
J. Parallel Distrib. Comput. 97 (2016) 112–123
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A novel cooperative accelerated parallel two-list algorithm for solving
the subset-sum problem on a hybrid CPU–GPU cluster
Lanjun Wan a,b, Kenli Li a,b,∗, Keqin Li a,b,c
a College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China
b National Supercomputing Center in Changsha, Hunan, 410082, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• A novel cooperative accelerated parallel two-list algorithm for solving SSP is explored.
• A heterogeneous cooperative computing approach for CPU–GPU clusters is proposed.
• A communication-avoiding workload distribution scheme suitable for two-list algorithm is designed.
• An efficient heterogeneous cooperative implementation of two-list algorithm is provided.

a r t i c l e i n f o

Article history:
Received 16 June 2015
Received in revised form
30 May 2016
Accepted 12 July 2016
Available online 18 July 2016

Keywords:
Heterogeneous cooperative computing
Hybrid CPU–GPU cluster
Hybrid programming model
Subset-sum problem
Two-list algorithm
Workload distribution

a b s t r a c t

Many parallel algorithms have recently been developed to accelerate solving the subset-sum problem
on a heterogeneous CPU–GPU system. However, within each compute node, only one CPU core is used
to control one GPU and all the remaining CPU cores are in idle state, which leads to a large number of
CPU cores being wasted. In this paper, based on a cost-optimal parallel two-list algorithm, we propose
a novel heterogeneous cooperative computing approach to solve the subset-sum problem on a hybrid
CPU–GPU cluster, which can make full use of all available computational resources of a cluster. The
unbalanced workload distribution and the huge communication overhead are two main obstacles for the
heterogeneous cooperative computing. In order to assign the most suitable workload to each compute
node and reasonably partition it between CPU and GPU within each node, and minimize the inter-
node and intra-node communication costs, we design a communication-avoiding workload distribution
scheme suitable for the parallel two-list algorithm. According to this scheme, we provide an efficient
heterogeneous cooperative implementation of the algorithm. A series of experiments are conducted on a
hybrid CPU–GPU cluster, where each node has two 6-core CPUs and one GPU. The results show that the
heterogeneous cooperative computing significantly outperforms the CPU-only or GPU-only computing.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

1.1. The problem

Given n positive integersW = [w1, w2, . . . , wn] and a positive
integer M , the subset-sum problem (SSP) is the decision problem
of finding a set I ⊆ {1, 2, . . . , n}, such that


wi = M, i ∈ I .

∗ Corresponding author at: College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha, Hunan, 410082, China.

E-mail addresses: wancanjun2008@163.com (L. Wan), lkl@hnu.edu.cn (K. Li),
lik@newpaltz.edu (K. Li).

http://dx.doi.org/10.1016/j.jpdc.2016.07.003
0743-7315/© 2016 Elsevier Inc. All rights reserved.
In other words, the goal is to find a binary n-tuple solution X =

[x1, x2, . . . , xn] for the equation

n
i=1

wixi = M, xi ∈ {0, 1}. (1)

SSP is well-known to be NP-complete and it is a special case
of the 0/1 knapsack problem. It has many real-world applications,
such as capital budgeting, cargo loading, stock cutting, job
scheduling and workload allocation [13,19]. Since SSP has 2n

possible subset sums of W , an exhaustive search would take
O(2n) time to find a solution in the worst case. In order to
solve SSP within a reasonable computation time, Horowitz and
Sahni [8] proposed the sequential two-list algorithm, which solves

http://dx.doi.org/10.1016/j.jpdc.2016.07.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.07.003&domain=pdf
mailto:wancanjun2008@163.com
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.jpdc.2016.07.003


L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123 113
SSP in time O(n2n/2) with O(2n/2) memory space and it is the
best known sequential algorithm for solving SSP. To further
reduce the computation time of solving SSP, based on the SIMD
(Single Instruction Multiple Data) model with shared-memory,
the parallelization of the two-list algorithm has been extensively
discussed in [6,12,15,18,21]. Particularly, Li et al. [15] proposed a
cost-optimal parallel two-list algorithm, which solves SSP in time
O(2n/4(2n/4)ε) with O((2n/4)1−ε) processors and O(2n/2) memory
space, where 0 ≤ ε ≤ 1.

1.2. Related work

In recent years, heterogeneous CPU–GPU systems have been
widely used to deal with compute-intensive applications [9], be-
cause GPU can provide massive computing power and compar-
atively low cost. Significant effort has been done to accelerate
solving the knapsack problems on a heterogeneous system. Wan
et al. [25] explored a parallelization of the two-list algorithm for
the SSP on an NVIDIA GPU via CUDA. Bokhari [2] implemented a
dynamic programming algorithm for the SSP on a GPU. Li et al. [16]
proposed an optimal parallel two-list algorithm for the 0/1 knap-
sack problem and evaluated its performance on a GPU. Some
works [4,14,20] have also been made to accelerate solving the 0/1
knapsack problem on a GPU. These studies effectively reduce the
computation time of solving the knapsack problems by using a
single GPU. However, the computational and memory resources
available on a single GPU are limited and may not be sufficient
for solving the large-scale knapsack problems. Therefore, it is im-
perative to develop new techniques capable of solving the large-
scale knapsack problems within a reasonable computation time.
Kang et al. [11] provided an efficient parallelization of the two-
list algorithm for the SSP on a hybrid CPU–GPU cluster using MPI-
CUDA programming model. In addition, parallel computing with
a multi-GPU cluster has also been used for solving the 0/1 knap-
sack problem in recentworks [3,10]. Although these existingworks
provide significant performance benefits over the traditional
CPU-based implementation, they may fail to make full use of het-
erogeneous computing resources consisting of CPUs and GPUs.
Specifically, within each compute node, only one CPU core is used
to control one GPU and all the remaining CPU cores are in idle state,
which leads to large amounts of available CPU cores being wasted.

In order to make full use of the potential computing power of
both CPUs and GPUs on a heterogeneous CPU–GPU system, the
CPU–GPU cooperative computing has recently attracted the atten-
tion of many researchers. Wan et al. [24] proposed an efficient
CPU–GPU cooperative implementation of the parallel two-list al-
gorithm for solving SSP on a single machine with two multi-core
CPUs and one GPU. Moreover, some parallel applications have also
been reported to success in performing the CPU–GPU cooperative
computing, such as matrix multiplication [22], Linpack [26], QR
factorization [7], LU factorization [23], molecular dynamics [27],
branch-and-bound algorithm [5] and divide-and-conquer algo-
rithm [17]. These works demonstrate that the CPU–GPU cooper-
ative computing yields better performance than the CPU-only or
GPU-only computing. However, to date, how to fully exploit both
CPU and GPU computing power to cooperatively accelerate solving
the large-scale SSP on a hybrid CPU–GPU cluster has not been well
studied.

1.3. Our contributions

In this paper, based on Li et al.’s parallel two-list algorithm [15]
and our previous works [11,24,25], we propose a novel heteroge-
neous cooperative computing approach to solve SSP on a hybrid
CPU–GPU cluster. However, an efficient heterogeneous coopera-
tive computing is still a difficult challenge. The main difficulties
Fig. 1. A hybrid MPI-OpenMP-CUDA programming model.

are as follows: (i) how to assign themost suitableworkload to each
node and then reasonably partition it between CPU andGPUwithin
each node; and (ii) how tominimize the inter-node and intra-node
communication costs. To overcome these difficulties, we design
a communication-avoiding workload distribution scheme suitable
for the parallel two-list algorithm. According to this scheme, an
efficient heterogeneous cooperative implementation of the algo-
rithm is provided, and a series of experiments are carried out to
analyze the effectiveness of our proposed approach.

The main contributions of this paper are as follows.
• A novel heterogeneous cooperative computing approach is

proposed to efficiently solve SSP on a hybrid CPU–GPU cluster.
• A communication-avoiding workload distribution scheme suit-

able for the parallel two-list algorithm is designed to achieve
inter-node and intra-node load balancing and minimize the
inter-node and intra-node communication overheads.

The rest of this paper is organized as follows. Section 2 gives
a heterogeneous cooperative computing approach for a hybrid
CPU–GPU cluster. Section 3 presents a heterogeneous cooperative
implementation of the parallel two-list algorithm for solving
SSP. Section 4 describes an improved heterogeneous cooperative
implementation. Section 5 gives the experimental results and
performance analysis. Section 6 is conclusions and future work.

2. A heterogeneous cooperative computing approach for
CPU–GPU clusters

This section describes a heterogeneous cooperative computing
approach to solve SSP on a hybrid CPU–GPU cluster.

