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SUMMARY

Heterogeneous CPU-GPU system is a powerful way to accelerate compute-intensive applications, such as the
subset-sum problem. Many parallel algorithms for solving the problem have been implemented on graphics
processing units (GPUs). However, these GPU implementations may fail to fully utilize all the CPU cores
and the GPU resources. When the GPU performs computational task, only one CPU core is used to control
the GPUs, and all the remaining CPU cores are in idle state, which leads to large amounts of available
CPU resources being wasted. This paper proposes an efficient CPU-GPU cooperative computing scheme for
solving the subset-sum problem, which enables the full utilization of all the computing power of both CPUs
and GPUs. In order to find the most appropriate task distribution ratio between CPUs and GPUs, this paper
establishes a simple but effective task distribution model. Considering the high CPU-GPU communication
overhead and the unbalanced workload between CPUs and GPUs may greatly reduce the performance,
an incremental data transfer method is proposed to reduce the CPU-GPU communication overhead, and a
feedback-based dynamic task distribution scheme is designed to effectively balance the workload between
CPUs and GPUs during runtime. The experimental results show that the CPU-GPU cooperative computing
achieves a significant performance benefit over the CPU-only or GPU-only computing. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Given n positive integers W D Œw1; w2; � � � ; wn� and a positive integer M , the subset-sum problem
(SSP) is the problem of finding a set I � ¹1; 2; � � � ; nº, such that

P
wi DM; i 2 I . In other words,

the goal is to find a binary n-tuple solution X=[x1, x2, � � � , xn] for the equation

nX
iD1

wixi DM; xi 2 ¹0; 1º: (1)

Subset-sum problem is well-known to be non-deterministic polynomial-time complete (NP-
complete) and it is a special case of the 0/1 knapsack problem. It has many real-life applications,
such as capital budgeting, job scheduling, resource allocation, and project selection [1]. In recent
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decades, many exact and heuristic algorithms have been employed to solve SSP. A well-known
sequential algorithm is the two-list algorithm proposed by Horowitz and Sahni [2], which solves
SSP in time O.n2n=2/ with O.2n=2/ memory space. In order to effectively reduce the computation
time of SSP, the parallelization of the two-list algorithm has been extensively discussed in [3–6].
In particular, Li et al. [6] proposed an optimal parallel two-list algorithm without memory con-
flict, which solves SSP in time O.2n=4.2n=4/"/ with O..2n=4/1�"/ processors andO.2n=2/ memory
space, where 0 6 " 6 1.

Recently, heterogeneous CPU-GPU system has been widely used, which is a powerful way to
deal with compute-intensive applications, because GPU can offer massive data parallelism and
huge computational horsepower [7, 8]. A large effort has been performed to accelerate solving
SSP by using the GPUs. Bokhari [9] explored a parallelization of the dynamic programming algo-
rithm, which solves SSP on a 240-core NVIDIA FX 5800 GPU (NVIDIA Corporation, Santa
Clara, CA, USA) via Compute Unified Device Architecture (CUDA). Wan et al. [10] implemented
the parallel two-list algorithm of Li et al. on a GPU using CUDA, which successfully acceler-
ates the computation of SSP. Some works [11–13] have also been made to accelerate solving
the 0/1 knapsack problem on a GPU. These existing research works provide significant speedup
over the traditional CPU-based implementation, however, they may fail to fully utilize all the
CPU cores and the GPU resources at the same time. Specifically, when running a GPU applica-
tion in a heterogeneous CPU-GPU system, only one CPU core is used to control the GPUs, and
all the remaining CPU cores are in idle state while the GPU performs computational task, which
leads to large amounts of available CPU resources being wasted. Therefore, how to find an effec-
tive method to make full use of the potential computational power of both CPUs and GPUs is
very important.

The CPU-GPU cooperative computing has recently attracted the attention of many researchers
and application developers. Some applications have been reported to successfully implement the
CPU-GPU cooperative computing, instead of the CPU-only or GPU-only computing, such as matrix
multiplication [14–16], fast Fourier transformation [17], LU factorization [18], QR factorization
[19, 20], unsymmetric sparse linear system [21], radiation physics [22], molecular dynamics
[23], conjugate gradient method [24], divide-and-conquer algorithm [25], and branch-and-bound
algorithm [26]. These works show that the CPU-GPU cooperative computing has much better per-
formance than the CPU-only or GPU-only computing. However, the efficient CPU-GPU cooperative
computing for solving SSP remains a difficult challenge. The major difficulties are as follows: (1)
how to assign the most suitable workload to both CPUs and GPUs to maximize the utilization of all
computational resources; (2) how to minimize the CPU-GPU communication overhead, because the
high CPU-GPU communication cost could be a performance bottleneck for some applications; and
(3) how to achieve good load balancing between CPUs and GPUs, this is due to the load imbalance
that significantly affects the full utilization of heterogeneous devices.

In this paper, based on our previous work [27] and on the optimal parallel two-list algorithm
of Li et al. [6], we develop an efficient CPU-GPU cooperative computing scheme for solving
SSP. However, the CPU-GPU cooperative implementation of the parallel two-list algorithm is
not straightforward and needs to make a big effort. In order to find the most appropriate task
distribution ratio between CPUs and GPUs, we propose a simple but effective task distribution
model. Considering the data transfer and unbalanced workload between CPUs and GPUs may
greatly reduce the overall performance, we propose an incremental data transfer method to reduce
the CPU-GPU communication overhead and propose a feedback-based dynamic task distribution
scheme to balance the workload between CPUs and GPUs during runtime. We conduct a series of
experiments on three different hardware platforms. The results show that the CPU-GPU cooperative
computing significantly outperforms the CPU-only or GPU-only computing. Our study makes the
following contributions:

� A simple but effective task distribution model is established to find the most appropriate
task distribution ratio between CPUs and GPUs, and the experimental results prove that the
proposed model can find reasonable task distribution ratio.
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� An incremental data transfer method is proposed to reduce the CPU-GPU communication
overhead.
� A feedback-based dynamic task distribution scheme is designed to effectively balance the

workload between CPUs and GPUs during runtime.
� A series of experiments are carried out to compare the performance of the CPU-GPU

cooperative implementation with that of the best sequential implementation, the CPU-only
implementation, and the GPU-only implementation.

The rest of this paper is organized as follows. Section 2 describes two different CPU-GPU cooper-
ative computing methods and a task distribution model. Section 3 presents a CPU-GPU cooperative
implementation of the parallel two-list algorithm. Section 4 provides two performance optimization
schemes. Section 5 gives the experimental results and performance analysis. Section 6 concludes
this paper and discusses the future work.

2. THE CPU-GPU COOPERATIVE COMPUTING ENVIRONMENT

In this section, we first describe two different CPU-GPU cooperative computing methods and then
give a task distribution model.

2.1. The cooperative computing method

This section gives a brief description of two different CPU-GPU cooperative computing methods,
which basically explains how to fully exploit the potential processing power of both CPUs and
GPUs, as shown in Figure 1.

The main idea of the first CPU-GPU cooperative computing method is as follows: CPU thread 0
is dedicated to control and communicate with the GPUs, all the remaining available CPU threads
together with all the available GPU threads to cooperatively perform the whole computational task.
The typical flow of the first cooperative computing method is shown in Figure 1(a). Specifically,
CPU thread 0 firstly transfers part of the input data from the host memory to the device memory,
next, it invokes the CUDA kernel, then all GPU threads run the kernel in parallel, and finally, CPU
thread 0 transfers the output data back to the host memory. At the same time, all the other CPU
threads process the input data allocated to the CPUs in parallel.

The main idea of the second CPU-GPU cooperative computing method is similar to that of the
first method. The typical flow of the second cooperative computing method is shown in Figure 1(b).
Specifically, CPU thread 0 is dedicated to control the GPUs, after it invokes the CUDA kernel, all
GPU threads run the kernel in parallel. In the meantime, CPU thread 1 firstly transfers part of the

Figure 1. Two different CPU-GPU cooperative computing methods. (a) The first cooperative computing
method and (b) the second cooperative computing method.
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input data from the device memory to the host memory, then all the other CPU threads together with
it to perform the computational task in parallel, and finally, CPU thread 1 transfers the output data
from the host memory to the device memory.

The differences between the two methods are as follows: as for the first method, the data to be
processed by the GPUs comes from the host memory, and the processed data may need to be copied
back to the host memory; as for the second method, the data to be processed by the CPUs comes
from the device memory, and the processed data may need to be copied back to the device memory.
Note that the second method is employed in our proposed CPU-GPU cooperative implementation
of the parallel two-list algorithm. The applications of this method are demonstrated in Algorithm 1
and Algorithm 7 proposed later in the paper. The next section explains why this method is adopted.

2.2. The task distribution model

This section describes a simple but effective task distribution model, which aims to find the most
appropriate task distribution ratio between CPUs and GPUs.

The determination of the task distribution ratio needs to consider the following factors: processing
capabilities and memory capacities of the host side and the device side, the bandwidth, the actual
time to run the given program only on the CPUs or GPUs, and the CPU-GPU communication
overhead. To facilitate our discussion, some notation used in this model is listed in Table I.

For both CPU-GPU cooperative computing methods described previously, the cooperative com-
puting is considered finished only when both the CPUs and GPUs have finished their assigned
workload; therefore, the total execution time of the CPU-GPU cooperative implementation is
as follows:

Ttotal D max
�
T 0cpu; T

0
gpu

�
: (2)

For the first cooperative computing method, the CPU execution time of the CPU-GPU cooperative
implementation can be calculated as follows:

T 0cpu D Tcpu �R: (3)

For the second cooperative computing method, T 0cpu can be calculated as follows:

T 0cpu D .Tcpu C Tcomm/ �R: (4)

The GPU execution time of the CPU-GPU cooperative implementation mainly consists of kernel
execution time, GPU thread creation and destruction time, GPU synchronization time, and data
transfer time. For the first cooperative computing method, T 0gpu can be calculated as follows:

T 0gpu D .Tgpu C Tcomm/ � .1 �R/: (5)

Table I. Notation used in the task distribution model.

