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Energy Minimization in Large-Scale
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Abstract—In recent years, cyber-physical systems (CPS) have
been widely deployed in industrial manufacturing fields and our
daily living domains. End–end–edge collaboration, coupling mo-
bile edge computing and device-to-device communication, is a
promising computation paradigm to meet the stringent real-time
demands of large-scale CPS applications. However, energy and
reliability concerns should be carefully addressed in end–end–edge
collaboration-empowered large-scale CPS due to the limited energy
supply and inherent openness characteristic of end devices. In
this article, we explore the reliability-driven energy optimization
of end–end–edge collaborated large-scale CPS applications. We
develop a reliability-driven end–end–edge collaboration approach
to deal with the energy minimization problem. Our approach
first designs a clustering method to quantify differentiated energy
demands by analyzing the energy dissipation composition of het-
erogeneous applications. Afterward, our approach leverages incre-
mental control and swarm intelligence-based techniques to obtain
energy-efficient reliability-guaranteed task offloading solutions for
differentiated application clusters. Experimental results reveal that
our approach achieves 51.48% energy savings compared with peer
algorithms.

Index Terms—Cyber-physical systems (CPSs), device-to-device
(D2D) communication, energy, mobile edge computing (MEC),
reliability.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPSs) are the tight inte-
gration of hardware and software components by lever-

aging advanced networking, sensing, computing, controlling,
and communication technologies [1]. Nowadays, the spatial
and temporal dimensions of the CPS have been continuously
increasing due to the proliferation of interconnected end devices.
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A variety of large-scale CPS applications, e.g., smart grid, indus-
trial control systems, intelligent transportation, and personalized
healthcare, have been widely deployed across diverse domains.
Oftentimes, these CPS applications have stringent real-time re-
quirements since delayed outputs may incur unacceptable timing
faults [2], [3].

Recently, an appealing paradigm of end–end–edge col-
laboration [4] coupling mobile edge computing (MEC) and
device-to-device (D2D) communication techniques has attracted
widespread attention. In the common MEC paradigm, real-time
tasks on an individual end device are able to complete their
execution locally or offload computation instructions to MEC
servers. However, this computing paradigm cannot well handle
the heterogeneity of end devices during task offloading proce-
dures, resulting in unbalanced resource utilization among end
devices in a local network [5], [6]. Unlike the MEC paradigm,
the D2D communication technique permits end devices with
high resource utilization to request nearby end devices with un-
derutilized resources to facilitate task execution. Consequently,
MEC and D2D communication techniques are complementary
to each other, which inspires us to develop the end–end–edge
collaborated task offloading method. In this integrated paradigm,
real-time tasks on an end device can offload their computation to
either MEC servers or adjacent end devices for accomplishment.
To fulfill task real-time demands, it is natural to incorporate the
end–end–edge collaboration method into the design of large-
scale CPS.

Nevertheless, energy management should be carefully con-
ducted due to the economical deployment and maintenance con-
cerns in the large-scale CPS. To this end, considerable works [7],
[8], [9], [10] have been devoted to developing energy-aware end–
end–edge collaboration solutions. For instance, Cao et al. [7]
developed an energy-efficient framework based on convex op-
timization techniques to minimize the energy consumption for
both binary and partial CPS computation offloading scenarios.
Kai et al. [8] devised a two-stage method to optimize the number
of executed tasks (i.e., system throughput) under energy con-
straints. Yang et al. [9] proposed a game theoretic offloading
approach to jointly optimize the response latency and energy
dissipation of independent tasks. Leveraging the alternating
direction method of multipliers algorithm, Sun et al. [10] aimed
to minimize the task response latency under energy budget con-
straints. However, all the aforementioned works [7], [8], [9], [10]
fail to take the intertask dependence into energy optimization.
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TABLE I
COMPARISON OF OUR WORK WITH RELATED WORKS IN LITERATURE

In addition to energy management, reliability augmentation is
also a hot topic in CPS environments because real-time tasks are
vulnerable to both bit and soft errors arising from the inherent
openness characteristic of end devices. From the perspective
of reliability optimization, Naithani et al. [11] presented an
online task scheduler to optimize the system overall reliability
by analyzing the reliability features of running applications.
Ansari et al. [12] put forward a two-stage scheme to wisely
determine the optimal replicas of individual real-time tasks.
Li et al. [13] demonstrated a feedback controlling method to
improve the reliability of EtherCAT networks. An extremal
optimization theory-based heuristic algorithm was designed by
Savino et al. [14] to augment the system resiliency to soft errors.
Leveraging the processor-merging technique, Hu et al. [15]
exhibited an energy-efficient task scheduling approach to re-
duce the system energy dissipation under timing and reliability
constraints. Cao et al. [16] investigated the joint optimization
of response latency and processor wearout under reliability and
energy constraints for large-scale CPS.

As an intuitive presentation, we compare the related works [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16] in
Table I. As shown in the table, existing works fail to jointly bring
the end–end–edge collaboration paradigm and reliability con-
cerns into the energy optimization of the large-scale CPS. In this
article, we investigate the reliability-driven energy optimization
of end–end–edge collaboration-empowered large-scale CPS.
Particularly, we consider both the intertask dependence depicted
by the directed acyclic graph (DAG) and the concurrent task
offloading of multiple DAG applications. In summary, we make
the following main contributions.

1) We design a clustering approach to quantify differ-
entiated DAG energy demands by analyzing the en-
ergy dissipation composition of heterogeneous DAG
applications.

2) We devise an incremental control-based task offloading
scheme for computation-intensive DAG clusters by ana-
lyzing the computation energy optimality.

3) We develop a swarm intelligence-based task offloading
scheme for communication-intensive DAG clusters by
integrating a novel DAG type transformation technique.

4) We validate the performance of our approach on both
synthetic and real-life DAG applications. Experimental
results show that our approach achieves 51.48% energy
savings compared with peer algorithms.