2.1. Hybrid MPI-OpenMP-CUDA programming model

Since the heterogeneous cooperative computing focuses on
how to fully exploit all the available computational resources of
each compute node, we introduce the commonly used hybridMPI-
OpenMP-CUDA programming model which is shown in Fig. 1. In
this model, MPI is used to perform the communication operations
among cluster nodes, while OpenMP and CUDA are used to drive
the CPUs and GPU to perform computations, respectively.

Fig. 1 shows a hybrid CPU–GPU cluster consisting of p compute
nodes, where each node has two multi-core CPUs and one GPU.
Within each node, one MPI process is launched on one dedicated
CPU core, and it spawns two OpenMP threads t0 and t1 that can run
simultaneously. The thread t0 is used to control and communicate
with the GPU. Specifically, it firstly copies the required data to the
GPU, then it invokes the CUDA kernel to finish the computational
task assigned to the GPU, and finally it copies the results back
to the CPUs. The thread t1 spawns a suitable number of nested
OpenMP threads on the CPUs so as to fully exploit all the remaining
CPU cores, and these threads are used to concurrently perform the
computational task assigned to the CPUs.



114 L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123
Table 1
Notation used in the intra-node workload distribution scheme.

Notation Description

D The total workload assigned to each compute node
Dcpu The workload assigned to the CPUs within each compute node
Dgpu The workload assigned to the GPU within each compute node
R The ratio of the workload assigned to the CPUs over that to the GPU
Vcpu The speed of the CPUs to complete the total workload D
Vgpu The speed of the GPU to complete the total workload D
Tcpu The time of the CPUs to complete the workload Dcpu
Tgpu The time of the GPU to complete the workload Dgpu
Fig. 2. The intra-node workload distribution scheme.

2.2. Workload distribution scheme

The workload distribution among compute nodes (i.e., the
inter-node workload distribution) has an important impact on
the performance of the heterogeneous cooperative computing.
Considering that all compute nodes are homogeneous at the
node level on our testing platform, namely each node has the
same hardware and software configurations, the main idea of the
inter-node workload distribution scheme is to evenly divide the
workload into asmany chunks as nodes, and one chunk is assigned
to one node.

Moreover, the workload distribution between CPU and GPU
within each node (i.e., the intra-node workload distribution) also
can affect the overall performance. Considering that each node has
two CPUs and one GPU on our testing platform, and they have
different processing capabilities, memory capacities and memory
bandwidths, themain idea of the intra-nodeworkload distribution
scheme is to split the workload between CPU and GPU according
to an appropriate partition ratio. However, finding an optimal
partition ratio is an NP-complete problem. Here we propose a
simple but effective intra-node workload distribution scheme
which is shown in Fig. 2, and some notation used in this scheme
is listed in Table 1.

Within each node, firstly the total workload D is split into two
parts Dcpu and Dgpu according to the partition ratio R; then Dcpu and
Dgpu are assigned to the CPUs and the GPU, respectively; finally the
CPUs and the GPU concurrently complete the workload assigned
to it. The total workload is considered finished only when both the
CPUs and GPU have finished their respective workload, thus the
total execution time of each node is as follows:

Ttotal = max(Tcpu, Tgpu);

Tcpu =
D × R

m−1
m × Vcpu

;

Tgpu =
D × (1 − R)

Vgpu
.

(2)

In Eq. (2),m denotes the total number of CPU cores. It is easy to
see that Ttotal reaches its minimum when Tcpu = Tgpu, namely the
partition ratio can be considered optimal when both the CPUs and
GPU finish their respective workload within the same amount of
time. Thus, we can obtain the following equation:

R =
1

1 +
m×Vgpu

(m−1)×Vcpu

. (3)

From Eq. (3), we see that R is determined by Vcpu and Vgpu.
To get R, programmers need to implement a given application
using OpenMP and run it on the CPUs with the total workload D,
and calculate Vcpu by dividing the total workload D by the total
execution time. Similarly, programmers need to implement a given
application using CUDA and run it on the GPU with the total
workloadD to obtain Vgpu. Since the optimal partition ratio is likely
to change with different problem sizes and system configurations,
both Vcpu and Vgpu need to be updated once the problem size
or system configuration has been changed. According to R, the
workload assigned to the CPUs and GPU can be calculated as
follows: Dcpu = ⌊D × R⌋, and Dgpu = D − Dcpu.

3. A heterogeneous cooperative implementation for solving
SSP

This section first introduces the parallel two-list algorithm, and
then describes the heterogeneous cooperative implementation of
the algorithm.

3.1. Parallel two-list algorithm

Based onHorowitz and Sahni’s sequential two-list algorithm [8]
and SIMD model, Li et al. [15] proposed a cost-optimal parallel
two-list algorithm for solving SSP, which can be divided into three
stages as follows: the parallel generation stage, the parallel pruning
stage, and the parallel search stage.

The parallel generation stage,which is designed to generate two
sorted lists. Firstly, we divide an n-element input vector W into
two equal parts: W1 = [w1, w2, . . . , wn/2] and W2 = [wn/2+1,

wn/2+2, . . . , wn]. Secondly, we use k processors to produce 2n/2

subset sums of W1 in parallel, and store them into the list A =

[a1, a2, . . . , a2n/2 ] in nondecreasing order, where k is a power of
2. Thirdly, we use k processors to produce 2n/2 subset sums of W2
in parallel, and store them into the list B = [b1, b2, . . . , b2n/2 ] in
nonincreasing order.

The parallel pruning stage, which is used to reduce the search
space. Firstly, the two sorted lists A and B are evenly divided into
k blocks, respectively, where each block contains e = 2n/2/k ele-
ments. For clarity, let A = [A1, . . . , Ai, . . . , Ak] and B = [B1, . . . ,
Bj, . . . , Bk], where Ai = [ai.1, . . . , ai.r , . . . , ai.e], Bj = [bj.1, . . . , bj.s,
. . . , bj.e] and 1 ≤ i, j ≤ k. Each element ai.r (bj.s) in the sublist Ai

(Bj) represents a subset sum of A (B), where 1 ≤ r, s ≤ e. Secondly,
the block Ai and all k blocks of the list B are assigned to the ith pro-
cessor, where 1 ≤ i ≤ k. Thirdly, the prune rule presented in [15]
is used to shrink the search space. Before pruning, the number of
blockpairs is k2. After pruning, thenumber of thepickedblockpairs
is at most 2k − 1. The proof of this fact is given in [15].



L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123 115
The parallel search stage, which is designed to find a solution
from those picked block pairs. Briefly, at first those picked block
pairs are evenly assigned to k processors, then each processor
performs the following search subroutine to find a solution of SSP.
Assuming that one block pair (Ai, Bj) has been picked and assigned
to one processor, where 1 ≤ i, j ≤ k. The search subroutine is
described as follows.

Step 1: Initialize r = 1 and s = 1.
Step 2: If ai.r + bj.s = M then stop; a solution is found.
Step 3: If ai.r + bj.s < M then r = r + 1; else s = s + 1.
Step 4: If r > e or s > e then stop; there is no solution.
Step 5: Go to Step 2.

3.2. Cooperative implementation of the parallel two-list algorithm

3.2.1. Implementation of the generation stage
The generation stage begins with the initialization at each

compute node. Firstly, we get an n-element input vector W and
divide it into two equal partsW1 andW2 at the master node (node
0 for MPI). Secondly, we send W1 and W2 from the master node
to each slave node. Thirdly, we copy them from host (CPU) to
device (GPU) at each node. Finally, we initialize A1 = [0, w1] and
B1 = [wn/2+1, 0] on the host side of the master node. Note that
Ai represents a sublist of the list A, Ai = [ai.1, . . . , ai.r , . . . , ai.2i ],
where 1 ≤ i ≤ n/2. Each element ai.r in the sublist Ai represents a
subset sum, where 1 ≤ r ≤ 2i.

After the initialization phase has been completed, we perform
the generation procedure of the list A, which needs to execute
n/2 − 1 iterations to complete. Each iteration consists of the
following sequential activities: adding item, partitioning and
merging. During the (i−1)th iteration,when 2 ≤ i ≤ λ−1,we only
use the CPUs to perform the generation procedure at the master
node due to the heterogeneous cooperative implementation that
is not suitable for small computational task; when λ ≤ i ≤

n/2, we use both the CPUs and GPU to cooperatively perform the
generation procedure at each compute node, where 2 ≤ i ≤ n/2.

Specifically, when λ ≤ i ≤ n/2, during the (i − 1)th iteration,
the add item process consists of the following activities:

(1) Splitting the list Ai−1 into p sublists of equal size, where p is the
number of nodes. For clarity, let Ai−1 = [Ai−1.1, . . . , Ai−1.j, . . . ,

Ai−1.p]. The jth sublist Ai−1.j is copied from the master node to
the (j − 1)th slave node, where 2 ≤ j ≤ p.

