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SUMMARY

The subset-sum problem is a well-known non-deterministic polynomial-time complete (NP-complete)
decision problem. This paper proposes a novel and efficient implementation of a parallel two-list algorithm
for solving the problem on a graphics processing unit (GPU) using Compute Unified Device Architecture
(CUDA). The algorithm is composed of a generation stage, a pruning stage, and a search stage. It is
not easy to effectively implement the three stages of the algorithm on a GPU. Ways to achieve better
performance, reasonable task distribution between CPU and GPU, effective GPU memory management,
and CPU–GPU communication cost minimization are discussed. The generation stage of the algorithm
adopts a typical recursive divide-and-conquer strategy. Because recursion cannot be well supported by cur-
rent GPUs with compute capability less than 3.5, a new vector-based iterative implementation mechanism
is designed to replace the explicit recursion. Furthermore, to optimize the performance of the GPU imple-
mentation, this paper improves the three stages of the algorithm. The experimental results show that the GPU
implementation has much better performance than the CPU implementation and can achieve high speedup
on different GPU cards. The experimental results also illustrate that the improved algorithm can bring
significant performance benefits for the GPU implementation. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Given n positive integers W =[w1, w2, � � � , wn] and a positive integer M , the subset-sum problem
(SSP) is the decision problem of finding a set I � f1, 2, � � � ,ng, such that

P
wi D M , i 2 I . In

other words, the goal is to find a binary n-tuple solution X=[x1, x2, � � � , xn] for the equation

nX
iD1

wixi DM , xi 2 f0, 1g. (1)

Subset-sum problem is well known to be NP-complete [1], and it is a special case of the 0/1
knapsack problem. It has many real-world applications, such as stock cutting, cargo loading, capi-
tal budgeting, job scheduling, workload allocation, and project selection [2–5]. The original search
space of SSP has 2n possible values. An exhaustive search would take O.2n/ time to find a solution
in the worst case. Many techniques have been developed to exactly solve SSP within a reasonable
computation time. A branch-and-bound algorithm was proposed [6], and it achieves good perfor-
mance for particular instances of SSP, but the worst-case time complexity is still O.2n/. Another

*Correspondence to: Kenli Li, College of Information Science and Engineering, Hunan University, Changsha, Hunan
410082, China.

†E-mail: lkl510@263.net

Copyright © 2014 John Wiley & Sons, Ltd.



120 L. WAN ET AL.

well-known approach is the dynamic programming algorithm [7], which solves SSP in pseudo-
polynomial time, but it has exponential time complexity when the knapsack capacity is large. A
tremendous improvement was made by Horowitz and Sahni [6], who developed a new technique
that solves SSP in time O.n2n=2/ with O.2n=2/ memory space. The new technique is known as the
two-list algorithm. On the basis of the two-list algorithm, Schroeppel and Shamir [8] proposed the
two-list four-table algorithm, which needs the same timeO.n2n=2/ and less memory spaceO.2n=4/
to solve SSP. Although many sequential algorithms have been designed to solve SSP in the past,
Horowitz and Sahni’s two-list algorithm continues to be the best known sequential algorithm.

With the advent of parallel computing, a large effort has been made to reduce the computation
time of SSP. Karnin [9] proposed a parallel algorithm that parallelizes the generation routine of
the two-list four-table algorithm [8] using O.2n=6/ processors and O.2n=6/ memory cells in time
O.n2n=2/. Ferreira [10] presented a brilliant parallel two-list algorithm that solves SSP in time
O.n.2n=2/"/ with O..2n=2/1�"/ processors and O.2n=2/ memory space, where 0 6 " 6 1. Chang
et al. [11] introduced a parallel algorithm that parallelizes the generation stage of Horowitz and
Sahni’s two-list algorithm [6]. They claimed that their parallel generation stage can be accom-
plished in time O..n=8/2/ with O.2n=8/ processors and O.2n=4/ memory space. On the basis of
the generation technique of Chang et al., Lou and Chang [12] successfully parallelized the search
stage of Horowitz and Sahni’s two-list algorithm [6] usingO.2n=8/ processors andO.2n=4/mem-
ory space in time O.23n=8/. Unfortunately, the analysis of the time complexity of the algorithm of
Chang et al., was proved to be wrong by Sanches et al. [13], and the correct time is bounded by
O.n2n=2/. Sanches et al. [14] developed an optimal and scalable parallel two-list algorithm, which
solves SSP in time O.2n=2=k/ with k D 2q processors, where 0 6 q 6 n=2� 2 logn. Chedid [15]
proposed an optimal parallelization of Horowitz and Sahni’s two-list algorithm [6], which solves
SSP in time O.23n=8/ with O.2n=8/ processors by combining Chedid’s generation phase algorithm
with Lou and Chang’s search phase algorithm. Later, Chedid [16] presented another optimal and
scalable parallel two-list algorithm, which solves SSP in timeO.2n=2�˛/ with 2˛ processors, where
06 ˛ 6 n=2� 2 lognC 2.

The parallel algorithms described earlier are designed for the concurrent read exclusive write sin-
gle instruction multiple data model with shared memory. On the basis of an exclusive read exclusive
write single instruction multiple data model with shared memory, Li et al. [17] proposed an optimal
parallel two-list algorithm without memory conflict, which solves SSP in time O.2n=4.2n=4/"/ with
O..2n=4/1�"/ processors and O.2n=2/ memory space, where 06 "6 1.

Nowadays, graphics processing unit (GPU) computing is recognized as a powerful way to deal
with time-intensive problems [18], because GPUs can offer high levels of data and thread paral-
lelism, tremendous computational power, huge memory bandwidth, and comparatively low cost.
In 2007, NVIDIA introduced the compute unified device architecture (CUDA) development envi-
ronment as a general purpose parallel computing architecture, which makes GPU computing much
more efficient and much easier for the programmer [19]. To implement parallel algorithms for solv-
ing the knapsack problems on a GPU, some work has been performed in recent years. Bokhari [20]
explored a parallelization of the dynamic programming algorithm, which solves SSP on a 240-core
NVIDIA FX 5800 GPU. Boyer et al. [21] proposed a parallel implementation of the dynamic pro-
gramming method, which solves the 0-1 knapsack problem on a GPU. Lalami and El-Baz [22]
presented an implementation of the branch-and-bound algorithm, which solves the 0-1 knapsack
problem on a CPU–GPU system via CUDA. Pospíchal et al. [23] developed a parallel genetic algo-
rithm, which accelerates the computation of the 0-1 knapsack problem on a GPU. However, to
the authors’ knowledge, there is no efficient parallel implementation of the two-list algorithm for
solving SSP on a GPU.

In this paper, on the basis of the optimal parallel two-list algorithm of Li et al. [17], we propose
a novel and efficient implementation of the algorithm for solving SSP on a GPU using CUDA.
The GPU implementation of the algorithm is not straightforward and requires a significant effort.
The main difficulties are as follows. (1) The algorithm is a typical example of an irregularly
structured problem, so it is hard to implement the algorithm on a GPU. (2) The high CPU–GPU
communication cost and memory access latency are the performance bottlenecks of the GPU imple-
mentation. (3) The generation stage of the algorithm adopts a typical recursive divide-and-conquer
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strategy; however, recursion cannot be well supported by current GPUs with compute capability less
than 3.5.

To effectively implement the algorithm on a GPU, reasonable task distribution between CPU
and GPU, effective GPU memory management, and CPU–GPU communication cost minimization
are discussed. A new vector-based iterative implementation mechanism is designed to replace the
explicit recursion. In addition, to optimize the performance of the GPU implementation, the three
stages of the algorithm are improved.

The rest of this paper is organized as follows. Section 2 gives a brief description of Horowitz
and Sahni’s two-list algorithm and the parallel two-list algorithm of Li et al., Section 3 presents
an implementation of the parallel two-list algorithm on a GPU via CUDA. Section 4 describes
the improved parallel two-list algorithm. Section 5 gives the experimental results and performance
analysis. Section 6 concludes this paper and discusses the future work.

2. PREVIOUS WORK

In this section, we first briefly describe Horowitz and Sahni’s sequential two-list algorithm [6]
and the parallel two-list algorithm of Li et al. [17]. Then, we present the optimal parallel merg-
ing algorithm of Akl et al. [24]. In this way, our proposed GPU implementation becomes easier to
understand.

2.1. The sequential two-list algorithm

This section presents Horowitz and Sahni’s sequential two-list algorithm for solving SSP. The algo-
rithm can be divided into two stages: (1) the generation stage, which is designed for generating two
sorted lists and (2) the search stage, which is constructed to find a solution from the combinations
of the two sorted lists. The sequential two-list algorithm is described as follows.

Generation stage:

1) Divide W into two equal parts: W1 D Œw1, w2, � � � , wn=2] and W2=[wn=2C1, wn=2C2, � � � ,
wn�.

2) Produce all 2n=2 possible subset sums of W1, and then sort them in nondecreasing order and
store them as the list A=[a1, a2, � � � , a2n=2 �.

3) Produce all 2n=2 possible subset sums of W2, and then sort them in nonincreasing order and
store them as the list B D Œb1, b2, � � � , b2n=2 �.

Search stage:

1) (Initialize) i D 1, j D 1.
2) If ai C bj DM then stop; a solution is found.
3) If ai C bj <M then i D i C 1; else j D j C 1.
4) If i > 2n=2 or j > 2n=2 then stop; there is no solution.
5) Go to Step 2.

Before presenting the parallel two-list algorithm, some notation used in this algorithm is listed
in Table I.

