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Abstract
In recent years, the advance in information technology has promoted a
wide span of emerging cyber-physical systems (CPS) applications such as
autonomous automobile systems, healthcare monitoring, and process control
systems. For these CPS applications, service latency management is extraordi-
narily important for the sake of providing high quality-of-experience to terminal
users. Edge-cloud computing, integrating both edge computing and cloud com-
puting, is regarded as a promising computation paradigm to achieve low service
latency for terminal users in CPS. However, existing latency-aware edge-cloud
computing methods dedicated for CPS fail to jointly consider energy budgets
and reliability requirements, which may greatly degrade the sustainability of
CPS applications. In this article, we explore the problem of minimizing ser-
vice latency of edge-cloud computing coupled CPS under the constraints of
energy budgets and reliability requirements. We propose a two-stage approach
composed of static and dynamic service latency optimization. At static stage,
Monte-Carlo simulation with integer-linear-programming technique is adopted
to find the optimal computation offloading mapping and task backup number.
At dynamic stage, a backup-adaptive dynamic mechanism is developed to avoid
redundant data transmissions and executions for achieving additional energy
savings and service latency enhancement. Experimental results show that our
solution is able to reduce system service latency by up to 18.3% compared with
representative baseline solutions.
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1 INTRODUCTION

Cyber-physical systems (CPS) are a kind of systems that deeply intertwine physical objects and software components
through gathering smart sensing, computation, control and networking techniques.1,2 In recent years, the advance
in information technology has dynamically fueled the deployment of numerous emerging CPS applications such as
autonomous automobile systems, healthcare monitoring, and process control systems. For these CPS applications, service
latency is an utmost design concern for the sake of providing high quality-of-experience to terminal users. Edge-cloud
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computing,3 integrating both edge computing and cloud computing, is regarded as a promising computation paradigm
to achieve low service latency for terminal users in CPS.

Recently, many research works have denoted to the design of latency-aware edge-cloud computing methods suitable
for CPS applications. For example, Cao et al.4 conducted the study on how to deploy heterogeneous edge servers for
minimizing the service latency of the overall and individual base stations. Ghobaei-Arani et al.5 developed a moth-flame
optimization strategy based task scheduling algorithm to minimize the task execution and transfer latency. An edge com-
puting assisted health monitoring system is designed by Sood et al.6 to realize the goal of monitoring and analyzing users’
health statistics in a real-time manner. Mudassar et al.7 proposed a decentralized method to optimize system service
latency. The basic idea of the method is to cluster edge devices into several groups and split resource intensive tasks into
several subtasks such that these subtasks can execute on edge devices in parallel. A Bluetooth 5 powered architecture was
demonstrated by Fraga-Lamas et al.,8 which not only has the ability to quickly response to critical events but also can
handle computing-intensive complex tasks. Jiang et al.9 focused on reducing the execution time of artificial intelligent
applications on hybrid CPU and field-programmable-gate-array platforms. However, all the above research works4-9 fail
to take into account the energy budgets and reliability requirements in designing CPS algorithms.

