Figure 5, if the undersampling is done only one time, there will be few samples involved in the construction of the classification model in

the direction of the parallel separating hyperplane. Therefore, it is generally perform undersampling multiple times and ensemble learning is used

to increase the direction of the parallel separation hyperplane. But what will happen to this increase? We will conduct the following analysis.

Lemma 2. For an imbalanced dataset D, its majority class Du has m samples. Random sampling is performed m times with replacement in Du, and one sample

is drawn in each time. When m →∞, the probability of sample Xi not being selected is 1∕e. Namely,

lim
m→∞

Pr(Xi) =
1
e

(6)

F I G U R E 4 Compression space BL
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Algorithm 1. ASC: Adaptive space compression

Input: Training dataset D

Minority class Db

Hyperplane ̂H

Multiple factor rDecreasing number d

Output: Compressed space dataset BL

Set Space compression factor 𝛼 = 1, k = 0

for i = 1 to n do

Calculate the distance Li from the sample xi to the ̂H.

Li ←
1

|w|
(wSi + b)

Put Li into distance set dset

Gain Lmax

end for

while !(r × |Db|>k>1.5 × |Db|) do

BL ← 𝜙

for j = 1 to n do

k ← 0

if Lj ≤ 𝛼Lmax then

bk ← xj

Put bj into BL

k++

end if

end for

𝛼 ← 𝛼 − d

end while

F I G U R E 5 Ensemble learning of under-sampling classification
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Proof. The probability of a sample being drawn is 1∕m, and the probability of not being drawn is (1 − 1∕m). If it is drawn m times, the probability of

sample Xi not being drawn is

(

1 − 1
m

)m

When m →∞,

(

1 − 1
m

)m

= 1
e

▪

From Lemma 2, we can know that if sampling with replacement is used. Even if you draw an infinite number of times, 36.8% of the samples will

not be drawn. Obviously, this will greatly affect the effect of classification.

Theorem 2. For an imbalanced dataset D, its majority class Du has m samples. t samples are randomly selected in each time without replacement. In this way,

m times consecutive extractions are done. When m →∞, the probability of sample Xi not being selected is

Pr(Xi) =
(

1 − t
m

)m

(7)

Proof. The probability of a sample being drawn is 1∕m, and the probability of not being drawn is

(

1 − 1
m

)(

1 − 1
m − 1

)

· · ·
(

1 − 1
m − (t − 2)

)(

1 − 1
m − (t − 1)

)

= 1 − t
m
.

Thus, after m times consecutive extractions, the probability of a sample not being drawn is

(

1 − t
m

)m

.

▪

It can be known from Lemma 2 and Theorem 2 that when the number of samples of a majority class m is far greater than the number of sampling

t, t∕m will be very close to 1∕m. That is, about 36.8% of the samples in the parallel direction close to H will not be drawn to construct a classification

model. For ensemble learning in this situation, the probability of a sample not being drawn is

(

1 − t
m

)a

.

where a is not an infinite number. It represents the number of classifiers in ensemble learning. That is, the number of undersampling classifications.

Obviously,

1 − t
m
>

(

1 − t
m

)a

>

(

1 − t
m

)m

.

It can be seen from the above formula that ensemble learning using random sampling is better than single undersampling classification. However,

there are still quite a few samples in the direction of the parallel separating hyperplane that have not been used to construct the classification model.

3.3.2 Weight generation mechanism based on separating hyperplane and its sampling

In order to get a large spreading area of samples near the separation hyperplane, an effective method is requied which will increase the probability

of samples close to H and reduce the probability of samples far from H in the BL space. Therefore, we propose a weight generation mechanism based

on separating hyperplanes. Firstly, the sample i obtains a random sampling probability ui through uniform distribution. Then, ui is scaled according

to the distance between i and the separating hyperplane H to get a new probability ki. And the ki is given in Equation (7):

⎧
⎪
⎨
⎪
⎩

ki = u
||w||

wxi+b

i

ui = random(0,1)
(8)

And the weighting random sampling procedure is shown in Algorithm 2.
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Algorithm 2. WRS: Weighting random sampling