2.2. The parallel two-list algorithm

In this section, we introduce the parallel two-list algorithm proposed by Li et al. [17]. The algorithm
contains three stages as follows: (1) the parallel generation stage, which is designed to generate two
sorted lists; (2) the parallel pruning stage, which is designed to reduce the search overhead of each
thread; and (3) the parallel search stage, which is designed to find a solution of SSP.

2.2.1. The generation stage. Because the procedures to generate two sorted listsA and B in reverse
directions, nondecreasing and nonincreasing, are similar in essence, we only describe the procedure
to generate the nondecreasing list A in the following presentation.
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Table I. Notation used in the parallel two-list algorithm.

Notation Explanation

W A set of all the n items
W1,W2 Disjoint subsets of W of equal size n=2
n The number of items in the set W
A A sorted list in nondecreasing order
B A sorted list in nonincreasing order
ai A subset of A
bi A subset of B
N The number of subsets of A (or B), that is, N D 2n=2

k The number of required threads
e The number of elements in each block, that is, e DN=k
M The knapsack capacity

Algorithm 1 The parallel generation algorithm
Require: A1 D Œ0,w1�

1: for i D 1 to n=2� 1 do
2: if 16 i 6 n=4� 1 then
3: k D 2i ;
4: else
5: k D 2n=4;
6: end if
7: for all k threads do in parallel
8: produce a new list A1i by adding the item wiC1 to each element of the list Ai . Specifically,

if 16 i 6 n=4, each thread works on one element of the list Ai ;
if n=4 < i 6 n=2� 1, each thread works on 2i=k elements of the list Ai ;

9: use the optimal parallel merging algorithm to merge the two lists Ai and A1i into a new
nondecreasing list AiC1;

10: end for
11: end for
12: return An=2

To generate the nondecreasing list A, firstly, we initialize A1 D Œ0,w1�. Then, we use two
threads to add the item w2 to each element of the list A1 in parallel, generating a new list
A11 D Œ0 C w2,w1 C w2�. Specifically, each thread works on one element of the list A1, that is,
thread 1 adds w2 to 0, and thread 2 adds w2 to w1. Furthermore, we use the optimal parallel merg-
ing algorithm [24], which will be described in Section 2.3 to merge the two lists A1 and A11 into a
new nondecreasing list A2. The aforementioned process is repeated until all the remaining items of
W1 have been considered. After processing the last item wn=2, we obtain the final list An=2, that is,
the nondecreasing list A. Suppose that the maximum number of threads used is 2n=4. When gener-
ating lists A2, A3, � � � , An=4, only some of the threads are utilized; when generating lists An=4C1,
An=4C2, � � � , An=2, all threads must be utilized. The procedure to generate the nondecreasing list A
is described in Algorithm 1. One can readily show that the running time of the parallel generation
stage is

Pn=4�1
iD1 .2C .iC1/i/C

Pn=2�1

iDn=4
.2iC1=.2k/C2iC1=kC log k� log 2iC1/D 3N=k. Thus,

the time complexity of the parallel generation algorithm is O.3N=k/.

2.2.2. The pruning stage. After the two sorted lists A and B have been generated, each is divided
into k blocks, where each block contains e DN=k elements. Suppose that the list A can be seen as
AD

�
A1,A2, � � � ,Ai , � � � ,Ak

�
, where Ai D Œai .1, ai .2, � � � , ai .e�. Each element ai .r in the sublist Ai

represents a subset sum of A, where 1 6 i 6 k and 1 6 r 6 e. The same convention is used for the
list B . Then, the block Ai and the entire list B are assigned to thread Pi , where 1 6 i 6 k. Now,
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if each thread starts to search the list B to find a solution, the running time is bounded by O.N/ in
the worst case. To reduce the search overhead of each thread, it is necessary to find the prune rule
to shrink the search space of each thread. Thus, the following two lemmas are introduced. Here, we
do not provide the proof of these two lemmas, because the proof of these two lemmas is similar to
that of Lemmas1 and 2 in [12].

Lemma 1
For any block pair

�
Ai , Bj

�
, where 1 6 i , j 6 k, Ai D Œai .1, ai .2, � � � , ai .e� and Bj Dh

bj .1, bj .2, � � � , bj .e

i
, if ai .1 C bj .e > M , then any element pair

�
ai .r , bj .s

�
is not a solution of

SSP, where ai .r 2 Ai and bj .s 2 Bj .

Lemma 2
For any block pair

�
Ai , Bj

�
, where 1 6 i , j 6 k, Ai D Œai .1, ai .2, � � � , ai .e� and Bj Dh

bj .1, bj .2, � � � , bj .e

i
, if ai .e C bj .1 < M , then any element pair

�
ai .r , bj .s

�
is not a solution of

SSP, where ai .r 2 Ai and bj .s 2 Bj .

On the basis of Lemmas 1 and 2, we design the parallel pruning algorithm described in
Algorithm 2, which is performed before the search routine in order to shrink the search space of each

thread. For the case in Lemma 1 or 2, when any element pair
�
ai .r , bj .s

�
of block pair

�
Ai , Bj

�
is

not a solution of SSP, the block pair
�
Ai , Bj

�
is pruned. Once one block pair has been picked, it is

written into the shared memory to check it in the next search stage. Because each thread prunes its
individual search space, one can readily see that the time complexity of the parallel pruning algo-
rithm is O.k/. Before pruning, the number of block pairs is k2. After pruning, the number of the
picked block pairs is at most 2k � 1. The proof of this fact is given in [17].

2.2.3. The search stage. After the pruning stage has completed, at most 2k � 1 picked block pairs
are picked. In the search stage, these picked block pairs are evenly assigned to k threads. Obviously,
each thread has at most two block pairs to be searched. Each thread performs the search routine
of Horowitz and Sahni’s two-list algorithm in parallel, so as to find a solution of SSP. The search
routine takes O.6N=k/ time to find a solution in the worst case.

Combining the parallel generation algorithm and the parallel pruning algorithm together, the
complete parallel two-list algorithm for the SSP is shown as follows.

Step 1: Perform the parallel generation algorithm.
Step 2: Perform the parallel pruning algorithm.

Algorithm 2 The parallel pruning algorithm
Require: The two sorted lists A and B are evenly divided into k blocks, respectively.

1: for all Pi , 16 i 6 k do in parallel
2: for j D i to kC i � 1 do
3: X D ai .1C b.j mod k/.e;
4: Y D ai .e C b.j mod k/.1;
5: if X DM or Y DM then
6: stop;B a solution is found
7: else if X <M and Y >M then
8: write (Ai , Bj mod k) to the shared memory;
9: end if

10: end for
11: end for
12: return a solution or all the picked block pairs
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Step 3: Evenly assign the picked block pairs to k threads.
Step 4: For all Pi where 16 i 6 k do in parallel

Thread Pi performs the search routine of Horowitz and Sahni’s two-list algorithm.

2.3. The optimal parallel merging algorithm

This section introduces the optimal parallel merging algorithm without memory conflicts for the
exclusive read exclusive write parallel random access machine proposed by Akl et al. [24]. Here,
for the sake of consistency, we describe the merging algorithm with a slight modification. Given two
sorted vectors U D Œu1,u2, � � � ,um� and V D Œv1, v2, � � � , vm�, according to the following steps, U
and V can be merged without memory conflicts into a new vector of length 2m.

Step 1: Use k threads to divide U and V each into k subvectors ŒU1,U2, � � � , Uk� and
ŒV1,V2, � � � ,Vk� in parallel, jUi j C jVi j D 2m=k, for 1 6 i 6 k, and all elements in Ui
and Vi are smaller than those of all elements in UiC1 and ViC1, for 1 6 i 6 k � 1, where
16 k 6 2m and k is a power of 2.

Step 2: Use thread Pi to merge Ui and Vi , for 16 i 6 k.

Step 1 can be efficiently implemented using the selection algorithm presented in [24]. The
total time required for Step 1 is O.log k � log 2m/; Step 2 requires each thread to merge at
most 2m=k elements; therefore, the total time complexity of this parallel merging algorithm is
O.2m=kC log k � log 2m/.

3. THE PROPOSED GPU IMPLEMENTATION

In this section, firstly, we briefly introduce the CUDA architecture. Then, on the basis of the parallel
two-list algorithm of Li et al. [17], we describe how to effectively implement the three stages of the
algorithm on a GPU.

3.1. The CUDA architecture

This section gives a brief description of the CUDA architecture, which is based on the single
instruction multiple threads mode of programming, as shown in Figure 1.

Parallel code executed on the GPU (the so-called device) is interleaved with serial code executed
on the CPU (the so-called host). A thread block is a batch of threads that can cooperate by sharing

Figure 1. The CUDA architecture.
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data through shared memory. Threads from different blocks cannot cooperate. These thread blocks
are organized into a grid. The basic unit of execution in CUDA is the so-called kernel. When a
CUDA program invokes a kernel on the host side, these thread blocks within a grid are enumerated
and distributed to multiprocessors with available execution capacity. All threads within a grid can
be executed in parallel.

As can be seen in Figure 1, the GPU offers multiple memory spaces. Each thread has its own reg-
ister and local memory. Each thread block has a shared memory, which is visible to all the threads
within the same block and has the same lifetime as the block. All threads within a grid can access
the global memory, the constant memory, and the texture memory. These threads can coordinate
memory accesses by synchronizing their executions.