(2) Splitting Ai−1.j into two chunks according to the partition ratio
R1 at the jth node, where 1 ≤ j ≤ p. For clarity, let Ai−1.j.cpu

denote the first chunk assigned to the CPUs, and let Ai−1.j.gpu
denote the second chunk assigned to the GPU. The sublist
Ai−1.j.gpu is copied from host to device.

(3) Using kcpu CPU threads to add the item wi to each element of
Ai−1.j.cpu in parallel on the host side of the jth node, generating
a new sublist A1

i−1.j.cpu, where kcpu ≤ 2i−1/p × R1. At the
same time, we use kgpu GPU threads to add wi to each element
of Ai−1.j.gpu in parallel on the device side of the jth node,
generating a new sublist A1

i−1.j.gpu, where kgpu ≤ 2i−1/p× (1−

R1).
(4) Copying A1

i−1.j.gpu from device to host, and then A1
i−1.j.cpu and

A1
i−1.j.gpu are merged into a new sublist A1

i−1.j on the host side,
at the jth node.

(5) Copying A1
i−1.j from the (j−1)th slave node to themaster node,

where 2 ≤ j ≤ p. Then all these p − 1 sublists and the sublist
A1
i−1.1 are merged into a new list A1

i−1 at the master node.
The partition and merge processes consist of the following
activities:
(1) Splitting the listA1

i−1 into p sublists of approximately equal size.

For clarity, let A1
i−1 = [A1

i−1.1, . . . , A
1
i−1.j, . . . , A

1
i−1.p]. The jth

sublist A1
i−1.j is copied from the master node to the (j − 1)th

slave node, where 2 ≤ j ≤ p.
(2) Splitting Ai−1.j into two smaller sublists Ai−1.j.cpu and Ai−1.j.gpu

according to the partition ratio R2 at the jth node, where 1 ≤

j ≤ p. The sublist Ai−1.j.gpu is copied from host to device.
(3) Splitting A1

i−1.j into two smaller sublists A1
i−1.j.cpu and A1

i−1.j.gpu

according to R2 at the jth node. The sublist A1
i−1.j.gpu is copied

from host to device.
(4) Using kcpu CPU threads to merge Ai−1.j.cpu and A1

i−1.j.cpu into
a new nondecreasing list Ai.j.cpu in parallel by adopting the
optimal parallel merging algorithm [1] on the host side of the
jth node, where kcpu ≤ 2i−1/p × R2. At the same time, we use
kgpu GPU threads to merge Ai−1.j.gpu and A1

i−1.j.gpu into a new
nondecreasing list Ai.j.gpu in parallel on the device side of the
jth node, where kgpu ≤ 2i−1/p × (1 − R2).

(5) Copying Ai.j.gpu from device to host at the jth node, and then
Ai.j.cpu and Ai.j.gpu are merged into a new sublist Ai.j on the host
side, where 1 ≤ j ≤ p.

(6) Copying Ai.j from the (j − 1)th slave node to the master node,
where 2 ≤ j ≤ p. Then all these p − 1 sublists and the sublist
Ai.1 are merged into a new list Ai at the master node.
After n/2 − 1 iterations have been completed, we obtain

the nondecreasing list A. The generation procedure of the
nonincreasing list B is almost the same as that of the nondecreasing
list A, we do not discuss it for brevity.

3.2.2. Implementation of the pruning and search stages
After the two sorted lists A and B have been generated, we

put the pruning and search into operations, which consist of the
following activities:
(1) Splitting the list A into p equal sized sublists of 2n/2/p

elements, where p is the number of nodes. For clarity, let A =

[A1, . . . , Ai, . . . , Ap]. The sublist Ai and the entire list B are
copied from themaster node to the (i−1)th slave node, where
2 ≤ i ≤ p.

(2) Splitting Ai into two smaller sublists Ai.cpu and Ai.gpu according
to the partition ratio R3 at the ith node, where 1 ≤ i ≤ p. The
sublist Ai.gpu and the entire list B are copied fromhost to device.

(3) Splitting Ai.cpu and B into kcpu equal sized blocks, respectively,
on the host side of the ith node, where kcpu ≤ 2n/2/p × R3 and
1 ≤ i ≤ p. Similarly, we split Ai.gpu and B into kgpu equal sized
blocks, respectively, on the device side of the ith node, where
kgpu ≤ 2n/2/p × (1 − R3).

(4) Using kcpu CPU threads to perform the pruning operation in
parallel on the host side of the ith node, where 1 ≤ i ≤ p. At
the same time, we use kgpu GPU threads to perform the pruning
operation in parallel on the device side of the ith node.

(5) Using kcpu CPU threads to perform the search operation in
parallel on the host side of the ith node, where 1 ≤ i ≤ p. At
the same time, we use kgpu GPU threads to perform the search
operation in parallel on the device side of the ith node, if a
solution is found, we copy it back to the host.

(6) Copying the search results from each slave node to the master
node.
It is easy to see that the above-described heterogeneous

cooperative implementation needs to transfer large amounts of
data between the master and slave nodes and copy data back and
forth between CPU and GPUwithin each node. Obviously, the huge
inter-node and intra-node communication overheads will become
a performance bottleneck.



116 L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123
Fig. 3. The speedup of the heterogeneous cooperative implementation over the
single-node CPU-only case.

3.3. Performance analysis of the cooperative implementation

To evaluate the performance of the heterogeneous cooperative
implementation, a series of experiments are carried out on a hybrid
CPU–GPU cluster. The experimental setup is described in detail in
Section 5.1.

Fig. 3 shows the speedup of the heterogeneous cooperative
implementation over the single-node CPU-only case for different
problem sizes under the clusters with 4–32 nodes. From the
figure, we see that the performance gains from using both the
CPUs and GPU on multiple nodes over just using two CPUs
on a single node are very modest. Specifically, compared with
the single-node CPU-only case, the heterogeneous cooperative
implementation only achieves an average of 0.84×, 1.25×,
2.20× and 2.96× performance improvements on 4, 8, 16 and 32
nodes, respectively.

Fig. 4 shows the percentage of time spent on data transfer in
the heterogeneous cooperative implementation for different prob-
lem sizes under the clusters with 4–32 nodes. From the figure, we
see that the majority of the total execution time is spent on trans-
ferring data. For example, when the problem size is fixed at 54,
the data transfer dominates about 65.9%, 68.0%, 69.3% and 71.2%
of the total execution time obtained on 4, 8, 16 and 32 nodes, re-
spectively. The results demonstrate that the huge communication
overhead seriously hurts the overall performance of the heteroge-
neous cooperative implementation. The next section will discuss
how to minimize the communication overhead.

4. An improved heterogeneous cooperative implementation

This section first gives a communication-avoiding workload
distribution scheme suitable for the parallel two-list algorithm,
then describes an improved heterogeneous cooperative imple-
mentation of the algorithm, and finally gives a theoretic perfor-
mance analysis of the improved implementation.

4.1. Communication-avoiding workload distribution scheme

Since the high communication cost greatly affects the per-
formance of the heterogeneous cooperative implementation, a
communication-avoiding workload distribution scheme suitable
for the parallel two-list algorithm is designed, which not only can
ensure inter-node and intra-node load balancing, but also canmin-
imize the inter-node and intra-node communication costs.

Fig. 5 depicts the communication-avoiding workload distribu-
tion scheme for a cluster with p compute nodes, where each node
Fig. 4. The percentage of time spent on data transfer in the heterogeneous
cooperative implementation.

has multiple CPUs and one GPU and p is a power of 2. As shown in
Fig. 5, in order to achieve good load balancing, the basic idea of the
inter-node workload distribution scheme is to evenly partition the
workload into as many chunks as nodes, and the basic idea of the
intra-node workload distribution scheme is to split the workload
between CPU and GPU according to an appropriate partition ra-
tio. Moreover, in order to minimize the inter-node and intra-node
communication overheads, the scheme is designed as follows:

(1) Copying the input vectorW from themaster node to each slave
node, and then we copy it from host to device at each node.

