
Knowledge-Based Systems 296 (2024) 111940

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Flexible job shop scheduling via deep reinforcement learning with
meta-path-based heterogeneous graph neural network
Lanjun Wan a,∗, Long Fu a, Changyun Li a, Keqin Li b

a School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China
b Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA

A R T I C L E I N F O

Keywords:
Deep reinforcement learning
Flexible job shop scheduling problem
Graph neural network
Heterogeneous graph
Markov decision process

A B S T R A C T

The flexible job shop scheduling problem (FJSP) is an important production scheduling problem in intelligent
manufacturing. How to model the complex FJSP more accurately and improve the efficiency and generalization
of scheduling policies is an urgent challenge to be solved. Therefore, a new end-to-end deep reinforcement
learning (DRL) method combined with the meta-path-based heterogeneous graph neural network (MHGNN)
is proposed to effectively solve FJSP. The task of solving FJSP is decomposed into two subtasks of operation
selection and machine allocation. This dual-task FJSP is represented by introducing a heterogeneous graph and
modeled as the dual Markov decision process (DMDP). A MHGNN is proposed to embed the global scheduling
states of the dual-task FJSP. A heterogeneous graph neural network (GNN) framework is designed for the
dual-task FJSP to efficiently encode the operation nodes and machine nodes, where the extracted embedded
feature information is used to represent the operation selection policy and the machine allocation policy. Two
policy networks are designed to efficiently predict the operation selection policy and the machine allocation
policy, and a soft double-actors critic algorithm is proposed to train these two policy networks, where the
trained policies can be used to efficiently solve FJSP instances of different scales. The experiments on three
public benchmarks show that the proposed method outperforms the well-known heuristic scheduling rules and
some advanced methods for solving FJSP. In particular, when solving large-scale FJSPs, the proposed method
performs more prominently in terms of solution quality and solution time.
1. Introduction

With the development of economic globalization, traditional flexible
manufacturing is facing significant challenges and finding it difficult
to meet the requirements of the market [1]. To cope with these dif-
ficulties, the flexible job shop scheduling has gradually become the
focus of manufacturing enterprises. FJSP is an NP-hard combinatorial
optimization problem. Compared with the job shop scheduling problem
(JSSP), FJSP relaxes the restrictions on machines so that each operation
can be processed on multiple compatible machines for each job, which
makes FJSP more flexible and sophisticated.

Recently, the methods used to solve FJSP can be broadly classified
into exact algorithms, heuristic algorithms, meta-heuristic algorithms,
and DRL methods [2]. The exact algorithms [3–5] seek the optimal so-
lution by exhausting all possible scheduling schemes. They often model
the FJSP mathematically and solve it using a mathematical program-
ming model. However, as the scale of FJSP increases, the computational
complexity of the exact algorithms grows exponentially. The heuristic
algorithms [6–8] utilize heuristic rules and search strategies to solve

∗ Corresponding author.
E-mail address: wanlanjun@hut.edu.cn (L. Wan).

FJSP, which has certain randomness and adaptability. They can find
the approximate optimal solutions in a short time when solving FJSP,
but they cannot guarantee to search for the global optimal solution. The
meta-heuristic algorithms [9–11] improve the solution performance by
combining multiple basic heuristic algorithms or adaptively modify-
ing the parameters of the heuristic algorithm, and they are suitable
for solving FJSPs in different scenarios. However, they require many
computational resources when solving large-scale FJSPs, and they are
easy to fall into local optimal solutions without jumping out. The DRL
methods [12–15] can learn the decision process of the scheduling poli-
cies from the original input data without defining specific scheduling
rules in advance by combining deep neural network and reinforcement
learning (RL) techniques, and they have good performance in solving
FJSPs of different scales. Because of these advantages of the DRL
methods, a DRL approach is studied to solve FJSP in this paper.

In the face of more complex FJSPs, how to effectively solve them
using DRL methods faces the following challenges: (i) how to rea-
sonably allocate each operation to one of the compatible machines;
vailable online 16 May 2024
950-7051/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.knosys.2024.111940
Received 21 August 2023; Received in revised form 31 January 2024; Accepted 10
data mining, AI training, and similar technologies.

May 2024

https://www-elsevier-com-s.libyc.nudt.edu.cn:443/locate/knosys
https://www-elsevier-com-s.libyc.nudt.edu.cn:443/locate/knosys
mailto:wanlanjun@hut-edu-cn-s.libyc.nudt.edu.cn:443
https://doi-org-s.libyc.nudt.edu.cn:443/10.1016/j.knosys.2024.111940
https://doi-org-s.libyc.nudt.edu.cn:443/10.1016/j.knosys.2024.111940
http://crossmark.crossref.org.libyc.nudt.edu.cn:80/dialog/?doi=10.1016/j.knosys.2024.111940&domain=pdf

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.
(ii) how to extract more effective global scheduling information using
deep neural networks; and (iii) how to make the trained scheduling
policies efficiently solve FJSPs of different scales. In view of this, a new
end-to-end DRL approach is proposed to efficiently solve FJSP. First,
the operation selection and machine allocation in FJSP are separated
into two different decisions instead of an integrated decision, which is
convenient for the decision-making agent to perform operation selec-
tion and machine allocation. Second, a heterogeneous GNN framework
based on encoder–decoders is designed to process the structure infor-
mation of the heterogeneous graph representing the global scheduling
states of FJSP, where a GNN is used as the encoder and two policy
networks are used as two decoders. Finally, a new soft double-actors
critic algorithm is proposed to efficiently train policy networks, which
seeks to maximize the reward while increasing the exploration space
of the actions, and this facilitates the generation of more scheduling
policies for the agent to select.

The main contributions of this paper are as follows.

• The task of solving FJSP is decomposed into two subtasks of
operation selection and machine allocation. This dual-task FJSP is
represented by introducing a heterogeneous graph and modeled
as the DMDP with the specially designed states, actions, and
rewards.

• A MHGNN is proposed for embedding the global scheduling
states of the dual-task FJSP. A heterogeneous GNN framework is
designed for the dual-task FJSP to efficiently encode the operation
nodes and machine nodes, where the extracted embedded feature
information is used to represent the operation selection policy and
the machine allocation policy.

• Two policy networks are designed for efficient predictions of the
operation selection policy and the machine allocation policy. A
soft double-actors critic algorithm is put forward to train these
two policy networks, where the trained policies can be used to
efficiently solve FJSP instances of different scales.

• A large number of experiments are conducted on three public
benchmarks to verify the efficiency, stability, and generalization
of the proposed method by comparing it with the well-known
heuristic scheduling rules and some advanced approaches for
solving FJSP.

The rest of the paper is organized as follows. Section 2 presents
the related work. Section 3 introduces the preliminaries. Section 4
describes the proposed method for solving FJSP. Section 5 presents
the experimental results and analysis. Finally, Section 6 provides the
conclusions and the future work.

2. Related work

2.1. Exact algorithms for solving FJSP

The exact algorithms have been applied early to solve small and
medium-scale FJSP instances. Demir and İşleyen [3] proposed five
different mathematical models for FJSPs with completion time perfor-
mance measurements and proved that the mixed-integer linear pro-
gramming (MILP) model has the smallest makespan (i.e., the max-
imum completion time) in solving FJSP. Gran et al. [4] presented
a mixed integer programming model to minimize the total process
time and makespan, which can be well applied to solve small-scale
FJSP instances. Meng et al. [5] put forward four MILP models and
a constrained planning model to minimize the makespan for the dis-
tributed FJSP. These models can obtain the optimal solution for small
and medium-scale FJSP instances. The exact algorithms can usually
obtain an exact solution in a reasonable time when solving small and
medium-scale FJSP instances. However, due to their high computa-
tional complexity, the solution time increases exponentially, thus they
are not suitable for solving large-scale FJSP instances.
2

2.2. Heuristic algorithms for solving FJSP

In recent years, heuristic algorithms have been successfully applied
to solve FJSP in a specific scenario. Zhang et al. [6] proposed a new
genetic planning algorithm to measure the importance of the machine
allocation rules and operation sequencing rules. This algorithm can
effectively solve dynamic FJSP (DFJSP) with the arrival of new jobs
by utilizing computational resources reasonably. Ai et al. [7] proposed
a new heuristic algorithm for solving FJSP with due windows. A
mathematical planning model is used to model FJSP, and the model is
solved with the genetic algorithm and quadratic programming method
respectively, which can minimize the weighted earliness or tardiness.
Zhang et al. [8] used a multi-objective MILP model to model the energy-
efficient FJSP and introduced a new heuristic algorithm to solve the
model efficiently, which effectively solves FJSP with transportation
time and sequence-dependent set-up time. The heuristic algorithms
can generate high-quality approximate solutions in a faster time when
solving FJSP, but they rely on the design of heuristic rules. The formu-
lation of heuristic rules relies on rich knowledge and experience in the
scheduling field. In addition, the heuristic rules have significant limita-
tions, and the same heuristic rules may not always lead to satisfactory
scheduling schemes in different scenarios.

2.3. Meta-heuristic algorithms for solving FJSP

Recently, meta-heuristic algorithms have been widely used to solve
FJSPs in different scenarios. Yang et al. [9] offered an improved drag-
onfly algorithm and adopted a dynamic opposite learning strategy to
enhance the searching ability, which can effectively solve FJSP. Sun
et al. [10] introduced an improved hybrid meta-heuristic algorithm
to enhance the ability to search for the global optimal solution of
FJSP by combining the variable neighborhood search algorithm and
the genetic algorithm, which can effectively minimize the makespan
of FJSP. Wei et al. [11] proposed a migrating birds optimization
algorithm for the DFJSP with machine breakdowns. The algorithm
introduces game theory to optimize the two objectives of productivity
and stability of DFJSP, which can effectively solve multi-objective
DFJSP. These meta-heuristic algorithms have achieved good results
in solving FJSP, but in the face of FJSPs in different scenarios, the
reasonable setting of parameters in the meta-heuristic algorithms is a
challenge that requires extensive experimental tuning. Moreover, as the
scale of FJSP instances increases, the underlying algorithms need to
go through a large number of iterations, which will consume a large
amount of computational time, and the computational complexity of
the meta-heuristic algorithms becomes a significant limiting factor.

2.4. DRL methods for solving FJSP

Recently, the application of DRL has provided new ideas for solving
FJSP [16]. DRL, as one of the most active AI research areas, combines
the perceptual ability of deep learning [17] with the decision-making
ability of RL [18], which has been widely applied to solve combina-
torial optimization problems. Luo [12] put forward a deep Q-network
(DQN)-based DRL approach and designed multiple composite schedul-
ing rules for DQN training, which can minimize the total tardiness of
DFJSP with new job insertions. Feng et al. [13] designed a DRL method
based on proximal policy optimization (PPO) to learn the scheduling
policy for minimizing the makespan of FJSP. Luo et al. [14] introduced
a DRL method based on two-hierarchy DQN for DFJSP with new job
insertions, and the two DQNs are hierarchically trained. The trained
model is used to optimize the average machine utilization rate and
the total weighted tardiness. Liu et al. [15] proposed a DRL method
based on double DQN (DDQN), which is able to efficiently solve DFJSP
with constant job arrivals. These DRL methods model FJSP as a Markov
decision process (MDP), extract multiple general state features as the
input of states, and design multiple scheduling rules as actions for

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.

a
o
j
𝑂
a

j

3

s
b
r

o
o
𝑇
t
f
t
o
p
d
i

i
F
i
d
a
n
T
p

a
m
S
o
o
d
s

decision-making on operations and machines. They have shown good
performance in solving FJSP. However, the state information for the
entire process of flexible job shop scheduling is compressed, and the
use of structural information in flexible job shop scheduling is also
extremely limited.