3.2. Task distribution

This section describes how to reasonably assign tasks to CPU and GPU in our GPU implementation.
A reasonable task distribution between CPU and GPU is critical for GPU applications, namely,

one has to identify what is suitable to be performed on the CPU or on the GPU. In our GPU imple-
mentation, we assign most tasks to the GPU, that is, the three stages of the algorithm are executed on
the GPU, whereas CPU is only responsible for controlling the whole running process of this algo-
rithm and transferring a small amount of data. Task distribution between CPU and GPU is shown in
Figure 2.

Figure 2. Task distribution between CPU and GPU.
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Specifically, our GPU implementation begins with the initialization on the host and device sides.
During the host side initialization phase, firstly, we obtain the original n-element input vector W ,
divide W into two equal parts W1 and W2, and dynamically allocate host memory and global mem-
ory for W1 and W2, where each part contains n=2 items. Secondly, we statically allocate constant
memory for the knapsack capacity M on the device side, and we initialize the capacity value. Fur-
thermore, we transfer W1,W2, and M from the host to the device through the system bus. W1 and
W2 are stored in the global memory. M is copied to the constant memory, and it can be read by all
the threads in the grid with lower memory access latency than the global memory.

In our GPU implementation, we use the list A to store all of the N subset sums of W1 in non-
decreasing order, and we use the list B to store all of the N subset sums of W2 in nonincreasing
order. During the device side initialization phase, we dynamically allocate global memory for lists
A and B by executing the initialize kernel, where each list needs O.N/ memory cells. In addition,
we initialize A1 D Œ0,w1� and B1 D Œwn=2C1, 0�.

After the initialization phase has completed, we will describe how to execute the three stages of
the algorithm on a GPU in the following sections.

3.3. The parallel generation stage

This section describes the generation procedure of the nondecreasing list A. The generation
procedure of the nonincreasing list B is almost the same as that of the list A.

Let us suppose that the list A1 D Œ0,w1� has been generated in the previous initialization
phase. Firstly, we use k GPU threads to add the item wi to each element of the list Ai�1 D
Œai�1.1, ai�1.2, � � � , ai�1.2i�1 � in parallel, generating a new list A1i�1 D Œai�1.1 C wi , ai�1.2 C
wi , � � � , ai�1.2i�1 C wi �, where 2 6 i 6 n=2. Suppose that the maximum number of GPU
threads used is 2n=4. If 2 6 i 6 n=4 C 1, each thread works on one element of the list Ai�1; if
n=4C 1 < i 6 n=2, each thread works on 2i�1=k elements of the list Ai�1. Note that it is neces-
sary to load the item wi from global memory to on-chip shared memory, before the add operation
is executed by each thread, so as to avoid the high global memory access latency. Then, we merge
lists Ai�1 and A1i�1 into a new list Ai with 2i subset sums by using the optimal parallel merging
algorithm [24], and write Ai into the global memory. By sequentially repeating such steps, after
n=2 � 1 iterations, we finally obtain the list An=2 with N subset sums, that is, the needed sorted
list A.

The basic procedure to generate the nondecreasing list A is described in Algorithm 3, which
shows that the task carried out by the CPU on the host side has three phases: the add item phase,
the partition phase, and the merge phase. The three phases correspond to three different kernels
carried out by the GPU on the device side as follows: the add item kernel, the partition kernel, and
the merge kernel. When these kernels are launched on the host side, we must specify the number of
blocks per grid and the number of threads per block (TPB) in gridSize and blockSize, respectively.
Between the three phases, we use the function cudaDeviceSynchronize() to synchronize the GPU
threads between two kernel launches, so as to insure data consistency.

From Algorithm 3, it is easy to see that when generating the list Ai , if 2 6 i 6 n=4, the number
of required threads is 2i�1 at most; if n=4 < i 6 n=2, the number of threads used is 2n=4. Hence,
we can determine the number of required threads according to the size of the list Ai . Moreover,
the communication cost between CPU and GPU can be minimized, because the list A is directly
generated by executing the three kernels on the GPU, and it is directly stored in the global memory.

3.3.1. The add item phase. In the add item phase, the add item kernel is described in Algorithm 4,
which displays the work of a single GPU thread. Here, all k GPU threads can run the kernel in
parallel. The tid-th thread adds the item wi to the tid-th element of the list Ai�1, generating the
corresponding tid-th element of the list A1i�1, where 16 t id 6 2i�1.

In Algorithm 4, gridDim.x indicates the number of blocks in a grid in theX -direction; blockDim.x
indicates the number of threads in a block in the X -direction; blockIdx.x represents the block index
within a grid; and threadIdx.x represents the thread index within a block. In our GPU implementa-
tion, we use a one-dimensional block and grid. Thus blockDim.x � gridDim.x is the total number of
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Algorithm 3 The basic procedure to generate the nondecreasing list A
Require: W1 D Œw1,w2, � � � ,wn=2�,A1 D Œ0,w1�

1: for i D 2 to n=2 do
2: if 26 i 6 n=4 then
3: k D 2i�1;
4: else
5: k D 2n=4;
6: end if
7: addItem_kernel<<< gridSi´e, blockSi´e >>>

�
i ,wi ,Ai�1,A1i�1

�
;

8: cudaDeviceSynchronize();
9: for j D 1 to log k do

10: partition_kernel<<< gridSi´e, blockSi´e >>>
�
j ,Ai�1,A1i�1

�
;

11: cudaDeviceSynchronize();
12: end for
13: merge_kernel<<< gridSi´e, blockSi´e >>>

�
Ai�1,A1i�1,Ai

�
;

14: cudaDeviceSynchronize();
15: end for
16: return An=2

Algorithm 4 The add item kernel

Require: i ,wi ,Ai�1,A1i�1
1: t id D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while t id 6 2i�1 do
3: A1i�1Œt id �D Ai�1Œt id �Cwi ;
4: t idCD blockDim.x � gridDim.x;
5: end while
6: return A1i�1

threads running in the grid. Each thread evaluates one copy of the kernel. After each thread accom-
plishes its work at the current index tid, if tid is less than or equal to 2i�1, we need to increase tid
by blockDim.x � gridDim.x.

3.3.2. The partition phase. The optimal parallel merging algorithm [24] is used in the partition and
merge phases. It is clear that the partition process adopts a typical recursive divide-and-conquer
strategy. However, support for recursion in GPUs with compute capability less than 3.5 is weak.
Specifically, they support recursion only for device functions but not for kernel functions, namely
they do not allow a kernel function to call other kernel functions recursively, and thus massive GPU
cores cannot be utilized, leading to poor efficiency. As a consequence, we have to develop a new
vector-based iterative implementation mechanism instead of the explicit recursion. The partition and
merge phases are illustrated in Figure 3.

As shown in Figure 3, the whole partition process needs to execute log k iterations to complete.
In each iteration, the partition kernel is launched from the host side and executed on the device side;
the partition kernel is described in Algorithm 5. In the partition phase, the number of required GPU
threads depends on the current iteration number j , where 1 6 j 6 log k. Let threadCounts denote
the number of required GPU threads, which is equal to 2j�1 for the j -th iteration. Note that the
current iteration number j should be copied from the host to the device and stored in the on-chip
shared memory, before the partition kernel is launched.

In the partition phase, in order to store the partition information (i.e., boundary positions of sub-
list) generated by each GPU thread in each iteration, we declare a vector H whose size is 2k � 1.
The vectorH is directly defined in the global memory, which can contribute to greatly reducing the
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Figure 3. The partition and merge phases.

Algorithm 5 The partition kernel

Require: j ,Ai�1,A1i�1,H
1: t id D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: threadCounts D 2j�1;
3: while t id 6 threadCounts do
4: medianId D t id C threadCounts � 1;
5: aDHŒmedianId�.lowA;
6: b DHŒmedianId�.highA;
7: c DHŒmedianId�.lowB ;
8: d DHŒmedianId�.highB ;
9: find the median pair (e, f ) of Ai�1Œa, b� and A1i�1Œc, d� by using the selection algorithm;

10: HŒ2 �medianId�.lowA D a;
11: HŒ2 �medianId�.highA D e;
12: HŒ2 �medianId�.lowB D c;
13: HŒ2 �medianId�.highB D f ;
14: HŒ2 �medianId C 1�.lowA D eC 1;
15: HŒ2 �medianId C 1�.highA D b;
16: HŒ2 �medianId C 1�.lowB D f C 1;
17: HŒ2 �medianId C 1�.highB D d ;
18: t idCD blockDim.x � gridDim.x;
19: end while
20: return H

communication cost between CPU and GPU, because the partition information does not have to be
passed back and forth to the GPU in each iteration.

Each element of the vector H is a struct with four integer member variables: lowA, highA,
lowB and highB . The member variables lowA and highA are used to store the lower bound posi-
tion and the upper bound position of sublist X , respectively. Similarly, the member variables lowB
and highB are used to store the lower bound position and the upper bound position of sublist Y ,
respectively. Before the first iteration, in order to store the boundary positions of lists Ai�1 and
A1i�1, we initialize H as follows: HŒ1�.lowA D 1, HŒ1�.highA D 2i�1, HŒ1�.lowB D 1 and
HŒ1�.highB D 2i�1.

Here, let Ai�1Œa, b� denote the sublist Œai�1.a, ai�1.aC1, � � � , ai�1.b�, and A1i�1Œc, d� denote the
sublist

�
a1i�1.c , a

1
i�1.cC1, � � � , a1

i�1.d

�
, where 2 6 i 6 n=2 and 1 6 a, b, c, d 6 2i�1. The

implementation of partitioning lists Ai�1 and A1i�1 consists of the following log k steps:

Step 1: (j D 1) We only use a single GPU thread P1 to run the partition kernel. At first, P1
gets the first element of H . Then, P1 executes the selection algorithm presented in [24]
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to find the median pair .x,y/ of lists Ai�1Œ1, 2i�1� and A1i�1Œ1, 2i�1�. Finally, we use
the second element of H to store the boundary positions .1, x, 1,y/ and use the third
element of H to store the boundary positions .xC 1, 2i�1,y C 1, 2i�1/.