Notation Description

D the total workload
Dcpu the workload assigned to the CPUs
Dgpu the workload assigned to the GPUs
R the proportion of the workload assigned to the CPUs
Tcpu the running time of the CPU-only implementation
Tgpu the running time of the GPU-only implementation
T 0cpu the CPU execution time of the CPU-GPU cooperative implementation
T 0gpu the GPU execution time of the CPU-GPU cooperative implementation
Tcomm the additional CPU-GPU communication time of the CPU-GPU cooperative implementation
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For the second cooperative computing method, T 0gpu can be calculated as follows:

T 0gpu D Tgpu � .1 �R/: (6)

In Equation (2), it is easy to see that the task distribution ratio can be considered optimal when
T 0cpu D T

0
gpu. For the first cooperative computing method, we can obtain the following equation:

Tcpu �R D .Tgpu C Tcomm/ � .1 �R/: (7)

By solving Equation (7), we obtain

R D
Tgpu C Tcomm

Tcpu C Tgpu C Tcomm
: (8)

For the second cooperative computing method, we also can obtain the following equation:

.Tcpu C Tcomm/ �R D Tgpu � .1 �R/: (9)

By solving Equation (9), we obtain

R D
Tgpu

Tcpu C Tgpu C Tcomm
: (10)

For both cooperative computing methods, after the task distribution ratio has been determined,
the workload assigned to the CPUs and GPUs can be calculated as follows:

²
Dcpu D bD �RcI
Dgpu D D �Dcpu:

(11)

For a specific problem, assuming that Tcomm is more or less the same for two different cooperative
computing methods. If Tcpu < Tgpu, it is not hard to observe that the first method can give better
performance than the second method. If Tcpu D Tgpu, both methods can achieve similar perfor-
mance. If Tcpu > Tgpu, the second method outperforms the first method. For the parallel two-list
algorithm, the experimental results show that Tcpu > Tgpu, so we adopt the second method.

Although the task distribution model described earlier could effectively find the appropriate task
distribution ratio for the parallel two-list algorithm, it is based on the assumptions that the problem
being solved has good scalability and the problem size is fixed. Therefore, it would not hold for all
different types of parallel applications, and those equations used for calculating the task distribution
ratio are not generic.

3. THE PROPOSED CPU-GPU COOPERATIVE IMPLEMENTATION

In this section, we first briefly introduce the parallel two-list algorithm for solving SSP and then
focus on the CPU-GPU cooperative implementation of the algorithm.

3.1. The parallel two-list algorithm

Based on the Single Instruction Multiple Data model with shared memory, Li et al. [6] proposed an
optimal parallel two-list algorithm, which contains three stages as follows.

The parallel generation stage, which is designed for generating two sorted lists. Specifically, we
first obtain an n-element input vectorW and divide it into two equal parts:W1 D Œw1,w2, � � � ,wn=2]
and W2 D Œwn=2C1, wn=2C2, � � � , wn]. Secondly, we use k threads to concurrently produce all 2n=2

possible subset sums of W1, and store them into the list A D Œa1, a2, � � � , a2n=2] in nondecreasing
order, where k is the number of required threads and it is less than or equal to the maximum number
of threads available. Finally, we use k threads to concurrently produce all 2n=2 possible subset sums
of W2, and store them into the list B D Œb1, b2, � � � , b2n=2] in nonincreasing order.
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The parallel pruning stage, which is used to shrink the search space of each thread. In short, we
first evenly divide listsA andB into k blocks respectively. For clarity, letA D ŒA1; A2; � � � ; Ai ; � � � ;
Ak� and B D ŒB1; B2; � � � ; Bj ; � � � ; Bk�, where Ai D Œai:1; ai:2; � � � ; ai:2n=2=k�, Bj D

Œbj:1; bj:2; � � � ; bj:2n=2=k� and 1 6 i; j 6 k. Each element ai:r in the sublist Ai represents a subset
sum of A, where 1 6 r 6 2n=2=k. Secondly, the block Ai and the entire list B are assigned to the
thread Pi , where 1 6 i 6 k. Finally, we use the prune rule [6] to shrink the search space of each
thread. Before pruning, the number of block pairs is k2. After pruning, the number of the picked
block pairs is at most 2k � 1.

The parallel search stage, which is constructed to find a solution from the combinations of the
two sorted lists. Briefly, those picked block pairs are evenly assigned to k threads; it is easy to
see that each thread will search two block pairs at most. For the sake of discussion, assuming that
the block pair .As; Bt / is assigned to the thread Pi , where As D Œas:1; as:2; � � � ; as:2n=2=k�, Bt D
Œbt:1; bt:2; � � � ; bt:2n=2=k�; and 1 6 i; s; t 6 k. The thread Pi finds the top elements of the block pair
.As; Bt /, if as:1Cbt:1 DM , implying that a solution is found; if as:1Cbt:1 < M , then Pi continues
to search the next element of the block As; otherwise, Pi continues to search the next element of
the block Bt . The aforementioned process is repeated until the last element of the block As or Bt
has been retrieved.

3.2. The cooperative implementation of the generation stage

The cooperative implementation of the generation stage begins with the initialization on the host
and device sides. Firstly, we get an n-element input vector W and divide it into two equal parts, W1
and W2 on the host side. Secondly, we allocate device memory for W1 and W2 on the device side,
and copy W1 and W2 to the device memory. Thirdly, we initialize the knapsack capacity M on the
host side, allocate constant memory for M on the device side, and copy M to the constant memory.

Table II. Notation used in the generation stage.

Notation Description

Ai a list which resides in the host memory, Ai D Œai:1; ai:2; � � � ; ai:2i �, where 1 6 i 6 n=2
ai:r a subset sum, where 1 6 r 6 2i
Ai Œp::q� a list which resides in the host memory, Ai Œp::q� D Œai:p ; ai:pC1; � � � ; ai:q �, where 1 6 p; q 6 2i
d_Ai a list which resides in the device memory, d_Ai D Œai:1; ai:2; � � � ; ai:2i �, where 1 6 i 6 n=2
A1i a list which resides in the host memory, A1i D Œai:1 C wiC1; ai:2 C wiC1; � � � ; ai:2i C wiC1�

d_A1i a list which resides in the device memory, d_A1i D Œai:1 C wiC1; ai:2 C wiC1; � � � ; ai:2i C wiC1�
D1 the total number of elements in d_Ai during the add item process
Dcpu1 the number of elements assigned to the CPUs in d_Ai during the add item process
Dgpu1 the number of elements assigned to the GPUs in d_Ai during the add item process

D1cpu1 the number of elements assigned to the CPUs in d_A1i during the add item process

D1gpu1 the number of elements assigned to the GPUs in d_A1i during the add item process
R1 the task distribution ratio used during the add item process
kcpu1 the number of required CPU threads during the add item process
kgpu1 the number of required GPU threads during the add item process
D2 the total number of elements in d_Ai during the partition and merge processes
Dcpu2 the number of elements assigned to the CPUs in d_Ai during the partition and merge processes
Dgpu2 the number of elements assigned to the GPUs in d_Ai during the partition and merge processes

D1cpu2 the number of elements assigned to the CPUs in d_A1i during the partition and merge processes

D1gpu2 the number of elements assigned to the GPUs in d_A1i during the partition and merge processes
R2 the task distribution ratio used during the partition and merge processes
kcpu2 the number of required CPU threads during the partition and merge processes
kgpu2 the number of required GPU threads during the partition and merge processes
cmax the maximum number of CPU threads available
gmax the maximum number of GPU threads available
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Fourthly, we allocate device memory for lists d_A and d_B on the device side. Here, the list d_A
is used to store all 2n=2 subset sums of W1, and the list d_B is used to store all 2n=2 subset sums
of W2. Fifthly, we initialize d_A1 D Œ0; w1� and d_B1 D Œwn=2C1; 0�. Note that d_Ai represents a
list, which resides in the device memory, d_Ai D Œai:1; ai:2; � � � ; ai:2i �, where 1 6 i 6 n=2. Each
element ai:r in the list d_Ai represents a subset sum, where 1 6 r 6 2i . The same convention is
used for the list d_Bi . Finally, we allocate host memory for lists A and B on the host side, and use
A and B to store the subset sums of W1 and W2, respectively.

After the initialization phase has been completed, we will describe the generation procedure of
the nondecreasing list d_A. The generation procedure of the nonincreasing list d_B is almost the
same as that of list d_A, we do not discuss it here for the sake of brevity. Some notation used in this
generation stage is summarized in Table II.

3.2.1. The cooperative computing scheme of the generation stage. The whole process of generating
the list d_A needs to execute n=2 � 1 iterations to complete. Each iteration is made up of the
following sequential activities: adding item, partitioning, and merging. The cooperative computing
scheme of the generation stage is described in Algorithm 1.

The observations for the (i-1)-th iteration of the generation procedure show that Tgpu_i is far
less then Tcpu_i + Tcomm_i when i is small, where 2 6 i 6 n=2. This means that the cooperative
computing is not suitable for small computational task. Therefore, we introduce a threshold � to
decide whether the computational task should be performed using GPU-only or using both CPUs
and GPUs. The threshold value can be determined through the following experiments: first, we
run the generation procedure on the CPUs to obtain Tcpu_i (the CPU execution time of the (i-1)-
th iteration); secondly, we run it on the GPUs to obtain Tgpu_i (the GPU execution time of the
(i-1)-th iteration); thirdly, we run it on both CPUs and GPUs to obtain Tcomm_i (the CPU-GPU
communication time of the (i-1)-th iteration), where R1=1 and R2=1; and finally, the threshold
value is determined according to Tcpu_i , Tgpu_i and Tcomm_i , if Tgpu_i is far less then Tcpu_i +
Tcomm_i , then � D i , where 2 6 i 6 n=2.