The above problems can be effectively solved by using graphs
(e.g., the disjunctive graph) to represent scheduling states of FJSP,
using GNN to process the complicated graph structural information and
represent the extracted embedded feature information as scheduling
policies, and training and optimizing the scheduling policies via the
DRL. Currently, the fusion of GNN and DRL has attracted considerable
attention from researchers [19]. Zeng et al. [20] developed a DRL
method to solve FJSP. A disjunctive graph is used to represent the local
scheduling states of FJSP, GNN is introduced to extract state features
from the disjunctive graph, and the trained policy is used to minimize
the makespan of FJSP. Lei et al. [21] proposed a hierarchical DRL
framework based on the disjunctive graph to solve large-scale DFJSPs
with random job arrivals. The higher-layer agent divides the DFJSP into
multiple FJSPs, and the lower-layer agents based on GNN are used to
learn scheduling policies for FJSP. Lei et al. [22] put forward an end-
to-end DRL framework that uses a disjunctive graph to represent the
local scheduling states of FJSP and uses GNN to process the structural
information of the disjunctive graph. A multi-PPO algorithm is used
to train the operation selection policy and the machine allocation
policy separately. Lei et al. [23] designed a multi-agent hierarchical
RL framework based on the disjunctive graph, which can minimize the
makespan of large-scale DFJSPs with random job arrivals. The DFJSP
is transformed into multiple static FJSPs by the agent based on DDQN,
where the operation selection and machine allocation are controlled
through the GNN-based agent and multi-layer perceptron (MLP)-based
agent respectively. The above research solves FJSP through the fusion
of GNN and DRL, which fully utilizes the advantages of GNN in process-
ing complicated graph structure information and the powerful feature
perception and decision-making capabilities of DRL. Specifically, first,
the disjunctive graph is used to represent the FJSP, where the corre-
sponding features are set for each type of node and edge in the graph
to represent the structure information of the FJSP. Second, GNN is used
as the encoder to extract the feature information of each embedded
node, and the policy network is designed as the decoder to process
the output of the encoder. Finally, the policy network is trained by
the DRL method, and the scheduling strategy trained by this end-to-
end DRL method can efficiently solve FJSP instances of different scales.
However, the global scheduling states of the entire FJSP are composed
of the scheduling states of the operations and those of the machines.
When the disjunctive graph is used to represent the scheduling states
of the FJSP, there is only the representation of operation nodes but
no representation of machine nodes. Therefore, when GNN is used to
process the structural information of the disjunction graph, it is difficult
to extract the features of machine nodes and lean toward feature
extraction of operation nodes, which makes it difficult for the trained
scheduling policies to maximize the utilization of machine resources to
more rationally allocate the available machines to the operations.

3. Preliminaries

3.1. Description of FJSP

A FJSP instance contains 𝑛 jobs and 𝑚 machines. The set of jobs
is denoted as 𝐽 =

{

𝐽1, 𝐽2,… , 𝐽𝑛
}

, and the set of machines is denoted
s 𝑀 =

{

𝑀1,𝑀2,… ,𝑀𝑚
}

, where the job 𝐽𝑖 consists of 𝑛𝑖 consecutive
peration 𝑂𝑖 =

{

𝑂𝑖1, 𝑂𝑖2,… , 𝑂𝑖𝑛𝑖
}

with sequence constraints. For the
ob 𝐽𝑖, the next operation 𝑂𝑖𝑗 cannot start until its previous operation
𝑖(𝑗−1) has been completed. The operation 𝑂𝑖𝑗 can be processed on
ny of a set of available machines 𝑀𝑖𝑗 and the processing time of 𝑂𝑖𝑗

on its available machine 𝑀𝑘 is denoted as 𝑃𝑖𝑗𝑘. Once an operation
3

starts processing, it cannot be interrupted, and each machine can only
Fig. 1. Disjunctive graph representation of a FJSP instance.

Fig. 2. Heterogeneous graph representation of a FJSP instance.

process one operation at a time. the goal of the FJSP is to minimize the
makespan 𝐶max = max

{

𝐶𝑖𝑛𝑖
}

, where 𝐶𝑖𝑛𝑖 is the completion time of the
ob 𝐽𝑖 and 1 ≤ 𝑖 ≤ 𝑛.

.2. Heterogeneous graph representation of FJSP

The disjunctive graph [24] is commonly used to represent JSSP in-
tances, but with the deepening of research, some researchers gradually
egan to use it to represent FJSP instances. The disjunctive graph for
epresenting FJSP can be defined as the triple 𝐺 = (O, C, D), where
O =

{

O𝑖𝑗 |∀𝑖, 𝑗
}

∪ {𝑆, 𝑇 } is the set of real operation nodes and dummy
peration nodes. The real operation node O𝑖𝑗 denotes the 𝑗-th operation
f the 𝑖-th job. {𝑆, 𝑇 } is the set of dummy operation nodes, where 𝑆 and
represent the dummy start and end operations with zero processing

ime, respectively. C is a set of directed conjunctive arcs, where a path
ormed by connecting 𝑆 to 𝑇 with a solid line is used to represent
he sequence constraints among the operations of a job. D is a set
f undirected disjunctive arcs, where multiple operations that can be
rocessed on the same machine are connected with dashed lines. The
isjunctive graph representation of a 3 × 3 FJSP instance is provided
n Fig. 1.

For FJSP, the constraints on machines are relaxed, which makes
t extremely complicated to use the disjunctive graph to represent
JSP. Therefore, a heterogeneous graph [25] is used to represent FJSP
nstances. It introduces a set M of machine nodes in the original
isjunctive graph 𝐺. The set D of disjunctive arcs in 𝐺 is replaced by
set 𝐸 of undirected O-M arcs connecting operation nodes to machine
odes. Here, the heterogeneous graph is defined as 𝐻𝐺 = (O,M, C, 𝐸).
he heterogeneous graph representation of a 3 × 3 FJSP instance is
rovided in Fig. 2.

The heterogeneous graph representation of FJSP has the following
dvantages. Firstly, the heterogeneous graph can effectively handle
ultiple types of nodes, i.e., operation nodes and machine nodes.

econdly, only after determining which operations will be processed
n which machine, the corresponding O-M arcs will be added and
ther unrelated O-M arcs will be eliminated, which greatly reduces the
ensity of the graph and can effectively reduce the computational and
torage costs.

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.
Fig. 3. Overall process of the proposed method for solving FJSP.
s
c
[

g
e
a
u

m

o

4. Proposed method

The overall process of the proposed method for solving FJSP is
shown in Fig. 3. Firstly, the task of solving FJSP is decomposed into
two subtasks of operation selection and machine allocation, a het-
erogeneous graph is used to represent the scheduling states of the
dual-task FJSP, and the dual-task FJSP is modeled as DMDP. Secondly,
the complex scheduling states of the dual-task FJSP are embedded using
MHGNN, and a heterogeneous GNN framework is used to encode the
operation nodes and machine nodes. The extracted embedded feature
information is represented as the operation selection policy and the
machine allocation policy. The two policy networks based on MLP
including MLP𝜙𝑜 and MLP𝜙𝑚 are used to predict the operation selec-
tion policy and machine allocation policy, respectively. Finally, a soft
double-actors critic algorithm is used to train the two policy networks
and output the operation selection policy and the machine allocation
policy.

4.1. DMDP formulation

Owing to the task of solving FJSP being decomposed into two sub-
tasks of operation selection and machine allocation, when this dual-task
FJSP is modeled as the MDP, the agent needs to simultaneously control
the actions in two dimensions at each time step, which makes the
original one-dimensional action space into the two-dimensional action
space, i.e., 𝐴 = 𝐴𝑜×𝐴𝑚. Therefore, a DMDP is put forward to model the
dual-task FJSP, and a heterogeneous graph 𝐻𝐺 = (O,M, C, 𝐸) is used to
represent the global scheduling states of the dual-task FJSP, where the
definitions of state, action, transition, reward, and policy are as follows.

State: 𝑠𝑡 is the scheduling state of the dual-task FJSP at time step
𝑡. The operation node O𝑖𝑗 ∈ O has three features

[

𝑆𝐹 (𝑂𝑖𝑗), 𝑆𝐶𝑇 (𝑂𝑖𝑗),
|𝑁(O𝑖𝑗)|

]

. 𝑆𝐹 (𝑂𝑖𝑗) is the scheduling status flag of 𝑂𝑖𝑗 , where the widely
used one-hot encoding method is adopted to set different status flags. It
has three different flags [1, 0, 0], [0, 1, 0], and [0, 0, 1], indicating that
𝑂𝑖𝑗 has been scheduled, 𝑂𝑖𝑗 is being scheduled, and 𝑂𝑖𝑗 is not scheduled,
respectively. If 𝑂𝑖𝑗 is not scheduled, 𝑆𝐶𝑇 (𝑂𝑖𝑗) denotes the estimated
completion time of 𝑂𝑖𝑗 : 𝑆𝐶𝑇 (𝑂𝑖(𝑗−1)) + 𝑇 ; otherwise, 𝑆𝐶𝑇 (𝑂𝑖𝑗) denotes
the completion time of 𝑂𝑖𝑗 . Note that if 𝑂𝑖𝑗 is processed on the machine
𝑀 , then 𝑇 = 𝑃 ; otherwise, 𝑇 = 1 ∑

𝑃 . 𝑁(O) is the
4

𝑘 𝑖𝑗𝑘
|𝑀𝑖𝑗 | 𝑀𝑙∈𝑀𝑖𝑗 𝑖𝑗𝑙 𝑖𝑗
et of neighboring machine nodes of O𝑖𝑗 , i.e., the set of machines that
an process 𝑂𝑖𝑗 . The machine node M𝑘 ∈ M contains two features
𝐶𝑇 𝑡

(

𝑀𝑘
)

, ||
|

𝑁𝑡
(

M𝑘
)

|

|

|

]

. 𝐶𝑇 𝑡
(

𝑀𝑘
)

is the completion time for machine
𝑀𝑘 to process the assigned operations to it before the current time step
𝑡. 𝑁𝑡(M𝑘) is the set of neighboring operation nodes of the machine node
M𝑘 at time step 𝑡. The undirected O-M arc 𝜀𝑖𝑗𝑘 ∈ 𝐸 connecting the
operation node O𝑖𝑗 and the machine node M𝑘 contains a feature

[

𝑃𝑖𝑗𝑘
]

.
Action: The operation selection action 𝑎𝑜𝑡 ∈ 𝐴𝑜𝑡 and the machine

allocation action 𝑎𝑚𝑡 ∈ 𝐴𝑚𝑡 together form the action 𝑎𝑡 ∈ 𝐴𝑡, i.e., 𝑎𝑡 =
{

𝑎𝑜𝑡 , 𝑎
𝑚
𝑡
}

. 𝐴𝑜𝑡 is the eligible operation selection action space. 𝐴𝑚𝑡 is the
available machine allocation action space.

Transition: The transition from the current state 𝑠𝑡 to the next state
𝑠𝑡+1 is completed by updating the heterogeneous graph. A new hetero-
eneous graph is generated at time step 𝑡. Specifically, at first 𝑎𝑜𝑡 is
xecuted to select an eligible operation, then 𝑎𝑚𝑡 is executed to allocate
n available machine to the operation, and finally the corresponding
ndirected O-M arc is connected.

Reward: The immediate reward is set to be the difference of the
akespan from the current state 𝑠𝑡 to the next state 𝑠𝑡+1, i.e., 𝑟𝑡

(

𝑠𝑡, 𝑎𝑡,
𝑠𝑡+1

)

= 𝐶max
(

𝑠𝑡
)

− 𝐶max
(

𝑠𝑡+1
)

. The cumulative reward is set to
∑𝑒𝑛𝑑
𝑡=0 𝑟𝑡

(

𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1
)

= −𝐶max
(

𝑠𝑒𝑛𝑑
)

, where 𝐶max
(

𝑠𝑒𝑛𝑑
)

= 𝐶max.
Policy: The policy 𝜋𝜙

(

𝑎𝑡|| 𝑠𝑡
)

represents the probability distribution
f the action 𝑎𝑡 under the current state 𝑠𝑡. Since the whole complete

action consists of the operation selection action and the machine al-
location action, the policy 𝜋𝜙

(

𝑎𝑡|| 𝑠𝑡
)

is divided into two sub-policies
𝜋𝜙𝑜

(

𝑎𝑜𝑡 || 𝑠𝑡
)

and 𝜋𝜙𝑚
(

𝑎𝑚𝑡 || 𝑠 𝑡 , 𝑎
𝑜
𝑡
)

. 𝜋𝜙𝑜
(

𝑎𝑜𝑡 || 𝑠𝑡
)

is used to train the opera-
tion selection action 𝑎𝑜𝑡 . 𝜋𝜙𝑚

(

𝑎𝑚𝑡 || 𝑠 𝑡 , 𝑎
𝑜
𝑡
)

is used to train the machine
allocate action 𝑎𝑚𝑡 . A soft double-actors critic algorithm is designed
to train and optimize the operation selection policy and the machine
allocation policy toward maximizing the cumulative reward.