(2) Splitting W into four subvectors W1, W2, W3 and W4 on
the host side and device side of each node, respectively.
Specifically, W1 contains the first t1 elements of W , where
W1 = [w1, w2, . . . , wt1 ], t1 = log2 p and p is the number
of nodes. W2 contains the next t2 elements of W , where W2 =

[wt1+1, wt1+2, . . . , wt1+t2 ], t2 = log2 q and the value of q is de-
termined by the partition ratio. W3 contains the next t3 ele-
ments of W , where W3 = [wt1+t2+1, wt1+t2+2, . . . , wt1+t2+t3 ]

and t3 = (n − t1 − t2)/2. W4 contains the remaining t4 ele-
ments of W , where W4 = [wt1+t2+t3+1, wt1+t2+t3+2, . . . , wn]

and t4 = n − t1 − t2 − t3.
(3) Generating the lists A, B, C and D on the host side and device

side of each node, respectively. Specifically, A contains 2t3 non-
decreasing subset sums of W3, where A = [a1, a2, . . . , a2t3 ].
B contains 2t4 nonincreasing subset sums of W4, where B =

[b1, b2, . . . , b2t4 ]. C contains p subset sums of W1, where C =

[c1, c2, . . . , cp]. D contains q subset sums of W2, where D =

[d1, d2, . . . , dq].
(4) Producing r and s new lists on the host side and device side

of each node, respectively, based on the lists B, C and D.
Specifically, we produce the list Bm.i by adding the elements cm
(i.e., the mth element of the list C) and di (i.e., the ith element
of the list D) to each element of the list B on the host side of
the mth node, where 1 ≤ m ≤ p and 1 ≤ i ≤ r . Similarly, we
produce the list Bm.j by adding the elements cm and dj to each
element of the list B on the device side of themth node, where
1 ≤ m ≤ p and r + 1 ≤ j ≤ q. Note that r , s and qmust satisfy
the following conditions: (i) q = r + s and q is the power of 2;
and (ii) the value of r/q is approximately equal or equal to the
partition ratio R.

(5) Performing the pruning and search operations on the two
sorted lists A and Bm.i on the host side of the mth node, and
meanwhile we perform the same operations on the two sorted
lists A and Bm.j on the device side of the mth node, where
1 ≤ m ≤ p, 1 ≤ i ≤ r and r + 1 ≤ j ≤ q.

(6) Copying the search results from device to host at each node,
and then we copy them from each slave node to the master
node.



L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123 117
Fig. 5. The communication-avoiding workload distribution scheme for a cluster with p compute nodes.
Fig. 6. An example of the workload distribution across 4 compute nodes.

To better understand the scheme, Fig. 6 shows an example
of the workload distribution across 4 compute nodes with two
CPUs and one GPU. For simplicity, assuming that W = [27,
38, 86, 112, 25, 66, 97, 195, 85, 50] and the partition ratio R =

23.5%, we split W into the following four parts: W1 = [27, 38],
W2 = [86, 112], W3 = [25, 66, 97], and W4 = [195, 85, 50].
After the generation stage has been completed, we obtain one
nondecreasing list A and one nonincreasing list Bm.1 on the
host side at the mth node, where lists A and Bm.1 contain 8
subset sums respectively and 1 ≤ m ≤ 4. Similarly, we obtain one
nondecreasing list A and three nonincreasing lists Bm.2, Bm.3 and
Bm.4 on the device side at the mth node, where lists A, Bm.2, Bm.3
and Bm.4 contain 8 subset sums respectively and 1 ≤ m ≤ 4.

As described above, it is easy to find that the communication-
avoiding workload distribution scheme has very little inter-node
communication cost, because only the input vector W needs to
be transferred from the master node to each slave node and the
search results need to be transferred from each slave node to the
master node. It also has very little intra-node communication cost,
because only W needs to be copied from host to device and the
search results need to be copied back to the host. The effectiveness
of the scheme will be discussed in detail in Section 5.2.

4.2. Inter-node parallelization with MPI

According to the above-described scheme, we propose an
improved heterogeneous cooperative implementation of the
parallel two-list algorithm, which is shown in Algorithm 1.

In the improved heterogeneous cooperative implementation,
one MPI process is launched on a dedicated CPU core at each
compute node, and it drives multiple CPUs and one GPU to carry
out the following operations:

(1) Copying the input vectorW from themaster node to each slave
node, and then we copy it from host to device at each node.

(2) Determining the values of r , s and q according to the ratio R at
each node.
Algorithm 1 The improved heterogeneous cooperative implemen-
tation of the parallel two-list algorithm.
Input: A n-element input vectorW , the knapsack capacity M and the partition ratio R
Output: A solution of SSP or NULL
1: for all p compute nodes do in parallel
2: if the current node is the master node then send W to each slave node; end if
3: copy W from host to device;
4: determine the values of r , s and q based on the following conditions: q = r + s,

r/q ∼= R, and q is the power of 2;
5: omp_set_nested(1);
6: #pragma omp parallel num_threads(2) {
7: omp_tid = omp_get_thread_num();
8: if omp_tid = 0 then
9: split W intoW1 , W2 ,W3 andW4 on the device side, which contain t1 , t2 , t3 and

t4 elements of W , respectively, where t1 = log2 p, t2 = log2 q,
t3 = (n − t1 − t2)/2 and t4 = n − t1 − t2 − t3;

10: use kgpu1 GPU threads to generate the nondecreasing list A in parallel on the
device side based on W3 , where kgpu1 ≤ 2t3 ;

11: use kgpu2 GPU threads to generate the nonincreasing list B in parallel on the
device side based on W4 , where kgpu2 ≤ 2t4 ;

12: use kgpu3 GPU threads to generate the list C in parallel on the device side based
onW1 , where kgpu3 ≤ p;

13: use kgpu4 GPU threads to generate the list D in parallel on the device side based
onW2 , where kgpu4 ≤ q;

14: use kgpu5 GPU threads to generate the listBm.j in parallel on the device side based
on the lists B, C and D, where m is the node ID of the current node, r + 1 ≤ j
≤ q and kgpu5 ≤ 2t4 ;

15: use kgpu6 GPU threads to perform the pruning operation on the two sorted lists
A and Bm.j in parallel on the device side to reduce the search space, where
r + 1 ≤ j ≤ q;

16: use kgpu6 GPU threads to perform the search operation on the two sorted lists A
and Bm.j in parallel on the device side to find a solution of SSP, where r + 1
≤ j ≤ q;

17: copy the search results back to the host;
18: else
19: splitW intoW1 ,W2 ,W3 andW4 on the host side, which contain t1 , t2 , t3 and t4

elements ofW , respectively, where t1 = log2 p, t2 = log2 q, t3 = (n−t1−t2)/2
and t4 = n − t1 − t2 − t3;

20: use kcpu1 CPU threads to generate the nondecreasing list A in parallel on the host
side based on W3 , where kcpu1 ≤ 2t3 ;

21: use kcpu2 CPU threads to generate the nonincreasing list B in parallel on the host
side based on W4 , where kcpu2 ≤ 2t4 ;

22: use kcpu3 CPU threads to generate the list C in parallel on the host side based on
W1 , where kcpu3 ≤ p;

23: use kcpu4 CPU threads to generate the list D in parallel on the host side based on
W2 , where kcpu4 ≤ q;

24: use kcpu5 CPU threads to generate the list Bm.i in parallel on the host side based
on the lists B, C and D, where m is the node ID of the current node, 1 ≤ i ≤ r
and kcpu5 ≤ 2t4 ;

25: use kcpu6 CPU threads to perform the pruning operation on the two sorted lists
A and Bm.i in parallel on the host side to reduce the search space, where 1 ≤ i
≤ r;

26: use kcpu6 CPU threads to perform the search operation on the two sorted lists A
and Bm.i in parallel on the host side to find a solution of SSP, where 1 ≤ i ≤ r;

27: end if }
28: if the current node is the slave node then send the search results to the master

node; end if
29: end for



118 L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123
(3) Using two concurrent CPU threads to control the cooperative
execution of the three stages of the algorithm at each node.
CPU thread 0 is used to control theGPU, including the following
main activities: (i) splitting W into four parts W1, W2, W3 and
W4 on the device side; (ii) using a suitable number of GPU
threads to generate the lists A, B, C and D in parallel based on
W3,W4,W1 andW2, respectively; (iii) using a suitable number
of GPU threads to generate the list Bm.j in parallel based on the
lists B, C and D, wherem is the node ID of the current node and
r + 1 ≤ j ≤ q; (iv) using a suitable number of GPU threads to
perform the pruning and search operations on the sorted lists
A and Bm.j, where r + 1 ≤ j ≤ q; and (v) copying the search
results back to the host. CPU thread 1 is used to control the
CPUs, including the following main activities: (i) splitting W
into four partsW1,W2,W3 andW4 on the host side; (ii) using a
suitable number of CPU threads to generate the lists A, B, C and
D in parallel based on W3, W4, W1 and W2, respectively; (iii)
using a suitable number of CPU threads to generate the list Bm.i
in parallel based on the lists B, C and D, where 1 ≤ i ≤ r; (iv)
using a suitable number of CPU threads to perform the pruning
and search operations on the sorted lists A and Bm.i.

(4) Copying the search results from each slave node to the master
node and output them.