In addition to service latency optimization, energy minimization and reliability enhancement for CPS applications are
also two hot topics in both academia and industry. From the point of energy minimization, Tariq et al.10 investigated the
issue of energy and contention-aware scheduling of precedence and deadline constrained tasks executed on edge comput-
ing devices. To deal with this issue, the authors proposed an earliest-edge-consistent-deadline-first scheduling algorithm
associated with the technique of energy gradient decent voltage scaling. Peng et al.11 put forward an enhanced nondom-
inated sorting genetic algorithm based computation offloading mechanism to jointly optimize energy optimization and
service latency. Zeng et al.12 investigated the way of leveraging energy generation diversity to realize energy efficient ser-
vice composition for CPS applications powered by green energy. From the point of reliability enhancement, Odonovan
et al.13 devised an industrial CPS architecture involving production-ready machine learning algorithms to optimize both
the task processing time and the number of communication failures. A dynamic reliability prediction algorithm was
delivered by Okafor14 to accurately estimate the system-level mean time to failure. Cicirelli et al.15 introduced a novel
method to design smart CPS capable of fault tolerance with the assistance of edge computing and agent-based techniques.
From the perspective of joint optimization for energy efficiency and service latency, Jiang et al.16 demonstrated a Tabu
search-based heuristic to improve the energy efficiency of real-time applications with security and reliability require-
ments. The main idea of the heuristic is to consecutively conduct Tabu searching procedures of task mode allocation and
message security-level assignment such that an extended list scheduling method can be easily coupled into the process of
producing optimal task schedule tables. Considering the stochastic durations of application execution, Jiang et al.17 fur-
ther presented an energy-efficient design of real-time and reliable applications on uniprocessor embedded systems. The
authors first formulated the optimization problem into a typical multidimensional multiple-choice knapsack problem,
and then leveraged the dynamic programming technique to deal with the knapsack problem. Although the above two
representative research works16,17 take into account both energy efficiency and service latency, they neglect the potential
of edge-cloud framework in improving system performance.

To the best of our knowledge, most of existing latency-aware edge-cloud computing methods dedicated for CPS fail to
jointly consider energy budgets and reliability requirements. Since energy budgets and reliability requirements are also
key concerns in CPS, latency-aware methods neglecting energy budgets or reliability requirements may greatly degrade
and damage the sustainability of CPS applications. In this article, we conduct the first study on optimizing service latency
of edge-cloud computing coupled CPS under the constraints of energy budgets and reliability requirements. In summary,
this article makes the following main contributions.

• We investigate the problem of service latency minimization for edge-cloud computing embedded CPS applications.
In particular, we take CPS applications’ energy budgets and reliability requirements into considerations throughout
service latency optimization.

• We devise a methodology consisting of static and dynamic optimization algorithms. The static algorithm leverages
Monte-Carlo simulation with integer-linear-programming (ILP) technique to find the optimal computation offloading
mapping and task backup number. The dynamic algorithm adopts a backup-adaptive mechanism to avoid redundant
task transmissions and executions at runtime.

• We carry out extensive experiments to appraise the effectivity of our solution. Experimental results reveal that our
solution reduces system service latency by up to 18.3% compared with representative baseline solutions.
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The rest of this article is organized as follows. Section 2 presents system models. Section 3 introduces the problem
definition and outlines our proposed solution. Sections 4 and 5 describe the static and dynamic service latency optimiza-
tion algorithms, respectively. The evaluation results are demonstrated in Section 6 and conclusive statements are given
in Section 7.

2 SYSTEM MODELS

This section introduces system models including system architecture model, service latency model, energy model, and
reliability model.

2.1 System architecture model

As illustrated in Figure 1, we consider typical edge-cloud computing coupled CPS consisting of numerous end users,
 base stations base = {1

base,
2
base, … ,



base},  heterogeneous edge servers edge
server = {edge,1

server ,
edge,2
server , … ,

edge,
server }, and

one cloud server cloud
server. The heterogeneity of edge servers is mainly demonstrated in their computation capacity, that

is, any two different edge servers exhibit different computation capacities. The computation capacity of edge server


edge,k
server ∈ 

edge
server (1 ≤ k ≤ ) is denoted by 

edge,k
server , and the computation capacity of cloud server cloud

server is represented by
cloud

server. Due to the consideration of deployment costs, the number of edge servers is much less than that of base stations
in real world, which indicates the inequation of  >  holds. For the sake of easy presentation, we utilize an undirected
graph = ( , ) to describe the topological relationship among base stations, edge servers, and cloud servercloud

server. In
the undirected graph  = ( , ),  and  respectively store the placement location information (e.g., latitude, longitude)
and link communication information (e.g., link bandwidth, routing selection) of base stations {1

base,
2
base, … ,



base},
edge servers {edge,1

server ,
edge,2
server , … ,

edge,
server }, and cloud server cloud

server. It should point out that the mentioned topological
relationship is logically full-meshed, but in fact it is a multihop network, that is, a base station is able to conduct
communication with the desired edge/cloud server through other base stations.