Step j : (26 j 6 log k) We use 2j�1 GPU threads to run the partition kernel in parallel. Firstly,
the current thread Ptid gets the corresponding element of H via the variable medianId,
namely, it gets the corresponding partition information .a, b, c, d/ from the previous
iteration, where 1 6 t id 6 2j�1. Secondly, Ptid finds the median pair .e, f / of sublists
Ai�1Œa, b� and A1i�1Œc, d�. Finally, the new boundary positions .a, e, c,f / are stored in
the .2 � medianId/-th element of H . In the same way, the new boundary positions
.eC 1, b,f C 1, d/ are stored in the .2 �medianId C 1/-th element of H .

3.3.3. The merge phase. In the merge phase, we use k GPU threads to carry out the merge kernel
described in Algorithm 6 in parallel. To begin with, the current thread Ptid obtains the corre-
sponding partition information .a, b, c, d/ from the last iteration of the aforementioned partition
phase through medianId and H , where 1 6 t id 6 k. After that, Ptid merges lists Ai�1Œa, b� and
A1i�1Œc, d� into the list Ai , and the result of merging is placed in locations aC c � 1 to bC d in the
list Ai .

3.4. The parallel pruning stage

This section describes how to shrink the search space of SSP efficiently, so as to reduce the running
time of the search stage.

Similar to the pruning stage described in Section 2.2.2, we first evenly divide lists A and
B into k blocks of e elements. For simplicity, let A D

�
A1,A2, � � � ,Ai , � � � ,Ak

�
and B D�

B1,B2, � � � ,Bj , � � � ,Bk
�
, where Ai D Œai .1, ai .2, � � � , ai .e�, Bj D

h
bj .1, bj .2, � � � , bj .e

i
, 1 6 i , j 6

k. Then, we assign the block Ai and the entire list B to the GPU thread Pi , where 1 6 i 6 k.
Finally, we use k GPU threads to carry out the pruning kernel described in Algorithm 7 in parallel.

During the pruning process, once any block pair
�
Ai ,Bj

�
is picked by the thread Pi , we should

use Pi to write the block indices i and j into a vector, where 1 6 i , j 6 k. We can evenly allocate
those picked block pairs to k GPU threads through the vector, in the next search stage.

Before the pruning kernel is executed, we declare a vector S whose size is 2k � 1, and dynam-
ically allocate global memory for it. Each element of the vector S is a struct with two integer
member variables bidA and bidB, which are used to record the picked block index within lists A
and B , respectively. In addition, we declare two device variables r and isFound in the global mem-
ory; r is used as a counter to count the number of block pairs to be picked, and isFound is used to
determine whether a solution has been found. We initialize r and isFound to zero, respectively.

During the pruning kernel execution, when the thread Pi searches the block pair
�
Ai ,Bj

�
, where

16 i , j 6 k, if ai .1Cbj .e DM or ai .eCbj .1 DM , then a solution has been found and the variable

Algorithm 6 The merge kernel

Require: Ai�1,A1i�1,H , k
1: t id D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while t id 6 k do
3: medianId D t id C k � 1;
4: aDHŒmedianId�.lowA;
5: b DHŒmedianId�.highA;
6: c DHŒmedianId�.lowB ;
7: d DHŒmedianId�.highB ;
8: merge Ai�1Œa, b� and A1i�1Œc, d� into Ai ŒaC c � 1, bC d�;
9: t idCD blockDim.x � gridDim.x;

10: end while
11: return Ai
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isFound is set to 1; if ai .1C bj .e <M and ai .e C bj .1 >M , then the block pair
�
Ai ,Bj

�
is picked,

and the block indices i and j will be stored in the r-th element of S ; otherwise, the block pair�
Ai ,Bj

�
is directly discarded. Note that isFound and r are global variables, namely they might be

read and changed simultaneously by all k threads. Hence, it is necessary to update them atomically.
After the pruning kernel has completed, if isFound=1, we copy the solution from the device to the

host and output it; otherwise, we will carry out the next search stage.

3.5. The parallel search stage

This section describes how to search a solution of SSP efficiently by performing the search routine
of Horowitz and Sahni’s two-list algorithm in parallel.

Similar to the search stage described in Section 2.2.3, we first evenly assign those picked block
pairs to k GPU threads. Because the pruning stage picks at most 2k�1 block pairs, each thread will
search two block pairs at most. For clarity, let us suppose that the block pair

�
As ,Bt

�
is assigned to

the thread Pi , where As D Œas.1, as.2, � � � , as.e�, Bt D
h
bt .1, bt .2, � � � , bt .e

i
and 16 i , s, t 6 k. Then,

we use k GPU threads to perform the search kernel described in Algorithm 8 in parallel.
During the search kernel execution, the thread Pi firstly obtains the indices .s, t / of the block pair

assigned to itself. Then, Pi finds the top elements of the block pair
�
As ,Bt

�
, and if as.1Cbt .1 DM ,

then a solution has been found and the variable isFound is set to 1; if as.1C bt .1 <M , Pi continues
to search the next element of the block As; otherwise, Pi continues to search the next element of
the block Bt . The aforementioned process is repeated until the last element of the block As or Bt
has been retrieved.

After the search kernel has completed, if isFound=1, we copy the solution from the device to the
host and output it; otherwise, there is no solution.

4. PERFORMANCE OPTIMIZATION

To optimize the performance of the proposed GPU implementation, on the basis of the parallel
two-list algorithm of Li et al. [17], we describe how to improve the three stages of the algorithm in
this section.

Algorithm 7 The pruning kernel
Require: A,B ,M ,S , r D 0, isFound D 0, e DN=k

1: i D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while i 6 k do
3: for j D i to kC i � 1 do
4: if isFound D 1 then
5: break;B a solution is found
6: else
7: X D ai .1C b.j mod k/.e;
8: Y D ai .e C b.j mod k/.1;
9: if X DM or Y DM then

10: atomicExch.&isFound , 1/;
11: else if X <M and Y >M then
12: atomicAdd.&r , 1/;
13: SŒr�.bidAD i ;
14: SŒr�.bidB D j mod k;
15: end if
16: end if
17: end for
18: iCD blockDim.x � gridDim.x;
19: end while
20: return a solution or S
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Algorithm 8 The search kernel
Require: A,B ,M ,S , r , isFound , e DN=k

1: i D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while i 6 r do
3: s D SŒi �.bidA;
4: t D SŒi �.bidB;
5: x D 1;
6: y D 1;
7: while x 6 e and y 6 e do
8: if isFound D 1 then
9: break;B a solution is found

10: else
11: if as.x C bt .y DM then
12: atomicExch.&isFound , 1/;
13: else if as.x C bt .y <M then
14: x D xC 1;
15: else
16: y D y C 1;
17: end if
18: end if
19: end while
20: iCD blockDim.x � gridDim.x;
21: end while
22: return a solution or NULL

4.1. The improved generation stage

To improve the performance of the generation stage, during the process of generating the
nondecreasing list A, we discard those subset sums that exceed the knapsack capacity.

Specifically, we first sort the input vector W in nonincreasing order and then divide it into
two equal parts W1 and W2. When adding the item wi to each element of the list
Ai�1 D Œai�1.1, ai�1.2, � � � , ai�1.2i�1 � to generate a new list A1i�1 D Œai�1.1 C wi , ai�1.2 C
wi , � � � , ai�1.2i�1 C wi �, if ai�1.j C wi > M , the subset sum can be directly discarded, namely
it does not need to be stored in the list A1i�1, where 26 i 6 n=2 and 16 j 6 2i�1.

According to this optimization strategy, the improved procedure to generate the nondecreasing
list A is described in Algorithm 9. Let D and D1 denote, respectively, the number of elements to
be processed in the lists Ai�1 and A1i�1, where 2 6 i 6 n=2. Both D and D1 are initialized to 2.
Let DSgpu and DScpu denote the number of subset sums to be discarded in the list A1i�1 in each
iteration. Note that DSgpu is a device variable declared in the global memory. The whole process
of generating the list A needs to execute n=2 � 1 iterations to complete. Each iteration consists of
the following five steps:

Step 1: Assign 0 to DSgpu on the device side.
Step 2: Use k GPU threads to execute the improved add item kernel described in Algorithm 10 in

parallel. IfAi�1Œt id �Cwi >M , then the subset sum does not need to be stored in the list
A1i�1, and the value of variable DSgpu needs to be increased by 1, where 16 t id 6D.

Step 3: Transfer the value of variableDSgpu from the device to the host, and store it into variable
DScpu, after completing the add item process.