When 2 6 i 6 � � 1, we only use the GPUs to perform the generation procedure. Specifically,
during the (i-1)-th iteration, we first use kgpu1 GPU threads to add the itemwi to each element of the
list d_Ai�1 in parallel, generating a new list d_A1i�1 D Œai�1:1Cwi ; ai�1:2Cwi ; � � � ; ai�1:2i�1 C
wi �, where kgpu1 D min.gmax; 2

i�1/. Then, we use kgpu2 GPU threads to merge lists d_Ai�1 and
d_A1i�1 into a new nondecreasing list d_Ai in parallel, where kgpu2 D min.gmax; 2

i�1/.
When � 6 i 6 n=2, we use both CPUs and GPUs to cooperatively perform the generation

procedure. It is easy to observe that each iteration consists of the following six steps:

Step 1: Determine the workload of the CPUs and GPUs, respectively, according to the task
distribution ratio R1 obtained from Equation (10) during the add item process.

Step 2: Determine the number of required CPU and GPU threads during the add item process.
Step 3: Execute the add item process on both the host and device sides simultaneously.
Step 4: Determine the workload of the CPUs and the GPUs, respectively, according to the

task distribution ratio R2 obtained from Equation (10) during the partition and merge
processes.

Step 5: Determine the number of required CPU and GPU threads during the partition and merge
processes.

Step 6: Execute the partition and merge processes on both the host and device sidessimultane-
ously.

As can be seen from Algorithm 1, two concurrent CPU threads are used to control the cooperative
execution of the add item process. CPU thread 0 is used to control the GPUs, and kgpu1 GPU threads
are used to concurrently execute the add item process on the device side. CPU thread 1 is used to
control the CPUs. By exploiting the nested parallelism in OpenMP, kcpu1 CPU threads are used to
concurrently perform the add item process on the host side. Similarly, we use two concurrent CPU
threads to control the cooperative execution of the partition and merge processes. In addition, we can
use CUDA stream to achieve the overlap of data transfer and kernel execution, i.e., simultaneously
execute a CUDA kernel while performing the data transfer between CPUs and GPUs.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:492–516
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Algorithm 1 The cooperative computing scheme of the generation stage
Require: W1 D Œw1; w2; � � � ; wn=2�, d_A1 D Œ0; w1�, R1, R2

1: for i D 2 to � � 1 do
2: use kgpu1 D min.gmax ; 2i�1/ GPU threads to perform the add item process in parallel;
3: use kgpu2 D min.gmax ; 2i�1/ GPU threads to perform the partition and merge processes in

parallel;
4: end for
5: for i D � to n=2 do
6: B the add item process
7: D1 D 2i�1, Dcpu1 D bD1 � R1c, D1

cpu1 D bD1 � R1c, Dgpu1 D D1 �Dcpu1, D1
gpu1 D

D1 �D
1
cpu1;

8: kcpu1 D min.cmax;Dcpu1/, kgpu1 D min.gmax ;Dgpu1/;
9: omp_set_nested.1/;

10: #pragma omp parallel num_threads(2) {
11: omp_tid = omp_get_thread_num./;
12: if omp_tid D 0 then
13: for all kgpu1 GPU threads do in parallel
14: produce new list d_A1i�1Œ1::D

1
gpu1� by adding the item wi to each element of

d_Ai�1Œ1::Dgpu1�;
15: end for
16: else
17: copy each element of d_Ai�1ŒDgpu1 C 1::D1� to Ai�1ŒDgpu1 C 1::D1�;
18: for all kcpu1 CPU threads do in parallel
19: produce new listA1i�1ŒD

1
gpu1C1::D1� by addingwi to each element ofAi�1ŒD1

gpu1C
1::D1�;

20: end for
21: copy each element of A1i�1ŒD

1
gpu1 C 1::D1� to d_A1i�1ŒDgpu1 C 1::D1�;

22: end if }
23: B the partition and merge processes
24: D2 D 2

i�1, Dcpu2 D bD2 �R2c, Dgpu2 D D2 �Dcpu2;
25: perform Algorithm 2 to get D1

gpu2, D1
cpu2 D D2 �D

1
gpu2;

26: kcpu2 D min.cmax ; 2
blog.Dcpu2CD

1
cpu2

/c/, kgpu2 D min.gmax ; 2
blog.Dgpu2CD

1
gpu2

/c/;
27: #pragma omp parallel num_threads(2) {
28: omp_tid = omp_get_thread_num./;
29: if omp_tid D 0 then
30: for all kgpu2 GPU threads do in parallel
31: use the optimal parallel merging algorithm to merge d_Ai�1Œ1::Dgpu2� and

d_A1i�1Œ1::D
1
gpu2� into d_Ai Œ1::Dgpu2 CD1

gpu2�;
32: end for
33: else
34: copy each element of d_Ai�1ŒDgpu2 C 1::D2� to Ai�1ŒDgpu2 C 1::D2�;
35: copy each element of d_A1i�1ŒD

1
gpu2 C 1::D2� to A1i�1ŒD

1
gpu2 C 1::D2�;

36: for all kcpu2 CPU threads do in parallel
37: use the optimal parallel merging algorithm to merge Ai�1ŒDgpu2 C 1::D2� and

A1i�1ŒD
1
gpu2 C 1::D2� into Ai ŒDgpu2 CD1

gpu2 C 1::2 �D2�;
38: end for
39: copy each element of Ai ŒDgpu2 C D1

gpu2 C 1::2 � D2� to d_Ai ŒDgpu2 C D1
gpu2 C

1::2 �D2�;
40: end if }
41: end for
42: return d_An=2
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Algorithm 2 Determine the number of elements assigned to the GPUs in the list d_A1i�1
Require: d_Ai�1; d_A1i�1;Dgpu2;D2

1: left D 1; right D D2;D1
gpu2 D 0;

2: while left 6 right do
3: middle D .leftC right/=2;
4: if d_A1i�1Œmiddle� D d_Ai�1ŒDgpu2� then D1

gpu2 D middle; break;
5: else if d_A1i�1Œmiddle� < d_Ai�1ŒDgpu2� then left D middleC 1;
6: else right D middle � 1; end if
7: end while
8: if D1

gpu2 D 0 then
9: if d_A1i�1Œmiddle� < d_Ai�1ŒDgpu2� then D1

gpu2 D middle;
10: else D1

gpu2 D middle � 1; end if
11: end if
12: return D1

gpu2

3.2.2. The implementation of the add item process. This section describes the CPU-GPU coopera-
tive implementation of the add item process.

Algorithm 3 describes the add item kernel implemented with CUDA, which can be executed
concurrently on the device side. We use kgpu1 GPU threads to run the add item kernel in parallel.
The t id -th GPU thread adds the item wi to the t id -th element of the list d_Ai�1, generating the
corresponding t id -th element of the list d_A1i�1, where 1 6 t id 6 Dgpu1.

Algorithms 4 describes the add item subroutine implemented with Open Multi-Processing
(OpenMP), which can be executed concurrently on the host side. We use kcpu1 CPU threads to
add the item wi to each element of the list Ai�1ŒDgpu1 C 1::D1� in parallel, generating a new list
A1i�1 D ŒDgpu1 C 1::D1�.

Algorithm 3 The add item kernel implemented with CUDA

Require: wi ; d_Ai�1; d_A1i�1;Dgpu1
1: tid D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while tid 6 Dgpu1 do
3: d_A1i�1Œtid� D d_Ai�1Œtid�C wi ;
4: t idC D blockDim.x � gridDim.x;
5: end while
6: return d_A1i�1Œ1::Dgpu1�

Algorithm 4 The add item subroutine implemented with OpenMP

Require: wi ; Ai�1; A1i�1; kcpu1;Dgpu1;D1
1: #pragma omp parallel for num_threads(kcpu1);
2: for j D Dgpu1 C 1 to D1 do
3: A1i�1Œj � D Ai�1Œj �C wi ;
4: end for
5: return A1i�1ŒDgpu1 C 1::D1�

3.2.3. The implementation of the partition and merge processes. The implementation of the parti-
tion and merge processes on the CPUs using OpenMP is almost the same as that on the GPUs using
CUDA, we only introduce the latter in this section.

The partition and merge processes use the optimal parallel merging algorithm presented in
[28], which adopts a recursive divide-and-conquer strategy. Because the support for recursions in
NVIDIA GPUs with compute capability less than 3.5 is weak, we have to use iteration instead
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of recursion. A vector-based iterative implementation mechanism is developed in our previous
work [10]. Currently, the new NVIDIA GPUs with compute capability 3.5 or higher support for a
technology called ‘dynamic parallelism’, which allows a CUDA kernel to create and synchronize
with new work directly on the GPUs. It can make GPU programming easier, particularly for algo-
rithms traditionally considered difficult for GPUs such as recursive divide-and-conquer problems.
Here, the dynamic parallelism is adopted in the implementation of the partition process.

On the device side, the whole partition process needs to execute log kgpu2 � 1 recursion steps to
complete. At the j -th recursion, we use 2j GPU threads to execute the partition kernel described in
Algorithm 5 in parallel, where 1 6 j 6 log kgpu2 � 1. In order to store the partition information
(i.e., median pair of sublists X and Y ) generated by each GPU thread in each recursion, we declare
a vector d_H whose size is kgpu2C 1 in the device memory. Each element of d_H is a struct with
two members u and v. We initialize the vector d_H as follows: d_HŒ1�:u D 1, d_HŒ1�:v D 1,
d_HŒkgpu2 C 1�:u D Dgpu2, d_HŒkgpu2 C 1�:v D D1

gpu2.