2.2 Service latency model

For every base station 
j
base in the concerned system, it has to offload end users’ computation tasks in its charge to an

edge server edge,k
server or cloud server cloud

server, and pray the selected edge or cloud server to process computation tasks. Given

F I G U R E 1 Example of edge-cloud
computing assisted CPS
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this, we model the service latency of base station 
j
base from two aspects of computation offloading transmission latency

and execution latency. We first introduce the model of computation offloading transmission latency. To be specific, we
assume that the computation tasks sent from multiple end users to base station

j
base follow a Poisson distribution with the

parameter of average arrival rate 
j
base. Let  tot

server = {cloud
server,

edge,1
server ,

edge,2
server , … ,

edge,
server } denote the collection of  edge

servers and cloud server cloud
server, and m

server (0 ≤ m ≤ ) represent the mth server in server set  tot
server. It is also assumed

that the communication bandwidth between base station 
j
base and edge/cloud m

server is j,m. As detailed in Reference 18,
the communication latency from base station 

j
base to edge/cloud server m

server is calculated as


j,m
com =

j,m

𝜉
+

Wj

j,m
. (1)

In Equation (1), j,m indicates the distance from base station 
j
base to edge/cloud server m

server, 𝜉 suggests the
propagation speed of electromagnetic waves, and W j implies the total data volume of end users’ tasks at base station 

j
base.

We then introduce the model of computation offloading execution latency. Specifically, we choose the widely utilized
M/G/1 queue model in literature19 to quantify execution latency of base station 

j
base connected to edge/cloud server

m
server. In this model, task execution time on edge/cloud server m

server is not limited to any specified probability distribu-
tion, that is, it is allowed to obey a general probability distribution function with average value 𝜇m and standard deviation
𝛿m. Note that this general probability distribution function should be given in advance before the system starts to run.
Once the system is in running state, tuning this probability distribution function is prohibited. As shown in Reference 19,
the execution latency of base station j

base connected to edge/cloud server m
server is calculated as


j,m
exe =


j
base

m
server

+
(𝜇2

m + 𝛿2
m)(

j
base + Φm)

2(m
server −

j
base + Φm)

. (2)

In Equation (2), m
server denotes the computation speed supported by edge/cloud server m

server, and Φm represents the
sum of task arriving rates of such base stations (except base station 

j
base) mapped to edge/cloud server m

server.
Putting together the transmission latency in Equation (1) and execution latency in Equation (2), the total service

latency of base station 
j
base if it establishes a connection to edge/cloud server m

server is expressed as


j,m
tot =

j,m

𝜉
+

Wj

j,m
+


j
base

m
server

+
(𝜇2

m + 𝛿2
m)(

j
base + Φm)

2(m
server −

j
base + Φm)

. (3)

The system service latency is then defined as the averaged service latency of all base stations in the system, that is,


avg
sys = 1

J

∑
j=1

∑
m=0

j,m
j,m
tot . (4)

In Equation (4), j,m is a binary decision variable taking the value either 0 or 1. In cases where base station 
j
base

decides to communicate with edge/cloud server m
server, j,m takes the value 1; otherwise, j,m takes the value 0.