Input: Minority class Db

Compressed space dataset BL

Output: Sampling results Dus

U ← ∅
for i = 1 to |BL| do

Use Equation (7) to get ki

Put ki into U

end for

K ← ⌊1.5 × |Db|⌋

S ← select the top K in U

for i = 1 to K do

j ← index of Si

Put bj into Dus

end for

Algorithm 3. UACB

Input: imbalanced dataset D

Multiple factor r

Decreasing number d

Output: Classification model f

D′ ← KNN(D)
̂H ← linear svm(D′)

BL ←ASC(D′
,Db,

̂H, r, d)

for i = 1 to n do

D(i)
us ←WRS(Db,BL)

end for

f ←AdaBoost(Dus)

3.4 Our method: UACB and its time complexity

According to the foregoing description, we named our method UACB (Undersampling of Approaching the Classification Boundary). Then the

algorithm is shown as follows (Algorithm 3).

In order to have enough objects in BL to be sampled, we set the number of samples in BL to be between 1.5- r times of |Db|. The main reason is that

BL is closer to the ideal classification boundary H the better the effect which we get by theoretically analyzed. But, we are using the linear separation

hyperplane ̂H to simulate the H. The sampling result will be biased towards to ̂H and deviated from H. We note that WRS is a random sampling with

a weight biased towards to ̂H. Therefore, as long as there are enough objects in BL to be sampled, some samples biased to H will have chance to be

sampled. Then the problem will be alleviated.

Next, we analyze the time complexity of UACB. Firstly, Assuming the time complexity of KNN and linear SVM in preprocessing are both O(N2).
Then, in the vertical of to H, the time complexity of compressing the space to obtain BL is O(N). And the Weighting random sampling is O(N). Lastly, the

AdaBoost’s time complexity is O(N2). Therefore, the time complexity of UACB is

O(N2) + O(N2) + O(N) + O(N) + O(N2) = O(N2).

4 EXPERIMENTS AND RESULTS

In this section, we present the details of experiments to test the proposed method UACB. First, we introduce the experimental setup, includ-

ing datasets, benchmark methods, parameters and metrices. Second, we do the results analysis including comparation with the benchmark

methods.
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TA B L E 1 Dataset statistics

Dataset Dimension Examples Ir

Abalone9-18 8 731 16.4

Ecoli-0_vs_1 7 220 1.86

Ecoli1 7 336 3.36

Car-good 6 1728 24.04

Cleveland-0_vs_4 13 177 12.62

Dermatology-6 34 358 16.9

Glass-0-1-2-3_vs_4-5-6 9 214 3.2

Iris0 4 150 2

Kr-vs-k-zero-one_vs_draw 6 2901 26.63

New-thyroid2 5 215 5.14

Page-blocks0 10 5472 8.79

Segment0 19 2308 6.02

Shuttle-c0-vs-c4 9 1829 13.87

Shuttle-c2-vs-c4 9 129 20.5

Led7digit-0-2-4-5-6-7-8-9_vs_1 7 443 10.97

Vehicle1 18 846 2.9

Winequality-white-3_vs_7 11 900 44

Page-blocks-1-3_vs_4 10 472 15.86

Yeast-1-4-5-8_vs_7 8 693 22.1

Paw02a-600-5-30-BI 2 600 5

Yeast5 8 1484 32.73

4.1 Experimental setup

Datasets We conduct experiments on 21 imbalanced datasets from keel*. The relevant information of the datasets is shown in Table 1. We can see

that the range of imbalance rate (ir) of datasets is (1.86,44), the range of examples of datasets is (129,5472), and the range of dimension of datasets

is (2,34). For each dataset, we used a 5-fold cross validation method to carry out the experiment, and repeat it 10 times. Herein, the average of 10

results of the experiment is used as the final results.

Benchmark methods As mentioned in Section 2, we used 5 latest imbalanced undersampling methods and 2 classic algorithims listed below as

our benchmark methods.

1. RUS13 randomly selects the number of samples from majority class as equal as minority class, then obtains a classifier by using AdaBoost.

2. CBUS41 uses the k-means method to find k cluster centers in the majority class, and select samples which nearest to the centroid in its i th cluster

from majority class . At last, AdaBoost is used to obtain a classifier.