4.2. Heterogeneous GNN framework

4.2.1. Overall design of a heterogeneous GNN framework
The graph isomorphism network (GIN) [26] can well consider node

features and information interactions between neighboring nodes dur-
ing node aggregation. The learned node embedding information can
be directly used for node classification, link prediction, etc. However,

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.
Fig. 4. Overall design of the proposed heterogeneous GNN framework for solving the
dual-task FJSP.

GIN is not suitable for dealing with the heterogeneous graph. The het-
erogeneous GNN [27], as a network model based on the heterogeneous
graph, can fully utilize the heterogeneous information of different types
of nodes to process the heterogeneous graph, and can enhance the
ability of node feature representation by utilizing the heterogeneous
information. Therefore, a MHGNN is proposed to embed the complex
scheduling states of the dual-task FJSP, and a heterogeneous GNN
framework is designed for the dual-task FJSP to efficiently encode the
operation nodes and machine nodes.

The overall design of the proposed heterogeneous GNN framework
for solving the dual-task FJSP is shown in Fig. 4. Firstly, a hetero-
geneous graph is used to represent the global scheduling states of
the dual-task FJSP. When embedding node information, it is neces-
sary to embed the information of operation nodes and machine nodes
separately, including the following steps: (i) the operation node infor-
mation is embedded into the heterogeneous graph; (ii) the machine
node information is embedded into the heterogeneous graph; and (iii)
the undirected O-M arcs corresponding to the embedded operation
nodes and machine nodes are connected to complete the updating of
the heterogeneous graph. The information involved in the operation
node embedding and machine node embedding mainly includes the
original features of the operation node (i.e., the scheduling status of
the operation, the estimated completion time of the operation, and
the number of neighboring machine nodes of the operation node), the
original features of the machine node (i.e., the completion time for the
machine to process the assigned operations to it before the current time
step 𝑡 and the number of neighboring operation nodes of the machine
node at time step 𝑡), and the original feature of the undirected O-M arc
(i.e., the processing time of the operation on the machine). Taking a
3 × 3 FJSP instance as an example, the entire embedding process of this
instance is shown in Fig. 5. Secondly, the heterogeneous GNN frame-
work is used to encode the operation nodes and machine nodes, and the
extracted embedded feature information is represented as the operation
selection policy and the machine allocation policy. Finally, the two
policy networks MLP𝜙𝑜 and MLP𝜙𝑚 are used to predict the operation
selection policy and the machine allocation policy, respectively.
5

4.2.2. Operation node embedding
In the heterogeneous graph, the feature information of each op-

eration node is related not only to its neighboring operation nodes
but also to its neighboring machine nodes. For the heterogeneous
graph containing multiple operation nodes and machine nodes, if the
feature information of all neighboring operation nodes and neigh-
boring machine nodes is considered, the extracted embedded feature
information will be too large, and it will be difficult to extract the
effective information. The meta-path aggregated graph neural net-
work (MAGNN) [28] can better embed the node feature information
through intra-meta-path aggregation and inter-meta-path aggregation.
Therefore, the operation node feature information is processed using
MAGNN, and the operation–machine–operation is set as a meta-path
with a length of 3. The embedding of an operation node consists of the
following three processes: node information transformation, intra-meta-
path aggregation, and inter-meta-path aggregation. The embedding
process of a target operation node is shown in Fig. 6.

(1) Node information transformation
Let 𝑉m be the set of machine node m and all its neighboring

operation nodes. The feature information of the target operation node
𝑣 ∈ 𝑉m and the machine node m ∈ 𝑉m is linearly transformed by

ℎ′𝑣 = 𝑊m × 𝑣𝑡 (1)

and

ℎ′
m

= 𝑊m × m𝑡, (2)

respectively. In Eq. (1), 𝑊m is a weight matrix, 𝑣𝑡 is the original feature
vector of the target operation node 𝑣, and ℎ′𝑣 is the transformed feature
vector of the target operation node 𝑣. In Eq. (2), m𝑡 is the feature vector
of the machine node m, and ℎ′

m
is the transformed feature vector of

the machine node m.
(2) Intra-meta-path aggregation
All feasible meta-paths 𝑃m =

{

𝑝1, 𝑝2,… , 𝑝𝑛
}

containing the ma-
chine node 𝑚 and the target operation node 𝑣 need to be found in
𝑉m, where 𝑛 is the number of all feasible meta-paths. There may be
multiple available machines for an operation, thus multiple different
sets of meta-paths will be generated. Let 𝑁𝑝

𝑣 be the set of meta-path-
based neighboring operation nodes of the target operation node 𝑣.
The meta-path formed by the target operation node 𝑣 and its neigh-
boring operation 𝑢 ∈ 𝑁𝑝

𝑣 is defined as 𝑝(𝑣,m, 𝑢). The process of the
intra-meta-path aggregation includes the following steps.

Step 1: Transform the meta-path 𝑝(𝑣,m, 𝑢) into the vector ℎ𝑝(𝑣,m,𝑢)
using mean coding:

ℎ𝑝(𝑣,m,𝑢) = MEAN
(

ℎ′𝑣, ℎ
′
m
, ℎ′𝑢

)

. (3)

Step 2: Perform the weighted aggregation on the vector representa-
tion of the meta-path 𝑝(𝑣,m, 𝑢) by

𝑒𝑝𝑣m𝑢 = LeakyRelu
(

𝑎𝑇𝑝 ∙
[

ℎ′𝑣 ∥ ℎ𝑝(𝑣,m,𝑢)
]

)

, (4)

where 𝑎𝑇𝑝 denotes the transpose of the attention vector 𝑎𝑝 of the meta-
path 𝑝(𝑣,m, 𝑢), and 𝑒𝑝𝑣m𝑢 denotes the importance of the meta-path
𝑝(𝑣,m, 𝑢) to the target operation node 𝑣.

Step 3: Use the softmax function to normalize 𝑒𝑝𝑣m𝑢:

𝛼𝑝𝑣m𝑢 =
exp

(

𝑒𝑝𝑣m𝑢
)

∑

𝑠∈𝑁𝑝
𝑣
exp

(

𝑒𝑝𝑣m𝑠
) . (5)

Step 4: Use the attention mechanism to perform weighted summa-
tion on the vector representations of the meta-path instances related
to the target operation node 𝑣, and the result is processed using the
sigmoid activation function 𝜎:

ℎ𝑝𝑣 = 𝜎
⎛

⎜

⎜

⎝

∑

𝑠∈𝑁𝑝
𝑣

𝛼𝑝𝑣m𝑠 ∙ ℎ𝑝(𝑣,m,𝑠)

⎞

⎟

⎟

⎠

. (6)

Knowledge-Based Systems 296 (2024) 111940

6

L. Wan et al.

Fig. 5. Embedding process of a FJSP instance.

Fig. 6. Embedding process of a target operation node.

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.

c
𝑣

ℎ

o

ℎ

w

4

w
t
f
v
i
m
e
i
m
T
f
o
v

ℎ

w
h

4

m
l
w
n
o

n
o

𝑣

w
n
v

4

e
T
h
p
t
d
T
l
a

𝑝

a

𝑝

r
t

𝜋

(3) Inter-meta-path aggregation
After performing the Intra-meta-path aggregation, for the target

operation node 𝑣, |𝑉m| specific vector representations
{

ℎ𝑝1𝑣 , ℎ
𝑝2
𝑣 ,… , ℎ𝑝𝑛𝑣

}

will be generated. The process of the inter-meta-path aggregation con-
sists of the following steps.

Step 1: For the meta-path 𝑝𝑖 ∈ 𝑃m, the node vectors of all operation
nodes in 𝑉m under the specific meta-path are nonlinearly transformed
and averaged by

𝑆𝑝𝑖 =
1

|

|

𝑉m|

|

∑

𝑣∈𝑉m

tanh
(

𝑋m ∙ ℎ𝑝𝑖𝑣 + 𝑏m
)

, (7)

where 𝑋m is a weight matrix, and 𝑏m is an offset vector.
Step 2: Use the attention mechanism to compute the attention

coefficient 𝑒𝑝𝑖 :

𝑒𝑝𝑖 = 𝑌 𝑇
m

∙ 𝑆𝑝𝑖 , (8)

where 𝑌 𝑇
m

denotes the transpose of the attention vector 𝑌m of 𝑆𝑝𝑖 .
Step 3: Use softmax function to normalize 𝑒𝑝𝑖 to obtain the attention

score 𝛽𝑝𝑖 :

𝛽𝑝𝑖 =
exp

(

𝑒𝑝𝑖
)

∑

𝑝𝑗∈𝑃m exp
(

𝑒𝑝𝑗
) , (9)

Step 4: Fuse the vector representations corresponding to these spe-
ific meta-paths to obtain the output ℎ𝑃m𝑣 of the target operation node
:
𝑃m
𝑣 =

∑

𝑝𝑖∈𝑃m

𝛽𝑝𝑖 ∙ ℎ
𝑝𝑖
𝑣 . (10)

Step 5: Calculate the final embedded feature vector ℎ𝑣 of the target
peration node 𝑣 by

𝑣 = 𝜎
(

𝑍m ∙ ℎ𝑃m𝑣
)

, (11)

here 𝑍m is a weight matrix.

.2.3. Machine node embedding
The machine node is connected to its neighboring operation nodes

ith the undirected O-M arcs in the heterogeneous graph. To facilitate
he processing of the feature information of an O-M arc, the original
eature vector of the O-M arc is concatenated with the original feature
ector of the machine node, i.e., the feature information of the O-M arc
s integrated into the machine node. Thus, the feature vector m𝑡 of the
achine node m becomes the three-dimensional feature vector. When

mbedding the machine node m, in addition to considering the feature
nformation of the machine node m itself, the original feature infor-
ation of its neighboring operation nodes should also be considered.
herefore, three MLPs with the same structure are used to process the
eature vector of the machine node m and the original feature vectors
f its neighboring operation nodes to obtain the embedded feature
ector ℎm of the machine node m:

m = MLP𝜓

(

ELU
(

MLP𝜓O

(

∑

𝑣∈𝑁𝑡(𝑚)
𝑣𝑡

)

∥ MLP𝜓m

(

m𝑡
)

))

, (12)

here MLP𝜓o
, MLP𝜓m

, and MLP𝜓 all contain two 128-dimensional
idden layers and use ELU as the activation function.

.2.4. Pooling
The above described embedding process of operation nodes and

achine nodes can be regarded as the embedding on a single MHGNN
ayer. To improve the feature extraction ability, 𝐿 MHGNN layers
ith the same structure are stacked and used to embed the operation
odes and machine nodes. The set of embedded feature vectors of all
7

peration nodes and the set of embedded feature vectors of all machine
odes can be obtained in this way. The pooling vectors 𝑣′𝑡 and m′
𝑡 are

btained by performing mean pooling on ℎ(𝐿)𝑣 and ℎ(𝐿)m respectively:

′
𝑡 = 1

|O|

∑

𝑣∈O
ℎ(𝐿)𝑣 , (13)

m′
𝑡 =

1
|M|

∑

m∈M
ℎ(𝐿)
m
, (14)

here ℎ(𝐿)𝑣 denotes the embedded feature vector of the target operation
ode 𝑣 on 𝐿 MHGNN layers, and ℎ(𝐿)m denotes the embedded feature
ector of the machine node m on 𝐿 MHGNN layers.