Algorithm 5 The partition kernel implemented with CUDA
1: __global__ void partitionKernel(int lowA, int highA, int lowB , int highB , int low, int high, int

depth) {
2: a D lowA, b D highA, c D lowB , d D highB ;
3: find the median pair (e, f ) of d_Ai�1Œa::b� and d_A1i�1Œc::d � using the selection algorithm

presented in [28];
4: d_HŒ.lowC highC 1/=2�:u D e;
5: d_HŒ.lowC highC 1/=2�:v D f ;
6: if depth = log k or depth > maxDepth then return;
7: else
8: create two CUDA streams: s1; s2;
9: partitionKerneln 1; 1; 0; s1o .lowA; e; lowB ; f; low; .lowC highC 1/=2; depthC 1/;

10: partitionKerneln 1; 1; 0; s2o .e C 1; highA; f C 1; highB ; .lowC highC 1/=2; high,
depthC 1/;

11: destroy two CUDA streams: s1; s2;
12: end if }

In Algorithm 5, the partition kernel has seven parameters: lowA, highA, lowB , highB , low, high,
and depth. The parameters lowA and highA represent the lower bound position and the upper bound
position of sublist X , respectively. The parameters lowB and highB denote the lower bound posi-
tion and the upper bound position of sublist Y , respectively. The parameters low and high determine
which element of d_H will be used to store the partition information. The parameter depth refers
to the depth of the recursion, whereas maxDepth represents the GPU-supported maximum recur-
sion depth. Before launching the partition kernel, whose seven parameters are specified as follows:
lowA D 1, highA D Dgpu2, lowB D 1, highB D D1

gpu2, low D 1, high D kgpu2 and depth D 1.
The calculation of the three parameters Dgpu2, D1

gpu2 and kgpu2 is shown in lines 24–26 of
Algorithm 1.

After completing the partition process on the device side, we use kgpu2 GPU threads to run the
merge kernel described in Algorithm 6 in parallel. At first, the current GPU thread Ptid obtains the

Algorithm 6 The merge kernel implemented with CUDA

Require: d_Ai�1; d_A1i�1; d_H; kgpu2
1: tid D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while tid 6 kgpu2 do
3: a D d_HŒtid�:u, b D d_HŒtid�:v, c D d_HŒtidC 1�:u, d D d_HŒtidC 1�:v;
4: merge d_Ai�1Œa::b� and d_A1i�1Œc::d � into d_Ai ŒaC c � 1::b C d�;
5: tidC D blockDim.x � gridDim.x;
6: end while
7: return d_Ai
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Table III. Notation used in the pruning and search stages.

Notation Description

D3 the total number of elements in list d_A
Dcpu3 the number of elements assigned to the CPUs in list d_A
Dgpu3 the number of elements assigned to the GPUs in list d_A
R3 the task distribution ratio used during the pruning and search stages
kcpu3 the number of required CPU threads during the pruning and search stages
kgpu3 the number of required GPU threads during the pruning and search stages
isFound_cpu the variable used to determine whether a solution of SSP is found on the host side
isFound_gpu_d the variable used to determine whether a solution of SSP is found on the device side
isFound_gpu_h the variable used to store the value of isFound_gpu_d on the host side

SSP, subset-sum problem.

partition information .a; b; c; d/ from the vector d_H , where 1 6 t id 6 kgpu2. Then, Ptid merges
lists d_Ai�1Œa::b� and d_A1i�1Œc::d � into a new list d_Ai ŒaC c � 1::b C d�.

3.3. The cooperative implementation of the pruning and search stages

This section describes how to implement the pruning and search stages in the CPU-GPU cooperative
computing environment. Some notation used in these two stages is illustrated in Table III.

3.3.1. The cooperative computing scheme of the pruning and search stages. Algorithm 7 describes
the cooperative computing scheme of the pruning and search stages, which consists of the following
six steps:

Algorithm 7 The cooperative computing scheme of the pruning and search stages
Require: d_A, d_B , A, B , R3, M

1: D3 D 2
n=2, Dcpu3 D bD3 �R3c, Dgpu3 D D3 �Dcpu3;

2: kcpu3 D min.cmax; 2blogDcpu3=2c/, kgpu3 D min.gmax ; 2blogDgpu3=2c/;
3: omp_set_nested.1/;
4: #pragma omp parallel num_threads(2) {
5: omp_tid = omp_get_thread_num./;
6: if omp_tid D 0 then
7: use kgpu3 GPU threads to perform the pruning routine in parallel on the device side;
8: copy the value of isFound_gpu_d to isFound_gpu_h;
9: else

10: copy each element of d_AŒDgpu3 C 1::D3� to AŒDgpu3 C 1::D3�, and copy all elements
of d_B to B;

11: use kcpu3 CPU threads to perform the pruning routine in parallel on the host side;
12: end if }
13: if isFound_cpu D 1 or isFound_gpu_h = 1 then return the solution of SSP;
14: else
15: #pragma omp parallel num_threads(2) {
16: omp_tid = omp_get_thread_num./;
17: if omp_tid D 0 then
18: use kgpu3 GPU threads to perform the search routine in parallel on the device side;
19: copy the value of isFound_gpu_d to isFound_gpu_h;
20: else use kcpu3 CPU threads to perform the search routine in parallel on the host side; end

if }
21: end if
22: if isFound_cpu D 1 or isFound_gpu_h D 1 then return the solution of SSP;
23: else return NULL;B there is no solution end if
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Step 1: Determine the workload of the CPUs and GPUs, respectively, according to the task
distribution ratio R3 obtained from Equation (10). Note that all 2n=2 elements of the list
d_B need to be assigned to the CPUs and GPUs, respectively.

Step 2: Determine the number of required CPU and GPU threads.
Step 3: Execute the pruning stage on both the host and device sides simultaneously. If a solution

is found on the host side, then isFound_cpu D 1. If a solution is found on the device side,
then isFound_gpu_d D 1.

Step 4: Determine whether to carry out the next search stage according to the values of
isFound_cpu and isFound_gpu_h.

Step 5: Execute the search stage on both the host and device sides simultaneously.
Step 6: Output the final search results.

Because the pruning and search stages are implemented on the CPUs using OpenMP and that are
implemented on the GPUs using CUDA are similar, we only introduce the latter in the next sections.

3.3.2. The implementation of the pruning stage. This section describes how to shrink the search
space by using kgpu3 GPU threads to run the pruning kernel described in Algorithm 8 in parallel.

Before the pruning kernel is executed, we first evenly divide d_AŒ1::Dgpu3� and d_B
into kgpu3 blocks. Each block of d_A contains blockAgpu D ŒDgpu3=kgpu3� elements, and
each block of d_B contains blockBgpu D Œ2n=2=kgpu3� elements. Let d_AŒ1::Dgpu3� D
Œd_A1; � � � ; d_Ai ; � � � ; d_Akgpu3 � and d_B D Œd_B1; � � � ; d_Bj ; � � � ; d_Bkgpu3 �, where d_Ai D
Œai:1; ai:2; � � � ; ai:blockAgpu � and d_Bj D Œbj:1; bj:2; � � � ; bj:blockBgpu �. Secondly, we assign the
block d_Ai and the entire list d_B to the GPU thread Pi , where 1 6 i 6 kgpu3. Thirdly, we declare
a vector d_S whose size is 2kgpu3 � 1 in the device memory. Each element of d_S is a struct with
two members bidA and bidB, which are used to record the picked block index within d_A and d_B ,
respectively. Finally, we declare a variable d_numOfPicked in the device memory, which is used to
count the number of block pairs to be picked.

After the pruning kernel has been completed, if isFound_gpu_d D 1, we copy the solution back
to the host memory and output it.

Algorithm 8 The pruning kernel implemented with CUDA
Require: d_A; d_B; kgpu3; blockAgpu; blockBgpu;M

1: i D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while i 6 kgpu3 do
3: for j D 1 to kgpu3 do
4: if isFound_gpu_d D 1 then break;B a solution is found
5: else
6: X D ai:1 C bj:blockBgpu , Y D ai:blockAgpu C bj:1;
7: if X DM or Y DM then atomicExch.&isFound_gpu_d; 1/;
8: else if X < M and Y > M then
9: atomicAdd.&d_numOfPicked, 1);

10: d_SŒd_numOfPicked�:bidA D i , d_SŒd_numOfPicked�:bidB D j ;
11: end if
12: end if
13: end for
14: iC D blockDim.x � gridDim.x;
15: end while
16: return a solution or d_S

3.3.3. The implementation of the search stage. This section describes how to search a solution of
SSP by using kgpu3 GPU threads to perform the search kernel described in Algorithm 9 in parallel.

Before the search kernel is executed, we evenly assign those picked block pairs to kgpu3 GPU
threads. Because at most 2kgpu3�1 block pairs are picked during the pruning stage, each thread will
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search two block pairs at most. For clarity, assuming that the block pair .d_As; d_Bt / is assigned
to the thread Pi , where 1 6 i; s; t 6 kgpu3. During the search kernel execution, Pi finds the top
elements of .d_As; d_Bt /, if as:1 C bt:1 D M , meaning that a solution is found; otherwise, Pi
continues to search the next element of d_As or d_Bt . The search process is repeated until the
last element of d_As or d_Bt has been retrieved. After the search kernel has been completed, if
isFound_gpu_d D 1, we copy the solution back to the host memory and output it.