The rest of this article is organized as follows. Section II intro-
duces the system architecture and models. Section III presents
the problem formulation and solution overview. In Section IV,
we present a DAG clustering method. In Sections V and VI, we
devise task offloading schemes for computation-intensive and
communication-intensive DAG clusters, respectively. We eval-
uate our solution in Sections VII and VIII. Finally, Section IX
concludes this article.

II. SYSTEM ARCHITECTURE AND MODELS

A. System Architecture

We consider an end–end–edge collaborated large-scale CPS
architecture consisting of M end devices D = {D1, D2,
· · · , DM}, a base stationB, and an edge server S. For each end
deviceDm (1 ≤ m ≤M), its computing capacity is depicted by
a processorΘm with supply voltage vm and operating frequency
fm. The edge server S is empowered by the container-based
virtualization techniques that support virtual packaging and iso-
lation of different applications [17]. LetC = {C1, C2, . . . , CH}
be a collection of total H available containers created by edge
server S. Then, every container Ch (1 ≤ h ≤ H) can be de-
picted by a tuple Ch : {bh, fh}, where bh is the communication
bandwidth and fh is the operating frequency. Note that base
station B is generally deployed near the location of edge server
S, and it acts as a global governor grasping the whole system
information, e.g., routing selection, workload, end device states,
etc.

B. Application Model

Support that every end device Dm is associated with
an application described by DAG Gm = (Vm, Em). Vm =
{τm,1, τm,2, . . . , τm,ξm} is a set of total ξm precedence
constrained real-time tasks in the application. Em =
{(em,i,p, ηm,i,p)|1 ≤ i, p ≤ ξm, i �= p} is a set utilized for
capturing the task dependence and communication data
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volume from task τm,i to task τm,p. If task τm,p is a
direct successor of τm,i, em,i,p is hence set to 1, i.e., task
τm,p cannot start its execution until it receives a total
amount of ηm,i,p communication data from task τm,i. For
every task τm,i, its characteristics are depicted by a tuple
τm,i : {μm,i,Wm,i,Υm,i, Tm, Rm}, where μm,i ∈ [0, 1] is the
task activity factor [18],Wm,i is the number of CPU instruction
cycles, Υm,i is the data volume of CPU instruction cycles,
Tm is the common deadline, and Rm is the reliability goal. In
end–end–edge collaborated systems, task τm,i is equipped with
local, D2D, and remote execution modes. In the local execution
mode, task τm,i should completely finish its execution on end
device Dm without the assistance of edge server S or other
end devices. In the D2D execution mode, task τm,i is able to
offload its computation via D2D links to another end device
Dπ (1 ≤ π ≤M,π �= m), and then, asks end device Dπ to
accomplish task execution. Similar to the D2D mode, the remote
execution mode allows task τm,i to transmit its computation to
edge server S, and then, request edge server S to perform task
execution. Since base station B is a global governor, it needs
to decide the task execution modes according to the system
information.

C. Reliability Model

We consider the occurrence of both bit errors and soft errors.
Specifically, bit errors primarily occur on communication links
due to ambient interferences or bit synchronization errors [13].
Let Rm,i,ρ

biterror be the capacity of task τm,i in tolerating bit errors,
where ρ ∈ {m,π, h} indicates the execution mode of task τm,i.
In cases of task τm,i in the local execution mode (i.e.,ρ = m), the
communication reliabilityRm,i,ρ

biterror is deemed to be 1. Moreover,
in cases where task τm,i is offloading to end device Dπ or
container Ch at time instance t (i.e., ρ = π or ρ = h),Rm,i,ρ

biterror is
given by [13]

Rm,i,ρ
biterror = exp{t× λ

m,ρ
biterror} (1)

where λ
m,ρ
biterror is the constant bit error rate of the communication

link. Unlike bit errors, soft errors may appear during task exe-
cutions on processors. Let Rm,i,ρ

softerror denote the capacity of task
τm,i in tolerating soft errors at time instance t, the execution
reliability is then expressed as [19]

Rm,i,ρ
softerror = Rm,i,ρ

parent × exp{t× λ
ρ
softerror} (2)

where λ
ρ
softerror is the constant soft error rate. Rm,i,ρ

parent is the
probability that the correct communication data of all direct
parents is successfully delivered to task τm,i. Combining (1)
and (2), the reliability of task τm,i is hence inferred by

Rm,i,ρ
reliability = Rm,i,ρ

biterror ×Rm,i,ρ
softerror. (3)

D. Energy Model

The energy dissipation of end devices can be decomposed into
static and dynamic components [18], [20]. LetPm

static be the static
power of end device Dm, then the static energy consumption

during one scheduling horizon T is attained by

Em
static = Pm

static × T. (4)

The dynamic energy consumption of end device Dm depends
on the execution mode of task τm,i. In the local execution mode,
the dynamic energy consumed by processor Θm when running
task τm,i is depicted by [18], [20]

Em,i
localexe = ψm × v2m × μm,i ×Wm,i (5)

where ψm is the effective switch capacitance of the processor
Θm. Meanwhile, end device Dm should deliver the output
results of task τm,i to direct successors. Let Im,i

child denote a
collection of direct successors of task τm,i, where each element
τm,p ∈ Im,i

child has to receive a total amount of ηm,i,p communi-
cation data from task τm,i. Consequently, the communication
energy of end device Dm when delivering the output results of
task τm,i to task τm,p assumed to be executed on end device
Dk (1 ≤ k ≤M) is inferred by [21], [22]

Em,i,p
localcom =

{
Pm

d2d × ηm,i,p/ϑm,k, if k �= m

0, otherwise
(6)

where Pm
d2d denotes the D2D transmission power of end device

Dm. ϑm,k represents the D2D communication rate between
end devices Dm and Dk, which can be derived by ϑm,k =
bm,k × log2(1 + Pm

d2d × gm,k/ω) [21], [22]. bm,k is the commu-
nication bandwidth, gm,k is the channel gain, and ω stands for
the background interferences. The aforementioned data trans-
mission producer will be triggered when the destination (i.e.,
end deviceDk) of task τm,p is determined. Apart from the local
execution mode, task τm,i can also select the D2D execution
mode of offloading its computation to end deviceDπ . Then, the
energy dissipation of delivering task τm,i is calculated as