.2.5. Action prediction
The two policy networks MLP𝜙𝑜 and MLP𝜙𝑚 are designed for the op-

ration selection policy and the machine allocation policy, respectively.
hey have the same network structure including two 128-dimensional
idden layers and the tanh activation function, but they share different
arameters. The policy networks map the scheduling states of the dual-
ask FJSP represented by the heterogeneous graph to the probability
istribution, and select actions based on the probability distribution.
he whole process of action prediction is as follows. Firstly, the se-

ection probabilities of the operation selection action and the machine
llocation action can be calculated by
(

𝑎𝑜𝑡 , 𝑠𝑡
)

= MLP𝜙𝑜
(

ℎ(𝐿)𝑣 ‖ m′
𝑡 ‖ 𝑣

′
𝑡
)

(15)

nd
(

𝑎𝑚𝑡 , 𝑠𝑡
)

= MLP𝜙𝑚
(

ℎ(𝐿)
m

‖ m′
𝑡 ‖ 𝑣

′
𝑡
)

, (16)

espectively. Secondly, the selection probabilities are normalized using
he softmax function:

𝜙𝑜

(

𝑎𝑜𝑡 || 𝑠𝑡
)

=
exp

(

𝑝
(

𝑎𝑜𝑡 , 𝑠𝑡
))

∑

𝑎𝑜′𝑡 ∈𝐴𝑜𝑡
exp

(

𝑝
(

𝑎𝑜′𝑡 , 𝑠𝑡
))

(17)

and

𝜋𝜙𝑚
(

𝑎𝑚𝑡 || 𝑠 𝑡 , 𝑎
𝑜
𝑡
)

=
exp

(

𝑝
(

𝑎𝑚𝑡 , 𝑠𝑡
))

∑

𝑎𝑚′𝑡 ∈𝐴𝑚𝑡
exp

(

𝑝
(

𝑎𝑚′
𝑡 , 𝑠𝑡

))
. (18)

Finally, the different decoding strategies are used to make predictions
for the operation selection action 𝑎𝑜𝑡 and the machine allocation action
𝑎𝑚𝑡 . During training, a random sampling decoding strategy is used
for policy training to explore more actions. During testing, a greedy
decoding strategy is used to test the trained policies for seeking the
optimal action.

4.3. Soft double-actors critic

The soft actor–critic (SAC) algorithm [29] is a DRL algorithm based
on the idea of maximum entropy. SAC, as an off-policy actor–critic
algorithm, differs most from other DRL algorithms in that it optimizes
the policy to achieve a higher cumulative return while also maximizing
the entropy of the policy to better increase the exploratory space
of the actions. Compared with the popular PPO algorithm [30], the
SAC algorithm has better convergence and stability and increases the
exploration of actions. The original SAC algorithm has only one actor
network. It can only use one policy network to learn a single policy
and control a single action, i.e., it cannot be applied to control multiple
actions. Therefore, the following improvements are made on the basis
of the original SAC algorithm to be suitable for solving the dual-task
FJSP. The original actor network is transformed into an operation
actor network and a machine actor network. After simplifying the
original critic network, it consists of a target Q-network and a soft Q-
network, each of which contains two 128-dimensional hidden layers.
The improved SAC algorithm is named the soft double-actors critic
algorithm. The training process of the proposed soft double-actors critic
algorithm is shown in Fig. 7.

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.

4

p

𝜋

Fig. 7. Training process of the proposed soft double-actors critic algorithm.
t
f
b

∇

4

n
Q
a
t
s
n
v
b

𝐽

w

𝑄

w
t
t

.3.1. Solving the optimal policy
In the proposed soft double-actors critic algorithm, the optimal

olicy 𝜋∗ based on maximum entropy is solved by
∗ = argmax

∑

𝑡
E(𝑠𝑡 ,𝑎𝑡)∼𝜌𝜋 [𝑟𝑡 + 𝛼𝐻

(

𝜋
(

𝑎𝑡|| 𝑠𝑡
))

], (19)

with

𝐻
(

𝜋
(

𝑎𝑡|| 𝑠𝑡
))

= −log
(

𝜋
(

𝑎𝑡|| 𝑠𝑡
))

, (20)

where 𝜌𝜋 denotes the probability of occurrence of the state–action pair
(𝑠𝑡, 𝑎𝑡) under the policy 𝜋, 𝐻

(

𝜋
(

𝑎𝑡|| 𝑠𝑡
))

is the entropy of the policy 𝜋
under the current state 𝑠𝑡, and 𝛼 is the weight parameter of the entropy.
𝛼 is used to weigh the relative importance of entropy and the reward to
control the stochasticity of the optimal policy. The entropy parameter
𝛼 is updated by minimizing the objective function 𝐽 (𝛼):

𝐽 (𝛼) = E𝑎𝑡∼𝜋𝑡
[

−𝛼log𝜋𝑡
(

𝑎𝑡|| 𝑠𝑡
)

− 𝛼H̄
]

, (21)

where H̄ is a constant that represents the threshold of minimum policy
entropy.

4.3.2. Training the actor networks
The two actor networks consist of an operation actor network

(i.e., operation selection policy network) and a machine actor network
(i.e., machine allocation policy network). These two policy networks
are used to train the operation selection policy and the machine alloca-
tion policy, respectively. The actor networks are trained by minimizing
the objective function 𝐽𝜋

(

𝜙𝐼
)

:

𝐽
(

𝜙
)

= E
[

𝛼log𝜋
(

𝑎𝐼 || 𝑠
)

−𝑄
(

𝑠 , 𝑎
)

]

, (22)
8

𝜋 𝐼 𝑠𝑡∼𝐷,𝜖𝑡∼N 𝜙𝐼 𝑡
|

𝑡 𝜃 𝑡 𝑡 𝑄
where 𝐼 ∈ {𝑜, 𝑚}, 𝑄𝜃
(

𝑠𝑡, 𝑎𝑡
)

is the estimated value of the Q-value
function, 𝜙𝐼 denotes the network parameters of the policy 𝜋, 𝐷 denotes
he replay buffer, and 𝜖𝑡 is the input noise vector. 𝜖𝑡 is sampled from the
ixed distribution N. The gradient ∇̂𝜙𝐼 𝐽𝜋

(

𝜙𝐼
)

of 𝐽𝜋
(

𝜙𝐼
)

is calculated
y

̂ 𝜙𝐼 𝐽𝜋
(

𝜙𝐼
)

= ∇𝜙𝐼 log𝜋𝜙𝐼
(

𝑎𝐼𝑡
|

|

|

𝑠𝑡
)

+
(

∇𝑎𝐼𝑡 𝛼log𝜋𝜙𝐼
(

𝑎𝐼𝑡
|

|

|

𝑠𝑡
)

− ∇𝑎𝐼𝑡 𝑄𝜃
(

𝑠𝑡, 𝑎𝑡
)

)

∇𝜙𝐼 𝑎
𝐼
𝑡 . (23)

.3.3. Updating the critic network
The critic network consists of a target Q-network and a soft Q-

etwork. The target Q-network and the soft Q-network are two different
-value function approximators that have the same network structure
nd initial parameters. The target Q-network is used to compute the
arget Q-value. The soft Q-network is used to compute the Q-value of a
tate–action pair under the current policy. The parameters of the policy
etworks are updated by calculating the error between the target Q-
alue and the current estimated Q-value. The critic network is updated
y minimizing the loss function 𝐽𝑄(𝜃). 𝐽𝑄(𝜃) can be calculated by

𝑄(𝜃) = E(𝑠𝑡 ,𝑎𝑡)∼𝐷

[1
2
(

𝑄𝜃
(

𝑠𝑡, 𝑎𝑡
)

− �̂�
(

𝑠𝑡, 𝑎𝑡
))2] , (24)

ith

̂ (𝑠𝑡, 𝑎𝑡
)

= 𝑟𝑡 + 𝛾E𝑠𝑡+1∼P
[

𝑄�̄�
(

𝑠𝑡+1, 𝑎𝑡+1
)

−𝛼log𝜋𝜙𝐼
(

𝑎𝐼𝑡+1
|

|

|

𝑠𝑡+1
)]

, (25)

here 𝜃 denotes the parameter of the soft Q-network, which is ob-
ained by training the soft Q-network. �̄� denotes the parameter of the
arget Q-network, which is obtained by training the target Q-network.

(

𝑠 , 𝑎
)

is the target Q-value estimated by the target Q-network.
�̄� 𝑡+1 𝑡+1

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.

s

a

1
1
1
1
1
1
1
1
1
1
2
2
2
2

a
i
o
n

w
w
s
d

f
i
s

𝛾 is the discount factor and 0 ≤ 𝛾 ≤ 1. P denotes the probability of a
tate transition. The gradient ∇̂𝜃𝐽𝑄(𝜃) of 𝐽𝑄(𝜃) is calculated by

∇̂𝜃𝐽𝑄(𝜃) = ∇𝜃𝑄𝜃
(

𝑎𝑡, 𝑠𝑡
) (

𝑄𝜃
(

𝑠𝑡, 𝑎𝑡
)

− �̂�
(

𝑠𝑡, 𝑎𝑡
))

. (26)

Under the initial state, �̄� = 𝜃. Under the other state, �̄� can be softly
updated by

�̄� = 𝜁𝜃 + (1 − 𝜁) �̄�, (27)

where 𝜁 is a weight parameter.
Algorithm 1 Training procedure for the soft double-actors critic
lgorithm
Input: The maximum number of iterations  and the parameters 𝛼, 𝛾, and

𝜁 .
Output: The trained operation selection policy network and machine

allocation policy network.
1: Initialize 𝜃, �̄�, 𝐷, 𝑠𝑡, and 𝜙𝐼 ;
2: Get a batch of  FJSP instances;
3: for = 1 to  do
4: for = 1 to  do
5: while 𝑠𝑡 is not terminal do
6: Get 𝑎𝐼𝑡 according to 𝜋𝜙𝐼

(

𝑎𝐼𝑡 ||𝑠𝑡
)

, where 𝐼 ∈ {𝑜, 𝑚};
7: Get the reward 𝑟𝑡 and next state 𝑠𝑡+1 by performing 𝑎𝑡,

where 𝑎𝑡 =
{

𝑎𝑜𝑡 , 𝑎
𝑚
𝑡

}

;
8: Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into the replay buffer 𝐷;
9: 𝑠𝑡 ← 𝑠𝑡+1;
0: end while
1: Get a batch of 𝐵 samples from 𝐷;
2: for 𝑖 = 1 to 𝐵 do
3: Calculate 𝐽𝑄(𝜃) by Eq. (24);
4: Calculate the gradient of 𝐽𝑄(𝜃) by Eq. (26);
5: Update 𝜃 according to the gradient of 𝐽𝑄(𝜃);
6: Calculate 𝐽𝜋

(

𝜙𝐼
)

by Eq. (22);
7: Calculate the gradient of 𝐽𝜋

(

𝜙𝐼
)

by Eq. (23);
8: Update 𝜙𝐼 according to the gradient of 𝐽𝜋

(

𝜙𝐼
)

;
9: Update 𝛼 by Eq. (21);
0: Update �̄� by Eq. (27);
1: end for
2: end for
3: end for

The training procedure for the proposed soft double-actors critic
lgorithm is shown in Algorithm 1. During each iteration, each FJSP
nstance will be solved through several time steps. At time step 𝑡, the
peration selection policy network and the machine allocation policy
etwork are used to select the actions 𝑎𝑜𝑡 and 𝑎𝑚𝑡 , respectively. The

complete action 𝑎𝑡 is performed to obtain the immediate reward 𝑟𝑡 and
transition from the current state 𝑠𝑡 to the next state 𝑠𝑡+1. It takes several
state transitions from the initial state to the final state, each state
transition will generate a sample (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), and the sample will be
stored in the replay buffer 𝐷. After a FJSP instance has been solved, a
batch of samples are randomly sampled from 𝐷. These samples are used
to calculate the gradients of the loss function 𝐽𝑄(𝜃) and the objective
function 𝐽𝜋

(

𝜙𝐼
)

to update the parameter 𝜃 of the soft Q-network
and the parameters 𝜙𝐼 of the policy networks, respectively. Finally,
the trained operation selection policy network and machine allocation
policy network are obtained through several iterations.