3. CBIS16 uses the AP algorithm to cluster data of majority class, then uses the IS342 method to select samples from each cluster of majority class,

combine them with minority class samples to form train set. Then ensembles learning is used to get the classifier.

4. RBU36 uses the Gaussian kernel function to calculate the mutual class relationship between the majority class samples and the minority class

objects based on the mutual class potential, and through the diffusion kernel radius to achieve the balance of majority and minority class. Finally

the naive bayes is applied to get classification.

5. HUE35 uses IQT43 algorithm to divide the majority class space into multiple hash subspaces, then calculates the Hamming distance between the

subspace and the minority class space, and then weights them to obtain the selected subspace. At the same time, in order not to lose all other

majority class information, The subspace is set to be the reference subspace, and most other samples are selected to form the final sample set.

Finally the classifier is trained by using ensemble learning.

6. TU38 is a deep learning method. It parameterize the data sampler, optimize and integrate the evaluation metric into the data sampling process,

then abstract this process into a Markov process. The classification model is trained via reinforcement learning.
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7. UA-KF10 performs noise filtering on minority class data, then randomly undersamples majority data, and finally uses AdaBoost for ensembles

learning.

Parameters and Metrices In our proposed method, we set k = 15 in the KNN filtering step, and use 5 cart trees as weak classifiers in AdaBoost

step.

It is well known that the ratio of the majority class to the minority class exceeds 1.5 as imbalanced data, so we set the ratio of the sampled data

to the ratio of the majority class to the minority class to 1.5.

For an imbalance dataset, accuracy of classification will be bias to data of majority class. The result of accuracy is not convincing. In this work, we

use two criterion, F-measure and AUC, to evaluate experimental performance.44,45 The F-measure is calculated according to Equation (14). AUC can

be obtained by calculating the area of ROC. ROC is the relationship curve between False Positive Rate and True Positive Rate. The relevant formula

is as follows,

False Positive Rate = FP
FP + TN

(9)

True Positive Rate = TP
TP + FN

(10)

False Negative Rate = TN
TN + FP

(11)

Precision = TP
TP + FP

(12)

Recall = TP
TP + FN

(13)

Fmeasure = 2 × Precision × Recall
Precision + Recall

(14)

and the meaning of the variables involved in the formula is shown in Table 2.

4.2 Experiments

4.2.1 Analysis of KNN filtering noise

We adopted the KNN method to filter the noise of the dataset. In order to determine whether this step is effective, we compared the UACB algorithm

with the KNN denoising step and the UACB without of this step. It can be seen from Figure 6 that KNN can improve the algorithm in the all datasets.

In order to further distinguish whether the effect of the algorithm is completely caused by denoising, we compared UACB with UA-KF. UA-KF is

the recently released algorithm that we can find in authoritative journals that uses KNN denoising and random undersampling. From Figure 6, we

can see that whether UACB uses KNN to denoise or not, its results are better than UA-KF. This shows that although KNN denoising improves our

algorithm, the improvement of the algorithm result is mainly caused by sampling in the vertical and parallel directions on the separating hyperplane.

4.2.2 Analysis of the effect of space compression

It is known from Theorem 1 that the closer the separation hyperplane is to the sampling, the better the classification result. In this section, experi-

ments is designed to verify it. We used a series of 𝛼 values to test the performance of our algorithm in different compressed spaces. Then, it is shown

in Tables 3,4, we set the value of 𝛼 to 1, 0.75, 0.5, 0.25, 0.2. Relying on these settings, we can find from Tables 3,4 that the classification results of each

dataset gradually become better with the decrease of the space compression factor 𝛼. That is, the feasibility of the space compression proposed by

us is confirmed from both the experimental results and the probability analysis.

TA B L E 2 Confusion matrix

Predicted positive Predicted negative

Actual positive True Positive(TP) False negative(FN)

Actual negative False Positive(FP) True negative(TN)



12 of 17 JIANG ET AL.