Algorithm 9 The search kernel implemented with CUDA
Require: d_A; d_B; d_S , d_numOfPicked, M

1: i D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while i 6 d_numOfPicked do
3: s D d_SŒi �:bidA, t D d_SŒi �:bidB, x D 1, y D 1;
4: while x 6 blockAgpu and y 6 blockBgpu do
5: if isFound_gpu_d D 1 then break;B a solution is found
6: else
7: if as:x C bt:y DM then atomicExch.&isFound_gpu_d; 1/;
8: else if as:x C bt:y < M then x D x C 1;
9: else y D y C 1; end if

10: end if
11: end while
12: iC D blockDim.x � gridDim.x;
13: end while
14: return a solution or NULL

4. PERFORMANCE OPTIMIZATION

The data transfer and unbalanced workload between CPUs and GPUs are two main obstacles to the
performance of our proposed CPU-GPU cooperative implementation. In this section, we will show
how to achieve better performance by addressing these two obstacles.

4.1. The incremental data transfer method

In our proposed CPU-GPU cooperative implementation, the high CPU-GPU communication
overhead greatly affects the overall performance. An effective way to reduce the CPU-GPU com-
munication overhead is to reduce the repeated data transfers between CPUs and GPUs, namely, to
maximize the reuse of the data that resides in the host memory or device memory. In this section,
we propose an incremental data transfer method to reduce the repeated data transfers.

Firstly, we describe the use of the incremental data transfer method during the generation stage.
Algorithm 10 shows the improved generation stage using the method. When 2 6 i 6 � � 1,
because we only use the GPUs to perform the generation procedure, the method does not need to be
considered. When � 6 i 6 n=2, in each iteration, the use of the method consists of the following
two steps:

Step 1: Before the add item process is executed, we first get Dcpu2;D1
cpu2;Dgpu2, and D1

gpu2

from the previous iteration. Note that before the �-th iteration, Dcpu2 and D1
cpu2 need to be

initialized to zero, and Dgpu2 and D1
gpu2 need to be initialized to 2��2. Then, we get Dcpu1 and

Dgpu1 from the current iteration. After that, according to the following conditions to determine how
to transfer data.

1. IfDgpu1 > Dgpu2CD1
gpu2, we need to transferDgpu1�Dgpu2�D1

gpu2 elements from CPU
to GPU, that is, copy each element ofAi�1ŒDgpu2CD1

gpu2C1::Dgpu1� to d_Ai�1ŒDgpu2C
D1
gpu2 C 1::Dgpu1�; otherwise, we do not need to transfer data from CPU to GPU.

2. IfDcpu1 > Dcpu2CD1
cpu2, we need to transferDcpu1�Dcpu2�D1

cpu2 elements from GPU
to CPU, that is, copy each element of d_Ai�1ŒDgpu1C1::Dgpu2CD1

gpu2� toAi�1ŒDgpu1C
1::Dgpu2 CD

1
gpu2�; otherwise, we do not need to transfer data from GPU to CPU.
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Algorithm 10 The improved generation stage using the incremental data transfer method
Require: W1 D Œw1; w2; � � � ; wn=2�, d_A1 D Œ0; w1�, R1, R2

1: for i D 2 to � � 1 do use the GPUs to generate the list d_Ai ; end for
2: Dcpu2 D 0;D

1
cpu2 D 0;Dgpu2 D 2

��2;D1
gpu2 D 2

��2;
3: for i D � to n=2 do
4: B the add item process
5: D1 D 2i�1, Dcpu1 D bD1 � R1c, D1

cpu1 D bD1 � R1c, Dgpu1 D D1 �Dcpu1, D1
gpu1 D

D1 �D
1
cpu1;

6: kcpu1 D min.cmax;Dcpu1/, kgpu1 D min.gmax ;Dgpu1/;
7: #pragma omp parallel num_threads(2) {
8: if omp_tid D 0 then
9: if Dgpu1 > Dgpu2 CD1

gpu2, then we copy each element of Ai�1ŒDgpu2 CD1
gpu2C

1::Dgpu1� to d_Ai�1ŒDgpu2 CD1
gpu2 C 1::Dgpu1�;

10: use kgpu1 GPU threads to produce d_A1i�1Œ1::D
1
gpu1� by adding wi to each element of

d_Ai�1Œ1::Dgpu1�;
11: else
12: ifDcpu1 > Dcpu2CD1

cpu2, then we copy each element of d_Ai�1ŒDgpu1C1::Dgpu2C
D1
gpu2� to Ai�1ŒDgpu1 C 1::Dgpu2 CD1

gpu2�;
13: use kcpu1 CPU threads to produce A1i�1ŒD

1
gpu1 C 1::D1� by adding wi to each element

of Ai�1ŒDgpu1 C 1::D1�;
14: end if }
15: B the partition and merge processes
16: D2 D 2

i�1, Dcpu2 D bD2 �R2c, Dgpu2 D D2 �Dcpu2;
17: perform Algorithm 2 to get D1

gpu2, D1
cpu2 D D2 �D

1
gpu2;

18: kcpu2 D min.cmax; 2
blog.Dcpu2CD

1
cpu2

/c/, kgpu2 D min.gmax ; 2
blog.Dgpu2CD

1
gpu2

/c/;
19: #pragma omp parallel num_threads(2) {
20: if omp_tid D 0 then
21: if Dgpu2 > Dgpu1, we copy each element of Ai�1ŒDgpu1 C 1::Dgpu2� to

d_Ai�1ŒDgpu1 C 1::Dgpu2�;
22: if D1

gpu2 > D
1
gpu1, we copy each element of A1i�1ŒD

1
gpu1 C 1::D

1
gpu2� to

d_A1i�1ŒD
1
gpu1 C 1::D

1
gpu2�;

23: use kgpu2 GPU threads to merge d_Ai�1Œ1::Dgpu2� and d_A1i�1Œ1::D
1
gpu2� into

d_Ai Œ1::Dgpu2 CD1
gpu2�;

24: else
25: if Dcpu2 > Dcpu1, we copy each element of d_Ai�1ŒDgpu2 C 1::Dgpu1� to

Ai�1ŒDgpu2 C 1::Dgpu1�;
26: if D1

cpu2 > D
1
cpu1, we copy each element of d_A1i�1ŒD

1
gpu2 C 1::D

1
gpu1� to

A1i�1ŒD
1
gpu2 C 1::D

1
gpu1�;

27: use kcpu2 CPU threads to merge Ai�1ŒDgpu2 C 1::D2� and A1i�1ŒD
1
gpu2 C 1::D2� into

Ai ŒDgpu2 CD
1
gpu2 C 1::2 �D2�;

28: end if }
29: end for
30: return d_An=2Œ1::Dgpu2 CD1

gpu2� and An=2ŒDgpu2 CD1
gpu2 C 1::2 �D2�

Step 2: Before the partition and merge processes are executed, we first getDcpu2;D1
cpu2;Dgpu2,

and D1
gpu2 from the current iteration and then according to the following conditions to determine

how to transfer data.

1. If Dgpu2 > Dgpu1, we need to transferDgpu2 �Dgpu1 elements from CPU to GPU, that is,
copy each element of Ai�1ŒDgpu1 C 1::Dgpu2� to d_Ai�1ŒDgpu1 C 1::Dgpu2�.
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2. IfD1
gpu2 > D

1
gpu1, we need to transferD1

gpu2 �D
1
gpu1 elements from CPU to GPU, that is,

copy each element of A1i�1ŒD
1
gpu1 C 1::D

1
gpu2� to d_A1i�1ŒD

1
gpu1 C 1::D

1
gpu2�.

3. If Dcpu2 > Dcpu1, we need to transfer Dcpu2 �Dcpu1 elements from GPU to CPU, that is,
copy each element of d_Ai�1ŒDgpu2 C 1::Dgpu1� to Ai�1ŒDgpu2 C 1::Dgpu1�.

4. If D1
cpu2 > D

1
cpu1, we need to transfer D1

cpu2 �D
1
cpu1 elements from GPU to CPU, that is,

copy each element of d_A1i�1ŒD
1
gpu2 C 1::D

1
gpu1� to A1i�1ŒD

1
gpu2 C 1::D

1
gpu1�.

Secondly, we describe the use of the incremental data transfer method during the pruning and
search stages. The use of the method includes the following two cases:

Case 1: We get Dgpu2 and D1
gpu2 from the last iteration of generating the list d_A. If Dgpu3 >

Dgpu2 C D
1
gpu2, we need to transfer Dgpu3 � Dgpu2 � D1

gpu2 elements from CPU
to GPU, that is, copy each element of AŒDgpu2CD1

gpu2C1::Dgpu3� to d_AŒDgpu2C
D1
gpu2C1::Dgpu3�. IfDgpu3 < Dgpu2CD1

gpu2, we need to transferDgpu2CD1
gpu2�

Dgpu3 elements from GPU to CPU, that is, copy each element of d_AŒDgpu3C1::Dgpu2
CD1

gpu2� to AŒDgpu3 C 1::Dgpu2 CD1
gpu2�.

Case 2: We get Dgpu2 and D1
gpu2 from the last iteration of generating the list d_B . We copy

each element of BŒDgpu2 C D1
gpu2 C 1::D3� to d_BŒDgpu2 C D1

gpu2 C 1::D3�, and
copy each element of d_BŒ1::Dgpu2 CD1

gpu2� to BŒ1::Dgpu2 CD1
gpu2�.

As described earlier, it is not hard to see that the incremental data transfer method can help us to
avoid transferring large amounts of repeated data back and forth between CPUs and GPUs, which
greatly reduces the CPU-GPU communication overhead.

4.2. The feedback-based dynamic task distribution scheme

We can statically assign tasks to both CPUs and GPUs by using our proposed task distribution
model. However, load imbalance between CPUs and GPUs may arise during runtime; this may cause
a significant decrease in performance. To balance the workload between CPUs and GPUs during
runtime, a feedback-based dynamic task distribution scheme is designed in this section.