5. Experiments

5.1. Experimental settings

The training set consists of randomly generated FJSP instances.
The testing set consists of FJSP instances from the three well-known
public benchmarks including Hurink [31], Behnke [32], and Brandi-
marte [33]. The Hurink dataset contains three sub-datasets, namely
Edata, Rdata, and Vdata, where each sub-dataset contains 40 FJSP
instances. Each job in each FJSP instance contains the same number
of available machines as its operations, where the processing time of
9

t

Table 1
Parameter settings for policy training.
Parameter name Parameter value

Number of MHGNN layers (𝐿) 3
Optimizer Adam
Learning rate 3 × 10−4

Maximum number of samples stored in 𝐷 1000
Number of samples per batch (K) 16
Entropy parameter (𝛼) ln 2
Discount factor (𝛾) 1
Soft update coefficient (𝜁) 0.01
Maximum number of iterations (J) 400

each operation ranges from 1 to 100. Moreover, in the Edata sub-
dataset, when the total number of machines is ≤ 6, the maximum
number of available machines that can be allocated to each opera-
tion is 2. When the total number of machines is more than 10, the
maximum number of available machines that can be allocated to each
operation is 3. In the Rdata sub-dataset, the maximum number of
available machines that can be allocated to each operation is 3. In the
Vdata sub-dataset, the maximum number of available machines that
can be allocated to each operation is four-fifths of the total number
of machines. The Behnke dataset contains three sub-datasets, namely,
Behnke-m20, Behnke-m40, and Behnke-m60, where each sub-dataset
contains 20 FJSP instances. Each job in each FJSP instance contains 5
operations, where the processing time of each operation ranges from
10 to 30. The Brandimarte dataset contains 15 FJSP instances. The
number of operations contained in each job in each FJSP instance
ranges from 3 to 14. The processing time of each operation ranges from
1 to 30. The number of available machines that can be allocated to each
operation ranges from 2 to 6. The experiments are conducted on these
three different public benchmarks to verify the efficiency, stability, and
generalization of the proposed method. The settings of key parameters
for policy training are given in Table 1.

To better verify the effectiveness of the proposed method, for FJSP
instances of different scales, the proposed method is compared with
six commonly used composite scheduling rules including SPT+FIFO,
SPT+MOPNR, SPT+MWKR, EET+FIFO, EET+MOPNR, and EET+
MWKR. For convenience, the six composite scheduling rules are named
Rule 1, Rule 2, Rule 3, Rule 4, Rule 5, and Rule 6, respectively.
SPT (i.e., shortest processing time) and EET (i.e., earliest end time)
are used as the machine allocation rules. FIFO (i.e., first in first out),
MOPNR (i.e., most operation number remaining), and MWKR (i.e., most

ork remaining) are used as the operation selection rules. Note that
hen solving the FJSP instances on the three public benchmarks, the

cheduling performance is evaluated by calculating the percentage
eviation (i.e., gap) between the maximum completion time 𝐶max and

the best known solution UB [32]. The gap can be calculated by

Gap =
𝐶max − UB

UB × 100%. (28)

In this experiment, the proposed method for solving FJSP is imple-
mented with PyTorch 1.6 and Python 3.9. The experimental platform
consists of an octa-core Intel Core i7-9700K CPU, a 2560-core NVIDIA
GeForce RTX 2070 GPU, 64 GB of host memory, 8 GB of GPU memory,
and the CentOS 8.1 operating system.

5.2. Convergence analysis for policy training

The six randomly generated FJSP instances of different scales are
used for policy training, including 6 × 6, 10 × 5, 10 × 10, 15 × 15, 20 × 10,
and 30 × 10. Fig. 8 presents the makespan convergence curves obtained
rom the policy training on FJSP instances of different scales. As seen
n Fig. 8, the fluctuations of the makespan convergence curves become
maller after approximately 50 iterations, which shows that the policy

raining can quickly converge.

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.

f
t
r
3
t
t
R
a
s
a
F
a
b
o

Table 2
Comparison of the solution quality obtained using the proposed method, the four better-performing composite scheduling rules, GIN-PPO, and GAT-PPO on Hurink dataset.

Size Name Rule 3 Rule 4 Rule 5 Rule 6 GIN-PPO [22] GAT-PPO [25] Proposed UB

𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap

15 × 5 1 1016 27.16% 867 8.51% 921 15.27% 868 8.64% 850 6.38% 𝟖𝟎𝟑 𝟎.𝟓𝟎% 823 3.00% 799
15 × 5 2 1001 33.47% 854 13.87% 826 10.13% 840 12.00% 802 6.93% 𝟕𝟔𝟑 𝟏.𝟕𝟑% 791 5.74% 750
15 × 5 3 1035 35.29% 856 11.90% 877 14.64% 909 18.82% 866 13.20% 784 2.48% 𝟕𝟔𝟖 𝟎.𝟑𝟗% 765
15 × 5 4 1221 43.14% 895 4.92% 1005 17.82% 985 15.47% 𝟖𝟒𝟗 −𝟎.𝟒𝟕% 875 8.83% 𝟖𝟒𝟗 −𝟎.𝟒𝟕% 853
15 × 5 5 1035 28.73% 871 8.33% 901 12.06% 945 17.54% 850 5.72% 817 1.62% 𝟖𝟏𝟔 𝟏.𝟒𝟗% 804
20 × 5 6 1478 38.00% 1100 2.71% 1130 5.51% 1139 6.35% 1109 3.55% 𝟏𝟎𝟖𝟕 𝟏.𝟒𝟗% 1100 2.71% 1071
20 × 5 7 1097 17.20% 986 5.34% 1018 8.76% 1083 15.71% 968 3.42% 𝟗𝟒𝟖 𝟏.𝟐𝟖% 957 2.24% 936
20 × 5 8 1215 17.05% 1134 9.25% 1077 3.76% 1098 5.78% 1083 4.34% 𝟏𝟎𝟓𝟏 𝟏.𝟐𝟓% 1057 1.83% 1038
20 × 5 9 1284 20.00% 1181 10.37% 1131 5.70% 1176 9.91% 1112 3.93% 𝟏𝟎𝟗𝟒 𝟐.𝟐𝟒% 1097 2.52% 1070
20 × 5 10 1362 24.95% 1236 13.39% 1291 18.44% 1269 16.42% 1193 9.45% 1124 3.12% 𝟏𝟎𝟖𝟕 −𝟎.𝟐𝟖% 1090
20 × 10 11 1411 33.87% 1154 9.49% 1187 12.62% 1140 8.16% 1089 3.32% 𝟏𝟎𝟕𝟎 𝟏.𝟓𝟐% 1124 6.64% 1054
20 × 10 12 1654 52.44% 1128 3.96% 1231 13.46% 1196 10.23% 1123 3.41% 𝟏𝟎𝟗𝟔 𝟏.𝟎𝟏% 1121 3.32% 1085
20 × 10 13 1582 47.85% 1152 7.66% 1172 9.53% 1197 11.87% 1106 3.36% 𝟏𝟎𝟖𝟔 𝟏.𝟓𝟎% 1111 3.83% 1070
20 × 10 14 1589 59.86% 1079 8.55% 1105 11.17% 1124 13.08% 1049 5.43% 𝟏𝟎𝟏𝟐 𝟏.𝟖𝟏% 1074 8.05% 994
20 × 10 15 1639 53.32% 1150 7.58% 1170 9.45% 1146 7.20% 1117 4.20% 𝟏𝟎𝟖𝟔 𝟏.𝟓𝟗% 1128 5.52% 1069
30 × 10 16 2326 53.03% 1578 3.82% 1636 7.63% 1610 5.92% 1561 2.56% 𝟏𝟓𝟑𝟒 𝟎.𝟗𝟐% 1555 2.30% 1520
30 × 10 17 2564 54.64% 1709 3.08% 1738 4.83% 1754 5.79% 1693 1.93% 𝟏𝟔𝟕𝟕 𝟏.𝟏𝟓% 1689 1.87% 1658
30 × 10 18 2101 40.35% 1553 3.74% 1567 4.68% 1568 4.74% 1531 2.07% 𝟏𝟓𝟏𝟏 𝟎.𝟗𝟒% 1520 1.54% 1497
30 × 10 19 2033 32.44% 1575 2.61% 1615 5.21% 1607 4.69% 1562 1.63% 𝟏𝟓𝟓𝟐 𝟏.𝟏𝟏% 1561 1.69% 1535
30 × 10 20 2222 43.45% 1584 2.26% 1614 4.20% 1636 5.62% 1574 1.48% 1569 1.29% 𝟏𝟓𝟔𝟓 𝟏.𝟎𝟑% 1549
Ave. gap 37.81% 7.07% 9.74% 10.20% 4.30% 1.87% 2.73%
Fig. 8. Makespan convergence curves obtained from the policy training on FJSP
instances of different scales.

5.3. Experimental results on public benchmarks

5.3.1. Experimental results on Hurink dataset
The ten FJSP instances are selected from each of the two sub-

datasets (Rdata and Vdata) of Hurink dataset. Specifically, the five
15 × 5 and five 20 × 5 FJSP instances are selected from Rdata, and the
ive 20 × 10 and five 30 × 10 FJSP instances are selected from Vdata. In
his experiment, the policies trained on the 15×15, 20×10, and 30 × 10
andom instances are used to solve the 15 × 5, 20 × 5 and 20 × 10, and
0 × 10 benchmark instances, respectively. To ensure fair comparison,
he four better-performing composite scheduling rules are selected from
he six composite scheduling rules, i.e., Rule 3, Rule 4, Rule 5, and
ule 6. In addition, the two state-of-the-art methods that combine GNN
nd DRL, including GIN-PPO [22] and GAT-PPO [25], are adopted to
olve FJSP. Notably, the best-performing model trained by GIN-PPO
nd that trained by GAT-PPO on Hurink dataset are adopted to solve
JSP. Tables 2 and 3 present the comparisons of the solution quality
nd the solution time obtained using the proposed method, the four
etter-performing composite scheduling rules, GIN-PPO, and GAT-PPO
n Hurink dataset, respectively.
10
Table 3
Comparison of the solution time obtained using the proposed method, the four
better-performing composite scheduling rules, GIN-PPO, and GAT-PPO on Hurink
dataset.

Size Name Rule 3 Rule 4 Rule 5 Rule 6 GIN-PPO [22] GAT-PPO [25] Proposed
time (s) time (s) time (s) time (s) time (s) time (s) time (s)

15 × 5 1 0.12 0.12 0.14 0.12 0.42 1.19 0.31
15 × 5 2 0.14 0.13 0.13 0.14 0.42 1.18 0.32
15 × 5 3 0.14 0.14 0.15 0.15 0.42 1.17 0.31
15 × 5 4 0.12 0.12 0.13 0.14 0.41 1.19 0.31
15 × 5 5 0.12 0.12 0.13 0.12 0.42 1.19 0.33
20 × 5 6 0.19 0.16 0.17 0.16 0.63 1.67 0.45
20 × 5 7 0.17 0.16 0.17 0.17 0.61 1.69 0.43
20 × 5 8 0.17 0.20 0.19 0.19 0.61 1.69 0.42
20 × 5 9 0.19 0.16 0.19 0.17 0.64 1.67 0.42
20 × 5 10 0.17 0.15 0.17 0.19 0.61 1.69 0.42
20 × 10 11 0.36 0.32 0.36 0.33 1.23 4.84 0.88
20 × 10 12 0.31 0.29 0.35 0.30 1.25 4.85 0.89
20 × 10 13 0.30 0.32 0.33 0.32 1.25 4.83 0.87
20 × 10 14 0.31 0.29 0.33 0.30 1.24 4.86 0.89
20 × 10 15 0.32 0.30 0.35 0.30 1.25 4.83 0.87
30 × 10 16 0.53 0.52 0.55 0.52 1.83 9.91 1.39
30 × 10 17 0.52 0.47 0.54 0.49 1.82 9.90 1.41
30 × 10 18 0.50 0.49 0.52 0.50 1.82 9.91 1.42
30 × 10 19 0.56 0.51 0.58 0.54 1.82 9.90 1.41
30 × 10 20 0.49 0.47 0.52 0.49 1.83 9.89 1.39
Ave. time 0.29 0.27 0.30 0.28 1.03 4.40 0.76

As shown in Table 2, in terms of solution quality, the proposed
method is significantly superior to these composite scheduling rules on
the vast majority of instances, the differences between the proposed
method and these composite scheduling rules are small on individual
instances. The solution quality of the proposed method is superior to
that of GIN-PPO in all instances except for the third instance. The
solution quality of the proposed method and that of GAT-PPO are
similar on most instances. The 𝐶max of the proposed method outper-
forms UB on a few instances. Fig. 9 presents the relative gaps of
the proposed method, the four better-performing composite scheduling
rules, GIN-PPO and GAT-PPO to UB on Hurink dataset. As seen in
Fig. 9, the average gaps of the best-performing composite scheduling
rule (i.e., Rule 4), GIN-PPO, GAT-PPO, and the proposed method are
7.07%, 4.30%, 1.87%, and 2.73%, respectively, which demonstrates
that the overall solution quality of the proposed method is far better
than that of these composite scheduling rules and GIN-PPO and slightly
inferior to that of GAT-PPO. As shown in Table 3, the solution time
of the best-performing composite scheduling rule (i.e., Rule 4) ranges
from 0.12 to 0.52 s, the solution time of GIN-PPO ranges from 0.41 to
1.83 s, the solution time of GAT-PPO ranges from 1.17 to 9.91 s, and the
solution time of the proposed method ranges from 0.31 to 1.42 s. From
a comprehensive perspective of solution quality and solution time, the

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.

r
e
i
1
G
t
q
t
G

m
G
I

l
m
P
t
(
r

Fig. 9. Relative gaps of the proposed method, the four better-performing composite
scheduling rules, GIN-PPO, and GAT-PPO to UB on Hurink dataset.