(A) AUC (B) F-measure

F I G U R E 6 Comparison with KNN filtering

TA B L E 3 AUC of different ratio, “—” indicates that sufficient majority class samples cannot be obtained under the corresponding ratio

Dataset 1 0.75 0.5 0.25 0.2

Abalone9-18 0.9091 0.9276 0.9357 — —

Ecoli-0_vs_1 1 1 1 1 1

Ecoli1 0.9787 0.9803 0.9811 0.9828 0.9881

Car_good 0.9916 0.9984 — — —

Cleveland-0_vs_4 0.95 0.975 1 1 1

Dermatology-6 1 1 1 1 1

Glass-0-1-2-3_vs_4-5-6 0.9884 0.9969 0.9984 0.9992 0.9969

Iris0 1 1 1 1 —

Kr-vs-k-zero-one_vs_draw 0.991 0.9943 0.9935 0.9975 0.9961

New-thyroid2 0.9987 0.9968 0.9984 0.9989 0.9989

Page-blocks0 0.9872 0.9855 0.9846 0.9842 0.9838

Segment0 0.9986 0.9971 0.9984 0.9989 0.9985

Shuttle-c0-vs-c4 1 1 1 — —

Shuttle-c2-vs-c4 1 — — — —

Led7digit-0-2-4-5-6-7-8-9_vs_1 1 1 0.9933 1 1

Vehicle1 0.8519 0.8582 0.8643 0.8732 0.8483

Winequality-white-3_vs_7 0.8501 0.8375 — — —

Page-blocks-1-3_vs_4 0.9833 0.9942 0.9952 0.9928 0.9846

Yeast-1-4-5-8_vs_7 0.8083 — — — —

Paw02a-600-5-30-BI 0.9131 — — — —

Yeast5 0.9909 0.9916 0.9937 — —

4.2.3 Displaying the distribution of weighted random sampling based on separation hyperplane

In this section, we will visualize the sample distribution from the weighted random sampling based on the separating hyperplane and analyze its

effect. Here, the combination of the second and sixth feature in the 9-dimensional dataset εshuttle-c0-vs-c4ε is used to visualize the effect of

weighted random sampling (Figure 7). The minority class in the figure is marked with triangles, and the majority class after undersampling are marked

with circles.
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TA B L E 4 F-measure of different ratio, “—” indicates that sufficient majority class samples cannot be obtained under the corresponding ratio

Dataset 1 0.75 0.5 0.25 0.2

Abalone9-18 0.7851 0.8738 0.9018 — —

Ecoli-0_vs_1 1 1 1 1 1

Ecoli1 0.9742 0.9631 0.9741 0.9806 0.9867

Car_good 0.9806 0.9862 — — —

Cleveland-0_vs_4 0.9333 0.9333 1 1 1

Dermatology-6 1 1 1 1 1

Glass-0-1-2-3_vs_4-5-6 0.9512 0.9603 0.9639 0.9789 0.9694

Iris0 1 1 1 1 —

Kr-vs-k-zero-one_vs_draw 0.9716 0.9818 0.9766 0.9862 0.9837

New-thyroid2 0.9867 0.9867 0.9846 0.9933 0.9867

Page-blocks0 0.9225 0.9181 0.9151 0.9164 0.9121

Segment0 0.9862 0.9924 0.9892 0.9879 0.9883

Shuttle-c0-vs-c4 1 1 1 — —

Shuttle-c2-vs-c4 1 — — — —

Led7digit-0-2-4-5-6-7-8-9_vs_1 0.9692 0.9846 0.9814 0.9846 0.9846

Vehicle1 0.7106 0.7236 0.7413 0.7568 0.7413

Winequality-white-3_vs_7 0.7933 0.7433 — — —

Page-blocks-1-3_vs_4 0.9664 0.9628 0.9646 0.9746 0.9625

Yeast-1-4-5-8_vs_7 0.7266 — — — —

Paw02a-600-5-30-BI 0.9381 — — — —

Yeast5 0.9882 0.9777 0.9882 — —

Firstly, from Figure 7A,B, we can see that all sampling results after 8 times boost in ensemble learning are basically consistent with the distri-

bution that has not been undersampled after space compression. Consider the situation of other datasets, we finally set the number of ensemble

learning to 10 times.

Secondly, Figure 7C,D verify that the probability of repeated sampling of samples near the boundary increases when weighted random sampling

is used. At the same time, the boundary formed by them is quite clear. Obviously, the model effect obtained in this way will be better.