2.3 Energy model

The whole energy dissipation of edge-cloud computing coupled CPS mainly includes two parts: one is the energy con-
sumed by base stations to offload computation tasks from end users to edge/cloud servers, and the other is the energy
consumed by edge/cloud servers to process offloaded computation tasks. Assume that the power consumption of base
station 

j
base is a constant number of  j

base. The energy dissipation of base station 
j
base to transmit end users’ computation

tasks in its charge is therefore given by

Ej
base = 

j
base

∑
m=0

j,m
j,m
com. (5)



CAO et al. 2229

The energy consumed by an edge/cloud server depends to a great extent on several functional components of pro-
cessors, disks, memory, fans, and cooling systems. As pointed out in References 20-22, the processor energy dissipation
accounts for a significant portion of the overall energy consumption in an edge/cloud server. Consequently, we only
take the processor energy dissipation into consideration when modeling the energy dissipation of edge/cloud servers.
Following the energy model in References 20-22, the energy consumed by edge/cloud server m

server can be estimated as

Em
server = (m,sta

server + 𝛼mv2
m

m
server)

∑
j=1

j,m


j
base

m
server

, (6)

where 
m,sta
server refers to the static power dissipation and it is a constant number dependent on processor architecture of

edge/cloud server m
server. 𝛼m is also a constant number and vm is the processor supply voltage of edge/cloud server m

server.
Combining Equations (5) and (6), the system energy consumption is naturally expressed as

Esys =
∑

j=1
Ej

base +
∑

m=0
Em

server. (7)

2.4 Reliability model

The reliability of tasks at a base station is defined as the probability that these tasks are first successfully transmitted to
the target edge/cloud server without the occurrence of bit errors, and then successfully executed by the target edge/cloud
server without the occurrence of soft errors. In the procedure of digital transmission, bit errors mostly arise from ambient
noises, interferences, distortions, or bit synchronization errors over links. Let Θj,m

bit denote the constant bit error rate of
the link from 

j
base to edge/cloud server m

server, then the transmission reliability is depicted as23

Υj,m
com = exp(−Θj,m

bit ⋅ 
j,m
com). (8)

Unlike bit errors, soft errors are mainly incurred by transient faults resulting from cosmic radiations or electromag-
netic interferences. LetΘm

soft represent the fault occurrence rate of edge/cloud serverm
server on average, then it is calculated

as24,25

Θm
soft = Cm ⋅ exp(−𝜛m ⋅ m

server), (9)

where both Cm and 𝜛m are constant numbers dependent on hardware architecture. Using exponential distribution
assumption, the execution reliability is therefore given by

Υj,m
exe = exp

(
−Θm

soft ⋅


j
base

m
server

)
. (10)

To meet system reliability requirements, we adopt the powerful backup technique to tolerate both bit errors and soft
errors. Moreover, to check whether or not tasks are successfully processed, an acceptance test26 is conducted after the
execution of current backup on any edge/cloud server. If the acceptance test shows that there are no errors, the output
results of the current backup are accepted; otherwise, they are directly thrown away. When 

j,m
back backups are reserved for

base station 
j
base, the reliability is readily derived as

Υj,m
back = 1 − (1 − Υj,m

com ⋅ Υj,m
exe)

j,m
back . (11)

The system reliability is then characterized by the product of the reliabilities of all base stations in the system, that is,

Υsys
back =

∏
j=1

∑
m=0

j,mΥj,m
back. (12)
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3 PROBLEM DEFINITION AND APPROACH OVERVIEW

This section first defines the problem of service latency optimization and then outlines our proposed approach.

3.1 Problem definition

Our goal is to minimize system service latency by determining an optimal strategy of computation offloading and task
backup for every base station under given design constraints. Given this, we define the problem of service latency opti-
mization as follows. For the system described by  = ( , ), decide the i) computation offloading mapping from base
stations to edge/cloud servers and ii) number of task backups for individual base stations such that the system service
latency is minimized. Five design constraints should be met in order to guarantee system scheduling feasibility. First,
every base station is only allowed to forward its computation tasks to one edge/cloud server. Second, the workload of
any edge/cloud server cannot exceed its maximal processing capacity. Third, the energy consumed by the whole sys-
tem cannot exceed the given energy threshold. Fourth, the number of task backups for each base station cannot exceed
the maximum backup number specified by the system. Finally, the system reliability with error tolerance is higher
than the predefined reliability threshold. In summary, our studied optimization problem is mathematically formulated
as follows.