4.3. Intra-node parallelization with OpenMP and CUDA

In the improved heterogeneous cooperative implementation,
within each compute node, the algorithm is implemented on the
CPUs and GPU using OpenMP and CUDA, respectively. Since it is
easy to implement the algorithm using OpenMP, we only describe
the latter for the sake of brevity.

On the device side of each node, the implementation of the
generation stage consists of the following three steps.

Step 1: Producing the sorted lists A and B. Specifically, we first
initialize A1 = [0, wt1+t2+1]. Then, we execute t3 − 1 iterations
to obtain A. During the ith (2 ≤ i ≤ t3) iteration, we perform
the following operations: (i) using kgpu1 = min(gmax, 2i−1) GPU
threads to add the item wt1+t2+i (i.e., the ith item of the subvector
W3) to each element of the list Ai−1 = [ai−1.1, ai−1.2, . . . , ai−1.2i−1 ]

in parallel, generating a new list A1
i−1 = [ai−1.1 + wt1+t2+i, ai−1.2 +

wt1+t2+i, . . . , ai−1.2i−1 + wt1+t2+i], where gmax is the maximum
number of threads supported on the GPU; (ii) using kgpu1 GPU
threads to concurrently merge lists Ai−1 and A1

i−1 into a new
nondecreasing list Ai by adopting the optimal parallel merging
algorithm [1]. After t3 − 1 iterations have been processed, we
finally obtain the nondecreasing list A with 2t3 subset sums.
The procedure of generating the nonincreasing list B and that of
generating the list A are similar, we omit it for clarity.

Step 2: Producing the lists C and D. Specifically, we first
initialize C1 = [0, w1]. Then, we execute t1 −1 iterations to obtain
C . During the ith (2 ≤ i ≤ t1) iteration, we perform the following
operations: (i) using kgpu3 = min(gmax, 2i−1) GPU threads to add
the item wi (i.e., the ith item of the subvectorW1) to each element
of the list Ci−1 = [ci−1.1, ci−1.2, . . . , ci−1.2i−1 ] in parallel, generating
a new list C1

i−1 = [ci−1.1 + wi, ci−1.2 + wi, . . . , ci−1.2i−1 + wi];
(ii) using kgpu3 GPU threads to concurrently merge lists Ci−1 and
C1
i−1 into a new list Ci. After t1 − 1 iterations have been processed,

we finally obtain the list C with p subset sums. The procedure of
generating the list D is almost the same as that of generating the
list C , we omit it for brevity.

Step 3: Producing s new lists based on lists B, C and D.
Specifically, we use kgpu5 GPU threads to add the element cm of the
list C and the element dj of the list D into each element of the list
B in parallel, generating a new list Bm.j = [b1 + cm + dj, b2 + cm +

dj, . . . , b2t4 + cm + dj], wherem is the node ID of the current node
and r + 1 ≤ j ≤ r + s.
Algorithm 2 The pruning operation implemented on the GPU.
Input: The knapsack capacity M , the nondecreasing list A and s different

nonincreasing lists Bm.j , where r + 1 ≤ j ≤ r + s.
Output: All the picked block pairs
1: for j = r + 1 to r + s do
2: for all kgpu6 GPU threads do in parallel
3: if Au and Bm.j are assigned to the uth thread, where u is the current thread

ID and 1 ≤ u ≤ kgpu6 then
4: for v = 1 to k do
5: X = au.1 + bm.j.v.eB , Y = au.eA + bm.j.v.1;
6: if X < M and Y > M then pick the block pair (Au , Bm.j.v);
7: else discard the block pair (Au , Bm.j.v); end if
8: end for
9: end if
10: end for
11: end for

After the sorted lists A and Bm.j have been generated on the de-
vice side of the mth node, we perform the pruning operation de-
scribed in Algorithm 2 to reduce the search space, where 1 ≤ m ≤

p and r + 1 ≤ j ≤ r + s. Specifically, we first split the list A into
kgpu6 equal sized blocks of eA = 2t3/kgpu6 elements, and also split
the list Bm.j into kgpu6 equal sized blocks of eB = 2t4/kgpu6 elements.
To facilitate our discussion, let A = [A1, . . . , Au, . . . , Akgpu6 ] and
Bm.j = [Bm.j.1, . . . , Bm.j.v, . . . , Bm.j.kgpu6 ], whereAu = [au.1, au.2, . . . ,
au.eA ] and Bm.j.v = [bm.j.v.1, bm.j.v.2, . . . , bm.j.v.eB ]. Secondly, we as-
sign the block Au and the entire list Bm.j to the uth GPU thread,
where 1 ≤ u ≤ kgpu6. Finally, based on the prune rule presented
in [15], we use kgpu6 GPU threads to perform the pruning operation
on the two sorted lists A and Bm.j in parallel. Before pruning, the
number of block pairs is s× k2gpu6. After pruning, the number of the
picked block pairs is at most s × (2kgpu6 − 1).

Algorithm 3 The search operation implemented on the GPU.
Input: The knapsack capacity M , the nondecreasing list A and s different

nonincreasing lists Bm.j , where r + 1 ≤ j ≤ r + s.
Output: The search results
1: for all kgpu6 GPU threads do in parallel
2: if one block pair (Au , Bm.j.v) is assigned to the current thread,where r+1 ≤ j ≤

r + s and 1 ≤ u, v ≤ kgpu6 then
3: x = 1, y = 1;
4: while x ≤ eA and y ≤ eB do
5: if au.x + bm.j.v.y = M then stop;
6: else if au.x + bm.j.v.y < M then x = x + 1;
7: else y = y + 1; end if
8: end while
9: end if
10: end for

After the pruning operation has been completed, we perform
the search operation described in Algorithm 3 to find a solution
of SSP on the device side of the mth node, where 1 ≤ m ≤ p.
Specifically, those picked block pairs are evenly assigned to kgpu6
GPU threads, and each GPU thread will search 2s block pairs at
most. Let us suppose that one block pair (Au, Bm.j.v) is assigned to
one GPU thread, where r + 1 ≤ j ≤ r + s and 1 ≤ u, v ≤

kgpu6. The GPU thread finds the top elements of the block pair
(Au, Bm.j.v), if au.1 + bm.j.v.1 = M , meaning that a solution is found;
otherwise, it continues to search the next element of Au or Bm.j.v .
The search process is repeated until the last element of Au or Bm.j.v
has been retrieved. After the search operation has been completed,
the search results are copied back to the host.

Last but not least, the grid size and thread block size have a great
effect on the performance of the CUDA-based implementation.
The fact that the optimal thread block size can obtain the
best GPU multiprocessor occupancy has been confirmed in our
previous work [25]. To achieve better performance on the GPU, we
determine the optimal grid size according to theworkload assigned



L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123 119
Table 2
The performance comparison between OHCI and IHCI for different problem sizes.

n 4 nodes 8 nodes 16 nodes 32 nodes
OHCI IHCI Benefit OHCI IHCI Benefit OHCI IHCI Benefit OHCI IHCI Benefit

48 251 121 1.07× 203 90 1.25× 140 59 1.36× 112 45 1.52×
50 448 223 1.01× 365 166 1.20× 255 109 1.34× 205 82 1.51×
52 826 423 0.95× 677 315 1.15× 477 206 1.31× 385 154 1.50×
54 1613 847 0.90× 1328 628 1.11× 943 411 1.29× 763 306 1.49×
56 3178 1701 0.87× 2627 1258 1.09× 1873 824 1.27× 1520 613 1.48×
58 – – – 5230 2531 1.07× 3743 1656 1.26× 3042 1231 1.47×
60 – – – – – – – – – 6103 2476 1.47×

OHCI: the original heterogeneous cooperative implementation.
IHCI: the improved heterogeneous cooperative implementation.
to the GPU, and use the CUDA Occupancy Calculator provided by
NVIDIA SDK to calculate the optimal thread block size.

4.4. Theoretic performance analysis of the improved implementation

The theoretic performance analysis of the improved heteroge-
neous cooperative implementation is as follows. When a hybrid
CPU–GPU cluster has p compute nodes with k available CPU and
GPU threads each, the improved heterogeneous cooperative im-
plementation can solve SSP in time O(2n/2/(p× k)), and each node
needs O(2n/2/p) memory space, where both p and k are a power
of 2. It is easy to see that the improved heterogeneous coopera-
tive implementation can produce significantly better performance
than the sequential two-list algorithm [8] withO(n2n/2) time com-
plexity and O(2n/2) memory requirement.