Step 4: Use k GPU threads to merge Ai�1 and A1i�1 into a new list Ai in parallel. Because
DScpu subset sums are discarded in the list A1i�1, the number of elements to be
merged in the list A1i�1 is D1 D D �DScpu. Accordingly, during the partition phase,
the initial boundary positions of lists Ai�1 and A1i�1 should be updated as follows:
HŒ1�.lowA D 1,HŒ1�.highA DD,HŒ1�.lowB D 1,HŒ1�.highB DD1.
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Algorithm 9 The improved procedure to generate the nondecreasing list A

Require: W1 D Œw1,w2, � � � ,wn=2�, A1 D Œ0,w1�, D D 2, D1 D 2, DSgpu D 0, DScpu D 0
1: for i D 2 to n=2 do
2: if 26 i 6 n=4 then
3: k D 2i�1;
4: else
5: k D 2n=4;
6: end if
7: assign 0 to DSgpu on the device side;
8: addItem_kernel<<< gridSi´e, blockSi´e >>>

�
D,wi ,Ai�1,A1i�1

�
;

9: cudaDeviceSynchronize();
10: copyFromGPUToCPU.DScpu,DSgpu/;
11: D1 DD �DScpu;
12: for j D 1 to log k do
13: partition_kernel<<< gridSi´e, blockSi´e >>>

�
j ,Ai�1,A1i�1

�
;

14: cudaDeviceSynchronize();
15: end for
16: merge_kernel<<< gridSi´e, blockSi´e >>>

�
Ai�1,A1i�1,Ai

�
;

17: cudaDeviceSynchronize();
18: D DDCD1;
19: end for
20: return An=2

Algorithm 10 The improved add item kernel

Require: D,wi ,Ai�1,A1i�1
1: t id D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while t id 6D do
3: if Ai�1Œt id �Cwi >M then
4: atomicAdd.&DSgpu, 1/;
5: else
6: A1i�1Œt id �D Ai�1Œt id �Cwi ;
7: end if
8: t idCD blockDim.x � gridDim.x;
9: end while

10: return A1i�1

Step 5: Update the value of variable D as follows: D D D C D1, before the next iteration,
because the number of elements in the new list Ai is DCD1.

In our improved generation stage (IGS), those subset sums that exceed the knapsack capacity are
discarded in each iteration rather than after the entire list A has been generated. It is evident that the
smaller the knapsack capacity is, the more subset sums can be discarded. Therefore, the IGS can
give better performance than the original generation stage (OGS) for small knapsack capacity.

4.2. The improved pruning stage

To improve the performance of the pruning stage, on the basis of Lemmas 1 and 2, we introduce the
following Lemmas 3 and 4 to reduce the pruning time of each thread.

Lemma 3
For any block Ai and list B , Ai D .ai .1, ai .2, � � � , ai .e/, B D

�
B1,B2, � � � ,Blow , � � � ,Bk

�
, where
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Blow D
h
blow .1, blow .2, � � � , blow .e

i
, 16 i , low 6 k, if ai .1Cblow�1.e >M and ai .1Cblow .e <M ,

then any block pair
�
Ai , Bj

�
can be discarded, where 1 < low 6 k and 16 j < low.

Proof
It is obvious that the element ai .1 is the smallest element in the block Ai and the element blow�1.e is
the smallest element in the block Blow�1. If the sum of these two elements is greater than M , then
ai .1C bj .e >M , where 16 j 6 low � 1. That is, any block pair

�
Ai , Bj

�
can be discarded. �

Lemma 4
For any block Ai and list B , Ai D .ai .1, ai .2, � � � , ai .e/, B D

�
B1,B2, � � � ,Bhigh, � � � ,Bk

�
,

where Bhigh D
h
bhigh.1, bhigh.2, � � � , bhigh.e

i
, 1 6 i , high 6 k, if ai .e C bhigh.1 > M and

ai .e C bhighC1.1 < M , then any block pair
�
Ai , Bj

�
can be discarded, where 1 6 high < k

and high < j 6 k.

Proof
It is obvious that the element ai .e is the largest element in the block Ai and the element bhighC1.1 is
the largest element in the block BhighC1. If the sum of these two elements is smaller than M , then
ai .e C bj .1 <M , where highC 16 j 6 k. That is, any block pair

�
Ai , Bj

�
can be discarded. �

On the basis of Lemmas 3 and 4, we use GPU thread Pi to perform two binary searches in the
list B to find the block indices low and high, so as to pick high � low + 1 consecutive blocks Blow ,
BlowC1, � � � , Bhigh, which will be associated with block Ai , where 1 6 i 6 k. The improved
pruning kernel is described in Algorithm 11, which consists of the following three steps:

Algorithm 11 The improved pruning kernel
Require: A,B ,M ,S , r D 0, isFound D 0, e DN=k

1: i D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while i 6 k do
3: l D 1; r D k;
4: while l 6 r and isFound D 0 do
5: mD l C .r � l/=2;
6: if ai .1C bm.e DM then atomicExch.&isFound , 1/; break;B a solution is found
7: else if ai .1C bm.e <M then r Dm� 1; else l DmC 1; end if
8: end while
9: low D l ; r D k;

10: while l 6 r and isFound D 0 do
11: mD l C .r � l/=2;
12: if ai .e C bm.1 DM then atomicExch.&isFound , 1/; break;B a solution is found
13: else if ai .e C bm.1 >M then l DmC 1; else r Dm� 1; end if
14: end while
15: highD r ;
16: if isFound D 0 then
17: for j D low to high do
18: atomicAdd.&r , 1/; SŒr�.bidAD i ; SŒr�.bidB D j ;
19: end for
20: end if
21: iCD blockDim.x � gridDim.x;
22: end while
23: return a solution or S
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Step 1: Use Pi to perform the first binary search in the list B to find a leftmost block Blow ,
where 16 i , low 6 k. The block index low should satisfy the following condition:(

ai .1C bj .e >M , for 16 j < lowI
ai .1C bj .e <M , for low 6 j 6 k.

(2)

Step 2: Use Pi to perform the second binary search in the list B to find a rightmost block Bhigh,
where low 6 high6 k. The block index high should satisfy the following condition:(

ai .e C bj .1 >M , for low 6 j 6 highI
ai .e C bj .1 <M , forhigh < j 6 k.

(3)

Step 3: Use Pi to write high� lowC 1 consecutive block pairs
�
Ai ,Blow

�
,
�
Ai ,BlowC1

�
, � � � ,�

Ai ,Bhigh
�

picked by it into the shared memory. After these two binary searches are
performed, in order for all picked block pairs to be evenly assigned to each thread in
the search stage, the block indices of those picked block pairs need to be written into a
vector S .

In our improved pruning stage (IPS), each binary search takes O.log k/ time. If the number of
block pairs picked by each thread does not exceed log k, the pruning routine takes O.3 log k/ time;
otherwise, it takesO.2 log kCk/ time in the worst case. Indeed, for the k threads, it can be observed
that most threads pick at most log k block pairs in the actual experiment. Even if the number of block
pairs picked by a certain thread exceeds logk, it is still far less than k. Therefore, the improved prun-
ing algorithm produces significantly better performance than the original pruning algorithm whose
time complexity is O.k/.

4.3. The improved search stage

To improve the performance of the search stage, on the basis of Lemmas 1 and 2, we introduce the
following Lemmas 5–8 to further shrink the search space of each thread. As the proofs of these four
lemmas are similar to the proofs of Lemmas 1 and 2, here, we omit them.

Lemma 5
For any block pair

�
As , Bt

�
, where 1 6 s, t 6 k, As D

�
as.1, as.2, � � � , as.lowA , � � � , as.e

�
and

Bt D
�
bt .1, bt .2, � � � , bt .e

�
, if as.lowA�1C bt .1 <M and as.lowA C bt .1 >M , then any element pair�

as.u, bt .y
�

is not a solution of SSP, where 1 < lowA 6 e, 16 u < lowA and 16 y 6 e.

Lemma 6
For any block pair

�
As , Bt

�
, where 1 6 s, t 6 k, As D

�
as.1, as.2, � � � , as.highA , � � � , as.e

�
and

Bt D
�
bt .1, bt .2, � � � , bt .e

�
, if as.highA C bt .e < M and as.highAC1 C bt .e > M , then any element

pair
�
as.u, bt .y

�
is not a solution of SSP, where 16 highA < e, highA < u6 e and 16 y 6 e.

Lemma 7
For any block pair

�
As , Bt

�
, where 1 6 s, t 6 k, As D .as.1, as.2, � � � , as.e/ and Bt D�

bt .1, bt .2, � � � , bt .lowB , � � � , bt .e
�

, if as.1Cbt .lowB�1 >M and as.1Cbt .lowB <M , then any element

pair
�
as.x , bt .v

�
is not a solution of SSP, where 1 < lowB 6 e, 16 v < lowB and 16 x 6 e.

Lemma 8
For any block pair

�
As , Bt

�
, where 1 6 s, t 6 k, As D .as.1, as.2, � � � , as.e/ and Bt D�

bt .1, bt .2, � � � , bt .highB , � � � , bt .e
�

, if as.e C bt .highB > M and as.e C bt .highBC1 < M , then any
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Algorithm 12 The improved search kernel
Require: A,B ,M ,S , r , isFound D 0, e DN=k

1: i D blockIdx.x � blockDim.xC threadIdx.xC 1;
2: while i 6 r do
3: s D SŒi �.bidA; t D SŒi �.bidB; lA D 1; rA D e;
4: while lA 6 rA and isFound D 0 do
5: mD lAC .rA � lA/=2;
6: if as.mC bt .1 DM then atomicExch.&isFound , 1/; break;
7: else if as.mC bt .1 >M then rA Dm� 1; else lA DmC 1; end if
8: end while
9: lowA D lA; rA D e;

10: while lA 6 rA and isFound D 0 do
11: mD lAC .rA � lA/=2;
12: if as.mC bt .e DM then atomicExch.&isFound , 1/; break;
13: else if as.mC bt .e <M then lA DmC 1; else rA Dm� 1; end if
14: end while
15: highA D rA; lB D 1; rB D e;
16: while lB 6 rB and isFound D 0 do
17: mD lB C .rB � lB/=2;
18: if as.lowA C bt .m DM then atomicExch.&isFound , 1/; break;
19: else if as.lowA C bt .m <M then rB Dm� 1; else lB DmC 1; end if
20: end while
21: lowB D lB ; rB D e;
22: while lB 6 rB and isFound D 0 do
23: mD lB C .rB � lB/=2;
24: if as.highA C bt .m DM then atomicExch.&isFound , 1/; break;
25: else if as.highA C bt .m >M then lB DmC 1; else rB Dm� 1; end if
26: end while
27: highB D rB ; x D lowA; y D lowB ;
28: while x 6 highA and y 6 highB and isFound D 0 do
29: if as.x C bt .y DM then atomicExch.&isFound , 1/; break;B a solution is found
30: else if as.x C bt .y <M then x D xC 1; else y D y C 1; end if
31: end while
32: iCD blockDim.x � gridDim.x;
33: end while
34: return a solution or NULL

element pair
�
as.x , bt .v

�
is not a solution of SSP, where 1 6 highB < e, highB < v 6 e and

16 x 6 e.