minimize: 
avg
sys = 1

J

∑
j=1

∑
m=0

j,m
j,m
tot (13)

subject to:
∑

m=0
j,m = 1,∀j ∈ [1, 2, … , ] (14)

∑
j=1

j,m
j
base ≤ m

server, 0 ≤ m ≤  (15)

∑
j=1

Ej
base +

∑
m=0

Em
server ≤ Ethr

sys (16)


j,m
back ≤ thr

back, 1 ≤ j ≤  , 0 ≤ m ≤  (17)

Υsys
back =

∏
j=1

∑
m=0

j,mΥj,m
back ≥ Υthr

back. (18)

Equation (14) ensures that base station 
j
base is precisely mapped to one and only one edge/cloud server. Equation (15)

ensures the satisfaction of maximal processing capacity constraint for each edge/cloud server. Equation (16) ensures the
satisfaction of the energy upper-bound constraint. Equation (17) ensures the satisfaction of backup number constraint,
where thr

back denotes the maximum backup number specified by the system. Equation (18) ensures the satisfaction of
system reliability constraint, where Υthr

back denotes the predefined system reliability threshold.

3.2 Approach overview

To tackle the problem defined in Section 3.1, we develop a two-stage approach composed of static and dynamic ser-
vice latency optimization. At the static optimization stage, Monte-Carlo simulation with ILP technique is adopted
to find the static computation offloading mapping and the number of task backups for each base station. We first
introduce the definition of error adaptation factor for the purpose of characterizing the stochastic features of error
occurrences. With the help of error adaptation factor, we then utilize the ILP technique to solve a determined opti-
mization problem under energy consumption constraints and conduct Monte-Carlo simulations to judge whether or
not the system reliability constraint is satisfied. After several attempts of tuning error adaptation factor, an optimal
solution meeting both the constraints of energy consumption and system reliability can be found. Considering redun-
dant backup transmissions and executions incurred by static optimization stage, we further propose a backup-adaptive
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dynamic optimization mechanism for enhancing system service latency at runtime. At the dynamic optimization stage,
once the first successful backup is detected, the transmissions and executions of other unnecessary task backups are
immediately canceled. Through the above two stages, our approach can achieve the goal of minimizing system service
latency.

4 MONTE- CARLO SIMULATION WITH ILP TECHNIQUE BASED STATIC
OPTIMIZATION

This section presents our Monte-Carlo simulation with ILP technique based static optimization mechanism. We first
describe the main idea of our proposed strategy, and then exhibits the algorithm pseudo-code of the optimization
strategy.

4.1 Stochastic static strategy

As aforementioned, we adopt the popular backup technique to tolerate bit errors and soft errors. In best cases where
no errors occur during the computation forwarding and processing procedure for base station 

j
base, it is clearly that no

redundant backup is needed to provide error tolerance. Then, let j,%
base be the average arrival rate of base station 

j
base at

that moment. On the contrary, in worst cases a total of thr
back backups should be completely finished for base station 

j
base.

Let j,
base be the average arrival rate of base station 

j
base at worst cases, then it is given by 

j,
base = thr

back ⋅
j,%
base. Evidently,

both 
j,%
base and 

j,
base are constant for every base station 

j
base. Nevertheless, in common cases the average arrival rate


j
base of base station 

j
base is a random variable because of the stochastic characteristic of error occurrences. Therefore,

we define an error adaptation factor, denoted by Φ ∈ [0, 1], to portray the uncertainty in average arrival rate owing to the
occurrences of bit errors and soft errors. Using error adaptation factor, the average arrival rate with error tolerance from
base station 

j
base to edge/cloud server m

server is then given by


j,m
base = Φ ×

j,%
base + (1 − Φ) ×

j,
base. (19)