Fig. 10. Relative gaps of the proposed method, the four better-performing composite
scheduling rules, GIN-PPO, and GAT-PPO to UB on Behnke dataset.

proposed method is far superior to these composite scheduling rules,
superior to GIN-PPO, and slightly better than GAT-PPO.

5.3.2. Experimental results on Behnke dataset
The ten large-scale FJSP instances are selected from each of the

three sub-datasets (Behnke-m20, Behnke-m40, and Behnke-m60) of
Behnke dataset. In this experiment, the policies trained on the 30 × 10
andom instances are used to solve these 30 benchmark instances. To
nsure fair comparison, the four better-performing composite schedul-
ng rules are selected from the six composite scheduling rules, i.e., Rule
, Rule 2, Rule 3, and Rule 4, and the best-performing model trained by
IN-PPO and that trained by GAT-PPO on Behnke dataset are adopted

o solve FJSP. Tables 4 and 5 provide the comparisons of the solution
uality and the solution time obtained using the proposed method,
he four better-performing composite scheduling rules, GIN-PPO, and
AT-PPO on Behnke dataset, respectively.

As shown in Table 4, in terms of solution quality, the proposed
ethod is significantly superior to these composite scheduling rules and
AT-PPO on all instances and superior to GIN-PPO on most instances.
11

n addition, the 𝐶max of the proposed method outperforms UB on most
arge-scale instances. Fig. 10 shows the relative gaps of the proposed
ethod, the four better-performing composite scheduling rules, GIN-
PO, and GAT-PPO to UB on Behnke dataset. As shown in Fig. 10,
he average gaps of the best-performing composite scheduling rule
i.e., Rule 1), GIN-PPO, and GAT-PPO are 7.49%, −8.95%, and 18.30%
espectively, while the average gap of the proposed method is −9.03%,

which shows that the overall solution quality of the proposed method
is obviously better than that of these composite scheduling rules and
GAT-PPO and slightly better than that of GIN-PPO. As shown in Table 5,
the solution time of the best-performing composite scheduling rule
(i.e., Rule 1) ranges from 0.59 to 2.13 s, the solution time of GIN-PPO
ranges from 1.99 to 9.11 s, the solution time of GAT-PPO ranges from
7.95 to 42.35 s, and the solution time of the proposed method ranges
from 1.69 to 8.38 s. From a comprehensive perspective of solution
quality and solution time, the proposed method is significantly superior
to these composite scheduling rules and GAT-PPO and superior to
GIN-PPO for large-scale FJSPs.

Figs. 11(a) and 11(b) present the Gantt charts of the final scheduling
results of the best-performing scheduling rule (i.e., Rule 1) and the
proposed method on the 17-th instance (100 × 20), respectively. As
seen in Figs. 11(a) and 11(b), the idle time in the Gantt chart of the
scheduling result of the proposed method is significantly less than that
of Rule 1, which demonstrates that the proposed method obtains a
better solution quality compared with the best-performing scheduling
rule.

5.3.3. Experimental results on Brandimarte dataset
The first ten FJSP instances are selected from Brandimarte dataset.

In this experiment, the policies trained on the 6×6, 15×15, 10×10, 20×10,
and 30 × 10 random instances are used to solve the 10×6, 15×8 and
15×4, 10 × 10, 20×5 and 20 × 10, and 20 × 15 benchmark instances,
respectively. The proposed method is compared with Rule 4, GIN-
A3C [20], GIN-PPO [22], GAT-PPO [25], IPSO [34], and SLGA [35] in
this experiment. Rule 4 is the best-performing scheduling rule among
the six composite scheduling rules on Brandimarte dataset. IPSO is
one of the most widely used and best-performing meta-heuristic algo-
rithms for solving FJSP in recent years. GIN-A3C is one of the latest
methods to solve FJSP by combining GNN and DRL. SLGA is one
of the best-performing methods to solve FJSP by combining meta-
heuristic algorithms and RL recently. To ensure fair comparison, the
fine-tuned IPSO and SLGA and the best-performing model trained by
GIN-A3C, GIN-PPO, and GAT-PPO respectively on Brandimarte dataset
are adopted to solve FJSP.

Tables 6 and 7 give the comparisons of the solution quality and the
solution time obtained using the proposed method, Rule 4, GIN-A3C,
GIN-PPO, GAT-PPO, IPSO, and SLGA on Brandimarte dataset, respec-
tively. Fig. 12 presents the relative gaps of Rule 4, GIN-A3C, GIN-PPO,
GAT-PPO, IPSO, SLGA, and the proposed method to UB on Brandimarte
dataset. As shown in Table 6, in terms of solution quality, the proposed
method outperforms Rule 4 and GIN-A3C on all instances, outperforms
GIN-PPO on all instances except for the MK03 instance, outperforms
GAT-PPO and IPSO on most instances, and has similar performance
as SLGA on some instances. As seen in Fig. 12, the average gaps of
Rule 4, GIN-A3C, GIN-PPO, GAT-PPO, IPSO, SLGA, and the proposed
method are 29.07%, 23.63%, 14.02%, 18.75%, 8.85%, 6.21%, and
6.15%, respectively, which indicates that the overall solution quality
of the proposed method is significantly better than that of Rule 4, GIN-
A3C, GIN-PPO, and GAT-PPO, better than that of IPSO, and slightly
better than that of SLGA. As shown in Table 7, the solution time of
Rule 4 ranges from 0.1 to 0.37 s, the solution time of GIN-A3C ranges
from 0.36 to 1.94 s, the solution time of GIN-PPO ranges from 0.43 to
1.56 s, the solution time of GAT-PPO ranges from 0.84 to 7.16 s, the
solution time of IPSO ranges from 34.7 to 2675 s, the solution time
of SLGA ranges from 27.63 to 1335 s, and the solution time of the

proposed method ranges from 0.24 to 1.15 s. The results reveal that

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.
Table 4
Comparison of the solution quality obtained using the proposed method, the four better-performing composite scheduling rules, GIN-PPO, and GAT-PPO on Behnke dataset.

Size Name Rule 1 Rule 2 Rule 3 Rule 4 GIN-PPO [22] GAT-PPO [25] Proposed UB

𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap

50 × 20 1 313 20.85% 348 34.36% 338 30.50% 356 37.45% 𝟐𝟓𝟎 −𝟑.𝟒𝟕% 342 32.05% 278 7.34% 259
50 × 20 2 281 11.59% 317 26.29% 342 36.25% 357 42.23% 𝟐𝟒𝟕 −𝟏.𝟓𝟗% 326 29.88% 𝟐𝟒𝟕 −𝟏.𝟓𝟗% 251
50 × 20 3 322 27.78% 358 42.06% 366 45.24% 359 42.46% 𝟐𝟒𝟗 −𝟏.𝟏𝟗% 344 36.51% 261 3.57% 252
50 × 20 4 343 32.95% 361 39.92% 326 26.36% 362 40.31% 𝟐𝟓𝟕 −𝟎.𝟑𝟗% 337 30.62% 262 1.55% 258
50 × 20 5 328 25.19% 395 50.76% 398 51.91% 361 37.79% 𝟐𝟓𝟓 −𝟐.𝟔𝟕% 327 24.81% 260 −0.76% 262
50 × 40 6 322 18.38% 322 18.38% 307 12.87% 375 37.87% 271 −0.37% 333 22.43% 𝟐𝟔𝟒 −𝟐.𝟗𝟒% 272
50 × 40 7 297 14.67% 308 18.92% 319 23.17% 390 50.58% 267 3.09% 324 25.10% 𝟐𝟓𝟓 −𝟏.𝟓𝟒% 259
50 × 40 8 302 23.27% 295 20.41% 308 25.71% 353 44.08% 261 6.53% 321 31.02% 𝟐𝟓𝟑 𝟑.𝟐𝟕% 245
50 × 40 9 280 5.66% 326 23.02% 299 12.83% 348 31.32% 𝟐𝟓𝟎 −𝟓.𝟔𝟔% 325 22.64% 262 −1.13% 265
50 × 40 10 279 10.28% 311 22.92% 289 14.23% 355 40.32% 𝟐𝟒𝟗 −𝟏.𝟓𝟖% 332 31.23% 252 −0.40% 253
50 × 60 11 262 1.16% 288 11.20% 286 10.42% 359 38.61% 253 −2.32% 319 23.17% 𝟐𝟒𝟓 −𝟓.𝟒𝟏% 259
50 × 60 12 274 7.45% 288 12.94% 317 24.31% 346 35.69% 242 −5.10% 328 28.63% 𝟐𝟒𝟎 −𝟓.𝟖𝟖% 255
50 × 60 13 293 14.01% 319 24.12% 295 14.79% 352 36.96% 256 −0.39% 324 26.07% 𝟐𝟒𝟒 −𝟓.𝟎𝟔% 257
50 × 60 14 320 19.85% 353 32.21% 367 37.45% 368 37.83% 268 0.37% 331 23.97% 𝟐𝟓𝟖 −𝟑.𝟑𝟕% 267
50 × 60 15 307 19.92% 317 23.83% 344 34.38% 357 39.45% 262 2.34% 328 28.13% 𝟐𝟒𝟖 −𝟑.𝟏𝟑% 256
100 × 20 16 540 −4.59% 583 3.00% 625 10.42% 619 9.36% 𝟒𝟑𝟕 −𝟐𝟐.𝟕𝟗% 603 6.54% 451 −20.32% 566
100 × 20 17 577 7.85% 683 27.66% 603 12.71% 624 16.64% 𝟒𝟑𝟎 −𝟏𝟗.𝟔𝟑% 598 11.78% 438 −18.13% 535
100 × 20 18 514 −7.39% 630 13.51% 621 11.89% 621 11.89% 𝟒𝟐𝟖 −𝟐𝟐.𝟖𝟖% 598 7.75% 442 −20.36% 555
100 × 20 19 506 −4.89% 585 9.96% 637 19.74% 626 17.67% 𝟒𝟐𝟑 −𝟐𝟎.𝟒𝟗% 591 11.09% 447 −15.98% 532
100 × 20 20 516 −1.15% 594 13.79% 576 10.34% 628 20.31% 𝟒𝟐𝟕 −𝟏𝟖.𝟐𝟎% 586 12.26% 444 −14.94% 522
100 × 40 21 533 0.38% 535 0.75% 520 −2.07% 602 13.37% 𝟒𝟒𝟐 −𝟏𝟔.𝟕𝟔% 564 6.21% 446 −16.01% 531
100 × 40 22 492 −8.21% 559 4.29% 587 9.51% 610 13.81% 444 −17.16% 578 7.84% 𝟒𝟑𝟓 −𝟏𝟖.𝟖𝟒% 536
100 × 40 23 477 −9.49% 495 −6.07% 518 −1.71% 610 15.75% 454 −13.85% 577 9.49% 𝟒𝟑𝟒 −𝟏𝟕.𝟔𝟓% 527
100 × 40 24 526 1.94% 600 16.28% 580 12.40% 631 22.29% 471 −8.72% 562 8.91% 𝟒𝟓𝟒 −𝟏𝟐.𝟎𝟐% 516
100 × 40 25 567 8.83% 564 8.25% 579 11.13% 596 14.40% 460 −11.71% 580 11.32% 𝟒𝟓𝟔 −𝟏𝟐.𝟒𝟖% 521
100 × 60 26 511 −5.02% 529 −1.67% 508 −5.58% 594 10.41% 𝟒𝟑𝟗 −𝟏𝟖.𝟒𝟎% 570 5.95% 442 −17.84% 538
100 × 60 27 535 0.00% 531 −0.75% 614 14.77% 600 12.15% 442 −17.38% 574 7.29% 𝟒𝟑𝟑 −𝟏𝟗.𝟎𝟕% 535
100 × 60 28 489 −7.91% 544 2.45% 522 −1.69% 600 12.99% 442 −16.76% 585 10.17% 𝟒𝟑𝟗 −𝟏𝟕.𝟑𝟑% 531
100 × 60 29 526 −1.15% 529 −0.56% 511 −3.95% 619 16.35% 443 −16.73% 571 7.33% 𝟒𝟒𝟏 −𝟏𝟕.𝟏𝟏% 532
100 × 60 30 548 2.04% 513 −4.47% 518 −3.54% 609 13.41% 458 −14.71% 585 8.94% 𝟒𝟒𝟒 −𝟏𝟕.𝟑𝟐% 537
Ave. gap 7.49% 16.26% 16.49% 27.13% 8.95% 18.30% 9.03%
Table 5
Comparison of the solution time obtained using the proposed method, the four
better-performing composite scheduling rules, GIN-PPO, and GAT-PPO on Behnke
dataset.