Em,i,π
d2dcom = Pm

d2d ×Υm,i/ϑm,π (7)

where ϑm,π is given by bm,π × log2(1 + Pm
d2d × gm,π/ω) [21],

[22]. The energy dissipation of end device Dπ when handling
offloaded task τm,i is inferred by

Em,i,π
d2dexe = Pπ

receive × Tm,i,π + ψπ × v2π × μm,i ×Wm,i (8)

where Tm,i,π stands for the D2D communication time between
edge devices Dm and Dπ for task τm,i, and it is given by
Tm,i,π = Υm,i/ϑm,π.Pπ

receive is the receiving power of targeting
edge deviceDπ . Similarly, the energy dissipation of edge device
Dm when transmitting task τm,i to container Ch is calcu-
lated as Em,i,h

remcom = Pm
remote ×Υm,i/(bm,h × log2(1 + Pm

remote ×
gm,h/ω)), wherePm

remote is the transmission power of end device
Dm in the remote execution mode [21], [22].

III. PROBLEM FORMULATION AND PROPOSED APPROACH

A. Problem Formulation

We are dedicated to minimizing the whole energy dissipation
of end devices in end–end–edge collaborated large-scale CPS.
We present a problem formulation based on the integer linear
programming (ILP) through introducing binary variables αm,i,
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βm,i,π, γm,i,h, and δi,j as follows:

αm,i =

{
1, if τm,i is in local execution mode

0, otherwise
(9)

βm,i,π =

{
1, if τm,i is transmitted to deviceDπ

0, otherwise
(10)

γm,i,h =

{
1, if τm,i is offloaded to containerCh

0, otherwise
(11)

δi,j =

{
1, if τm,i starts execution before τn,j
0, otherwise

(12)

where τn,j is the jth task in DAGGn (1 ≤ n ≤M, 1 ≤ j ≤ ξn).
Our ILP objective function is expressed as

minimize Etotal
energy =

M∑
m=1

Em
energy. (13)

In the objective function, Em
energy denotes the energy dissipation

of end device Dm, and it is derived by

Em
energy = Em

static +

ξm∑
i=1

αm,i ×
⎛
⎝Em,i

localexe +
∑
τm,p

Em,i,p
localcom

⎞
⎠

+
M∑

n=1,n �=m

ξn∑
j=1

βn,j,m × En,j,m
d2dexe +

ξm∑
i=1

M∑
π=1,π �=m

βm,i,π × Em,i,π
d2dcom +

ξm∑
i=1

H∑
h=1

γm,i,h × Em,i,h
remcom. (14)

Meanwhile, the following linear constraints cannot be violated
for the sake of generating a feasible task offloading solution.

1) Every task should satisfy its deadline constraint. Let Tm,i
start

be the start time of task τm,i, then we have

Tm,i
start + αm,i × Wm,i

fm
+

M∑
π=1,π �=m

βm,i,π

× Wm,i

fπ
+

H∑
h=1

γm,i,h × Wm,i

fh
≤ Tm∀τm,i. (15)

2) Every task is performed in only one execution mode

αm,i +
M∑

π=1,π �=m

βm,i,π +
H∑

h=1

γm,i,h = 1∀τm,i. (16)

3) Every task should meet the reliability constraint

Rm,i,ρ
reliability ≥ Rm∀τm,i, ρ ∈ {m,π, h}. (17)

4) The energy dissipation of every end device is upper
bounded. Let Em

upper be the threshold on energy consump-
tion of end device Dm, then we have

Em
energy ≤ Em

upper∀m ∈ [1,M ]. (18)

5) The intertask precedence constraint should be met. Let
Tm,i

finish be the finish time of task τm,i, then we acquire

Tm,p
start ≥ Tm,i

finish × em,i,p∀τm,i, τm,p. (19)

6) All tasks are executed within their durations with no
overlap. Given two tasks τm,i and τn,j , and a large enough
constant number Z (e.g., 100 000 in our experiments), the
following conditions are hence held:

1 ≤ δi,j + δj,i ∀τm,i ∈ Vm, τn,j ∈ Vn (20)

Tm,i
start ≤ Tn,j

start + (1− δi,j)×Z ∀τm,i ∈ Vm, τn,j ∈ Vn

(21)

Tn,j
start ≤ Tm,i

start + δi,j ×Z ∀τm,i ∈ Vm, τn,j ∈ Vn. (22)

Moreover, ∀τm,i ∈ Vm, τn,j ∈ Vn, and τm,i �= τn,j , we readily
get the following inequalities.

Tm,i
finish ≤ (2− αn,j − αm,i)×Z + Tn,j

start + Z × (1− δi,j)
(23)

Tn,j
finish ≤ (2− αn,j − αm,i)×Z + Tm,i

start + Z × δi,j . (24)

Similarly, ∀τm,i ∈ Vm, τn,j ∈ Vn, τm,i �= τn,j ,π ∈ [1,M ], h ∈
[1, H], we can deduce

Tm,i
finish ≤ (2− βn,j,π − βm,i,π)×Z + Tn,j

start + Z × (1− δi,j)
(25)

Tn,j
finish ≤ (2− βn,j,π − βm,i,π)×Z + Tm,i

start + Z × δi,j (26)

Tm,i
finish ≤ (2− γn,j,h − γm,i,h)×Z + Tn,j

start + Z × (1− δi,j)
(27)

Tn,j
finish ≤ (2− γn,j,h − γm,i,h)×Z + Tm,i

start + Z × δi,j . (28)

B. Proposed Approach

As presented previously, our studied problem can be ex-
pressed as an ILP problem. Although existing ILP solvers (e.g.,
an open-source ILP solver in [23]) are capable of deriving
an optimal solution, they may incur unaffordable time over-
heads for dealing with large-scale problem instances. Given
this dilemma, we develop a reliability-driven heuristic task
offloading approach to achieve the goal of energy consumption
minimization. As shown in Fig. 1, our approach first exploits the
metric of communication-computation-ratio (CCR) to quantify
differentiated DAG energy demands. Therefore, the iterative
self-organizing data analysis technique algorithm (ISODATA)
is utilized to group DAG applications based on their CCR
values. At this moment, an individual DAG cluster can be
distinguished into a computation-intensive or communication-
intensive category. Afterward, for computation-intensive DAG
clusters, our approach leverages the incremental control tech-
nique to determine energy-efficient task execution modes based
on an analysis of computation energy optimality. Meanwhile,
for communication-intensive DAG clusters, our approach de-
signs a DAG type conversion technique to reduce the intertask
communication overheads. Thanks to this conversion opera-
tion, communication-intensive DAG clusters are now inverted
to computation-intensive DAG clusters, and thus, their task
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Fig. 1. Overview of our proposed approach.