Suppose that the block pair
�
As ,Bt

�
is assigned to the GPU thread Pi , where 1 6 i , s, t 6 k.

On the basis of Lemmas 5 and 6, we use Pi to perform two binary searches in block As to find the
element indices lowA and highA, so as to identify highA � lowA C 1 necessary search elements
as.lowA , as.lowAC1, � � � , as.highA . On the basis of Lemmas 7 and 8, we use Pi to perform two binary
searches in blockBt to find the element indices lowB and highB , so as to identify highB�lowBC1
necessary search elements bt .lowB , bt .lowBC1, � � � , bt .highB . The improved search kernel is shown
in Algorithm 12, which consists of the following five steps:

Step 1: Use Pi to perform the first binary search in block As to find a leftmost element as.lowA ,
where 16 lowA 6 e. The element index lowA should satisfy the following condition:(

as.uC bt .1 <M , for 16 u < lowAI
as.uC bt .1 >M , for lowA 6 u6 e.

(4)
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Step 2: Use Pi to perform the second binary search in block As to find a rightmost element
as.highA , where lowA 6 highA 6 e. The element index highA should satisfy the
following condition:(

as.uC bt .e <M , for lowA 6 u6 highAI
as.uC bt .e >M , forhighA < u6 e.

(5)

Step 3: Use Pi to perform the first binary search in block Bt to find a leftmost element bt .lowB ,
where 16 lowB 6 e. The element index lowB should satisfy the following condition:(

as.lowA C bt .v >M , for 16 v < lowB I
as.lowA C bt .v <M , for lowB 6 v 6 e.

(6)

Step 4: Use Pi to perform the second binary search in block Bt to find a rightmost element
bt .highB , where lowB 6 highB 6 e. The element index highB should satisfy the
following condition:(

as.highA C bt .v >M , for lowB 6 v 6 highB I
as.highA C bt .v <M , forhighB < v 6 e.

(7)

Step 5: Use Pi to perform the search routine of Horowitz and Sahni’s two-list algorithm on
the block pair

�
As ,Bt

�
, where As D

�
as.lowA , as.lowAC1, � � � , as.highA

�
and Bt Dh

bt .lowB , bt .lowBC1, � � � , bt .highB

i
, after these four binary searches have completed.

It is readily seen that the time complexity of the improved search stage (ISS) is O.4 log.N=k/C
2N=k/ in the worst case, which is clearly bounded byO.N=k/. Although the worst-case time com-
plexity of the original search stage (OSS) is also O.N=k/, however, in most cases, we observe that
the search space of each thread can be greatly reduced after these four binary searches are performed
in the ISS. Therefore, the ISS might significantly outperform the OSS.

5. EXPERIMENTAL EVALUATION

In this section, we first present the experimental setup. Then, we evaluate the effectiveness of
the proposed GPU implementation. Finally, we analyze the performance of the improved parallel
two-list algorithm.

5.1. Experimental setup

In this paper, apart from the proposed GPU implementation, we implement the parallel two-list
algorithm on multicore CPUs using OpenMP, so as to compare the performance of the GPU version
with the multicore CPU version. Furthermore, to show the performance of the two parallel imple-
mentations, we compare their performance with the two best known sequential algorithms. One
is Horowitz and Sahni’s two-list algorithm [6], which solves SSP in O.n2n=2/ time with O.2n=2/
memory space. The other is the dynamic programming algorithm [7], which solves SSP in O.nM/

time and memory space.
To check the effectiveness and scalability of our approach, a series of experiments are carried

out on a dual quad-core 2.3 GHz AMD Opteron 2376 machine with 4 GB main memory, and the
following two different NVIDIA graphics cards are used:

� The GTX 465 GPU has 352 CUDA cores, 607 MHz processor clock, 1 GB GDDR5 RAM,
102.6 GB/s memory bandwidth, and 802 MHz memory clock.
� The Tesla C2050 GPU has 448 CUDA cores, 1.15 GHz processor clock, 3 GB GDDR5 RAM,

144 GB/s memory bandwidth, and 1.5 GHz memory clock.

In software, the testing system is built on top of the Linux (Ubuntu 10.10) operating system with
NVIDIA CUDA driver version 4.2 and GCC version 4.4.5.
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(a) Speedup on the GTX 465 GPU (b) Speedup on the Tesla C2050 GPU

Figure 4. The speedups of GPU implementation on two different GPU cards using six different settings for
threads per block.

We conduct our tests on randomly generated instances of SSP, and we use a random number gen-
erator to produce the input vectors W whose sizes range from 36 to 54. They present the following
features:

� wi is randomly drawn in [1, 108], i 2 f1, � � � ,ng.
� M D ˛

Pn
iD1wi , ˛ 2 f0.2, � � � , 0.8g.

� wi <M , i 2 f1, � � � ,ng.

In our experiments, we consider the following 10 different problem sizes: 36, 38, 40, 42, 44,
46, 48, 50, 52 and 54. Note that the sequential two-list algorithm [6] and the parallel two-list
algorithm [17] all require O.2n=2/ memory space, implying that the problem size will be limited
by the available memory on the testing system. In addition, considering the real-world applica-
tions and the worst-case execution time, it is necessary to take into account different knapsack
capacities.

For each problem size, we randomly generate 1000 instances. The average execution time is con-
sidered, and the execution time is measured in milliseconds. The speedup is defined as Ts=Tp , where
Ts and Tp represent the running time of the sequential implementation and parallel implementation,
respectively.

Moreover, to achieve effective and robust performance for the GPU implementation, we should
adopt the optimum number of TPB to keep the GPU multiprocessors as active as possible. Here,
we conduct our preliminary speedup performance tests on the GTX 465 GPU and the Tesla C2050
GPU using six different settings for TPB (respectively, 32, 64, 128, 256, 512, and 1024). In this
experiment, we specify M D 0.5

Pn
iD1wi , and Ts is obtained by executing Horowitz and Sahni’s

sequential two-list algorithm. Note that the maximum number of TPB is 1024 for both cards, thus
at most 1024 threads can be specified in each block.

Figure 4 shows the speedups of the GPU implementation on two different GPU cards using six
different settings for TPB. For the 10 different problem sizes, among the six different settings for
TPB, Figures 4(a) and 4(b) show that the 128 TPB case seems to be the most efficient. It always
gives more stable and scalable speedup, because it can obtain the best multiprocessor occupancy.
Hence, we choose the 128 TPB case for further performance tests on both the GTX 465 GPU and
Tesla C2050 GPU.

5.2. Comparison with CPU implementation

To accurately evaluate the performance of the proposed GPU implementation, for each randomly
generated instance, we first run the dynamic programming algorithm and Horowitz and Sahni’s
sequential two-list algorithm on the CPU. Then, we run the parallel two-list algorithm on multicore
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Table II. Experimental results on the CPU and two different GPU cards.

Sequential algorithm Parallel two-list algorithm

DP two-list Multicore CPUs GTX 465 GPU Tesla C2050 GPU
M n Time Time Time Sp-DP Sp-TL Time Sp-DP Sp-TL Time Sp-DP Sp-TL

Case 1

36 27.93 61.29 26.51 1.05 2.31 20.72 1.35 2.96 20.09 1.39 3.05
38 53.15 115.24 47.96 1.11 2.40 35.08 1.52 3.29 33.67 1.58 3.42
40 110.54 205.45 82.39 1.34 2.49 54.85 2.02 3.75 52.17 2.12 3.94
42 230.64 358.29 132.17 1.74 2.71 80.89 2.85 4.43 76.59 3.01 4.68
44 480.16 645.12 215.58 2.23 2.99 123.78 3.88 5.21 112.88 4.25 5.72

Case 2

46 2127.87 1151.77 365.69 5.82 3.15 202.50 10.51 5.69 184.17 11.55 6.25
48 4183.82 2132.49 650.35 6.43 3.28 353.82 11.82 6.03 321.88 13.00 6.63
50 8714.37 4093.46 1217.46 7.16 3.36 652.89 13.35 6.27 593.12 14.69 6.90
52 16685.87 7971.76 2234.80 7.47 3.57 1239.60 13.46 6.43 1129.92 14.77 7.06
54 33935.49 16124.25 4377.58 7.75 3.68 2490.87 13.62 6.47 2265.74 14.98 7.12

Case 1: M D 0.5
Pn
iD1 wi Š

1
82
n=2 Case 2: M D 0.5

Pn
iD1 wi Š

1
42
n=2

DP, dynamic programming; Sp-DP, speedup over the sequential dynamic programming algorithm; Sp-TL, speedup
over the sequential two-list algorithm.