Size Name Rule 1 Rule 2 Rule 3 Rule 4 GIN-PPO [22] GAT-PPO [25] Proposed
time (s) time (s) time (s) time (s) time (s) time (s) time (s)

50 × 20 1 0.67 0.60 0.56 0.61 2.02 7.98 1.81
50 × 20 2 0.61 0.59 0.54 0.61 2.02 7.98 1.82
50 × 20 3 0.60 0.57 0.54 0.59 2.01 7.95 1.77
50 × 20 4 0.59 0.59 0.52 0.59 2.03 7.97 1.69
50 × 20 5 0.64 0.61 0.58 0.66 1.99 7.98 1.76
50 × 40 6 0.67 0.64 0.61 0.68 2.11 8.97 1.90
50 × 40 7 0.68 0.59 0.57 0.63 2.12 8.99 1.87
50 × 40 8 0.62 0.59 0.58 0.60 2.12 8.99 1.83
50 × 40 9 0.64 0.61 0.59 0.64 2.11 8.99 1.91
50 × 40 10 0.67 0.63 0.60 0.68 2.11 8.99 1.89
50 × 60 11 0.70 0.65 0.63 0.70 2.25 9.95 2.00
50 × 60 12 0.66 0.62 0.58 0.67 2.25 9.96 2.01
50 × 60 13 0.67 0.62 0.61 0.67 2.21 9.94 2.02
50 × 60 14 0.71 0.68 0.64 0.68 2.24 9.97 1.97
50 × 60 15 0.64 0.64 0.58 0.66 2.20 9.98 2.02
100 × 20 16 2.02 1.74 1.52 1.95 8.54 34.25 8.04
100 × 20 17 1.91 1.70 1.47 1.87 8.51 34.35 8.09
100 × 20 18 1.98 1.72 1.48 1.96 8.55 34.29 7.93
100 × 20 19 2.04 1.67 1.47 1.87 8.55 34.31 7.83
100 × 20 20 2.13 1.72 1.54 1.97 8.59 34.34 7.98
100 × 40 21 2.04 1.77 1.67 2.02 8.93 38.38 8.10
100 × 40 22 1.93 1.73 1.58 1.96 8.96 38.42 7.84
100 × 40 23 1.97 1.75 1.61 1.95 8.96 38.35 8.01
100 × 40 24 1.96 1.71 1.56 1.96 8.89 38.34 7.84
100 × 40 25 1.91 1.76 1.64 1.96 8.91 38.41 7.86
100 × 60 26 2.07 1.90 1.71 2.02 9.03 42.35 8.12
100 × 60 27 1.99 1.87 1.66 2.00 9.09 42.31 8.10
100 × 60 28 1.95 1.87 1.66 2.00 9.11 42.30 8.12
100 × 60 29 1.95 1.91 1.70 1.99 9.08 42.30 8.05
100 × 60 30 1.97 1.86 1.63 1.99 9.08 42.32 8.38
Ave. time 1.32 1.20 1.09 1.30 5.49 23.65 4.95

the proposed method is significantly superior to Rule 4, GIN-A3C, GIN-
PPO, GAT-PPO, IPSO, and SLGA from a comprehensive perspective of
12

solution quality and solution time.
Overall, the efficiency, stability, and generalization of the proposed
method have been verified through extensive experiments on three
different public benchmarks. Firstly, compared with some advanced
methods for solving FJSP, the overall performance of the proposed
method is better than that of them in terms of both solution qual-
ity and solution time, which verifies the efficiency of the proposed
method. Secondly, the performance of the same scheduling rule varies
across different public benchmarks, meaning that the stability of the
scheduling rules is poor. In contrast, the proposed method performs
substantially well on different public benchmarks, meaning that the
proposed method has better stability. Finally, the policies trained using
the proposed method can be directly used to efficiently solve FJSP
instances of different scales, which demonstrates that the proposed
method has good generalization.

5.4. Parameter sensitivity analysis

The three most important parameters used for policy training of
the proposed method including the learning rate, the soft update co-
efficient, and the number of MHGNN layers are analyzed, as shown
in Fig. 13. The values of these parameters are determined by com-
prehensively analyzing their influences on makespan and convergence
during the policy training process. As shown in Fig. 13(a), when the
learning rate is set to 0.01, the makespan fluctuates significantly and
it fails to obtain a satisfactory makespan during the policy training
process. With the decrease in the learning rate, the makespan gradually
stabilizes and a smaller makespan can be obtained, thus the learning
rate is chosen as 0.0003. Figs. 13(b) and 13(c) present the makespan
obtained under different soft update coefficients and different numbers
of MHGNN layers during the policy training process, respectively. It is
easy to see that a satisfactory makespan and good convergence can be

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.
Fig. 11. Gantt charts of the final scheduling results obtained with different methods on the 17-th instance (100 × 20).
achieved when the soft update coefficient and the number of MHGNN
layers are chosen as 0.01 and 3, respectively.

In addition, how to reasonably determine the values of the other
three key parameters, including the number of samples per batch
(i.e., batch size), the discount factor, and the initial value of the entropy
parameter, is also important for policy training. A larger batch size
can improve the convergence speed of policy training, but it is easy
to cause out-of-memory. A smaller batch size can improve the gener-
alization effect of the trained policy, but it is easy to cause instability
in the training process. Therefore, the number of samples per batch
is determined to be 16. Owing to the fact that the agent needs to
13
simultaneously control the operation selection action and the machine
allocation action at each time step, the initial value of the entropy
parameter is determined by the natural logarithm of the dimension of
the action space, i.e., ln 2. The discount factor is determined to be 1 for
better calculation of the cumulative reward.

6. Conclusions

A new end-to-end DRL method combined with MHGNN is put
forward to efficiently solve FJSP. To better solve complex FJSP, the task
of solving FJSP is decomposed into two subtasks of operation selection

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.
Table 6
Comparison of the solution quality obtained using the proposed method, Rule 4, GIN-A3C, GIN-PPO, GAT-PPO, IPSO, and SLGA on Brandimarte dataset.

Size Name Rule 4 GIN-A3C [20] GIN-PPO [22] GAT-PPO [25] IPSO [34] SLGA [35] Proposed UB

𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap 𝐶max Gap

10 × 6 MK01 47 20.51% 48 23.08% 44 12.82% 42 7.69% 𝟒𝟎 𝟐.𝟓𝟔% 𝟒𝟎 𝟐.𝟓𝟔% 41 5.13% 39
10 × 6 MK02 39 50.00% 34 30.77% 32 23.08% 36 38.46% 29 11.54% 𝟐𝟕 𝟑.𝟖𝟓% 𝟐𝟕 𝟑.𝟖𝟓% 26
15 × 8 MK03 216 5.88% 235 15.20% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 𝟐𝟎𝟒 𝟎.𝟎𝟎% 204
15 × 8 MK04 76 26.67% 77 28.33% 70 16.67% 67 11.67% 66 10.00% 𝟔𝟎 𝟎.𝟎𝟎% 64 6.67% 60
15 × 4 MK05 190 10.47% 192 11.63% 182 5.81% 181 5.23% 175 1.74% 𝟏𝟕𝟐 𝟎.𝟎𝟎% 173 0.58% 172
10 × 10 MK06 99 70.69% 78 34.48% 78 34.48% 88 51.72% 77 32.76% 𝟔𝟗 𝟏𝟖.𝟗𝟕% 𝟔𝟗 𝟏𝟖.𝟗𝟕% 58
20 × 5 MK07 207 48.92% 190 36.69% 157 12.95% 194 39.57% 145 4.32% 𝟏𝟒𝟒 𝟑.𝟔𝟎% 146 5.04% 139
20 × 10 MK08 539 3.06% 544 4.02% 531 1.53% 𝟓𝟐𝟑 𝟎.𝟎𝟎% 𝟓𝟐𝟑 𝟎.𝟎𝟎% 𝟓𝟐𝟑 𝟎.𝟎𝟎% 527 0.76% 523
20 × 10 MK09 348 13.36% 375 22.15% 331 7.82% 322 4.89% 𝟑𝟐𝟎 𝟒.𝟐𝟑% 𝟑𝟐𝟎 𝟒.𝟐𝟑% 331 7.82% 307
20 × 15 MK10 278 41.12% 256 29.95% 247 25.38% 246 24.87% 239 21.32% 254 28.93% 𝟐𝟐𝟐 𝟏𝟐.𝟔𝟗% 197
Ave. gap 29.07% 23.63% 14.02% 18.75% 8.85% 6.21% 6.15%
Table 7
Comparison of the solution time obtained using the proposed method, Rule 4, GIN-A3C,
GIN-PPO, GAT-PPO, IPSO, and SLGA on Brandimarte dataset.

Size Name Rule 4 GIN-A3C [20] GIN-PPO [22] GAT-PPO [25] IPSO [34] SLGA [35] Proposed
time (s) time (s) time (s) time (s) time (s) time (s) time (s)

10 × 6 MK01 0.25 0.83 0.43 0.84 34.70 27.63 0.25
10 × 6 MK02 0.10 0.36 0.44 0.86 50.00 29.11 0.24
15 × 8 MK03 0.22 0.98 0.85 3.08 562.50 112.60 0.67
15 × 8 MK04 0.14 0.83 0.62 1.53 135.00 63.21 0.41
15 × 4 MK05 0.16 0.82 0.65 1.91 131.50 60.35 0.48
10 × 10 MK06 0.20 1.00 0.83 3.13 797.80 72.80 0.64
20 × 5 MK07 0.19 0.62 0.55 1.66 160.60 57.77 0.45
20 × 10 MK08 0.34 1.74 1.31 6.31 944.80 521.70 1.05
20 × 10 MK09 0.35 1.94 1.43 7.00 1762.00 552.50 1.14
20 × 15 MK10 0.37 1.83 1.56 7.16 2675.00 1335.00 1.15
Ave. time 0.23 1.10 0.87 3.35 725.39 283.27 0.65

Fig. 12. Relative gaps of Rule 4, GIN-A3C, GIN-PPO, GAT-PPO, IPSO, SLGA, and the
proposed method to UB on Brandimarte dataset.

and machine allocation. The heterogeneous graph is adopted to repre-
sent the global scheduling states of the dual-task FJSP, and the DMDP
is proposed to model the dual-task FJSP, which can more accurately
model complex FJSP. By utilizing the advantage of GNN in processing
complicated graph structural information, the MHGNN is proposed to
effectively obtain the node features of operation nodes and machine
nodes and the relationships between them in the heterogeneous graph.
The heterogeneous GNN framework is designed to effectively extract
the feature information of the embedded operation nodes and machine
nodes, which are used to represent the operation selection policy and
the machine allocation policy. The soft double-actors critic algorithm
is proposed to train high-quality scheduling policies that can be used
to efficiently solve FJSP instances of different scales. Compared with
the existing methods for solving FJSP, the proposed method improves
14
the modeling capability of complex FJSP, enhances the stability and
generalization of scheduling policies, and improves the quality and
efficiency of solving FJSP. Extensive experiments are conducted on
three different public benchmarks, and the experimental results verify
the efficiency, stability, and generalization of the proposed method.