Fig. 2. Example of DAG energy dissipation composition.

offloading solution can be derived by invoking the incremental
control-based method.

IV. CCR-GUIDED DAG CLUSTERING

In this section, we first present an observation on DAG
heterogeneity in energy demands, and then, exhibit our
DAG clustering method followed by the DAG clustering
algorithm.

A. Observation on DAG Heterogeneity in Energy Demands

As explored in [24], the heterogeneity of DAG applications
can be depicted from multiple perspectives, such as the CCR,
DAG size, parallelism factor, etc. Among these indicators,
CCR is widely adopted to characterize the DAG application
heterogeneity in computation and communication overheads.
Specifically, the CCR value of a given DAG application is
calculated as the average communication overhead divided by
the average computation overhead during its execution on a spe-
cific hardware platform. Essentially, this metric implies either
the communication energy or computation energy occupies a
larger proportion of the whole energy dissipation of a DAG
application. As an example, Fig. 2 demonstrates the energy
dissipation composition of some representative real-life DAG
applications, including fast Fourier transform (FFT), Gaussian
elimination (GE), CyberShake, Montage, and LIGO inspiral
analysis. As observed, the CCR values of different DAG ap-
plications vary significantly. For example, on one hand, the two
applications of CyberShake and Montage maintain higher CCR

values of 3.5 and 2.7, respectively. On the other hand, the remain-
ing three applications of FFT, GE, and LIGO inspiral analysis
attain lower CCR values of 0.6, 0.8, and 1.4, respectively. This
observation inspires us to leverage the DAG CCR values to
quantify differentiated energy demands in the communication
and computation of DAG applications.

B. DAG Clustering Method

We have known that DAG applications have a great distinction
in computation and communication energy demands. Inspired
by this observation, it is natural to dedicate task offloading
methods for the computation-intensive DAG applications and
the communication-intensive DAG applications, respectively.
We select the popular ISODATA technique to cluster DAGs into
multiple groups. Compared with traditional clustering methods,
ISODATA is adaptive to the cluster number by introducing
novel merging and partitioning mechanisms [25]. During every
round of grouping elements, the merging mechanism monitors
both the size of each cluster and the distance between any two
clusters. If the size of a single cluster is small enough, it will
be wisely merged into an adjacent cluster. Meanwhile, if the
distance between two clusters is less than a particular threshold,
they will be combined as a new cluster. On the other hand, the
partitioning mechanism keeps track of the number of elements
and the average dispersion degree of all elements in an individual
cluster. If the number of elements or the average dispersion
degree of all elements is large enough, this cluster will be
split into two small clusters immediately. We should emphasize
that a valid distance criterion should be given in advance to
measure the distance between merged elements ahead of running
the ISODATA method. In the context of our DAG clustering, we
adopt the metric of CCR value as a distance criterion based on
the observation on DAG heterogeneity in energy demands, as
detailed in the following section.

C. Algorithm of CCR-Guided DAG Clustering

We develop a CCR-guided DAG clustering scheme exploiting
the ISODATA technique, as shown in Algorithm 1. Line 1 derives
the CCR values of individual DAG applications. For application
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Algorithm 1: CCR-Guided DAG Clustering Scheme.

Gm, its CCR value CCRm is estimated by

CCRm =

ξm∑
i=1

⎛
⎝a1 ×Wm,i + a2 ×

∑
τm,p∈Im,i

child

ηm,i,p

⎞
⎠ (29)

where a1 and a2 are the energy dissipation coefficients in respect
of computation and communication of the target system, respec-
tively. Line 2 initializes the total number K of clusters. Line 3
selects K clustering centers {w1, w2, . . . , wKd

} in a random
manner. Lines 4–6 iteratively allocate each application Gm to
clusterΦwk

with a smallest CCR difference between CCRm and
CCRwk

. After the aforementioned initialization operations, our
algorithm then enters a loop of finding an optimal clustering
solution in lines 7–26. Specifically, line 9 checks whether or not
the total number of elements in clusterΦwk

is below a predefined
lower boundary. If yes, all elements in cluster Φwk

are assigned
to an adjacent cluster and the overall number Kd of clusters is
decreased (lines 10–12). On the contrary, if the total number of
elements in clusterΦwk

is greater than a predefined upper bound-
ary, cluster Φwk

will be partitioned into two small clusters and
the overall numberK of clusters is accordingly increased (lines
13–16). Lines 17–20 ascertain whether the distance between any
two clusters is closer enough. If yes, lines 21–22 first merge two
similar clusters into a new cluster, and then, update the cluster
number K. Meanwhile, if the CCR variance of all elements in
cluster Φwk

exceeds an allowable threshold, cluster Φwk
will be

Algorithm 2: Incremental Control Algorithm for Task Of-
floading of Computation-Intensive DAG Clusters.

split into two small clusters in lines 23–26. The entire algorithm
ends up outputting the final clustering result Φ in line 27.

V. INCREMENTAL CONTROL FOR TASK OFFLOADING OF

COMPUTATION-INTENSIVE DAG CLUSTERS

In this section, we design an incremental control scheme for
the task offloading of computation-intensive DAG clusters.