Finally, since we set the weights based on the separating hyperplane ̂H and ̂H is probably not the best, the majority class after undersampling

may have some bias. From Figure 7 we can see that although those ̂H-based objects will be sampled multiple times in the ensemble learning, other

objects still have a chance to be sampled. This will disturb it and improve the accuracy of the final result.

4.2.4 Experiments analysis

Comparison with classic algorithms We chose two classic algorithms of RUS (based on random extraction) and CBUS (based on clustering)

for comparison. Under the AUC indicator, it can be seen from Table 5 that the UACB method is ahead of RUS in the other 20 datasets except

winequality-white-3_vs_7. Among them, 8 datasets are far ahead (the difference exceeds 3). Simultaneously, we can see that UACB is better than

CBUS in all 21 datasets, and 14 datasets are significantly ahead. From Table 6, we can also conclude that UACB is still superior to RUS and CBUS

under the F-measure evaluation.

Comparison with latest algorithms We used the latest undersampling method published in 3 authoritative journals and 1 top conference

to compare with UACB. As shown in Tables 5,6. It can be seen from the experimental results that UACB is superior to other imbalanced sampling

methods, which fully demonstrates the effectiveness of UACB. AUC average of UACB were 2.00%, 5.17%, 2.74%, 3.68%better than CBIS, RBU, HUE

and TU respectively. And F-measure average of UACB are 4.37%, 11.65%, 5.90%, 5.98% better than these algorithms respectively.

CBIS uses AP algorithm for clustering and uses IS3 algorithm to select samples. HUE divides the majority class space into multiple hash sub-

spaces, then calculates the Hamming distance between the subspace and minority class space, and then weights them to obtain the selected
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(A) Data that is not undersampled after compression (B) All objects sampled after eight times ensemble learning

(C) Objects sampled ≥ 4 after eight times boost in ensemble learning (D) Objects sampled ≥ 6 after eight times boost in ensemble learning

F I G U R E 7 Data distribution of undersampling ensemble learning after space compression of shuttle-c0-vs-c4

TA B L E 5 AUC of comparison methods

Dataset UACB RUS CBUS CBIS RBU HUE TU UA-KF

Abalone9-18 0.9357 0.8369 0.6598 0.8892 0.8084 0.8312 0.8949 0.8446

Ecoli-0_vs_1 1 0.9932 0.9895 0.9823 0.9528 0.9945 0.9938 0.9902

Ecoli1 0.9881 0.9375 0.9214 0.9586 0.9038 0.9325 0.9544 0.9441

Car-good 0.9984 0.9703 0.9923 0.9817 0.9053 0.9847 0.9978 0.9053

Cleveland-0_vs_4 1 0.9333 0.9935 1 0.8739 1 0.9000 0.8739

Dermatology-6 1 0.9575 0.9750 0.9875 0.9985 0.9473 0.9975 0.9985

Glass-0-1-2-3_vs_4-5-6 0.9969 0.9785 0.9138 0.9547 0.9914 09359 0.9585 0.9914

Iris0 1 1 1 1 1 1 1 1

Kr-vs-k-zero-one_vs_draw 0.9961 0.9668 0.9945 0.9831 0.8781 0.9912 0.9791 0.8781

New-thyroid2 0.9989 0.9962 0.9857 0.9567 0.9437 0.9956 0.9926 0.9896

Page-blocks0 0.9838 0.9573 0.9665 0.9780 0.9401 0.9672 0.9668 0.9518

Segment0 0.9985 0.9929 0.9885 0.9968 0.9968 0.9928 0.9973 0.9903

Shuttle-c0-vs-c4 1 1 1 1 1 1 1 1

Shuttle-c2-vs-c4 1 1 0.95 1 1 1 1 0.95

Led7digit-0-2-4-5-6-7-8-9_vs_1 1 0.9841 0.9431 0.9556 0.9862 0.9512 0.9473 0.9862