To facilitate our discussion, let us suppose that a large task can be broken down into n separate
subtasks T D ŒT1; T2; � � � ; Tn�. The task T needs to execute n iterations to complete, and we use
both CPUs and GPUs to cooperatively execute the subtask Ti during the i-th iteration, where 1 6
i 6 n. The total workload WL of the task T is divided into several parts and each part is assigned
to both CPUs and GPUs. Let WLi denote the workload of the subtask Ti , let WLcpu:i denote
the workload assigned to the CPUs, and let WLgpu:i denote the workload assigned to the GPUs,
where WL D

Pn
iD1WLi , WLi D WLcpu:i C WLgpu:i , and 1 6 i 6 n. For clarity, we use the

task execution speed as load index, which is a measure of load status. Let Tcpu:i and Vcpu:i denote
the execution time and the execution speed of the subtask Ti on the host side, respectively, where
1 6 i 6 n. We obtain the following equation:

Vcpu:i D WLcpu:i=Tcpu:i : (12)

Similarly, let Tgpu:i and Vgpu:i denote the execution time and the execution speed of the subtask
Ti on the device side, respectively, where 1 6 i 6 n. We obtain the following equation:

Vgpu:i D WLgpu:i=Tgpu:i : (13)

The feedback-based dynamic task distribution scheme is shown in Figure 2, which consists of the
following three steps:

Step 1: Before the subtask Ti is executed in the i-th iteration, we assign the workload WLi of
the subtask Ti to both CPUs and GPUs according to the task distribution ratio TDRi ,
where 1 6 i 6 n. The workload assigned to the CPUs and GPUs can be calculated as :
WLcpu:i D bWLi �TDRic, andWLgpu:i D WLi �WLcpu:i . Note that the initial task
distribution ratio TDR1 can be obtained from Equation (10), or can be specified
as 50.0%.
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Figure 2. The feedback-based dynamic task distribution scheme.

Step 2: After the subtask Ti has been completed in the i-th iteration, we get the current load
statuses of both CPUs and GPUs, where 1 6 i 6 n� 1. Specifically, we first achieve the
task execution times Tcpu:i and Tgpu:i . Then, we calculate the task execution speeds
Vcpu:i and Vgpu:i by using Equations (12) and (13), respectively. Finally, according to
the current load statuses, we generate a new task distribution ratio TDRiC1, which will
be used in the next iteration and can be calculated as follows:

TDRiC1 D
Vcpu:i

Vcpu:i C Vgpu:i
: (14)

Step 3: Repeat Steps 1–2 until all n subtasks have been executed.

The following presentations describe how to apply the feedback-based dynamic task distribution
scheme to the three stages of the parallel two-list algorithm.

In the case of the generation stage, it is clear that the whole generation procedure needs to execute
n=2� 1 iterations to complete, and we only need to consider the load balancing between CPUs and
GPUs when � 6 i 6 n=2. For simplicity, let us take the add item process as an example to illustrate
how to use the dynamic task distribution scheme, as shown in Algorithm 11. Note that when i D �,

Algorithm 11 The improved add item process using the dynamic task distribution scheme
Require: W1 D Œw1; w2; � � � ; wn=2�, d_A1 D Œ0; w1�, R1, R2

1: for i D � to n=2 do
2: if i D �, then TDRi D R1;
3: WLi D 2

i�1, WLcpu:i D bWLi � TDRic, WLgpu:i D WLi �WLcpu:i ;
4: Dcpu1 D WLcpu:i ;D

1
cpu1 D WLcpu:i , Dgpu1 D WLgpu:i ;D

1
gpu1 D WLgpu:i ;

5: kcpu1 D min.cmax;Dcpu1/, kgpu1 D min.gmax ;Dgpu1/;
6: #pragma omp parallel num_threads(2) {
7: if omp_tid D 0 then
8: getStartTime(Tgpu_start );
9: use kgpu1 GPU threads to produce d_A1i�1Œ1::D

1
gpu1� by adding wi to each element of

d_Ai�1Œ1::Dgpu1�;
10: getFinishTime(Tgpu_f inish);
11: else
12: getStartTime(Tcpu_start );
13: use kcpu1 CPU threads to produce A1i�1ŒD

1
gpu1 C 1::D1� by adding wi to each element

of Ai�1ŒDgpu1 C 1::D1�;
14: getFinishTime(Tcpu_f inish);
15: end if }
16: Tcpu:i D Tcpu_f inish�Tcpu_start , Tgpu:i D Tgpu_f inish�Tgpu_start ;
17: obtain Vcpu:i ; Vgpu:i and TDRiC1 by using Equations (12), (13) and (14) respectively;
18: end for
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R1 is used as the initial task distribution ratio; when � < i 6 n=2, we dynamically generate a new
task distribution ratio according to the current load statuses of both CPUs and GPUs.

In the case of the pruning and search stages, in order to better apply our dynamic task distribution
scheme, we first divide d_A into v equal blocks, where each block contains 2n=2=v elements. Let
d_A D Œd_A1; d_A2; � � � ; d_Ai ; � � � ; d_Av�, where d_Ai D Œai:1; ai:2; � � � ; ai:2n=2=v� and 1 6
i 6 v. Then, we execute v iterations to complete the whole pruning and search stages. We use both
CPUs and GPUs to cooperatively perform the pruning and search operations for the block d_Ai and
the list d_B in the i-th iteration, the total workload WLi is equal to 2n=2=v, where 1 6 i 6 v.

5. EXPERIMENTAL EVALUATION

In this section, we first present the experimental setup, next, validate the proposed task distribu-
tion model, then analyze the effectiveness of the proposed performance optimization schemes, and
finally, evaluate the performance of the proposed CPU-GPU cooperative implementation.

5.1. Experimental setup

In our experiments, we use three different methods to implement the parallel two-list algorithm as
follows: CPU-only implementation, namely, we implement it on the CPUs using OpenMP; GPU-
only implementation, namely, we implement it on the GPUs using CUDA; CPU-GPU cooperative
implementation, namely, we implement it on both CPUs and GPUs using OpenMP and CUDA.
We compare their performance with Horowitz and Sahni’s two-list algorithm [2], which is the best
known sequential algorithm for solving SSP. The experiments are carried out on the following three
different test platforms:

Test platform 1: Dual Intel Xeon E5504 CPUs (4 cores at 2.0 GHz) (Intel Corporation, Santa
Clara, CA, USA), 32GB of main memory, and a GTX 465 GPU (352 CUDA
cores at 607 MHz, 1 GB memory, 102.6 GB/s memory bandwidth) (NVIDIA
Corporation, Santa Clara, CA, USA).

Test platform 2: Dual Intel Xeon E5-2620 CPUs (6 cores at 2.0 GHz),32 GB of main memory, and
a Tesla M2090 GPU (512 CUDA cores at 1.3 GHz, 6 GB memory, 177.6 GB/s
memory bandwidth).

Test platform 3: Dual Intel Xeon E5-2650 CPUs (8 cores at 2.0 GHz), 32 GB of main memory, and
a Tesla K20m GPU (2496 CUDA cores at 706 MHz, 5 GB memory, 208 GB/s
memory bandwidth).

In software, the testing platform is built on top of the SUSE Linux Enterprise 11 operating system
(SUSE Linux Company, Nurnberg, Germany) with NVIDIA CUDA driver version 5.5 and GCC
version 4.4.7.

Considering Horowitz and Sahni’s sequential two-list algorithm [2] and the parallel two-list algo-
rithm of Li et al. [6] all requireO.2n=2/memory space, implying that the problem size is limited by
the available memory. Therefore, we test the following seven different problem sizes: 42, 44, 46, 48,
50, 52, and 54. For each problem size, we use a random number generator to produce 100 different
instances of SSP. The average execution time of 100 different instances is considered and it is mea-
sured in milliseconds. Each instance presents the following features: (1) wi is randomly drawn in
[1, 108], i 2 ¹1; � � � ; nº; (2)M D ˛

Pn
iD1wi , ˛ 2 ¹0:2; � � � ; 0:8º; and (3) wi < M , i 2 ¹1; � � � ; nº.

5.2. Evaluation of the task distribution model

According to our proposed task distribution model, the calculation of the task distribution ratio
depends on Tcpu, Tgpu, and Tcomm. In order to estimate the task distribution ratioR1 of the add item
process, for each instance, we specify M D 0:5

Pn
iD1wi and conduct our experiments as follows.

Firstly, we run the add item process on the CPUs to obtain Tcpu. Next, we run it on a GPU to obtain
Tgpu. Then, we specify R1 D 1 and run it on both CPUs and GPUs to obtain Tcomm. Finally, we
calculateR1 by using Equation (10). Similarly, we can obtain the task distribution ratiosR2 andR3.
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Table IV. The estimated task distribution ratio of the add item process for different problem sizes.

Test platform 1 Test platform 2 Test platform 3

n Tcpu Tgpu Tcomm R1.%/ Tcpu Tgpu Tcomm R1(%) Tcpu Tgpu Tcomm R1(%)

42 11.52 3.81 7.60 16.62 7.70 3.10 6.83 17.58 6.26 2.46 6.05 16.66
44 18.79 5.98 12.30 16.13 12.53 4.81 10.16 17.49 10.19 3.96 9.76 16.56
46 31.88 9.80 22.25 15.33 21.28 8.17 18.38 17.08 17.31 6.71 17.29 16.24
48 56.66 17.09 42.70 14.68 37.81 14.24 35.28 16.31 30.74 11.67 32.99 15.48
50 106.08 31.49 85.19 14.14 70.75 26.20 70.41 15.65 57.28 21.41 65.36 14.86
52 202.64 59.81 161.49 14.11 135.59 49.90 135.08 15.57 109.94 40.96 126.30 14.78
54 407.85 120.08 323.55 14.10 273.25 100.12 270.21 15.56 220.35 81.84 252.65 14.75

Table V. The estimated task distribution ratio of the partition and merge processes for different problem sizes.