A. Observation on Computation Energy Optimality

Algorithm 1 produces a collection of DAG groups by lever-
aging the ISODATA clustering technique. Afterward, we can
classify each DAG cluster into a computation-intensive category
or a communication-intensive category based on its resulting
CCR value on average, that is,

CCR(Φwk
) =

1

|Φwk
|
∑

Gm∈Φwk

CCRm. (30)

If CCR(Φwk
) is below a threshold, the DAG cluster Φwk

is
naturally classified into the computation-intensive category;
otherwise, it is, therefore, classified into the communication-
intensive category. Suppose that Φwk

is a computation-intensive
DAG cluster and Ωwk

= {τ1, τ2, . . . , τφ} is a collection of all
tasks in DAG cluster Φwk

. We neglect the computation energy
analysis of those tasks selecting the remote execution mode
since they only incur communication energy consumption of
end devices. Let D(Φwk

) = {D1, D2, . . . , D|Φwk
|} be a group

of end devices whose tasks are in DAG cluster Φwk
. Then, let

Ω′
wk

= {τ1, τ2, . . . , τφ′ } be a set of the tasks selecting either the
local or D2D execution mode. Let τε (1 ≤ ε ≤ φ′) denote the
εth element in task set Ω′

wk
, and the index of the end device

owning task τε is omitted for easy presentation. According to
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(5), the computation energy of task subset Ω′
wk

is derived by

E(Ω′
wk

) =
∑|Φwk

|
m=1

∑
τε∈Ω′

m

ψm × v2m × με ×Wε (31)

where Ω′
m ⊆ Ω′

wk
represents a group of real-time tasks that are

locally executed or offloaded to be completed on end device
Dm. Furthermore, let θ = [θ1, θ2, . . . , θ|Φwk

|] represent a vector
storing processor-dependent parameters, where θm = ψm × v2m
refers to as the power coefficient of processor Θm. Similarly,
let Y = [Y1,Y2, . . . ,Y|Φwk

|] represent a vector storing task-
dependent parameters, where Ym =

∑
τε∈Ω′

m
(με ×Wε) refers

to as the power coefficient of task subset Ω′
m. Obviously,

E(Ω′
wk

) can be rewritten as the product of processor-dependent
parameters and task-dependent parameters, i.e., E(Ω′

wk
) =

θ1 × Y1 + θ2 × Y2 + · · ·+ θ|Φwk
| × Y|Φwk

|. At this moment,
we observe the optimality of computation energy E(Ω′

wk
),

shown as follows.
Theorem 1: For a given task set Ω′

wk
= {τ1, τ2, . . . , τφ′ },

when the computation energy consumption E(Ω′
wk

) is min-
imized under θ1 ≤ θ2 · · · ≤ θ|Φwk

|, then the inequality Y1 ≥
Y2 ≥ · · · ≥ Y|Φwk

| holds.
Proof: Please refer to the Appendix. �

B. Incremental Control Algorithm

We learn from Theorem 1 that an optimal computation en-
ergy consumption is achieved when the processors with smaller
power coefficients are to execute the tasks with larger power
coefficients. Inspired by this observation, we put forward an
incremental control scheme in Algorithm 2 for the task of-
floading of computation-intensive DAG clusters. Line 1 sorts
all tasks in set Ωwk

in the descending order of task power
coefficient while maintaining the topological order. Line 2 sorts
all processors in setΘ in the order of processor power coefficient
from low to high. Lines 3–18 enter into a procedure of iteratively
searching for an optimal task offloading solution with the help of
proportional-integral-derivative (PID) control techniques. In the
procedure, line 3 judges whether or not the termination condition
is met. If no, line 4 sets the PID controller for communication en-
ergy restriction, i.e., none of the communication energyEm,i,p

localcom,
Em,i,π

d2dcom, and Em,i,h
remcom can exceed threshold Elimit

comm. In this step,
Elimit

comm is updated by [13]

Elimit
comm(u+ 1) = Elimit

comm(u)−Q1 ×Rratio(u)−Q2

×
U1∑
�=1

Rratio(u− U1 + �)−Q3

× Rratio(u)−Rratio(u− U2)

U2
(32)

where Q1, Q2, and Q3 denote the proportional, integral,
and derivative coefficients of the PID controller, respectively.
Rratio(u) refers to the difference between the desired reliability
satisfaction ratio (i.e., 100%) and the number of tasks meeting
reliability constraints divided by overall task number at the uth
iteration. U1 denotes the number of iterations during which
the integral errors are accumulated. U2 represents the number
of iterations during which the derivative errors are measured.

Algorithm 3: Swarm Intelligent Task Offloading Algorithm
for Communication-Intensive DAG Clusters.

After PID controller settings, lines 6–12 aim to select a suitable
containerCh as the computation offloading destination for every
task τi. Here, CheckConstraints(τi, Ch) is a test function to
check whether or not all constraints in (15)–(28) are satisfied
if task τi is to execute on container Ch. If flag Δh,i is true,
lines 9–10 first allocate task τi to container Ch, and then,
accordingly delete task τi from task set Ωwk

. If task τi is
rejected by all containers, lines 12–17 adopt the first-fit manner
to determine an energy-efficient end device for task execution
based on Theorem 1. Line 18 updates the task offloading solution
Owk

obtained by the current iteration. The whole algorithm
is terminated with outputting task offloading solution Owk

for
task set Ωwk

in line 19. We should point out that Algorithm
2 can be run in parallel for each DAG cluster, thereby signif-
icantly reducing the time overhead of task offloading solution
generation.

VI. SWARM INTELLIGENT TASK OFFLOADING FOR

COMMUNICATION-INTENSIVE DAG CLUSTERS

In this section, we design a swarm intelligent task offloading
scheme for communication-intensive DAG clusters.