The dynamic events such as machine breakdowns and new job
insertions occur frequently in intelligent manufacturing. How to ef-
ficiently solve DFJSP is a more challenging problem. The effective
solution of DFJSP usually requires real-time decision-making of produc-
tion scheduling to adapt to dynamically changing tasks and resources,
and often requires consideration of multiple optimization objectives,
such as minimizing the makespan and maximizing the machine uti-
lization. Therefore, how to extend the proposed method to solve the
multi-objective DFJSP will be the focus of future research.

CRediT authorship contribution statement

Lanjun Wan: Writing – review & editing, Writing – original draft,
Software, Methodology, Investigation, Funding acquisition, Concep-
tualization. Long Fu: Writing – original draft, Visualization, Valida-
tion, Software, Methodology, Data curation. Changyun Li: Supervision,
Funding acquisition. Keqin Li: Writing – review & editing, Methodol-
ogy, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the Scientific Research Foundation
of Hunan Provincial Education Department, China [grant number
21B0547]; the Hunan Provincial Natural Science Foundation of
China [grant number 2023JJ30217]; the National Natural Science
Foundation for Young Scientists of China [grant number 61702177];
and the Research Foundation of Education Bureau of Hunan Province,
China [grant number 21A0356].

Knowledge-Based Systems 296 (2024) 111940L. Wan et al.
Fig. 13. Sensitivity analyses of three different key parameters during the policy training process.
References

[1] X. Li, X. Guo, H. Tang, R. Wu, L. Wang, S. Pang, Z. Liu, W. Xu, X. Li, Survey
of integrated flexible job shop scheduling problems, Comput. Ind. Eng. (2022)
108786.

[2] S. Dauzère-Pérès, J. Ding, L. Shen, K. Tamssaouet, The flexible job shop
scheduling problem: A review, European J. Oper. Res. 314 (2) (2024) 409–432.

[3] Y. Demir, S.K. İşleyen, Evaluation of mathematical models for flexible job-shop
scheduling problems, Appl. Math. Model. 37 (3) (2013) 977–988.

[4] S.S. Gran, I. Ismail, T.A. Ajol, A.F.A. Ibrahim, Mixed integer programming model
for flexible job-shop scheduling problem (FJSP) to minimize makespan and total
machining time, in: 2015 Int. Conf. Comput. Commun. Control. Technol., I4CT,
IEEE, 2015, pp. 413–417.

[5] L. Meng, C. Zhang, Y. Ren, B. Zhang, C. Lv, Mixed-integer linear programming
and constraint programming formulations for solving distributed flexible job shop
scheduling problem, Comput. Ind. Eng. 142 (2020) 106347.

[6] F. Zhang, Y. Mei, S. Nguyen, M. Zhang, Importance-aware genetic programming
for automated scheduling heuristics learning in dynamic flexible job shop
scheduling, in: 17th Int. Conf. Parallel Probl. Solving Nat., PPSN, Springer, 2022,
pp. 48–62.

[7] Y. Ai, M. Wang, X. Xue, C.-B. Yan, An efficient heuristic algorithm for flexible
job-shop scheduling problem with due windows, in: 2022 IEEE 18th Int. Conf.
Autom. Sci. Eng., CASE, IEEE, 2022, pp. 142–147.

[8] H. Zhang, G. Xu, R. Pan, H. Ge, A novel heuristic method for the energy-
efficient flexible job-shop scheduling problem with sequence-dependent set-up
and transportation time, Eng. Optim. 54 (10) (2022) 1646–1667.

[9] D. Yang, M. Wu, D. Li, Y. Xu, X. Zhou, Z. Yang, Dynamic opposite learning
enhanced dragonfly algorithm for solving large-scale flexible job shop scheduling
problem, Knowl.-Based Syst. 238 (2022) 107815.

[10] K. Sun, D. Zheng, H. Song, Z. Cheng, X. Lang, W. Yuan, J. Wang, Hybrid genetic
algorithm with variable neighborhood search for flexible job shop scheduling
problem in a machining system, Expert Syst. Appl. 215 (2023) 119359.

[11] L. Wei, J. He, Z. Guo, Z. Hu, A multi-objective migrating birds optimization
algorithm based on game theory for dynamic flexible job shop scheduling
problem, Expert Syst. Appl. 227 (2023) 120268.

[12] S. Luo, Dynamic scheduling for flexible job shop with new job insertions by deep
reinforcement learning, Appl. Soft Comput. 91 (2020) 106208.

[13] Y. Feng, L. Zhang, Z. Yang, Y. Guo, D. Yang, Flexible job shop scheduling based
on deep reinforcement learning, in: 2021 5th Asian Conf. Artif. Intell. Technol.,
ACAIT, IEEE, 2021, pp. 660–666.

[14] S. Luo, L. Zhang, Y. Fan, Dynamic multi-objective scheduling for flexible job
shop by deep reinforcement learning, Comput. Ind. Eng. 159 (2021) 107489.

[15] R. Liu, R. Piplani, C. Toro, Deep reinforcement learning for dynamic scheduling
of a flexible job shop, Int. J. Prod. Res. 60 (13) (2022) 4049–4069.

[16] M. Panzer, B. Bender, Deep reinforcement learning in production systems: A
systematic literature review, Int. J. Prod. Res. 60 (13) (2022) 4316–4341.

[17] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444.
15
[18] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
2018.

[19] S. Munikoti, D. Agarwal, L. Das, M. Halappanavar, B. Natarajan, Challenges
and opportunities in deep reinforcement learning with graph neural networks: A
comprehensive review of algorithms and applications, IEEE Trans. Neural Netw.
Learn. Syst. (2023) 1–21, http://dx.doi.org/10.1109/TNNLS.2023.3283523.

[20] Z. Zeng, X. Li, C. Bai, A deep reinforcement learning approach to flexible job
shop scheduling, in: 2022 IEEE Int. Conf. Syst. Man. Cybern., SMC, IEEE, 2022,
pp. 884–890.

[21] K. Lei, P. Guo, Y. Wang, J. Xiong, W. Zhao, An end-to-end hierarchical reinforce-
ment learning framework for large-scale dynamic flexible job-shop scheduling
problem, in: 2022 Int. Jt. Conf. Neural Netw., IJCNN, IEEE, 2022, pp. 1–8.

[22] K. Lei, P. Guo, W. Zhao, Y. Wang, L. Qian, X. Meng, L. Tang, A multi-action
deep reinforcement learning framework for flexible job-shop scheduling problem,
Expert Syst. Appl. 205 (2022) 117796.

[23] K. Lei, P. Guo, Y. Wang, J. Zhang, X. Meng, L. Qian, Large-scale dynamic
scheduling for flexible job-shop with random arrivals of new jobs by hierarchical
reinforcement learning, IEEE Trans. Ind. Inform. 20 (1) (2024) 1007–1018.

[24] C. Zhang, W. Song, Z. Cao, J. Zhang, P.S. Tan, X. Chi, Learning to dispatch for
job shop scheduling via deep reinforcement learning, Adv. Neural Inf. Process.
Syst. 33 (2020) 1621–1632.

[25] W. Song, X. Chen, Q. Li, Z. Cao, Flexible job-shop scheduling via graph neural
network and deep reinforcement learning, IEEE Trans. Ind. Inform. 19 (2) (2023)
1600–1610.

[26] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural
networks? 2019, arXiv preprint arXiv:1810.00826.

[27] C. Zhang, D. Song, C. Huang, A. Swami, N.V. Chawla, Heterogeneous graph
neural network, in: Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Min., KDD, 2019, pp. 793–803.

[28] X. Fu, J. Zhang, Z. Meng, I. King, MAGNN: Metapath aggregated graph neural
network for heterogeneous graph embedding, in: Proc. Web Conf., WWW, 2020,
pp. 2331–2341.

[29] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H.
Zhu, A. Gupta, P. Abbeel, S. Levine, Soft actor-critic algorithms and applications,
2019, arXiv preprint arXiv:1812.05905.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms, 2017, arXiv preprint arXiv:1707.06347.

[31] J. Hurink, B. Jurisch, M. Thole, Tabu search for the job-shop scheduling problem
with multi-purpose machines, OR Spectrum 15 (1994) 205–215.

[32] D. Behnke, M.J. Geiger, Test Instances for the Flexible Job Shop Scheduling
Problem with Work Centers, Tech. Rep. RR-12-01-01, Helmut Schmidt Univ.,
Hamburg, Germany, 2012.

[33] P. Brandimarte, Routing and scheduling in a flexible job shop by tabu search,
Ann. Oper. Res. 41 (3) (1993) 157–183.

[34] H. Ding, X. Gu, Improved particle swarm optimization algorithm based novel
encoding and decoding schemes for flexible job shop scheduling problem,
Comput. Oper. Res. 121 (2020) 104951.

[35] R. Chen, B. Yang, S. Li, S. Wang, A self-learning genetic algorithm based on
reinforcement learning for flexible job-shop scheduling problem, Comput. Ind.
Eng. 149 (2020) 106778.

http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb1
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb1
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb1
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb1
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb1
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb2
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb2
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb2
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb3
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb3
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb3
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb4
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb4
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb4
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb4
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb4
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb4
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb4
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb5
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb5
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb5
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb5
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb5
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb6
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb6
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb6
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb6
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb6
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb6
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb6
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb7
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb7
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb7
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb7
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb7
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb8
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb8
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb8
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb8
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb8
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb9
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb9
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb9
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb9
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb9
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb10
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb10
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb10
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb10
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb10
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb11
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb11
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb11
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb11
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb11
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb12
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb12
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb12
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb13
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb13
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb13
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb13
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb13
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb14
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb14
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb14
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb15
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb15
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb15
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb16
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb16
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb16
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb17
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb17
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb17
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb18
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb18
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb18
http://dx.doi.org.libyc.nudt.edu.cn:80/10.1109/TNNLS.2023.3283523
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb20
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb20
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb20
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb20
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb20
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb21
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb21
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb21
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb21
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb21
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb22
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb22
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb22
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb22
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb22
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb23
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb23
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb23
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb23
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb23
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb24
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb24
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb24
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb24
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb24
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb25
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb25
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb25
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb25
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb25
http://arxiv-org-s.libyc.nudt.edu.cn:443/abs/1810.00826
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb27
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb27
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb27
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb27
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb27
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb28
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb28
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb28
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb28
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb28
http://arxiv-org-s.libyc.nudt.edu.cn:443/abs/1812.05905
http://arxiv-org-s.libyc.nudt.edu.cn:443/abs/1707.06347
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb31
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb31
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb31
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb32
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb32
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb32
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb32
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb32
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb33
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb33
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb33
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb34
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb34
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb34
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb34
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb34
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb35
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb35
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb35
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb35
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S0950-7051(24)00574-4/sb35

	Flexible job shop scheduling via deep reinforcement learning with meta-path-based heterogeneous graph neural network
	Introduction
	Related Work
	Exact algorithms for solving FJSP
	Heuristic algorithms for solving FJSP
	Meta-heuristic algorithms for solving FJSP
	DRL methods for solving FJSP

	Preliminaries
	Description of FJSP
	Heterogeneous graph representation of FJSP

	Proposed method
	DMDP formulation
	Heterogeneous GNN framework
	Overall design of a heterogeneous GNN framework
	Operation node embedding
	Machine node embedding
	Pooling
	Action prediction

	Soft double-actors critic
	Solving the optimal policy
	Training the actor networks
	Updating the critic network

	Experiments
	Experimental settings
	Convergence analysis for policy training
	Experimental results on public benchmarks
	Experimental results on Hurink dataset
	Experimental results on Behnke dataset
	Experimental results on Brandimarte dataset

	Parameter sensitivity analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