5. Experimental evaluation

5.1. Experimental setup

Our experiments are carried out on a hybrid CPU–GPU cluster
with 32 compute nodes. Each compute node has two 6-core Intel
Xeon X5670 CPUs, one NVIDIA Tesla M2050 GPU, 32 GB of main
memory and 3 GB of device memory. All compute nodes are
interconnected through a high-speed communication network,
which is constructed by high-radix Network Routing Chips (NRC)
and high-speed Network Interface Chips (NIC), and both of them
were designed by the National University of Defence Technology.
In our multi-node experiments, each compute node is configured
with one MPI process, and the version of MPI is MPICH2-1.2. In
addition, the compilers used are GCC version 4.4.7 and NVIDIA
NVCC version 5.0.

In order to accurately evaluate the performance of the improved
heterogeneous cooperative implementation, we use the other four
different methods to implement the parallel two-list algorithm:
(1) single-node CPU-only case, namely we implement it on two
CPUs using OpenMP; (2) single-node GPU-only case, namely we
implement it on the GPU using CUDA; (3) multi-node pure-
CPU case, namely we implement it on multiple nodes using MPI
and OpenMP, but only the CPUs are used within each node; (4)
multi-node pure-GPU case, namely we implement it on multiple
nodes using MPI and CUDA, but only the GPU plus one CPU core
are used within each node. Note that the multi-node pure-CPU
and pure-GPU cases adopt the communication-avoiding workload
distribution scheme. In addition, in order to analyze the scalability
of the improved heterogeneous cooperative implementation, the
best sequential CPU implementation is examined, namely we run
Horowitz and Sahni’s sequential two-list algorithm [8] on a single
CPU core.

Since Horowitz and Sahni’s sequential two-list algorithm [8]
and Li et al.’s parallel two-list algorithm [15] all require O(2n/2)
memory spaces, namely the memory requirement increases
exponentially with increasing problem size, implying that the
problem size will be limited by the available memory. In view of
this, we test seven different problem sizes which scale from 48 to
60. Specifically, the number of elements in the input vector W is
specified as 48, 50, 52, 54, 56, 58 or 60.

For each problem size, we specify M = 0.5
n

i=1 wi and use
a random number generator to produce 100 different instances of
SSP, and the average execution time of these instances ismeasured
inmilliseconds (ms). The execution time includes the computation
time, data transfer time and synchronization overhead, but the
data preparation time, initialization time and memory allocation
and deallocation overheads are excluded.

5.2. Evaluation of the communication-avoidingworkload distribution
scheme

To evaluate the effectiveness of the communication-avoiding
workload distribution scheme, we conduct a series of experiments
to compare the performance of the original heterogeneous
cooperative implementation (OHCI) described in Section 3.2 with
that of the improved heterogeneous cooperative implementation
(IHCI) described in Section 4.

Table 2 shows the performance comparison between OHCI and
IHCI for different problem sizes under the clusters with 4–32
nodes. Due to the Tesla M2050 GPU has only 3 GB of device
memory, the problem size is restricted to the available memory,
e.g., the upper limit is n = 56 for a cluster with 4 nodes. In Table 2,
the columnsmarked as ‘‘OHCI’’ and ‘‘IHCI’’ represent the execution
time of the OHCI and that of the IHCI, respectively. Compared with
the OHCI, the IHCI achieves an average of 0.96×, 1.15×, 1.31× and
1.49× performance improvements on 4, 8, 16 and 32 nodes,
respectively. The results show that our proposed communication-
avoiding workload distribution scheme significantly improves the
performance of the heterogeneous cooperative implementation.

In order to clearly explain the reasons for the performance im-
provement, for each instance of SSP, we measure the computation
time and communication time of the OHCI and the IHCI, respec-
tively. Fig. 7 shows the execution time comparison between OHCI
and IHCI for different cluster sizes when the problem size is fixed
at 52, and Fig. 8 shows the execution time comparison between
OHCI and IHCI for different problem sizes under the cluster with
32 nodes. Note that the execution time ismainly composed of com-
putation time and communication time. In Figs. 7 and 8, the bars
marked as ‘‘OHCI-comp’’ and ‘‘IHCI-comp’’ represent the computa-
tion time of the OHCI and that of the IHCI, respectively. The bars
marked as ‘‘OHCI-comm’’ and ‘‘IHCI-comm’’ denote the communi-
cation time of the OHCI and that of the IHCI, respectively.

From Figs. 7 and 8, we see that the computation time of the
IHCI is larger than that of the OHCI, but the communication time of
the IHCI is far smaller than that of the OHCI, for different problem
sizes and cluster sizes. Compared with the OHCI, although the IHCI
increases the computation cost, it avoids the huge communication
overhead. Due to the decrement of the communication cost being



120 L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123
Fig. 7. The execution time comparison between OHCI and IHCI for different cluster
sizes when the problem size is fixed at 52.

Fig. 8. The execution time comparison between OHCI and IHCI for different
problem sizes under the cluster with 32 nodes.

far more than the increment of the computation cost, the total
execution time has been greatly reduced. For instance, when
the problem size is fixed at 52, compared with the OHCI, the
computation times of the IHCI are increased by 41.01%, 34.82%,
28.56% and 25.89% on 4, 8, 16 and 32 nodes respectively, the
communication times of the IHCI are reduced by 98.64%, 98.23%,
97.43% and 96.79% on 4, 8, 16 and 32 nodes respectively, and the
total execution times of the IHCI are reduced by 48.73%, 53.53%,
56.78% and 60.00% on 4, 8, 16 and 32 nodes respectively. Similarly,
when the cluster size is fixed at 32, compared with the OHCI, the
computation times of the IHCI are increased by 10.35%, 16.09%,
25.89% and 34.60% when problem size n = 48, 50, 52 and 54
respectively, the communication times of the IHCI are reduced by
93.10%, 95.05%, 96.79% and 98.04% when problem size n = 48, 50,
52 and 54 respectively, and the total execution times of the IHCI
are reduced by 60.35%, 60.23%, 60.00% and 59.85% when problem
size n = 48, 50, 52 and 54 respectively. The results reveal that the
improvement grows with the number of nodes but decreases with
the problem size.

5.3. Scalability of the improved heterogeneous cooperative imple-
mentation

In this section, we conduct both weak scalability and strong
scalability experiments to evaluate the scalability of the IHCI.
Fig. 9. The performance comparison between the IHCI and the sequential CPU
implementation with increasing number of nodes and increasing problem size
(weak scalability).

Fig. 10. The speedup of the IHCI over the sequential CPU implementation with
increasing number of nodes at a fixed problem size (strong scalability).

In the weak scalability experiments, when the number of
compute nodes increases from 4 to 32, the problem size increases
from 54 to 60 accordingly. Fig. 9 shows the results of the weak
scalability tests. In the figure, the left y-axis shows the execution
time on a logarithmic scale, and the line ‘‘Cmp-Sequential’’ refers to
the speedup of the IHCI over the sequential CPU implementation.
As shown in Fig. 9, for the IHCI, the performance gained increases
with increasing number of nodes. Compared with the sequential
CPU implementation, the execution times of the IHCI are reduced
by 93.09%, 94.93%, 96.72% and 97.58% on 4, 8, 16 and 32 nodes,
respectively, and the IHCI achieves speedups from 14.48× to
41.35× with the number of nodes increasing from 4 to 32. The
results show that the IHCI can solve potentially larger problems
when more computing resources are available.

In the strong scalability experiments, when the number of
compute nodes increases from 4 to 32, the problem size remains
fixed. Fig. 10 depicts the results of the strong scalability tests. From
Fig. 10, we see that the speedup of the IHCI over the sequential
CPU implementation gradually increases with increasing number
of nodes. For example, when the problem size is fixed at 52, the
speedup increases from 14.32× to 39.35× as the number of nodes
increases from 4 to 32. The results show that the IHCI scales well
with the number of nodes, indicating that it can solve a given
problem more rapidly if we are provided with more computing
resources.

The above results demonstrate that the IHCI not only has good
weak scalability, but also has good strong scalability.



L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123 121
Table 3
The execution time of seven different implementations for different problem sizes.

n Sequential Single-node parallel impl. Multi-node parallel implementations
CPU-only GPU-only CPU+GPU 4 nodes 8 nodes 16 nodes 32 nodes

pure-
CPU

pure-
GPU

CPU+

GPU
pure-
CPU

pure-
GPU

CPU+

GPU
pure-
CPU

pure-
GPU

CPU+

GPU
pure-
CPU

pure-
GPU

CPU +

GPU

48 1632 431 317 231 232 171 121 174 128 90 116 85 59 88 65 45
50 3123 802 584 428 429 314 223 321 235 166 213 156 109 161 118 82
52 6063 1529 1113 818 818 595 423 611 445 315 405 295 206 306 223 154
54 12257 3067 2232 1645 1637 1190 847 1223 888 628 808 587 411 608 442 306
56 24837 6171 – – 3289 2386 1701 2449 1776 1258 1620 1175 824 1219 884 613
58 50409 12443 – – 6579 – – 4928 3570 2531 3255 2359 1656 2445 1772 1231
60 102390 25085 – – 13239 – – 9842 – – 6495 – – 4919 3560 2476

CPU + GPU: the improved heterogeneous cooperative implementation.
Fig. 11. The speedup of themulti-node IHCI (CPU+GPU) over the single-node IHCI
(CPU + GPU) for different problem sizes under the clusters with 4–32 nodes.