Test platform 1 Test platform 2 Test platform 3

Tcpu Tgpu Tcomm R2(%) Tcpu Tgpu n Tcomm R2(%) Tcpu Tgpu Tcomm R2(%)

42 92.44 67.13 88.21 27.09 70.21 56.58 73.51 28.25 63.41 46.45 68.51 26.04
44 150.80 102.53 138.73 26.15 114.25 85.43 115.61 27.10 103.32 70.82 107.75 25.12
46 255.84 168.02 231.60 25.63 194.10 140.06 193.00 26.57 175.49 115.13 179.88 24.47
48 454.75 293.08 419.84 25.10 344.90 244.19 349.87 26.01 311.56 200.11 326.08 23.89
50 851.32 539.95 797.42 24.67 645.34 449.38 664.52 25.54 580.62 367.16 619.33 23.43
52 1626.25 1025.63 1509.05 24.65 1236.79 854.76 1257.54 25.52 1114.29 702.37 1184.03 23.41
54 3273.09 2059.20 3027.46 24.63 2492.43 1716.95 2522.88 25.50 2233.41 1403.38 2363.32 23.39

Table VI. The estimated task distribution ratio of the pruning and search stages for different problem sizes.

Test platform 1 Test platform 2 Test platform 3

Tcpu Tgpu Tcomm R3(%) Tcpu Tgpu n Tcomm R3(%) Tcpu Tgpu Tcomm R3(%)

42 17.96 6.32 9.38 18.78 13.46 5.25 8.44 19.34 12.03 4.36 7.97 17.90
44 29.06 9.99 18.26 17.43 21.73 8.36 15.05 18.52 19.45 6.88 14.13 17.00
46 48.72 15.84 33.27 16.19 36.47 13.20 24.79 17.73 32.65 10.85 23.43 16.21
48 85.34 27.15 58.66 15.86 63.86 22.62 49.51 16.63 57.12 18.54 46.14 15.22
50 156.76 49.49 110.06 15.65 117.25 41.19 98.60 16.02 104.45 33.65 91.90 14.63
52 293.53 92.21 207.28 15.55 220.26 76.94 185.44 15.94 196.48 63.15 174.53 14.55
54 575.96 180.52 409.97 15.48 432.75 150.52 369.70 15.79 383.94 123.03 342.56 14.48

Figure 3. The execution time of the partition and merge processes for different task distribution ratios.

Tables IV, V, and VI show the estimated task distribution ratios of the add item process, the
partition and merge processes, and the pruning and search stages, respectively, for the seven different
problem sizes on three different test platforms.
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In order to verify whether the estimated task distribution ratio is reasonable, we specify n D 48

and test the execution time of the partition and merge processes by using 15 different distribution
ratios on Test Platform 2. The task distribution ratio is varied from 23.0% to 30.0% at 0.5% intervals.
The results are shown in Figure 3. We can see that the actual task distribution ratio for minimal
execution time is approximately 27%, whereas the corresponding estimated task distribution ratio is
26.01%. It is clear that the estimated task distribution ratio has only 1% error. Based on our investi-
gation and analysis, we find that the causes of producing error results are mainly associated with the
CPU cache occupancy and the GPU processor occupancy. The execution time with the estimated
task distribution ratio is 195.41 milliseconds, while with the actual optimal task distribution ratio is
190.41 milliseconds. Hence, the error is acceptable.

We conduct similar experiments for all the other instances. Table VII shows the actual optimal
task distribution ratios R1, R2, and R3 for different problem sizes on three different test platforms.
According to Tables IV–VII, it is not hard to see that the estimated task distribution ratios are close
to the actual optimal values for different problem sizes. The actual optimal values are 0.78–1.06%
higher than the estimated values. The results show that our proposed task distribution model can
find reasonable task distribution ratio.

5.3. Analysis of the CPU-GPU communication optimization

To evaluate the effectiveness of the proposed CPU-GPU communication optimization scheme, for
each instance, we specify M D 0:5

Pn
iD1wi and conduct our experiments as follows. Firstly,

we run the parallel two-list algorithm on both CPUs and GPUs by using the actual optimal task
distribution ratio presented in Table VII. Secondly, the incremental data transfer method is adopted,
and we run the algorithm again on both CPUs and GPUs. Finally, the performance of the CPU-GPU
cooperative implementation without communication optimization (CGCI without CO) is compared
with that of the CPU-GPU cooperative implementation with communication optimization (CGCI
with CO).

Table VII. The actual optimal task distribution ratio.

Test platform 1 Test platform 2 Test platform 3

n R1(%) R2(%) R3(%) R1(%) R2(%) R3(%) R1(%) R2(%) R3(%)

42 17.53 28.12 19.81 18.55 29.28 20.40 17.58 26.99 18.88
44 17.02 27.17 18.39 18.45 28.13 19.54 17.47 26.08 17.94
46 16.17 26.64 17.08 18.02 27.59 18.71 17.13 25.41 17.10
48 15.49 26.10 16.73 17.21 27.02 17.54 16.33 24.82 16.06
50 14.92 25.66 16.51 16.51 26.54 16.90 15.68 24.34 15.43
52 14.89 25.64 16.41 16.43 26.52 16.82 15.59 24.32 15.35
54 14.88 25.62 16.33 16.42 26.49 16.66 15.56 24.30 15.28

Figure 4. The CPU-GPU communication time comparison between CGCI without CO and CGCI with CO.
(a) Test Platform 1; (b) Test Platform 2; and (c) Test Platform 3.
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Figure 4 shows the CPU-GPU communication time comparison between CGCI without CO and
CGCI with CO on three different test platforms. In Figure 4, the line marked as ‘CGCI without CO’
represents the CPU-GPU communication time of the CPU-GPU cooperative implementation with-
out communication optimization, and the line marked as ‘CGCI with CO’ denotes the CPU-GPU
communication time of the CPU-GPU cooperative implementation with communication optimiza-
tion. Compared with the CGCI with CO, the communication times of the CGCI without CO are
reduced by an average of 42.15%, 42.58%, and 41.94% on Test Platform 1, Test Platform 2, and
Test Platform 3, respectively. It is obvious that the CPU-GPU communication time can be greatly
reduced after the incremental data transfer method has been used.

Table VIII shows the performance benefits achieved through using the incremental data transfer
method on three different test platforms. In Table VIII, the column marked as ‘CGCI without CO’
represents the execution time of the CPU-GPU cooperative implementation without communication
optimization, and the column marked as ‘CGCI with CO’ denotes the execution time of the CPU-
GPU cooperative implementation with communication optimization. The performance comparison
between CGCI without CO and CGCI with CO shows that our communication optimization scheme
significantly improves the performance of the CPU-GPU cooperative implementation. Compared
with the CGCI without CO, the CGCI with CO achieves an average of 6.36%, 7.21%, and 7.00%
performance improvements on Test Platform 1, Test Platform 2, and Test Platform 3, respectively.

5.4. Analysis of the dynamic load balancing scheme

To evaluate the effectiveness of the proposed feedback-based dynamic task distribution scheme, we
run the parallel two-list algorithm again on both CPUs and GPUs to obtain the execution time of the
CPU-GPU cooperative implementation with both communication optimization and dynamic load
balancing (CGCI with CO & DLB).

Table VIII. Benefits of the CPU-GPU communication optimization on three different test platforms.

Test platform 1 Test platform 2 Test platform 3

CGCI CGCI Benefit CGCI CGCI Benefit CGCI CGCI Benefit
n without CO with CO (%) without CO with CO (%) without CO with CO (%)

42 61.47 57.77 6.40 52.92 49.33 7.28 43.87 40.97 7.08
44 94.21 88.55 6.39 78.43 73.12 7.26 67.55 63.10 7.05
46 154.40 145.14 6.38 128.24 119.58 7.24 110.26 103.02 7.03
48 270.94 254.72 6.37 224.11 209.01 7.22 192.13 179.54 7.01
50 501.78 471.80 6.35 413.42 385.67 7.20 353.45 330.36 6.99
52 951.88 895.41 6.31 786.70 734.28 7.14 675.68 631.89 6.93
54 1907.64 1794.58 6.30 1577.32 1472.48 7.12 1349.34 1262.13 6.91

CGCI without CO, CPU-GPU cooperative implementation without communication optimization; CGCI with CO,
CPU-GPU cooperative implementation with communication optimization.

Table IX. Benefits of the feedback-based dynamic task distribution scheme on three different test platforms.

Test platform 1 Test platform 2 Test platform 3

CGCI CGCI with Benefit CGCI CGCI with Benefit CGCI CGCI with Benefit
n with CO CO & DLB (%) with CO CO & DLB (%) with CO CO & DLB (%)

42 57.77 56.09 2.98 49.33 47.93 2.93 40.97 39.74 3.09
44 88.55 85.99 2.99 73.12 71.03 2.95 63.10 61.20 3.11
46 145.14 140.91 3.00 119.58 116.14 2.96 103.02 99.87 3.12
48 254.72 247.26 3.02 209.01 202.97 2.97 179.54 174.09 3.13
50 471.80 457.92 3.03 385.67 374.52 2.98 330.36 320.30 3.14
52 895.41 868.98 3.04 734.28 712.97 2.99 631.89 612.59 3.15
54 1794.58 1741.47 3.05 1472.48 1429.58 3.00 1262.13 1223.47 3.16

CGCI with CO, CPU-GPU cooperative implementation with communication optimization; CGCI with CO & DLB,
CPU-GPU cooperative implementation with both communication optimization and dynamic load balancing.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:492–516
DOI: 10.1002/cpe



512 L. WAN ET AL.

Figure 5. The performance comparison among the original CGCI, CGCI with CO, and CGCI with CO and
& DLB. (a) Test Platform 1; (b) Test Platform 2; and (c) Test Platform 3.