A. DAG Type Transformation

We devise a novel DAG type transformation method, named
PSOSR, to convert communication-intensive DAG clusters into
computation-intensive DAG clusters. This method is inspired by
the idea of hybrid algorithm design explored in [26] and [27], and
it combines the advantages of the state-of-art version of particle
swarm optimization (PSO) [28] and the sequential rounding
(SR) [29] in effectively solving complex problems. Let Γwd

=
{τ1, τ2, . . . , τL} denote a set of all tasks in a communication-
intensive DAG cluster Φwd

∈ Φ, where the index of the end
device owning task τl (1 ≤ l ≤ L) is omitted for easy presenta-
tion. Further, let Xwd

= {X1, X2, . . . , XL} be a set of binary
merging points, where variable Xl (1 ≤ l ≤ L) is set to 1 only
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Fig. 3. Example of our DAG type transformation method.

if task τl is selected as a merging point. To reduce intertask
communication overheads, we restrict that task τl and all its
direct successors not selected as merging points need to execute
at an identical destination.

Specifically, the PSOSR method relaxes l merging points
to take arbitrary real numbers from [0, 1], i.e., the in-
equality 0 ≤ X1, X2, . . . , Xl ≤ 1 holds. At this moment,
there obviously coexist continuous variables {X1, X2, . . . , Xl}
and discrete variables {Xl+1, Xl+2, . . . , XL}. Afterward, the
up-to-date PSO variant detailed in [28] is adopted to address the
mixed-variable task merging problem. Unlike other PSO vari-
ants, this latest PSO technique is characterized by three stages
of mixed-variable encoding, hybrid offspring reproduction, and
adaptive parameter tuning. In the first stage, the particle position
vector (i.e., transformation solution) is divided into two varied
segments for encoding continuous and discrete variables, respec-
tively. Consequently, different evolutionary operators can be
exploited to separately evolve continuous and discrete variables.
In the second stage, two reproduction schemes are designed to
create a fraction of the offspring position vector linked with
continuous and discrete variables in parallel. Then, a complete
offspring particle is readily constructed by putting together the
two position vector segments. To exactly determine merging
points, we incorporate the SR technique [29] to round continuous
variables to either 0 or 1 via comparing with a predefined
threshold. Following the aforementioned stages, the third stage
concentrates on optimizing critical evolutionary parameters for
the next iteration. Fig. 3 depicts an example of our DAG type
transformation method assuming that the current DAG cluster
only contains one element.

B. Swarm Intelligent Task Offloading Algorithm

Algorithm 3 presents our swarm intelligent task offloading
scheme for communication-intensive DAG clusters. Line 1 pro-
duces initial feasible particles X = {S1, S2, . . . , SJ}. Line 2
evaluates every initial feasible particle in terms of fitness, which
is calculated as the difference between the CCR value of the
particle and the predefined CCR threshold. Lines 3–18 enter
into an iterative procedure of finding task offloading solutions.
Specifically, if the termination condition is not met, line 4
sorts all particles in a descending order. For every particle Sj ,
line 6 randomly selects a total of lj binary variables to relax

their value ranges. At this step, particle Sj is divided into two
segments Sj,1 and Sj,2 of separately storing continuous and
discrete variables. Afterward, line 7 builds an offspring Sj,1

child
for continuous variables in segment Sj,1 by invoking function
OffspringContinuous(Sj,1). Likewise, line 8 produces an off-
spring Sj,2

child for discrete variables in segment Sj,2 by calling
function OffspringDiscrete(Sj,2). Line 9, therefore, generates
a complete offspring Sj

child by combining Sj,1
child and Sj,2

child. Line
10 rounds continuous variables in segment Sj,1 by using SR
function SR(Sj

child). Line 11 checks whether or not the current
CCR value of task set Γ is below a predefined CCR threshold
when task merging solution Sj

child is applied to task set Γ. If yes,
flagΔj is set to true. Line 13 compares offspringSj

child and parent
Sj by exploiting comparison function Compare(Sj

child, Sj). If
offspring Sj

child is superior to parent Sj , lines 14–15 replace par-
ent Sj with offspring Sj

child and adjust evolutionary parameters
of particle Sj , respectively. After all particles are examined,
line 16 selects a particle Sopt with best fitness from swam X by
using selection function Select(X ). Accordingly, line 17 derives
task power coefficients by using function PowerFactor(Γ, Sopt).
In this step, the task and all its direct successors not selected
as merging points are constructed as a big task τ	l , and their
communication energy overheads are equal to zero [see (6)].
Since the DAG type transformation has been finished right
now, line 17 calls Algorithm 2 to produce offloading solution
Owd

for task set Γwd
. When the termination condition is sat-

isfied, line 19 exists after outputting solution Owd
. Similar to

Algorithm 2, Algorithm 3 can also be performed in parallel
for communication-intensive DAG clusters, thereby saving the
time overheads in producing an energy-efficient task offloading
solution.

VII. SIMULATION

In this section, we conduct simulation experiments to validate
the effectiveness of our solution for synthetic applications.

A. Simulation Settings

In simulation settings, the operating frequency fm of the
processor Θm is randomly selected from [500, 1500] MHz [9].
The Dell PowerEdge R930 server [30] equipped with an Intel
Xeon E7-8894 24-core processor is selected as the edge server.
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We suppose that a total of 15 containers are installed on our edge
server and the operating frequency of one container is randomly
selected from [2000, 4500] MHz. The average fault arrival rates
of individual processors and containers are both assumed to be
in [4× 10−6, 7× 10−5] according to their computation capaci-
ties [31], [32]. The bit error rate of one communication link is
chosen from [2× 10−6, 5× 10−5] [13]. The D2D transmission
and receiving power of a single end device falls into [200, 1000]
and [100, 800] mW, respectively [5]. The D2D communication
bandwidth between any two end devices varies from 20 to
100 MHz [5]. The transmission power of an arbitrary end device
in the remote execution mode is selected from [600, 1500] mW,
and its communication bandwidth to the destination container is
picked from [100, 400] MHz. We leverage the tool TGFF [33]
to generate diverse synthetic DAG applications with the task
number varied in [20,300]. Accordingly, a set of heterogeneous
DAG applications with varied CCR values is readily produced.
The reliability goal of each DAG application is randomly chosen
from [0.70,0.9999]. The proportional, integral, and derivative
coefficients of our PID controller are set to 0.5, 0.005, and 0.1,
respectively [13].