Vehicle1 0.8483 0.7613 0.7601 0.8214 0.8006 0.8031 0.6783 0.7757

Winequality-white-3_vs_7 0.8375 0.8750 0.8212 0.8464 0.8243 0.7815 0.6035 0.8334

Page-blocks-1-3_vs_4 0.9846 0.9733 0.9562 0.9633 0.9927 0.9366 0.9966 0.9927

Paw02a-600-5-30-BI 0.9131 0.8385 0.8162 0.8955 0.8116 0.8725 0.8927 0.8116

Yeast-1-4-5-8_vs_7 0.8083 0.7055 0.7672 0.7334 0.6274 0.8043 0.7731 0.725

Yeast5 0.9937 0.9873 0.9819 0.9781 0.9613 0.9834 0.9873 0.9771

Average 0.9658 0.9355 0.9227 0.9458 0.9141 0.9384 0.9290 0.9243
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TA B L E 6 F-measure of comparison methods

Dataset UACB RUS CBUS CBIS RBU HUE TU UA-KF

Abalone9-18 0.9018 0.775 0.6082 0.7032 0.7033 0.7623 0.7226 0.7244

Ecoli-0_vs_1 1 0.9736 0.9874 0.9213 0.9351 0.9937 0.9934 0.9733

Ecoli1 0.9867 0.8439 0.8769 0.8423 0.8001 0.7564 0.9349 0.9144

Car-good 0.9862 0.9396 0.9851 0.9506 0.8345 0.9725 0.9664 0.8345

Cleveland-0_vs_4 1 0.8099 0.9718 0.9714 0.7421 0.9600 0.8914 0.7421

Dermatology-6 1 0.9382 0.9536 0.9627 0.9199 0.9218 0.9778 0.9199

Glass-0-1-2-3_vs_4-5-6 0.9694 0.9318 0.8426 0.9442 0.8582 0.8708 0.9135 0.8582

Iris0 1 1 1 1 1 1 1 1

Kr-vs-k-zero-one_vs_draw 0.9837 0.8884 0.9532 0.9242 0.7359 0.9528 0.9258 0.7359

New-thyroid2 0.9867 0.9866 0.9867 0.9372 0.8928 0.9904 0.9864 0.9359

Page-blocks0 0.9121 0.8879 0.8791 0.9258 0.7568 0.7641 0.9026 0.8127

Segment0 0.9883 0.9845 0.9756 0.9774 0.9774 0.9919 0.9857 0.9802

Shuttle-c0-vs-c4 1 1 1 1 0.9957 1 1 1

Shuttle-c2-vs-c4 1 1 0.9332 1 1 0.9324 1 0.83

Led7digit-0-2-4-5-6-7-8-9_vs_1 0.9846 0.9346 0.8602 0.8625 0.7652 0.8863 0.9061 0.7652

Vehicle1 0.7413 0.7075 0.6637 0.7543 0.6552 0.6923 0.5903 0.6651

Winequality-white-3_vs_7 0.7433 0.8099 0.7276 0.7859 0.6874 0.7032 0.5576 0.76

Page-blocks-1-3_vs_4 0.9625 0.9511 0.9173 0.9442 0.8918 0.9512 0.9484 0.8918

Paw02a-600-5-30-BI 0.9381 0.7796 0.7488 0.8842 0.7029 0.7926 0.8513 0.7029

Yeast-1-4-5-8_vs_7 0.7266 0.6104 0.6204 0.6553 0.5848 0.6903 0.6534 0.6588

Yeast5 0.9882 0.966 0.9567 0.9346 0.9137 0.9751 0.8359 0.9671

Average 0.9428 0.8914 0.8785 0.8991 0.8263 0.8838 0.8830 0.8415

subspace. In order not to lose all other majority class information, select other majority samples to form the final majority sample set. In other word,

both CBIS and HUE retain the structure of majority class. In this way, samples that are far away from the separating hyperplane that characterize the

majority class structure will be selected. But, from Theorem 1, we know that samples far away from the separation hyperplane contribute little to

the final construction of the classification model. UACB does not have such a problem, so its results are better than CBIS and HUE. RBU is based on

the mutual class potential. It calculates the mutual class relationship between majority class sample and minority class data through the Gaussian

kernel function. However, the samples of the minority class are fixed and the number is small, so the range of samples selected from the majority

class is determined. Therefore, the training set samples formed in this way lose their diversity. That is to say, the sampling of the majority class relying

on the characteristics of the minority class. It will lose the characteristics of the majority class, which will affect the final classification results. TU is

a deep learning method. Its results obtained by using the network architecture and parameters provided by the method proponent are worse than

UACB. We believe that it can use better network structure and parameters to get better results. But there is no good way to guide how to find them.