Table IX shows the performance benefits achieved through using the feedback-based dynamic
task distribution scheme on three different test platforms. The results show that the proposed
dynamic task distribution scheme also effectively improves the performance of the cooperative
implementation, and the load balancing result is stable across different problem sizes. Compared
with the CGCI with CO, the CGCI with CO & DLB achieves an average of 3.02%, 2.97%,
and 3.13% performance improvements on Test Platform 1, Test Platform 2, and Test Platform 3,
respectively.

From Tables VIII and IX, it is clear that our proposed performance optimization schemes give
a significant performance benefit. Figure 5 shows the performance comparison among the original
CGCI, CGCI with CO, and CGCI with CO & DLB on three different test platforms. Compared with
the original CGCI, the CGCI with CO & DLB achieves an average of 9.57%, 10.39%, and 10.35%
performance improvements on Test Platform 1, Test Platform 2, and Test Platform 3, respectively.

5.5. Performance evaluation of the CPU-GPU cooperative implementation

In this section, we first compare the performance of the CPU-GPU cooperative implementation
with that of the CPU-only and GPU-only implementations, then analyze the performance of the
CPU-GPU cooperative implementation under three different test platforms, and finally, evaluate the
performance of the CPU-GPU cooperative implementation with three different knapsack capacities.

5.5.1. Comparison with CPU-only / GPU-only implementation. In order to accurately evaluate the
performance of the proposed CPU-GPU cooperative implementation, for each instance, we specify
M D 0:5

Pn
iD1wi and conduct a series of experiments as follows. Firstly, we run Horowitz and

Sahni’s sequential two-list algorithm on a single CPU. Secondly, we run the parallel two-list algo-
rithm on two multi-core CPUs. Thirdly, we run the parallel algorithm on a single GPU. Fourthly,
we run the parallel algorithm on both CPUs and GPUs. Finally, the speedups are calculated for
the CPU-only, GPU-only, and CPU-GPU cooperative implementations, respectively. Note that the
speedup is defined as the sequential execution time over the parallel execution time.

Table X shows the execution time of the sequential implementation, CPU-only implementa-
tion, GPU-only implementation, and CPU-GPU cooperative implementation on three different test
platforms for the seven different problem sizes. Figure 6(a)–(c) shows the speedup comparison
among the CPU-only, GPU-only, and CPU-GPU cooperative implementations on three different test
platforms. Obviously, the CPU-only, GPU-only, and CPU-GPU cooperative implementations has
much better performance than the sequential implementation. For instance, under Test Platform 3,
the speedup of the CPU-only implementation increases from 3.98� to 5.09�, the speedup of the
GPU-only implementation increases from 5.99� to 8.84�, and the speedup of the CPU-GPU coop-
erative implementation increases from 8.06� to 11.62�, when the problem size scales from 42 to
54. The results also show that when the problem size increases, the speedups of the CPU-only,
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Table X. The execution time of four different implementations on three different test platforms.

Test platform 1 Test platform 2 Test platform 3

CPU- GPU- CPU+ CPU- GPU- CPU+ CPU- GPU- CPU+
n Sequential only only GPU Sequential only only GPU Sequential only only GPU

42 341.27 114.30 77.56 56.09 327.10 89.46 67.44 47.93 320.28 80.42 53.47 39.74
44 613.83 186.23 118.50 85.99 588.05 145.40 99.17 71.03 575.78 130.89 81.67 61.20
46 1094.18 315.40 193.66 140.91 1047.68 246.60 161.43 116.14 1025.80 221.93 132.70 99.87
48 2020.53 559.45 337.32 247.26 1933.65 437.26 281.05 202.97 1893.24 393.18 230.32 174.09
50 3868.32 1044.53 620.92 457.92 3700.05 815.96 516.77 374.52 3622.68 730.75 422.22 320.30
52 7513.38 1989.77 1177.65 868.98 7182.79 1559.43 982.60 712.97 7032.53 1398.52 806.48 612.59
54 15197.11 3990.83 2359.80 1741.47 14520.83 3131.73 1967.59 1429.58 14216.89 2793.38 1608.25 1223.47

Figure 6. The speedup comparison among the CPU-only, GPU-only and CPU-GPU cooperative implemen-
tations. (a) Test Platform 1; (b) Test Platform 2; and (c) Test Platform 3.

Figure 7. The execution time comparison among the CPU-only, GPU-only and CPU-GPU cooperative
implementations. (a) Test Platform 1; (b) Test Platform 2; and (c) Test Platform 3.

GPU-only, and CPU-GPU cooperative implementations grow accordingly. Note that the larger the
problem size is, the slower the speedup increases, and the speedup will gradually reach a peak. In
the case of the CPU-GPU cooperative implementation, its speedup is not substantial for small prob-
lem sizes, this is mainly because there is not enough work to fully utilize the computational power
of both CPUs and GPUs. However, it can achieve substantial speedup for large problem sizes. For
example, when n D 54, it obtains speedup of 8.73, 10.16 and 11.62� over the best sequential imple-
mentation on Test Platform 1, Test Platform 2, and Test Platform 3, respectively. Therefore, our
proposed CPU-GPU cooperative implementation is suitable for large-scale SSP.

Figure 7(a)–(c) shows the execution time comparison among the CPU-only, GPU-only, and CPU-
GPU cooperative implementations on three different test platforms. Compared with the CPU-only
implementation, the execution times of the cooperative implementation on Test Platform 1, Test
Platform 2, and Test Platform 3 are reduced by an average of 56.00%, 53.85%, and 55.86%,
respectively. Compared with the GPU-only implementation, the execution times of the cooperative
implementation on Test Platform 1, Test Platform 2, and Test Platform 3 are reduced by an average
of 26.82%, 27.93%, and 24.57%, respectively. The results show that the CPU-GPU cooperative
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implementation significantly outperforms the CPU-only and GPU-only cases. We believe that this
is because all the computational power of both CPUs and GPUs has been fully utilized.

5.5.2. Performance evaluation under different test platforms. Figure 8 illustrates the speedups
of the CPU-GPU cooperative implementation obtained on three different test platforms. Appar-
ently, Test Platform 3 yields better performance than the other two test platforms. Test Platform
3 achieves an average of 32.77% and 14.67% performance improvements over Test Platform 1
and Test Platform 2, respectively, indicating that our approach has good scalability. We believe
that the more computing power of a heterogeneous CPU-GPU system is utilized, the better is
the performance.

5.5.3. Performance evaluation with different knapsack capacities. Considering the real-world
applications and the worst-case execution time, it is necessary to take into account different knap-
sack capacities. In our experiments, we specify three different capacity values: M D ˛

Pn
iD1wi ,

˛ 2 ¹0:3; 0:5; 0:8º. Note that we may need to adopt different task distribution ratios for different
knapsack capacities, therefore we conduct the experiments as described in Section 5.2 to obtain the
optimal task distribution ratios for M D 0:3

Pn
iD1wi and M D 0:8

Pn
iD1wi , respectively.

Figure 9 shows the speedups of the CPU-GPU cooperative implementation with three different
knapsack capacities obtained on three different test platforms. Clearly, the CPU-GPU cooper-
ative implementation achieves a higher speedup when M D 0:5

Pn
iD1wi and it achieves a

lower speedup when M D 0:8
Pn
iD1wi . The results reveal that the knapsack capacity could

affect the running time. Specifically, when the capacity value is 0:3
Pn
iD1wi , in comparison with

0:5
Pn
iD1wi , the total execution times are increased by an average of 3.87%, 3.97%, and 4.03% on

Figure 8. The speedups of the CPU-GPU cooperative implementation obtained on three different test
platforms.

Figure 9. The speedups of the CPU-GPU cooperative implementation with three different knapsack
capacities. (a) Test Platform 1; (b) Test Platform 2; and (c) Test Platform 3.
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Test Platform 1, Test Platform 2, and Test Platform 3, respectively. Similarly, when the capacity
value is 0:8

Pn
iD1wi , in comparison with 0:5

Pn
iD1wi , the total execution times are increased by

an average of 6.15%, 6.27%, and 6.30% on Test Platform 1, Test Platform 2, and Test Platform 3,
respectively. In fact, whether the knapsack capacity is small or large, this does not affect the execu-
tion time of the generation stage, but this can affect the execution times of both the pruning stage
and the search stage.

6. CONCLUSIONS

In this paper, an original CPU-GPU cooperative implementation of the parallel two-list algorithm
is proposed to efficiently solve SSP. In order to find the most appropriate task distribution ratio
between CPUs and GPUs, a simple but effective task distribution model is established, and the
experimental results prove that the proposed model can find reasonable task distribution ratio.
To improve the performance of the CPU-GPU cooperative implementation, an incremental data
transfer method is proposed to reduce the CPU-GPU communication overhead, a feedback-based
dynamic task distribution scheme is designed to effectively balance the workload between CPUs
and GPUs during runtime, and the experimental results demonstrate that the proposed performance
optimization schemes can greatly improve the computational efficiency. A series of experiments
are conducted to compare the performance of the CPU-GPU cooperative implementation with that
of the best sequential implementation, the CPU-only implementation, and the GPU-only imple-
mentation. The experimental results show that the CPU-GPU cooperative implementation yields
significant performance benefits by fully utilizing all the computational power of both CPUs and
GPUs. Specifically, the CPU-GPU cooperative implementation produces a speedup factor of 11.62�
over the best sequential implementation and achieves up to an average of 123.51% and 36.00%
performance improvements over the CPU-only case and the GPU-only case, respectively.

Although we only explore the CPU-GPU cooperative computing technology in a heterogeneous
system with two CPUs and one GPU, the approach can be easily employed to a heterogeneous
system with multiple CPUs and multiple accelerators (such as GPUs and/or many integrated cores
(MICs)). In future work, we will develop a high-level directive-based heterogeneous cooperative
parallel programming model, which allows programmers to deal with the tedious and complex het-
erogeneous cooperative computing in a simpler manner and directly to the sequential code. We
expect that the programming model can automatically and reasonably map computations and data
across CPUs and accelerators.
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