As summarized in Table I, we conduct energy optimiza-
tion for large-scale CPS with joint considerations of task
latency, task reliability, task dependence, and end–end–edge
collaboration. We pick the following representative bench-
marking strategies that have the most similar concerns to our
problem.

1) ELYO [5] exploits the Lyapunov optimization technique
to achieve time-average energy dissipation minimization
for independent tasks. It takes both task local and D2D
execution modes into account but ignores the task remote
execution mode provided by edge servers.

2) ELDM [7] leverages the Lagrange duality method to de-
cide one of the three execution modes for every task,
thereby minimizing the system overall energy consump-
tion. However, neither the intertask dependencies nor the
task reliability demands are considered.

3) ELGT [9] is a game theoretic task offloading algorithm
to jointly minimize the energy optimization and pro-
cessing latency of independent tasks with the help of
end–end–edge collaboration. However, it fails to con-
sider both the toleration of soft errors during task exe-
cutions and the occurrence of bit errors during intertask
communication.

4) ERPS [15] aims at minimizing the energy consump-
tion of dependent real-time tasks by using processor-
merging and slack time reclamation methods. It
considers the toleration of soft errors during task ex-
ecutions but neglects the occurrence of bit errors dur-
ing intertask communication. Moreover, the computation
paradigm of end–end–edge collaboration is not used dur-
ing energy optimization.

5) EILP utilizes an open-source ILP solver [23] to tackle
the ILP problem of energy minimization formulated in
Section III-A. As mentioned earlier, this scheme yields
a globally optimal task offloading solution, but is highly
likely to incur huge runtime overheads.

B. Simulation Results

In the comparative study, we conduct a total of 100 experi-
ments to obtain averaged evaluation data. Table II exhibits the en-
ergy dissipation and the corresponding energy savings achieved
by our approach when running synthetic DAG applications. On
one hand, we observe that our approach significantly reduces
the whole energy consumption of end devices, especially when
more end devices are involved in the task offloading process.
On the other hand, we also see that our approach is inferior
to benchmarking algorithm EILP, with 9.86% degradation on
average in terms of energy consumption.

Table III lists the runtime overheads of task offloading al-
gorithms and the resultant speedup attained by our approach
when running synthetic DAG applications. The results in this
table confirm the effectiveness of our approach in shortening
the runtime spent on deriving desirable task offloading so-
lutions. In addition, the results also reflect that the runtime
overheads of our approach tend to grow slowly rather than
rapidly as the number of end devices increases. This is mainly
because the incorporation of ISODATA technique into our
approach empowers the parallel searching for task offloading
solutions of different DAG clusters.

We further explore the schedulability of six task offloading
algorithms. The schedulability of an algorithm is the ratio of
the number of DAG application instances satisfying specific
constraints to the total number of DAG application instances
under test (i.e., 100 in our experiments). Table IV shows the
results when only considering the task dependence or dead-
line constraints of synthetic DAG applications. As observed,
when only considering the intertask dependence constraints,
the schedulability of benchmarking algorithms ELYO, ELGT,
and ELDM is merely 43%, 59%, and 42% on average, respec-
tively. When only considering the task deadline constraints,
the schedulability of benchmarking algorithms ELYO, ELGT,
ELDM, and ERPS is 38%, 53%, 36%, and 65% on average,
respectively. This is because the four benchmarking algorithms
are customized for the latency-aware task offloading of a single
application while neglecting the concurrent task offloading of
individual applications with distinct timing requirements. Con-
versely, our approach and benchmarking algorithm EILP always
achieve 100% schedulability when imposed either the intertask
dependence or task deadline constraints.

Similarly, Table V presents the schedulability of six task
offloading algorithms when considering the task reliability and
all constraints of synthetic DAG applications. As observed,
when benchmarking algorithms ELYO, ELGT, and ELDM are
all imposed on the task reliability constraints, they inevitably
suffer from undesirable reliability violations (up to 44%) due
to the neglect of tolerating both bit errors and soft errors.
Although benchmarking algorithm ERPS can handle the soft
errors during task executions, it ignores the tolerance of bit
errors during intertask communication, thereby resulting in a
lower task overall reliability. Further, when considering all de-
sign constraints (i.e., intertask dependence, task deadline, and
task reliability constraints), benchmarking algorithms ELYO,
ELGT, ELDM, and ERPS cannot realize 100% schedulability.
In contrast, our approach and benchmarking algorithm EILP
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TABLE II
ENERGY DISSIPATION ACHIEVED BY TASK OFFLOADING ALGORITHMS WHEN RUNNING SYNTHETIC APPLICATIONS

TABLE III
RUNTIME OVERHEADS OF TASK OFFLOADING ALGORITHMS WHEN RUNNING SYNTHETIC APPLICATIONS

TABLE IV
SCHEDULABILITY WHEN ONLY CONSIDERING TASK DEPENDENCE/DEADLINE CONSTRAINTS OF SYNTHETIC APPLICATIONS
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TABLE V
SCHEDULABILITY WHEN CONSIDERING TASK RELIABILITY AND ALL CONSTRAINTS OF SYNTHETIC APPLICATIONS

Fig. 4. Structure of partial real-life DAG applications under test.

always maintain 100% schedulability under varied settings of
the number of end devices. However, compared with EILP,
our approach can reduce the algorithm runtime overheads by a
factor of 139.12 on average while achieving striking energy
savings of end devices, as shown in Tables II and III.

VIII. FURTHER INVESTIGATION

We further investigate the effectiveness of our approach when
running real-life DAG applications in CPS environments.