Based on the above analysis of the results, we can clearly see that for most datasets, guiding sampling of majority class with sapce compresson

and weighted random sampling will improve the AUC and F-measure results in classification task. At the same time, it can be seen from Tables 5 and

6 that we can actively discard some small contribution data samples when we process data with the imbalanced undersampling method.

5 CONCLUSION

The imbalance problem exists in applications in many fields and affects the results of classification. It is very promising to study it. This work pro-

poses a new undersampling method named UACB to deal with imbalance problems. The proposed method is mainly to perform space compression

in the vertical direction of the separation hyperplane, and then use weighted sampling combined with ensemble learning to make the sampled

objects spread more widely near the separating hyperplane. We conducted experiments on 21 datasets and compared the proposed method with
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7 competitive methods. The experimental results indicate that the proposed method outperforms other alternatives in most cases in terms of AUC

and F-measure. Through experiments, we have two understandings. Firstly, that denoising plays a role in the imbalance classification problem, but

the effect in UACB is mainly obtained by space compression and ensemble learning. Secondly, we believe that the success of UACB lies in that the

sampling near the classification boundary makes the classification model approach the ideal state through the boosting of the many weak classifier.

Therefore, an effective research direction in the future is how to find an effective method to make the model more close to the ideal state in the

imbalanced classification problem.
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37. Krawczyk B, Koziarski M, Woźniak M. Radial-based oversampling for multiclass imbalanced data classification. IEEE Trans Neural Netw Learn Syst.

2019;31(8):2818-2831.

38. Peng M, Zhang Q, Xing X, et al. Trainable undersampling for class-imbalance learning. Paper presented at: 33 of Proceedings of the AAAI Conference on

Artificial Intelligence; 2019:4707-4714.

39. Kulkarni SR, Posner SE. Rates of convergence of nearest neighbor estimation under arbitrary sampling. IEEE Trans Inf Theory. 1995;41(4):1028-1039.

40. Vural E, Guillemot C. A study of the classification of low-dimensional data with supervised manifold learning. J. Mach. Learn. Res. 2017;18(1):5741-5795.

41. Zhang YP, Zhang LN, Wang YC. Cluster-based majority under-sampling approaches for class imbalance learning. Paper presented at: 2010 2nd IEEE

International Conference on Information and Financial Engineering, IEEE; 2010:400-404.

42. Aha DW, Kibler DF, Albert MK. Instance-based learning algorithms. Mach Learn. 1991;6(1):37-66.

43. Gong Y, Lazebnik S, Gordo A, Perronnin F. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE
Trans Pattern Anal Mach Intell. 2012;35(12):2916-2929.

44. Bradley A. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997;30(7):1145-1159.

45. Powers DM. Evaluation: from precision, recall, and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061; 2011.

How to cite this article: Jiang L, Yuan P, Liao J, Zhang Q, Liu J, Li K. Undersampling of approaching the classification boundary for

imbalance problem. Concurrency Computat Pract Exper. 2023;35(6):e7586. doi: 10.1002/cpe.7586

info:doi/10.1002/cpe.6235

	Undersampling of approaching the classification boundary for imbalance problem 
	1 INTRODUCTION
	2 RELATED WORK
	3 PROPOSED METHOD
	3.1 Preprocessing
	3.2 Adaptive space compression technique based on separation hyperplane
	3.2.1 Theoretical analysis of space compression based on separating hyperplane
	3.2.2 Adaptive space compression technique

	3.3 Weighted sampling based on separating hyperplane
	3.3.1 Theoretical analysis of sampling in the directions of parallel separating hyperplanes
	3.3.2 Weight generation mechanism based on separating hyperplane and its sampling

	3.4 Our method: UACB and its time complexity

	4 EXPERIMENTS AND RESULTS
	4.1 Experimental setup
	4.2 Experiments
	4.2.1 Analysis of KNN filtering noise
	4.2.2 Analysis of the effect of space compression
	4.2.3 Displaying the distribution of weighted random sampling based on separation hyperplane
	4.2.4 Experiments analysis


	5 CONCLUSION

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