Recall that our objective is to minimize system service latency by determining optimal computation offloading map-
ping and task backup number. Given the average arrival rate 

j,m
base with error tolerance in Equation (19), the backup

number  j,m
back is facilely derived as


j,m
back =

⌈


j,m
base


j,%
base

⌉
. (20)

Since the backup number 
j,m
back can be calculated by using Equation (20) under given error adaptation factor, the

remaining question is how to decide an optimal computation offloading mapping. To tackle this issue, we propose an
effective computation offloading mapping approach based on Monte-Carlo simulation with ILP technique. Specifically,
we first adopt the ILP technique to derive optimal j,m for individual base stations under current error adaptation factor
Φ, where the linear objective is Equation (13) and the linear constraints are Equations (14)-(17). Next, we generate bit
errors for each communication link and soft errors for every edge/cloud server based on the probability distributions of
error occurrences. Then, the system reliability corresponding to current bit errors and soft errors is effortlessly derived by
using Equation (12). The above two steps produce one sample of the Monte-Carlo simulation, and enough Monte-Carlo
samples are thereupon taken by repeating this process. The system reliability corresponding to numerous Monte-Carlo
samples can be safely estimated as the ratio of the number of feasible samples satisfying Equation (18) to the total number
of Monte-Carlo samples. If this system reliability is no less than the predefined reliability, the resultant computation
offloading mapping variable j,m is outputted. Otherwise, we tune the current value of error adaptation factor, and repeat
the procedure of Monte-Carlo simulation with ILP technique until the first feasible computation offloading mapping
solution is found.
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4.2 Stochastic static algorithm

Algorithm 1. Stochastic static strategy

Input: = ( , )
1: Υsys

back ← 0;
2: Φstart ← 0, Φend ← 1;
3: while (Υsys

back − Υthr
back) ≥ 𝜉 ≥ 0 do

4: Φ ← Φstart + (Φend − Φstart)∕2;
5: for j = 1 to  do
6: for m = 0 to  do
7: determine backup number  j,m

back using Eq. (20);
8: end for
9: end for

10: use an ILP solver in27 to deal with the ILP omitting the reliability constraint (18): objective (13), subject to (14)-(17);
11: derive system reliability Υsys

back using Monte-Carlo simulations;/* judge whether or not the reliability constraint
(18) is satisfied */

12: if Υsys
back<Υ

thr
back then

13: Φstart ← Φ + 1;
14: else
15: Φend ← Φ − 1;
16: end if
17: end while
18: return i) static computation offloading mapping; ii) the number of task backups for each base station.

Algorithm 1 presents the pseudo-code of our stochastic offloading strategy at static optimization stage. The input to
this algorithm is the undirected graph  = ( , ). Lines 1–2 of the algorithm initialize three variables of system reliability
Υsys

back, the lower boundΦstart, and the upper boundΦend of error adaptation factorΦ. Lines 3–17 show the iteration process
of finding the optimal solution to static computation offloading mapping and the number of data backups for individual
base stations. To be specific, line 3 judges whether or not the diffidence between current system reliability Υsys

back and
system reliability threshold Υthr

back is larger than yet close to a sufficiently small constant 𝜉. If the answer is no, line 4 then
randomly picks up the value of error adaptation factor Φ from its domain using binary search method. For each base
station 

j
base mapped to edge/cloud server m

server, lines 5-9 calculate backup number  j,m
back using Equation (20) under the

current setting of error adaptation factor Φ. Line 10 adopts an ILP solver developed in Reference 27 to address the ILP
program with objective (13) and constraints (14)–(17). Based on the results obtained from line 10, line 11 derives current
system reliability Υsys

back using Monte-Carlo simulations. Lines 12–16 update the lower bound Φstart or the upper bound
Φend of error adaptation factor Φ according to the relationship between system reliability Υsys

back and reliability threshold
Υthr

back. Lines 18 outputs the optimal computation offloading mapping and the number of task backups for each base station
at static optimization stage.