A. Real-Life Application Description

A collection of real-life DAG applications drawn from [24],
[34], [35], [36], [37], and [38] are tested in this section, includ-
ing the FFT, GE, mpegplay, madplay, tmndec, toast, Montage,
CyberShake, Epigenomics, LIGO inspiral analysis, molecular

dynamics code, Sipht, in-tree, out-tree, mean value analysis,
Laplace equation solver, fork-join, LU-decomposition, face
recognition, AIRSN, Chimera, navigator, SignalGuru, and Twit-
terSentiment. These benchmarks cover a wide spectrum of CPS
applications, and hence, facilitate a comprehensive investigation
on our approach and benchmarking algorithms. Fig. 4 illustrates
the structures of partial DAG applications, while the structures of
other DAG applications can be found in their original study. For
every topological layer in a single DAG application, the number
of tasks it contains can fluctuate to accommodate actual require-
ments. Hence, for each type of individual DAG applications, we
randomly select the overall task number from [50, 500] such that
a plentiful of DAG application variants with varied CCR values
are, hence, constructed. Similar to synthetic DAG applications,
the reliability goal of each real-life DAG application is also
randomly chosen from [0.70,0.9999].
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TABLE VI
ENERGY DISSIPATION ACHIEVED BY TASK OFFLOADING ALGORITHMS WHEN RUNNING REAL-LIFE APPLICATIONS

TABLE VII
RUNTIME OVERHEADS OF TASK OFFLOADING ALGORITHMS WHEN RUNNING REAL-LIFE APPLICATIONS

TABLE VIII
SCHEDULABILITY WHEN ONLY CONSIDERING TASK DEPENDENCE/DEADLINE CONSTRAINTS OF REAL-LIFE APPLICATIONS

B. Investigation Results

We first investigate the energy consumption of six task
offloading methods when running real-life DAG applications.
We observe from Table VI that our approach achieves 33.40%,
23.84%, 21.10%, and 51.48% energy savings on average

compared with peer algorithms ELYO, ELGT, ELDM, and
ERPS, respectively. More importantly, our approach exhibits an
accelerating trend in terms of energy savings as the number of
end devices in the system increases. The main reason is that our
approach fully exploits the heterogeneity of DAG applications in
energy demands, whereas the differentiated energy requirements
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TABLE IX
SCHEDULABILITY WHEN CONSIDERING TASK RELIABILITY AND ALL CONSTRAINTS OF REAL-LIFE APPLICATIONS

of DAG applications are largely ignored by all peer algorithms.
In addition, we witness that the energy consumption of our
approach is 8.56% higher on average than that of benchmarking
algorithm EILP. This is because benchmarking algorithm EILP
derives globally optimal computation offloading solutions by
exploiting the ILP technique.

We then investigate the runtime of six task offloading algo-
rithms when running real-life DAG applications. As demon-
strated in Table VII, our approach achieves 27.24, 33.22,
31.20, 36.02, and 123.47 times of runtime speedup on av-
erage compared with peer algorithms ELYO, ELGT, ELDM,
ERPS, and EILP, respectively. As aforementioned, the reason
is that our approach can search for energy-aware reliability-
ensured task offloading solutions for differentiated DAG
groups in parallel with the help of ISODATA clustering
technique.

We finally investigate the schedulability of six task offloading
algorithms when running real-life DAG applications and sum-
marize the comparison results in Tables VIII and IX. Clearly, the
results are consistent with the observations for synthetic DAG
applications. That is, except for our approach and benchmark-
ing algorithm EILP, all other algorithms (i.e., ELYO, ELGT,
ELDM, and ERPS) cannot guarantee 100% schedulability for
real-life applications. Meanwhile, our approach yields a better
tradeoff between the holistic energy savings of end devices and
the runtime overheads compared with benchmarking algorithm
EILP.

IX. CONCLUSION

This article aimed to address the problem of energy
minimization under DAG timing, precedence, and relia-
bility constraints in end–end–edge collaborated large-scale
CPS. To this end, our approach first utilized a cluster-
ing method to distinguish differentiated energy demands of
DAG applications. Then, our approach developed a PID-
based task offloading scheme for computation-intensive DAG
clusters and a PSOSR-based task offloading scheme for
communication-intensive DAG clusters. In the future work,

we plan to extend the current study from the following three
aspects.

1) Integrate the popular dynamic voltage and frequency
scaling technique into end devices for energy
optimization.

2) Consider the modern end devices powered by renewable
generations, e.g., solar energy.

3) Investigate the approximate computing requirements of
DAG applications.

APPENDIX

For the sake of easy presentation, let θ denote the sorted
processor-dependent parameters in ascending order, i.e., θ =
[θ1, θ2, . . . , θ|Φwk

|] satisfying θ1 ≤ θ2 · · · ≤ θ|Φwk
|. Similarly,

let Y denote the sorted task-dependent parameters in descend-
ing order, i.e., Y = [Y1,Y2, . . . ,Y|Φwk

|] satisfying Y1 ≥ Y2 ≥
· · · ≥ Y|Φwk

|. At this moment, the computation energy con-
sumption E(Ω′

wk
) is given by

E(Ω′
wk

) = θ1 × Y1 + · · ·+ θ|Φwk
| × Y|Φwk

|. (33)

Suppose that the locations of two elements Yi and Yj (i < j)
in the matrix Y are swapped with each other, i.e., Yswap =
[Y1,Y2, . . . ,Yi−1,Yj ,Yi+1, . . . ,Yj−1,Yi,Yj+1, . . . ,Y|Φwk

|].
Then, the computation energy Eswap(Ω

′
wk

) is given by

Eswap(Ω
′
wk

) = θ1 × Y1 + θ2 × Y2 + · · ·+ θi × Yj + · · ·
+ θj × Yi + · · ·+ θ|Φwk

| × Y|Φwk
|. (34)

By comparing the computation energy consumption E(Ω′
wk

)
andEswap(Ω

′
wk

), we obtain (35) due to the optimality assumption
of energy consumption E(Ω′

wk
), that is,

Eswap(Ω
′
wk

)− E(Ω′
wk

) = (θi − θj)(Yj − Yi) ≥ 0. (35)

Considering the inequality i < j holds, we deduce thatYi should
be no less than Yj , i.e., the inequality Yi ≥ Yj holds. Based on
the aforementioned analysis, we can iteratively exchange the
position of any two elements in matrix Y . In every iteration
of the element position swapping, it is clear that the inequality
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Yi ≥ Yj holds for i < j. At the end of the whole swapping
procedure, the inequality Y1 ≥ Y2 ≥ · · · ≥ Y|Φwk

| holds.
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