CPUs with eight OpenMP threads. Finally, we run the parallel two-list algorithm on two different
GPU cards. Table II shows the execution times of the dynamic programming algorithm and Horowitz
and Sahni’s sequential two-list algorithm, and it also shows the execution times and speedups of the
multicore CPU implementation and the GPU implementation, respectively, for the 10 different prob-
lem sizes. In the experiments, the knapsack capacity M is half the total weight, which is moderate
for the first five problem sizes and is large for the other five problem sizes.

In Table II, it is not hard to see that the dynamic programming technique is attractive for moder-
ate knapsack capacity, but Horowitz and Sahni’s two-list algorithm is attractive for large knapsack
capacity. It can be found that when the problem size increases, the execution time and the speedup
factor also increase, and the multicore CPU implementation and the GPU implementation show
better performance over the two sequential implementations.

The performance comparison between the GPU implementation and the two sequential imple-
mentations shows that the speedup is not substantial for small problem sizes (n 6 42). This is
associated with the fact that there may not be enough work to fully utilize the available hardware
parallelism of the GPU. On the other hand, the execution of the GPU program involves some fixed
overheads: thread creation and destruction overhead, GPU initialization overhead, GPU memory
allocation overhead, GPU synchronization overhead, and data transfer overhead. This makes GPU
not suitable for small computational tasks, as these fixed overheads are higher than the kernel exe-
cution time. However, for large problem sizes (n > 42), the GPU implementation can achieve
substantial speedup, in comparison with the two sequential implementations, it obtains 14.98 and
7.12 speedup, respectively, when n D 54. Hence, the proposed GPU implementation is most fit for
large-scale SSP.

Figures 5(a) and 5(b) illustrate the speedups of the multicore CPU implementation and the GPU
implementation over the dynamic programming algorithm and the sequential two-list algorithm. As
we can see, as long as the problem size increases, the speedup factor grows accordingly. It is obvious
that the GPU implementation has much better performance than the multicore CPU implementation,
because a large number of cores are available on both the GTX 465 GPU and Tesla C2050 GPU.
Note that the larger the problem size is, the slower the speedup increases, and the speedup will
gradually reach a peak.

The results from Figures 5(a) and 5(b) also show that the GTX 465 GPU and the Tesla C2050
GPU offer similar performance for small problem sizes (n 6 42). However, when the problem size
exceeds 42, the Tesla C2050 GPU yields higher speedup than the GTX 465 GPU. This is due to the
fact that the Tesla C2050 GPU enjoys more available streaming processor cores and higher memory
bandwidth than the GTX 465 GPU.
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Figure 5. The speedups obtained using multicore CPUs and two different GPU cards.

Table III. The execution time of each stage of the two-list algorithm.

Sequential two-list algorithm Parallel two-list algorithm

Generation Search Total Generation Pruning Search Total
n time time time time time time time

36 43.10 18.19 61.29 18.49 0.55 1.06 20.09
38 80.80 34.44 115.24 31.10 0.73 1.84 33.67
40 146.02 59.44 205.45 48.07 1.08 3.01 52.17
42 253.57 104.72 358.29 70.05 2.13 4.40 76.59
44 457.69 187.43 645.12 102.01 4.28 6.59 112.88
46 801.62 350.15 1151.77 171.50 5.01 7.67 184.17
48 1450.02 682.47 2132.49 300.31 8.63 12.95 321.88
50 2845.61 1247.85 4093.46 551.16 16.04 25.92 593.12
52 5575.43 2396.33 7971.76 1052.71 28.02 49.19 1129.92
54 11133.43 4990.82 16124.25 2118.37 57.25 90.12 2265.74

5.3. Analysis of the execution time

Table III shows the execution time of each stage of the sequential two-list algorithm and the parallel
two-list algorithm. Note that the parallel two-list algorithm is executed on the Tesla C2050 GPU.
According to Table III, for the sequential two-list algorithm, the generation stage and the search
stage consume 68.00–71.07% and 28.93–32.00% of the total execution time, respectively, for the
10 different problem sizes. In contrast, for the parallel two-list algorithm, the most time-consuming
process is the generation stage, which takes 90.37–93.50% of the total execution time, whereas the
pruning stage and the search stage consume 2.07–3.79% and 3.98–5.84% of the total execution
time, respectively. The performance comparison of the parallel implementation with the sequential
one shows that the parallel generation stage obtains good efficiency, and the parallel search stage
achieves better efficiency.

In addition, it is worth mentioning that the more GPU threads are used, the longer the execution
time of the pruning stage is, and the shorter the execution time of the search stage is. Therefore, to
obtain the best performance, it is necessary to adopt the optimum number of GPU threads during
the pruning and search stages, provided that it does not exceed the maximum number of available
GPU threads. In our experiments, the number of GPU threads used is k D 2n=4.

5.4. Analysis of data transfer

It is generally appreciated that the data transfer between CPU and GPU can significantly affect the
performance of GPU applications. In this section, we intend to do an analysis of the percentage
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Figure 6. The percentage of the time spent by GPU computation and data transfer.

of the time spent by GPU computation and data transfer for different problem sizes, as shown in
Figure 6. These measurements are conducted on the Tesla C2050 GPU and the knapsack capacity is
half the total weight.

The total execution time of our GPU implementation mainly consists of the GPU computa-
tion time and the data transfer time. The GPU computation mainly includes the following: kernel
execution, thread creation and destruction, GPU initialization, GPU memory allocation, and GPU
synchronization. The data transfer mainly includes the following: transferringW1,W2 andM to the
GPU in the beginning of the generation stage; copying the current iteration number to the GPU dur-
ing the execution of the generation stage; transferring the solution back to the CPU after the pruning
stage or the search phase has completed.

Figure 6 shows that the GPU computation dominates the overwhelming majority of the overall
execution time. Specifically, with the increase of problem size, the data transfer time grows slightly,
but the GPU computation time grows greatly, meaning that the percentage of the time spent by data
transfer will be reduced progressively. The results from Figure 6 reveal that data transfer between
CPU and GPU is not a performance bottleneck for our GPU implementation. The reasons are as
follows: we execute the entire algorithm on the GPU; we directly read data from the lists A and B
and write data to them on the device side; we use the vector-based iterative implementation mecha-
nism during the partition process, which can help us to avoid transferring large amount of partition
information between CPU and GPU.

5.5. Analysis of the improved generation stage

Before comparing the performance of the IGS with that of the OGS, it is necessary to study
how the knapsack capacity affects the number of subset sums that can be discarded in the list
A. Here, we consider eight different knapsack capacities as follows: M D ˛

Pn
iD1wi , ˛ 2

f0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55g. Each randomly generated instance needs to be performed
eight times according to the eight different knapsack capacities.

LetDStotal denote the total number of subset sums to be discarded in the list A, and � denote the
discard rate. Note that the total number of subset sums in the list A without performing any discard
is N , so the discard rate can be calculated as � = DStotal / N .

Table IV shows the discard rate achieved by using eight different knapsack capacities for each
problem size. It is easy to find that the smaller the knapsack capacity, the higher the discard rate,
and vice versa. For example, when M D 0.2

P
wi , the average discard rate of 10 problem sizes is

97.31%, however, when M D 0.55
P
wi , the average discard rate drops to only 1.63%.

Table V shows the execution time of the OGS and the IGS on the Tesla C2050 GPU. For the
OGS, the knapsack capacity does not affect its execution time, therefore its execution time are the
same for eight different knapsack capacities. For the IGS, it is obvious that the smaller the knapsack
capacity, the shorter its execution time. For example, when the knapsack capacities are 0.2

P
wi ,

0.3
P
wi , 0.4

P
wi and 0.5

P
wi , the execution times of the OGS are reduced by about 43%, 32%,
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Table IV. The discard rate for different knapsack capacities.

����n
M

0.2
P
wi 0.25

P
wi 0.3

P
wi 0.35

P
wi 0.4

P
wi 0.45

P
wi 0.5

P
wi 0.55

P
wi

36 0.9722 0.9213 0.8124 0.6057 0.3722 0.1818 0.0731 0.0160
38 0.9755 0.9232 0.8110 0.6061 0.3749 0.1858 0.0729 0.0159
40 0.9719 0.9231 0.8111 0.6072 0.3728 0.1840 0.0712 0.0162
42 0.9709 0.9203 0.8132 0.6010 0.3758 0.1858 0.0716 0.0163
44 0.9733 0.9226 0.8107 0.6079 0.3714 0.1869 0.0726 0.0161
46 0.9750 0.9215 0.8113 0.6046 0.3702 0.1826 0.0743 0.0164
48 0.9768 0.9253 0.8103 0.6037 0.3732 0.1802 0.0728 0.0163
50 0.9719 0.9205 0.8143 0.6054 0.3747 0.1866 0.0733 0.0168
52 0.9728 0.9225 0.8139 0.6078 0.3711 0.1851 0.0729 0.0161
54 0.9710 0.9235 0.8102 0.6081 0.3706 0.1833 0.0744 0.0167

Average 0.9731 0.9224 0.8118 0.6057 0.3727 0.1842 0.0729 0.0163

Table V. Execution time comparison between IGS and OGS on the Tesla C2050 GPU.