5.4. Comparison with single-node parallel implementation

In this section, the performance of the multi-node IHCI is
compared with that of the single-node parallel implementations.

Table 3 shows the execution time of seven different imple-
mentations. From Table 3, it can be observed that the multi-node
parallel implementations are clearly better than the single-node
parallel implementations. For example, compared with the single-
node IHCI (CPU+GPU), the execution times of themulti-node IHCI
(CPU + GPU) are reduced by an average of 48.13%, 61.43%, 74.67%
and 81.06% on 4, 8, 16 and 32 nodes, respectively.

Fig. 11 shows the speedup of the multi-node IHCI over the
single-node IHCI for different problem sizes. As shown in Fig. 11,
when the number of compute nodes increases from 4 to 32 and the
problem size is fixed at 54, the speedup compared with the single-
node IHCI increases from 1.94× to 5.37×. The results reveal that
the more compute nodes of a cluster are available for the hetero-
geneous cooperative implementation, the better the performance.

5.5. Comparison with multi-node parallel implementation

Fig. 12 shows the performance comparison among the IHCI, the
multi-node pure-CPU and pure-GPU implementations for different
cluster sizes when the problem size is fixed at 56. From Fig. 12, we
find that the IHCI clearly outperforms the multi-node pure-CPU
or pure-GPU case, this is because all the available computational
resources of both the CPUs and GPU have been fully utilizedwithin
each node. Fig. 12 also shows the speedup of the IHCI over the
multi-node pure-CPU case and that of the IHCI over themulti-node
pure-GPU case. It can be found that the speedup slowly increases
with increasing number of nodes, and it will gradually reach a
peak. The results reveal that the IHCI can scale well on more nodes
Fig. 12. The performance comparison among the IHCI, the multi-node pure-CPU
and pure-GPU implementations for different cluster sizes when the problem size
n = 56.

when solving SSP, this is because there is very little inter-node and
intra-node communication overheads and the workload per node
becomes smaller with increasing number of nodes. The results also
indicate that the performance achieved is stable in the IHCI.

Moreover, from Fig. 12, we can see that using 32 nodes is only
34.42% faster than using 16 nodes for the IHCI, this is mainly
because that theworkload assigned to each nodewithin the cluster
with 32 nodes is only reduced by 31.25% in comparison with the
workload assigned to each node within the cluster with 16 nodes.

5.6. Performance evaluation on single-node multi-GPU platform

In order to evaluate the performance of the IHCI more
effectively, we carry out a series of experiments on a single-
node multi-GPU platform, which has two 6-core Intel Xeon E5-
2620 CPUs and two NVIDIA Tesla M2090 GPUs. According to
different hardware configurations, the following three different
heterogeneous cooperative implementations are evaluated: IHCI
(2GPUs), IHCI (2CPUs + 1GPU) and IHCI (2CPUs + 2GPUs). Note
that for the IHCI (2GPUs), the two CPUs play a very simple role, only
two CPU cores are used to control two GPUs, and all the remaining
CPU cores are in idle state.

Fig. 13 shows the performance comparison among the IHCI,
the CPU-only and GPU-only implementations on a single-node
multi-GPU platform. In Fig. 13, the x-axis shows the problem size
scales from 48 to 56, and the y-axis shows the execution time
normalized to the running time of the IHCI (2CPUs + 2GPUs).
The results show that the IHCI yields better performance than the
CPU-only or GPU-only case. Compared with the GPU-only case,
the execution times of the IHCI (2GPUs), IHCI (2CPUs + 1GPU)
and IHCI (2CPUs + 2GPUs) are reduced by an average of 34.88%,



122 L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123
Fig. 13. The performance comparison among the IHCI, the CPU-only and GPU-only
implementations on a single-node multi-GPU platform.

27.47% and 50.56%, respectively. The results also show that the
IHCI (2CPUs + 2GPUs) is faster than the IHCI (2GPUs) and the
IHCI (2CPUs + 1GPU). Compared with the IHCI (2CPUs + 1GPU),
the execution time of the IHCI (2CPUs + 2GPUs) is reduced by
an average of 31.84%. This experiment demonstrates that our
proposed heterogeneous cooperative computing approach can
fully exploit the computing power of a heterogeneous systemwith
different number and kinds of compute devices.

5.7. Comparison with dynamic programming algorithm

In this section, the performance of the parallel two-list algo-
rithm is compared with that of the parallel dynamic programming
(DP) algorithm. The DP algorithm [19] is one of the best known ap-
proaches to exactly solve SSP, which solves SSP in O(nM) time and
memory space. When solving SSP in parallel, the time required is
O(nM/k), where k is the number of processors. Since the perfor-
mance of the DP algorithm is sensitive to the knapsack capacity
M , for the sake of fairness, we choose the small knapsack capac-
ity M = 2n/2/64 when problem sizes n = {48, 50} and the large
knapsack capacity M = 2n/2/8 when problem sizes n = {52, 54}
in this experiment.

Fig. 14 shows the performance comparison between the parallel
two-list algorithm and the parallel DP algorithm on a single node
of the hybrid CPU–GPU cluster. In Fig. 14, the x-axis shows the
problem size scales from 48 to 54, and the y-axis shows the
execution time normalized to the running time of the CPU–GPU
cooperative implementation of the parallel two-list algorithm. The
results show that the performance of the parallel DP algorithm
is significantly better than that of the parallel two-list algorithm
when the problem size is fixed at 48 or 50, while the parallel
two-list algorithm outperforms the parallel DP algorithm when
the problem size is fixed at 52 or 54. The results demonstrate that
the smaller the knapsack capacity is, the better the performance
achieved for the DP algorithm. Hence, the parallel DP algorithm
is suitable for moderate knapsack capacity, but the parallel two-
list algorithm is attractive for large knapsack capacity. In addition,
the GPU-only implementation of the DP algorithmhasmuchworse
performance than the CPU-only case when the problem size is
fixed at 52 or 54, this is because the large knapsack capacity
leads to huge CPU–GPU communication overhead. The huge
communication cost will also seriously degrade the performance
of the single-node CPU–GPU cooperative implementation and the
multi-node parallel implementation of the DP algorithm.
Fig. 14. The performance comparison between the parallel two-list algorithm and
the parallel dynamic programming algorithm on a single cluster node.

6. Conclusions and future work

In this paper, a novel cooperative accelerated parallel two-
list algorithm is proposed to efficiently solve SSP on a hybrid
CPU–GPU cluster. To achieve good inter-node and intra-node
load balancing and minimize the inter-node and intra-node
communication overheads, a communication-avoiding workload
distribution scheme suitable for the parallel two-list algorithm is
designed, and the experimental results confirm that the proposed
scheme can effectively accelerate the algorithm. According to the
scheme, an efficient heterogeneous cooperative implementation of
the algorithm is provided, and the experimental results show that
it not only achieves significant performance benefit over themulti-
node pure-CPU or pure-GPU case by fully exploiting all available
computational resources of a cluster, but also has good scalability.
Although our proposed heterogeneous cooperative computing
method is targeted for a cluster, where each node is configured
with two CPUs and one GPU, the method can be easily employed
to a cluster, where each node has multiple CPUs and multiple
accelerators (such as GPUs and/or MICs).

Our experiments have proved that the proposed workload
distribution scheme is effective for the given problem size and
system configuration, but it is not adaptable to different problem
sizes and system configurations. Thus, we will explore a dynamic
workload distribution scheme which can adapt to the changes in
problem size and system configuration well. Moreover, we will
manage to reduce the memory requirement by redesigning the
parallel two-list algorithm in future work so as to address larger-
scale SSP.

Acknowledgments

This research was partially funded by the Key Program
of National Natural Science Foundation of China (Grant Nos.
61133005, 61432005), the National Natural Science Foundation
of China (Grant Nos. 61370095, 61472124, 61472126, 61572175),
and the International Science & Technology Cooperation Program
of China (Grant No. 2015DFA11240).

References

[1] S.G. Akl, N. Santoro, Optimal parallel merging and sorting without memory
conflicts, IEEE Trans. Comput. 100 (11) (1987) 1367–1369.