5 BACKUP-ADAPTIVE DYNAMIC OPTIMIZATION

This section shows our backup-adaptive dynamic optimization mechanism for enhancing system service latency at
runtime. We first describe the main idea of our dynamic optimization mechanism, and then exhibits the algorithm
pseudo-code of the dynamic optimization mechanism.
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5.1 Backup-adaptive strategy

As early mentioned in Section 2.4, we adopt the popular task backup technique to tolerate bit errors and soft errors for the
purpose of satisfying system reliability requirements. Task backup technique has a strong power in dealing with varied
errors, but it inevitably increases system service latency due to the redundant backup transmissions and executions. For
example, even though the first backup of any task is successfully processed without the occurrence of both bit errors and
soft errors, task backup technique still toughly allows the unnecessary transmissions and executions of remaining back-
ups. Evidently, the successful transmission and execution of only one task backup is sufficient to ensure the processing
result correctness. Given this, we propose a backup-adaptive dynamic strategy at online stage. At this stage, once the first
successful backup is detected by using acceptance test method, the transmissions and executions of other task backups
are canceled for enhancing system service latency. We describe the pseudo-code of our backup-adaptive dynamic strategy
in the next subsection.

Algorithm 2. Backup-adaptive dynamic strategy

Input:i) static computation offloading mapping; ii) the number of task backups for eachbase station.
1: for j = 1 to  do
2: for m = 0 to  do
3: if j,m == 1 then
4: for i = 1 to 

j,m
back do

5: check whether or not the i-th backup is successfully processed using acceptance test method;
6: if i-th backup is successfully processed then
7: update 

j,m
back using 

j,m
back ← i;

8: break;
9: else

10: continue;
11: end if
12: end for
13: end if
14: end for
15: end for
16: return updated task backup number of individual base stations.

5.2 Backup-adaptive algorithm

Algorithm 2 shows the pseudo-code of our backup-adaptive strategy at dynamic optimization stage. The algorithm takes
inputs of static computation offloading mapping and the number of task backups for each base station. Lines 1–3 of the
algorithm check whether or not base station 

j
base is mapped to edge/cloud server m

server. If the answer is yes, lines 4 and
5 then attempt to find the first successful transmission and execution backup from all task backups for base station 

j
base.

In the case where ith backup is successfully processed, lines 6–8 first update the backup number base station 
j
base, and

then exist the iteration searching process. Otherwise, lines 9 and 10 continue the iteration searching process by jumping
back to line 4. The algorithm outputs the updated task backup number of individual base stations in line 16.

6 NUMERICAL RESULTS

6.1 Experimental configurations

In order to evaluate the effectiveness of our reliable edge-cloud computing solution, we carry out extensive experiments
based on the base station database from Shanghai Telecom.28-30 Figure 2 exhibits the location distributions of 3233 base
stations in this base station database, where the number in every circle marked by red color refers to the number of base
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F I G U R E 2 Illustration of 3233 base stations’ deployment locations provided by Shanghai Telecom28-30

stations that have already been properly deployed in this zone. For every base station, we set its task arriving rate and data
volume on average to the intervals of [4× 106, 6× 108] and [1, 100] Mb, respectively.21,31-34 In addition, we construct a set
of heterogeneous edge/cloud servers based on five kinds of commercial servers in the real world. The first kind of servers
comes from Microsoft Azure China (Shanghai).35 We randomly choose a server containing ten processor cores with per
core operating frequency of 3.6 GHz from such kind of servers, and ask this server to play the role of cloud server 0

server.
The second kind of servers is built on the HPE ProLiant MicroServer Gen10 servers,36 and each server contains four
processor cores with per core operating frequency of 3.4 GHz. The third kind of servers is built on the Dell R230 servers,37

and each server contains six processor cores with per core operating frequency of 3.0 GHz. The fourth kind of servers is
built on the Lenovo TS250 servers,38 and each server contains two processor cores with per core operating frequency of
3.9 GHz. The fifth kind of servers is built on the Inspur NP3020 servers,39 and each server contains four processor cores
with per core operating frequency of 3.0 GHz.