IGS

n OGS 0.2
P
wi 0.25

P
wi 0.3

P
wi 0.35

P
wi 0.4

P
wi 0.45

P
wi 0.5

P
wi 0.55

P
wi

36 18.49 10.57 11.52 12.65 13.92 15.84 17.34 18.14 18.39
38 31.10 17.79 19.38 21.27 23.42 26.65 29.17 30.51 30.95
40 48.07 27.50 29.95 32.88 36.20 41.19 45.09 47.16 47.83
42 70.05 40.07 43.64 47.92 52.75 60.04 65.71 68.72 69.70
44 102.01 58.35 63.55 69.77 76.81 87.42 95.68 100.07 101.50
46 171.50 98.10 106.84 117.30 129.14 146.97 160.87 168.24 170.64
48 300.31 171.78 187.09 205.41 226.13 257.36 281.69 294.60 298.81
50 551.16 315.26 343.37 376.99 415.02 472.34 516.99 540.69 548.40
52 1052.71 602.15 655.84 720.05 792.69 902.17 987.44 1032.71 1047.44
54 2118.37 1211.71 1319.74 1448.96 1595.13 1815.44 1987.03 2078.12 2107.78

IGS, improved generation stage; OGS, original generation stage.

14% and 2%, respectively, for each problem size. The execution time comparison between IGS and
OGS shows that our IGS yields significant performance benefits when M < 0.5

P
wi .

5.6. Analysis of the improved pruning stage

Because the number of block pairs picked by each GPU thread can affect the performance of the
IPS, this section first shows the excess rate and then presents a performance comparison between
the IPS and the original pruning stage (OPS).

Let EXtotal denote the total number of the threads, which pick more than log k block pairs, and
� denote the excess rate. Note that the total number of threads used in the IPS is k, the excess rate
can be calculated as � DEXtotal=k.

Table VI shows the excess rate achieved by using seven different knapsack capacities for each
problem size. We can easily see that most threads pick less than log k block pairs, especially when
M D 0.5

P
wi , almost all threads pick less than log k block pairs. The results from VI reveal that

our IPS should be able to achieve better performance.
Table VII shows the execution time of the OPS and the IPS on the Tesla C2050 GPU for

M D 0.5
P
wi . It is obvious that our IPS achieves significantly better performance than the OPS.

For example, when the problem sizes are 36, 42, 48, and 54, the execution times of the OPS are
reduced by 80%, 84.98%, 88.53%, and 91.41%, respectively.

5.7. Analysis of the improved search stage

Because the performance of the OSS is improved by reducing the search spaces of those picked
block pairs, this section first shows the search space reduction rate and then presents a performance
comparison between the ISS and the OSS.
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Table VI. The excess rate for different knapsack capacities.

����n
M

0.2
P
wi 0.3

P
wi 0.4

P
wi 0.5

P
wi 0.6

P
wi 0.7

P
wi 0.8

P
wi

36 0.0031 0.0141 0.0154 0.0002 0.0155 0.0142 0.0032
38 0.0025 0.0136 0.0149 0.0001 0.0150 0.0137 0.0026
40 0.0021 0.0116 0.0136 0.0001 0.0137 0.0115 0.0021
42 0.0019 0.0113 0.0133 0.0000 0.0134 0.0112 0.0018
44 0.0016 0.0110 0.0131 0.0000 0.0131 0.0110 0.0015
46 0.0014 0.0098 0.0129 0.0000 0.0130 0.0098 0.0013
48 0.0012 0.0096 0.0126 0.0000 0.0127 0.0095 0.0011
50 0.0010 0.0094 0.0123 0.0000 0.0124 0.0093 0.0010
52 0.0009 0.0092 0.0120 0.0000 0.0121 0.0091 0.0008
54 0.0008 0.0090 0.0117 0.0000 0.0118 0.0089 0.0007

Average 0.0017 0.0109 0.0132 0.0000 0.0133 0.0108 0.0016

Table VII. Execution time comparison between IPS and OPS for M D 0.5
P
wi .

nD 36 nD 38 nD 40 nD 42 nD 44 nD 46 nD 48 nD 50 nD 52 nD 54

OPS 0.55 0.73 1.08 2.13 4.28 5.01 8.63 16.04 28.02 57.25
IPS 0.11 0.14 0.17 0.32 0.59 0.65 0.99 1.72 2.67 4.92

OPS, original pruning stage; IPS, improved pruning stage.

Table VIII. The search space reduction rate for different knapsack capacities.

0.3
P
wi 0.4

P
wi 0.5

P
wi 0.6

P
wi 0.7

P
wi

n A B A B A B A B A B

36 0.4430 0.5119 0.4554 0.4966 0.4522 0.4999 0.4563 0.4973 0.4429 0.5102
38 0.4342 0.5160 0.4520 0.4988 0.4515 0.5082 0.4543 0.4989 0.4335 0.5191
40 0.4353 0.5108 0.4572 0.4956 0.4518 0.5015 0.4572 0.4996 0.4448 0.5183
42 0.4419 0.5103 0.4596 0.4977 0.4521 0.4954 0.4562 0.4982 0.4509 0.5155
44 0.4443 0.5173 0.4580 0.4981 0.4512 0.5016 0.4577 0.4968 0.4436 0.5182
46 0.4563 0.5173 0.4568 0.4951 0.4515 0.5015 0.4542 0.4992 0.4559 0.5191
48 0.4398 0.5198 0.4567 0.4997 0.4516 0.5013 0.4567 0.4996 0.4394 0.5124
50 0.4393 0.5190 0.4571 0.4953 0.4517 0.5016 0.4571 0.4953 0.4393 0.5190
52 0.4405 0.5153 0.4564 0.4951 0.4519 0.5052 0.4564 0.4961 0.4341 0.5139
54 0.4418 0.5156 0.4570 0.4970 0.4520 0.5024 0.4565 0.4945 0.4419 0.5175

Average 0.4416 0.5153 0.4566 0.4969 0.4517 0.5019 0.4562 0.4976 0.4426 0.5163

Suppose that the block pair
�
As ,Bt

�
is assigned to the thread Pi , where 1 6 i , s, t 6 k. For the

OSS, the search space of block As ranges from as.1 to as.e , and the search space of block Bt ranges
from bt .1 to bt .e . For the ISS, the search space of block As ranges from as.lowA to as.highA , and
the search space of block Bt ranges from bt .lowB to bt .highB . Therefore, the search space reduction
rates of block As and block Bt are .e� .highA� lowAC 1//=e and .e� .highB � lowB C 1//=e,
respectively.

Table VIII shows the average search space reduction rate of all picked block pairs achieved by
using five different knapsack capacities for each problem size. Columns ‘A’ and ‘B’ represent the
average search space reduction rate of these blocks from lists A and B in all picked block pairs,
respectively. It is clear that the search space of each picked block pair is greatly reduced; the search
space reduction rate of one block from lists A and B in each picked block pair are around 45% and
50%, respectively.
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Table IX. Execution time comparison between ISS and OSS for M D 0.5
P
wi .

nD 36 nD 38 nD 40 nD 42 nD 44 nD 46 nD 48 nD 50 nD 52 nD 54

OSS 1.06 1.84 3.01 4.40 6.59 7.67 12.95 25.92 49.19 90.12
ISS 0.4978 0.8616 1.4151 2.0629 3.0525 3.6057 6.1235 12.2059 23.1607 42.3152

OSS, original search stage; ISS, improved search stage.

Figure 7. The execution time ratios of original search stage to improved search stage for five different
knapsack capacities.

Table IX shows the execution time of the OSS and the ISS on the Tesla C2050 GPU for
M D 0.5

P
wi . We can easily observe that the ISS outperforms the OSS for each problem size,

and the execution time of the OSS is reduced by an average of 53.05%.
Because the knapsack capacity can affect the search time, for clarity, the execution time ratios of

OSS to ISS for five different knapsack capacities (30%, 40%, 50%, 60%, 70% of total weight) are
shown in Figure 7. The execution time ratio is around 2.13 for each problem size, and the results
show that the ISS gives a significant performance benefit.

6. CONCLUSIONS

In this paper, on the basis of the parallel two-list algorithm of Li et al., we propose and evaluate an
original parallel implementation of the algorithm for solving SSP on a GPU using CUDA. Apart
from studying how to implement the three stages of the algorithm by exploiting fine-grained data
parallelism and thread parallelism offered by the GPU, a great deal of programming effort has been
devoted to achieving the best performance. Reasonable task distribution between CPU and GPU
is essential to improve the performance. The vast majority of computational tasks are performed
on the GPU, so we do not have to transfer large amounts of data back and forth between CPU
and GPU, which greatly reduces the communication cost between CPU and GPU. Efficient memory
management is necessary to reduce memory access latency. On the basis of multilevel GPU memory
hierarchies, we select the best memory space to store the data required for running the algorithm.
To convert the recursive solution into an iterative one during the generation stage, we develop a new
vector-based iterative implementation mechanism instead of the explicit recursion. Furthermore, a
significant performance benefit comes from the improved parallel two-list algorithm, including the
IGS, the IPS, and the ISS.
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A series of experiments are conducted to test the performance of our GPU implementation under
different experimental environments. The experimental results show that the GPU implementation
has much better performance than the CPU implementation and can achieve significant speedup
on different GPU cards. The experimental results also show that the improved algorithm can bring
significant performance benefits for our GPU implementation.

From a hardware point of view, the major consideration for our GPU implementation is the mem-
ory available on the GPU. Up to now, the largest single GPU memory space available does not
exceed 8 GB, which is far from meeting the memory requirements for large-scale SSP. In future
work, we will explore new techniques to solve large-scale SSP on heterogeneous CPU/GPU cluster
systems with less communication overhead and optimal load balancing.
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