[2] S.S. Bokhari, Parallel solution of the subset-sum problem: an empirical study,
Concurr. Comput.: Pract. Exper. 24 (18) (2012) 2241–2254.

[3] V. Boyer, D. El-Baz, M. Elkihel, Dense dynamic programming on multi GPU, in:
PDP, Citeseer, 2011, pp. 545–551.

[4] V. Boyer, D. El-Baz, M. Elkihel, Solving knapsack problems on GPU, Comput.
Oper. Res. 39 (1) (2012) 42–47.

http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref1
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref2
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref4


L. Wan et al. / J. Parallel Distrib. Comput. 97 (2016) 112–123 123
[5] I. Chakroun, N.Melab,M.Mezmaz, D. Tuyttens, Combiningmulti-core andGPU
computing for solving combinatorial optimization problems, J. Parallel Distrib.
Comput. 73 (12) (2013) 1563–1577.

[6] F.B. Chedid, An optimal parallelization of the two-list algorithmof costO(2n/2),
Parallel Comput. 34 (1) (2008) 63–65.

[7] R.-B. Chen, Y.M. Tsai, W. Wang, Adaptive block size for dense QR factorization
in hybrid CPU–GPU systems via statistical modeling, Parallel Comput. 40 (5)
(2014) 70–85.

[8] E. Horowitz, S. Sahni, Computing partitions with applications to the knapsack
problem, J. ACM 21 (2) (1974) 277–292.

[9] Q. Huang, Z. Huang, P. Werstein, M. Purvis, GPU as a general purpose
computing resource, in: Ninth International Conference on Parallel and
Distributed Computing, Applications and Technologies, 2008, PDCAT 2008,
IEEE, 2008, pp. 151–158.

[10] J. Jaros, Multi-GPU island-based genetic algorithm for solving the knapsack
problem, in: 2012 IEEE Congress on Evolutionary Computation, (CEC), IEEE,
2012, pp. 1–8.

[11] L. Kang, L. Wan, K. Li, Efficient parallelization of a two-list algorithm for the
subset-sumproblem on a hybrid CPU/GPU cluster, in: 2014 Sixth International
Symposium on Parallel Architectures, Algorithms and Programming, (PAAP),
IEEE, 2014, pp. 93–98.

[12] E.D. Karnin, A parallel algorithm for the knapsack problem, IEEE Trans.
Comput. 100 (5) (1984) 404–408.

[13] A.J. Kleywegt, J.D. Papastavrou, The dynamic and stochastic knapsack problem
with random sized items, Oper. Res. 49 (1) (2001) 26–41.

[14] M.E. Lalami, D. El-Baz, GPU implementation of the Branch and Bound method
for knapsack problems, in: Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, IEEE,
Shanghai, China, 2012, pp. 1769–1777.

[15] K. Li, R. Li, Q. Li, Optimal parallel algorithms for the knapsack problemwithout
memory conflicts, J. Comput. Sci. Tech. 19 (6) (2004) 760–768.

[16] K. Li, J. Liu, L. Wan, S. Yin, K. Li, A cost-optimal parallel algorithm for
the 0-1 knapsack problem and its performance on multicore CPU and GPU
implementations, Parallel Comput. 43 (2015) 27–42.

[17] A. Lopez-Ortiz, A. Salinger, R. Suderman, Toward a generic hybrid CPU–GPU
parallelization of divide-and-conquer algorithms, in: Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International, IEEE, 2013, pp. 601–610.

[18] D.-C. Lou, C.-C. Chang, A parallel two-list algorithm for the knapsack problem,
Parallel Comput. 22 (14) (1997) 1985–1996.

[19] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implemen-
tations, John Wiley & Sons, Inc., 1990.

[20] P. Pospíchal, J. Schwarz, J. Jaros, Parallel genetic algorithm solving 0/1 knapsack
problem running on the GPU, in: 16th International Conference on Soft
Computing MENDEL, Brno University of Technology, Brno, Czech Republic,
2010, pp. 64–70.

[21] C.A.A. Sanches, N.Y. Soma, H.H. Yanasse, An optimal and scalable paralleliza-
tion of the two-list algorithm for the subset-sum problem, European J. Oper.
Res. 176 (2) (2007) 870–879.

[22] F. Song, S. Tomov, J. Dongarra, Enabling and scaling matrix computations on
heterogeneousmulti-core andmulti-GPU systems, in: Proceedings of the 26th
ACM International Conference on Supercomputing, ACM, 2012, pp. 365–376.

[23] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra for hybrid
GPU accelerated manycore systems, Parallel Comput. 36 (5) (2010) 232–240.
[24] L. Wan, K. Li, J. Liu, K. Li, A novel CPU–GPU cooperative implementation of
a parallel two-list algorithm for the subset-sum problem, in: Proceedings of
Programming Models and Applications on Multicores and Manycores, ACM,
2014, pp. 70–79.

[25] L. Wan, K. Li, J. Liu, K. Li, GPU implementation of a parallel two-list algorithm
for the subset-sum problem, Concurr. Comput.: Pract. Exper. 27 (1) (2015)
119–145.

[26] F.Wang, C. Yang, Y. Du, J. Chen, H. Yi,W. Xu, Optimizing Linpack benchmark on
GPU-accelerated petascale supercomputer, J. Comput. Sci. Tech. 26 (5) (2011)
854–865.

[27] Q. Wu, C. Yang, T. Tang, L. Xiao, Exploiting hierarchy parallelism for molecular
dynamics on a petascale heterogeneous system, J. Parallel Distrib. Comput. 73
(12) (2013) 1592–1604.

LanjunWan received hisM.S. degree in Computer Science
from Hunan University of Technology, in 2009. He is
currently pursuing his Ph.D. degree in Computer Science at
HunanUniversity. His research interests includemassively
parallel computing, CPU–GPU hybrid and cooperative
computing, parallel programming, and parallel algorithms
and implementations.

Kenli Li received his Ph.D. degree in Computer Science
from Huazhong University of Science and Technology,
in 2003. He was a visiting scholar at University of
Illinois at Urbana–Champaign from 2004 to 2005. He
is currently a full professor of Computer Science and
Technology at Hunan University and deputy director
of National Supercomputing Center in Changsha. His
major research areas include parallel computing, high-
performance computing, grid and cloud computing. Hehas
published more than 100 research papers in international
conferences and journals such as IEEE-TC, IEEE-TPDS, JPDC,

ICPP, CCGrid. He is an outstanding member of CCF. He is a member of the IEEE and
serves on the editorial board of IEEE Transactions on Computers.

Keqin Li is a SUNY Distinguished Professor of Computer
Science. His current research interests include parallel
computing and high-performance computing, distributed
computing, energy-efficient computing and communica-
tion, heterogeneous computing systems, cloud computing,
big data computing, multicore computing, storage and file
systems, wireless communication networks, sensor net-
works, peer-to-peer file sharing systems, mobile comput-
ing, service computing. He has published over 400 journal
articles, book chapters, and refereed conference papers,
and has received several best paper awards. He is currently

or has served on the editorial boards of IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Computers, IEEE Transactions on Cloud Computing, Jour-
nal of Parallel and Distributed Computing. He is an IEEE Fellow.

http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref5
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref6
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref7
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref8
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref9
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref10
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref11
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref12
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref13
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref14
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref15
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref16
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref17
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref18
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref19
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref20
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref21
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref22
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref23
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref24
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref25
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref26
http://refhub.elsevier.com/S0743-7315(16)30088-0/sbref27

	A novel cooperative accelerated parallel two-list algorithm for solving the subset-sum problem on a hybrid CPU--GPU cluster
	Introduction
	The problem
	Related work
	Our contributions

	A heterogeneous cooperative computing approach for CPU--GPU clusters
	Hybrid MPI-OpenMP-CUDA programming model
	Workload distribution scheme

	A heterogeneous cooperative implementation for solving SSP
	Parallel two-list algorithm
	Cooperative implementation of the parallel two-list algorithm
	Implementation of the generation stage
	Implementation of the pruning and search stages

	Performance analysis of the cooperative implementation

	An improved heterogeneous cooperative implementation
	Communication-avoiding workload distribution scheme
	Inter-node parallelization with MPI
	Intra-node parallelization with OpenMP and CUDA
	Theoretic performance analysis of the improved implementation

	Experimental evaluation
	Experimental setup
	Evaluation of the communication-avoiding workload distribution scheme
	Scalability of the improved heterogeneous cooperative implementation
	Comparison with single-node parallel implementation
	Comparison with multi-node parallel implementation
	Performance evaluation on single-node multi-GPU platform
	Comparison with dynamic programming algorithm

	Conclusions and future work
	Acknowledgments
	References