Furthermore, we utilize the later four kinds of servers to construct a set of heterogeneous edge servers. The number
of each kind of edge servers is equally set to 50, and thus the size of edge server set is 200. The task execution time on
every kind of edge servers is assumed to follow normal distributions, and the mean-variance parameters of the normal
distributions are orderly set to the pairs of (20, 5), (14, 8), (35, 15), and (17, 10). The location distribution of edge servers
is produced in a random way with the assumption that every edge server is strictly colocated with a selected base station.
For each link between a base station and an edge/cloud server, its communication capacity is deemed to be in the interval
of [100, 1000] KB/s.40 The electromagnetic wave propagating rate takes the value of 2× 105 km/s.18

6.2 Experimental results

Figure 3 demonstrates system service latency achieved by three solutions under fixed edge server locations yet varied
base station workloads. Note that every data point in this figure is an average of 100 simulation experiments. We are
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F I G U R E 3 The system service latency under fixed edge server locations and varied base station workloads
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F I G U R E 4 The system service latency under varied settings of edge server locations and fixed base station workloads

F I G U R E 5 The task scheduling feasibility achieved by three
solution with different system configurations: (A) fixed edge server
locations and varied base station workloads; (B) varied settings of
edge server locations and fixed base station workloads
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able to observe that our proposed edge-cloud computing solution shortens service latency by up to 18.3% compared with
baseline solution GAES11 under comparison. Baseline solution GAES11 is an enhanced nondominated sorting genetic
algorithm based computation offloading mechanism to jointly optimize energy optimization and service latency. This
method fails to take task reliability constraints into account. In addition, we can also see from the figure that our proposed
edge-cloud computing solution is inferior to baseline solution RTWI4 in terms of service latency, with an average gap
of 13.2%. Baseline solution RTWI4 aims to minimize not only the average response time of all base stations but also
the response time of each base station. However, it fails to consider the constraints of energy budgets and reliability
requirements.

Figure 4 presents the system service latency achieved by three solutions under fixed base station workloads yet varied
edge server locations. Similar to Figure 3, every data point in this figure is also an average of 100 simulation experiments.
As observed from the figure, the system service latency achieved by our proposed solution is 17.4% smaller than that of
baseline solution GAES11 but 19.1% higher than that of baseline solution RTWI.4 This is mainly because our proposed
solution allows multiple executions of a same task to provide the desired fault tolerance requirements, but the baseline
solution RTWI4 ignores the fault tolerance requirements and one task is exactly executed once even occurring bit errors
or soft errors. Figure 5 plots the task scheduling feasibility achieved by our proposed solution and two benchmarking
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solutions. The task scheduling feasibility is given by the ratio of the number of simulations in which tasks are successfully
scheduled under constraints of energy budgets and reliability requirements to the whole number of simulations under
test (i.e., 10,000). The results in this figure clearly exhibit that our proposed solution can maintain 100% task scheduling
feasibility whereas neither of the two benchmarking solutions can guarantee task scheduling feasibility. This is due to the
fact that our proposed solution takes into account both energy budgets and reliability requirements, while benchmarking
solutions neglect energy and/or reliability constraints.

7 CONCLUSION

Emerging CPS applications like autonomous automobile systems, healthcare monitoring and process control systems,
desire to reduce service latency for providing high quality-of-experience to terminal users. In this article, we propose a
two-stage method to tackle the problem of minimizing service latency of edge-cloud computing coupled CPS with con-
siderations of the energy budgets and reliability requirements. The static stage aims to find the optimal computation
offloading mapping and the number of task backups while the dynamic stage strives for avoiding redundant task trans-
missions and executions at runtime. Extensive experimental results reveal that our method reduces system service latency
by up to 18.3% while guaranteeing the satisfaction of specific energy budgets and reliability requirements.
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